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ABSTRACT 
 

Supervisory Control and Data Acquisition (SCADA) are large, 
geographically distributed systems that regulate help processes in industries 
such as nuclear power, transportation or manufacturing. SCADA is a combination 
of physical, sensing, and communications equipment that is used for monitoring, 
control and telemetry acquisition actions. Because SCADA often control the 
distribution of vital resources such as electricity and water, there is a need to 
protect these cyber-physical systems from those with possible malicious intent. 
To this end, an Intrusion Detection System (IDS) is utilized to monitor telemetry 
sources in order to detect unwanted activities and maintain overall system 
integrity.  
 

This dissertation presents the results in developing a behavior-based 
approach to intrusion detection using a simulated SCADA test bed. Empirical 
modeling techniques known as Auto Associative Kernel Regression (AAKR) and 
Auto Associative Multivariate State Estimation Technique (AAMSET) are used to 
learn the normal behavior of the test bed. The test bed was then subjected to 
repeated intrusion injection experiments using penetration testing software and 
exploit codes. Residuals generated from these experiments are then supplied to 
an anomaly detection algorithm known as the Sequential Probability Ratio Test 
(SPRT). This approach is considered novel in that the AAKR and AAMSET, 
combined with the SPRT, have not been utilized previously in industry for cyber-
security purposes.  

 
Also presented in this dissertation is a newly developed variable grouping 

algorithm that is based on the Auto Correlation Function (ACF) for a given set of 
input data. Variable grouping is needed for these modeling methods to arrive at a 
suitable set of predictors that return the lowest error in model performance. 

 
The developed behavior-based techniques were able to successfully 

detect many types of intrusions that include network reconnaissance, DoS, 
unauthorized access, and information theft. These methods would then be useful 
in detecting unwanted activities of intruders from both inside and outside of the 
monitored network. These developed methods would also serve to add an 
additional layer of security. When compared with two separate variable grouping 
methods, the newly developed grouping method presented in this dissertation 
was shown to extract similar groups or groups with lower average model 
prediction errors. 
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1 INTRODUCTION 

The advancements in computer technology over the past few decades 
have also seen a trend in the implementation of Cyber-Physical Systems (CPS) 
for all manner of process control. The CPS is typically a large scale, 
geographically distributed system that consists of physical components such as 
process equipment, sensors, and actuators. There is also a so-called cyber 
component that uses proprietary communication protocols to monitor, send data 
or issue commands from servers and/or operators in a distant control center. 
This combination of sensing and control technologies has seen use in a variety of 
industries that include nuclear, oil/gas, hydroelectric, automotive and railway 
transportation, to name a few. These systems are used where automation is 
needed or to control equipment in remote environments where having dedicated 
staff would not be beneficial. The Supervisory Control and Data Acquisition 
(SCADA) system combines data sensing, acquisition, and proprietary 
communications protocols to monitor and control equipment and processes. 
Nowadays, SCADA is synonymous with CPS.   
 

Given that SCADA systems control the distribution of many vital resources 
such as energy and water, combined with the recent trend in many industries to 
shift to a digital Instrumentation and Control (I&C) culture, there is a need to 
protect the integrity and safety of these systems from malicious, unauthorized or 
even authorized users. Damage or interruption of access to these systems could 
lead to loss of power for customers, disruption of irrigation for crops, identity 
theft, or at worst, loss of life if the SCADA system controls passenger 
transportation. Though major incidents involving SCADA systems like Stuxnet 
are thankfully few or not reported, there are some well known examples recently 
and in the past that will serve to illustrate the aforementioned losses. In the 
nuclear industry, the Slammer worm attacked the Davis-Bessie power plant in 
2003 [1]. The main effect of this attack was that several monitoring stations were 
unavailable for several hours. However, the plant was not operating at the time, 
so there was no immediate threat to the safety systems or to the general public. 
In 2007, an engineer disrupted a SCADA system that regulated water flow from 
the Sacramento River that was used for consumers and irrigation purposes [2]. 
This disruption led again to lost revenue and a lengthy prison sentence for the 
engineer. Last, in 2016 two passenger trains in Germany collided, resulting in 
injury and loss of life [3]. The final cause of the accident was determined to be 
the operator at the main facility. Incorrect inputs were given to the conductors 
and the system alerts were overridden even though two trains were traveling 
towards each other on the same track. This example shows that not all threats to 
the integrity of the SCADA system are from outsiders, and that authorized users 
are able to disrupt the system. These and other security incidents related to 
SCADA systems will be discussed in more detail later. 
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With these examples in mind, the threats to these systems will become 
more sophisticated and numerous as more industries shift to digital I&C. A threat 
to the security of these systems can be defined as misuse to gain privileges, data 
or control aspects of the system, such as valve actuation [4]. These security 
threats can also be termed zero-day, short, and long duration. Zero-day attacks 
are those that are previously unknown and can escape detection from many 
detection techniques. They are also typically fast acting, like short duration 
attacks. Short attacks are those that can cause an immediate disruption to the 
system, while long term attacks typically inject code that masquerades the 
intruder as an authorized user in order to steal privileged data or disrupt system 
processes. To catch the majority of these threats, a detection system needs to be 
in place. An Intrusion Detection System (IDS) can be thought of as any 
combination of hardware and/or software that monitors various system telemetry 
and states in an attempt to detect any unauthorized users or actions. The IDS 
may examine telemetry or logs for attack signatures of known intrusions, 
deviations from defined normal behavior, or combinations of these techniques. 
These systems can be passive or reactive, which means that either an alarm is 
simply reported when some rule is broken or action is taken to evict the intruder 
and/or isolate the affected system. To address the security needs of SCADA 
systems, there are several varieties of IDS that have been developed in open 
literature. In the broadest terms, the IDS are classified by what audit or telemetry 
data is examined for intrusion events, this then drives the detection technique. 
The three main categories of detection systems are termed knowledge, behavior 
or behavior-specification-based [5].  

 
In knowledge-based systems, the method only looks for specific 

signatures that correspond to previously known and mitigated attacks. These 
signatures are contained in what is known as an attack dictionary. Any observed 
signatures that are not contained in the dictionary are treated as normal; this can 
be considered a strength and weakness [6]. The strength is that this type is very 
easy to implement and has a low rate of false alarms. The main weakness is that 
this method can never detect zero-day attacks. 

 
 In behavior-based systems, models are trained on data reflecting normal 

operating conditions, any deviations from this learned behavior can then be 
considered as anomalous [7]. This type requires normal operational data and 
time for training, more system overhead to operate than knowledge-based 
systems, and have often yielded high false alarm rates. This particular challenge 
is addressed later in this thesis by utilizing the sequential probability ration test. 
Despite these apparent setbacks of the behavior-based IDS, this type can detect 
zero-day attacks, which is a major security benefit when compared with a system 
that only utilizes a knowledge-based system. Also, models do not need to be pre-
enumerated with this type of system.  
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In behavior-specification-based systems, formal behaviors and 
specifications for the system are preprogrammed by a human expert [8]. Alarms 
are only given when these rules are violated. The main strength of this type is a 
low false alarm rate since only attacks corresponding to the defined 
specifications will trigger an alarm. The main weakness is that a human must 
define all rules, which can be error prone.  

 
Next, depending on what type of IDS is employed, a high rate of false and 

missed alarms is often observed. These rates can also be thought of as false and 
missed alarm probabilities. The False Alarm Probability (FAP) is the probability of 
the current observation being labeled as showing attack signatures when it is in 
fact in a normal state. The Missed Alarm Probability (MAP) is the probability of 
labeling an observation showing attack signatures as being in a healthy state 
when it is in fact in an abnormal state. The danger here is that if high rates for 
these probabilities are reported by the IDS, then operators will again distrust the 
alarm outputs and ignore them.  

 
In general, the difficulty in developing IDS for SCADA systems is that 

changes in technology often design out certain threats and also introduce 
completely new threats. For example, a known vulnerability in a wireless sensor 
that allows full system access to any user can be designed out with better 
software and threat mitigation procedures. Because this vulnerability was known, 
the IDS could easily be programmed to look at certain log files and blacklist 
unauthorized users. However, after redesign, this functionality of the IDS may 
have become obsolete. This means that the IDS would then also need to be 
updated to keep pace with this technology change. The situation worsens if the 
newly designed software is found to be exploitable to new zero-day attacks. If the 
IDS employed for this example sensor is not a behavior-based system, then once 
again the sensor is vulnerable to attacks and the IDS will report this new, 
unwanted activity as normal. Because of this constant change in technology, the 
skills of hackers must and do also change to meet this demand, which means 
that no system can be considered totally secure. 

 
The methods used in this dissertation attempt to alleviate some of these 

concerns by developing a behavior-based detection method that employs non-
parametric models known as Auto Associative Kernel Regression (AAKR) and 
Multivariate State Estimation Technique (AAMSET) to learn the normal system 
behavior. These methods have seen commercial success in industrial 
applications for sensor degradation and process anomaly detection. These 
models are combined with an anomaly detection algorithm known as the 
Sequential Probability Ratio Test (SPRT), which is a binary statistical hypothesis 
test that is known to have the lowest mathematically possible FAP and MAP and 
requires the fewest number of observations to arrive at a decision. This means 
that the SPRT servers to alleviate issues in timeliness of detection. 
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1.1 Problem Statement 
 

The primary goals in developing a detection system for cyber attack 
mitigation should include the ability to detect unknown attacks, minimize the 
occurrence of false/missed alarm rates, and timeliness in detection of malicious 
activities. Behavior-based methods have the ability to detect unknown attacks 
without the need of a dedicated attack dictionary, though several of these have 
been developed. These behavior or model-based IDS include Neural Networks 
(NN), Genetic Algorithms (GA), classifiers, and various types of regression 
analysis [9-12]. While each of these methods has their own strengths, the main 
weakness is either complexity of implementation or high overhead cost for simple 
models. The focus of this dissertation is on the development of behavior-based 
IDS that use the AAKR and AAMSET techniques as the main empirical models. 
These modeling techniques are used to learn the normal behavior of a system 
from supplied data. These models are easy to implement, train, and have low 
overhead compute cost. Also, when new operating conditions such as a change 
in normal system dynamics or the inclusion of additional sensors occur, the 
models can be easily retrained to accommodate these new conditions with no 
loss in performance. 

 
 Related to these modeling methods is how to select relevant variables 

from a larger pool of variables that will return the low model prediction errors. The 
subject of Variable Grouping Methods (VGM) is extensive and can be as 
complex as some empirical modeling techniques. To this end, a newly developed 
VGM that is based on the Auto Correlation Function (ACF) is shown. This novel 
method, termed ACFgroup, utilizes properties of the ACF for a given set of input 
data to arrive at groups of variables that have similar changes in system 
dynamics. The developed method is robust to most data sets, regardless of the 
number of observations, signals, or sampling rates.  
 

Next, many IDS suffer from high FAP and MAP. This issue can lead to 
alerts being ignored or sensitive systems being compromised. A high FAP will 
make even the best designed IDS useless because this will reduce monitored 
component lifetime and lead to an increase of operating costs for needless 
maintenance. A high FAP can cause administrators to relax the IDS parameters, 
which can lead to missed attacks or a loss in confidence in the employed 
detection system. Alternatively, a high MAP can allow outside intruders or 
unauthorized users to steal proprietary information or disrupt the system, all 
without being detected. This alternative can also cause operators to distrust the 
implemented detection system. Several SPRTs are employed in this work to 
reduce the occurrence of false and missed alarms. The SPRT was chosen 
because it is known to have the lowest mathematically FAP and MAP. The 
SPRTs include tests for shifts in the mean and variance of observed telemetry.  
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The last issue that can arise in any IDS is that monitored data streams are 
out of phase or have vastly different sampling rates. This problem arises in all 
systems that use electrical circuits and is due to differences is developed 
software or hardware. In order for the control processes and detection system to 
be effective, the data streams need to be synchronized so that all telemetry 
sources reflect the current state of the system for timely actuation and detection. 
Time synchronous averaging methods can be used to resample phased 
telemetry streams. This dissertation describes such a method that matches 
overlapping times in data streams and interpolates un-sampled regions in the 
data to representative values.  
 

Finally, a separate consideration with all IDS and their related techniques 
is that they need to be usable on many different types of operating systems. If a 
detection system is developed in a specific programming language such as 
MATLAB, then the IDS is only useful on systems with that specific language. To 
this end, the algorithms used to develop the AAKR and AAMSET models and all 
SPRTs have been ported from MATLAB to Java. This means that the developed 
methods can be used on any computer architecture that supports Java.  
   

1.2 Original Contributions 
    

The research presented in this dissertation describes several original 
contributions to the field of cyber-security and empirical-based modeling. The 
developed behavior-based methods have been validated on several data sets 
taken from the SCADA test bed, while the newly developed VGM has been 
validated on several different real-world data sets. The original contributions 
described in this dissertation can be summarized as follows: 

 
• Development of behavior-based intrusion detection methods which use 

AAKR or AAMSET models to learn normal system behavior from various 
computer system telemetry sources 

• Development of a novel VGM known as ACFgroup that selects relevant 
variables for empirical-based modeling based on statistical properties of 
the ACF. The algorithm typically returns groups of variables with lower 
average model prediction errors when compared with other VGM 

• Development of time synchronous averaging technique that resample 
telemetry sources which have uneven sampling rates 

• Implemented the developed IDS methods in Java. This allows these 
methods to be used on any computer architecture that supports Java 
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1.3 Organization of Document 
  

In the next chapter, a comprehensive literature review is provided that is 
related to the major contributions of this work. This includes a full description of 
SCADA systems and related security incidents, intrusion detection methods, 
Variable Grouping Methods (VGM), and time averaging techniques.  

 
With this background provided, Chapter 3 presents a description of the 

related methodologies required for this research. Time synchronous averaging 
techniques are described first, which are needed to resample time phased 
telemetry sources. This is followed by a complete description of the newly 
developed variable selection method termed ACFgroup. Next, the methodology 
and techniques related to the empirical based modeling used in this dissertation 
are discussed. The chapter concludes with a description of the Sequential 
Probability Ratio Test (SPRT), which is used for anomaly detection purposes.  

 
Chapter 4 presents the simulated SCADA test bed and equipment 

information. This is followed by a discussion of the various penetration testing 
software and codes used for this research. The chapter concludes with examples 
of which tested intrusions were successfully detected using this simulation and 
developed methods.  

 
Chapter 5 first provides a comparison of the developed time synchronous 

averaging technique with one developed using regression methods. This is 
followed by several case studies that display the efficacy and usefulness of the 
newly developed ACFgroup algorithm for variable grouping purposes. These 
results are compared with two other VGM that uses correlation coefficients to 
arrive at final variable groups. This chapter concludes by providing the intrusion 
detection results for two different data sets. Each data set was obtained by 
subjecting the simulated SCADA test bed to repeated, successive injections of 
several different types of exploits. This was done to determine which exploits 
could be detected using the developed methods. 

 
The last chapter provides a summary and conclusions of this dissertation, 

followed by recommendations for future work that are outside the scope of this 
presented work.  
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2 LITERATURE REVIEW 

This chapter provides a comprehensive literature review related to 
SCADA, IDS, VGM and time averaging techniques. The history and current 
terminology for SCADA systems are provided first, followed by an investigation 
into the various security vulnerabilities, threats, and incidents. Next, IDS types 
and methods to reduce false/missed alarms are given. VGM are then discussed, 
concluding with a survey of time averaging methods.  
 

2.1 SCADA System Overview 
 

Modern SCADA systems emerged in the 1970s by using technology that 
matured in the railway, radio communications and computer industries [13]. The 
first SCADA-type system emerged in the early days of the railway industry to 
solve the problem of how to monitor current traffic and send commands to 
change track configurations when needed. The initial systems used electric 
pressure plates attached to track switches. When a train was present, the 
pressure plates would induce an electrical charge. Using electrical repeaters, the 
status of the track could then be wired to a central facility, where an operator 
would then monitor traffic status and issue commands. If the track configurations 
needed to be switched, commands could be sent via telegraph lines to stations 
that were connected to the central facility. In those days, this type of information 
exchange was termed telemetry. In Figure 2-1, the schematic of what can be 
considered the first precursor to modern control systems is shown. 
 

 
Figure 2-1: Early Railway Control System [13] 
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This type of monitoring system was at first limited to areas where 
telegraph wires could be installed and by current technology. Later, radio 
communications were slowly maturing so that transmitters could be set at remote 
locations with a simple battery for power needs. Once radio communications 
could be sent and received, industries such as oil, gas, and railway developed 
means of controlling simple processes such as valve actuation from a central 
facility. With the advent of digital computers, larger amounts of data could be 
collected from the field and the number of processes controlled could be 
increased as well. As computer technology matured along with the emergence of 
the Internet, these control systems became more widespread and used in many 
industries to form the modern SCADA system. The typical components of a 
modern SCADA system are listed next [14]: 
 

• Human Machine Interface (HMI), interface for engineer to monitor 
processes and issue override commands 

• Master Terminal Unit (MTU) and data historians, the MTU initiates 
commands and sends processed data to data historians  

• Communication equipment for link from the MTU to the field devices 
• Remote Terminal Unit (RTU) or Programmable Logic Controllers (PLC), 

retrieve data from sensors/actuators and issue commands to actuators  
• Sensors and actuators, equipment to monitor field devices such as pumps 

and change configurations of valves  
• Field devices, equipment such as pumps or motors that control and 

maintain monitored physical processes, such as water flow  
 

In Figure 2-2, the components and setup of a generalized modern SCADA 
system are shown [15]. 
 

 
Figure 2-2: Modern SCADA System Design [15] 
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The generalized SCADA system shown in the previous figure has been 
used in many industries such as nuclear, oil/gas, electric power generation, 
chemical, and water distribution [16]. From the above figure, a SCADA system 
can be further divided into several major groups or layers [17]: control center, 
corporate network, communication network, field sites and information layer. 
Each of these different sub layers will be briefly discussed next. 
 
Control Center Layer: This layer consists of the MTU that issues commands 
and polls field devices for data. This data is processed by the MTU and stored to 
data historians. The HMI allows the operators to view current system states, 
issue new commands to the field or reprogram the RTUs or PLCs.   
 
Corporate Network Layer: This layer is seen in the current generation of 
SCADA systems, it consists of a network at corporate headquarters that can poll 
the field devices or control center for system states and request data.  
 
Communication Network Layer: Enables the connection and communication 
between the control center and the field site layer through a Wide Area Network 
(WAN) by using private connection lines assigned to a particular company. The 
RTUs commonly use Industrial Ethernet or proprietary communications protocols 
such as MODBUS, DNP3, Seimens-7 and RS-232.  
 
Field Site Layer: This layer consists of the remote stations or locations that are 
controlled and monitored by the control center. This layer contains all physical 
process equipment, sensors, actuators and RTUs used for data sensing and 
transmission actions.  
 
Information Layer: This last layer is an abstraction but pervades the entire 
control system; it has two main types of information that pass between each 
layer. The first is sensor information that is polled from the RTU by the MTU. The 
other is command information that flows from the control center to the field sites 
to control process equipment. This information can be an attack target.  
  

The main distinction in SCADA systems is that there is always a 
monitoring and control element of some process. Depending on the nature of the 
system, the control actions and telemetry sources can exhibit periodic 
components. The other distinction is that these systems can be geographically 
dispersed, often with the control center located hundreds of miles away from the 
actual physical equipment. This large scale system with many components is 
desirable because it reduces operating and maintenance costs, and centralizes 
many control operations. However, because of the nature of these systems, 
there are several vulnerabilities and threats that can be exploited in all of the 
previously mentioned integrated layers, discussed in the next section.  
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2.1.1 SCADA Security Vulnerabilities and Threats 
 
The implementation of SCADA systems also brings some unique 

vulnerabilities and threats to the system. Vulnerability can be defined as a flaw in 
the design or environment of the system that could allow access to an intruder. 
Vulnerabilities can arise in developed software, design flaws in equipment or a 
poorly configured network. They can also be classified as internal or external in 
nature. A threat can be defined as an intruder or agent with the purpose of 
causing harm to the system in some way, the main avenue to intrusion is usually 
through the vulnerabilities found in the system. Examples of threats are malicious 
software that attempts to gain access to privileges and information, criminal 
intruders or disgruntled employees that attack the system from the inside [18].  
 

Many of the external vulnerabilities found in this type of system are 
inherent in the design [19]. Because these systems are large in scale and are 
geographically dispersed; field devices are often located in remote places where 
human supervision does not exist. This can allow intruders to damage field 
devices or gain access to sensors to modify telemetry. An example is an intruder 
that drains the batteries in several RTUs, thus leading to DoS. If field sites are 
located in remote areas, then repair times can lead to large revenue losses. The 
field devices may also suffer random failures if located in harsh environments.  
 

Internal vulnerabilities can be caused inadvertently or intentionally by 
operators. This can arise from inputting incorrect parameters or commands to the 
system. Intentional actions are caused by disgruntled employees who wish to 
cause damage to the system. Other internal vulnerabilities include design flaws, 
bugs in software and in the proprietary communication protocols. These can be 
exploited by a resourceful intruder. Common cause failures of the equipment or 
monitoring system can also be considered as a vulnerability of the system. 
Finally, there can be failures or interruptions in power, network communications, 
and other unexpected failures that can limit the functionality of the system [20]. 
The main point here is that vulnerabilities exist in all systems that cannot be 
designed out; they must be considered when designing the system and when 
choosing what type of intrusion monitoring system to implement. A summary of 
these and other vulnerabilities for SCADA systems is given in Table 2-1. 
 

Table 2-1: Common Vulnerabilities of SCADA Systems 

External Types Internal Types 
Geographically Dispersed Operator errors  
Large in Scale Design flaws in software/hardware 
Environmental Conditions Communication/Power Interrupts 
Equipment Resources Internal (disgruntled employees) 
Minimal human supervision Poor System Design 
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The remainder of this subsection will focus on the various types of security 
threats that would make a SCADA system vulnerable to intruders. Since SCADA 
systems are a combination of hardware and software, the security threats will be 
discussed separately for each of these main component types.   
 
Hardware Security Threats 
 

For this discussion, the term hardware will mean the sensors, actuators, 
and physical process equipment. The threats to the hardware or physical side of 
the system first consist of destruction of sensors, equipment, and severing of 
power and communication lines. These brute force methods are difficult to 
prevent and can potentially cause the most damage to the system. These threats 
can also cause large losses of revenue for a resource or business-critical 
network. Next, the intruder can gain access to sensors or monitored equipment 
and change reported values. This can have the effect of the wrong command 
actions being sent due to misinformation. This can potentially lead to information 
theft and also cause a large amount of damage to the entire system [21]. Other 
types of sensor related threats are to cut or drain the power supply, thus 
rendering the sensor and remaining part of the feedback control loop inoperative. 
Finally, the sensors themselves have security in place, but attackers can break 
into the security keys by brute force methods, monitoring of access or by 
dictionary attack [22]. This last type of threat is related to intrusions of the 
communication protocols of the RTU and will be discussed more fully in the next 
section.  
 
Software Security Threats 
 

Software threats constitute the majority of attacks against SCADA 
systems because proprietary communications protocols and other software 
packages are used to transfer data along the information layer [23, 24].These 
systems use software packages in sensors, RTU/PLC, all communications, MTU, 
and data historians. The data historians also contain process and privileged data 
that would be of interest to an intruder. Many of the software packages used in 
these systems are written in C, which has its own set of vulnerabilities that can 
be exploited by a resourceful intruder. The most common flaw seen with software 
packages is buffer overflows, which can disrupt process actuation. These can 
include resetting of passwords, malware, spyware or other malicious code 
injection [25]. However, buffer overflows in these systems can also occur in the 
field devices or sensor themselves. The field devices typically have low amounts 
of memory or time allocation settings to complete required tasks. Excessive 
command actions or DoS can overflow the memory and cause fragmentation. 
This is a problem because many devices located in remote areas are often not 
rebooted or updated for years, which can lead to severe memory fragmentation 
issues [26]. If this occurs, there may be no response to command actions. 
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Another type of software threat arises from Web applications that use 
Structure Query Language (SQL). SQL is a programming language that has the 
ability to store, retrieve or manipulate data on a database. The main components 
of SQL are queries to store or obtain data and result sets. Internal and external 
intruders can gain access of the SQL server and inject or manipulate the data 
stream by inputting unrecognized or unexpected SQL statements. This can allow 
an intruder to gain complete access to the database and all stored privileged 
information. Figure 2-3 shows a diagram of how an SQL injection attack can be 
performed against a SCADA system [27].  

 
When considering the communication layer, the communications protocols 

used in SCADA systems are also targets for hackers that can lead to severe 
consequences if an attack is successful [28]. Most of the communications 
protocols used by these types of systems do not have any means to verify that 
the data or commands being received are authentic. An intelligent hacker can 
manipulate these commands for their own ends. Encryption of these protocols 
does not guarantee security since the keys can stolen or even eventually 
cracked. These systems are also vulnerable to many DoS attacks such as packet 
storming, ping flooding, and spoofing of IP packets. These types of attacks send 
large numbers of packets to the control layer, but at a faster rate than they can 
be processed. This has the result of a majority of the system resources being 
utilized to handle the large increase of incoming packets.  

 
 

 
Figure 2-3: SQL Injection Intrusion of SCADA System [27] 
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The other issues that can arise with these industrial protocols include 
eavesdropping, which is where an intruder listens in on the data being 
transferred and remains undetected by the system. Another is the man-in-the-
middle attack, which is similar to eavesdropping, but here the hacker can steal, 
transmit or modify any of the protocols, packets or data being transmitted. These 
protocols can also be used to trick the system by an intruder by copying a 
legitimate response and then replaying this response so that the system is fooled 
into thinking that the intruder is a legitimate user. The intruder can download 
malicious software to disrupt or even gain complete control of the SCADA system 
or delete data and files from the control and field networks [29]. There are also 
cases where the intruder might be an authorized user that has made a mistake, 
such as a bad command input. A disgruntled employee might also plan an inside 
attack by disruption of the system, stealing sensitive information or planting 
malicious code that will disrupt the system at a later date. Of course these 
particular insider attacks are the hardest to detect since those with the greatest 
knowledge of the system will know how to circumvent all security and detection 
techniques [30]. Table 2-2 lists these and other threats for the both the hardware 
and software levels of the system. 

 
Table 2-2: SCADA Security Threats 

Hardware Threats Software Threats 
Damage equipment DoS/Buffer Overflow 
Tap power/communication lines Gain Privilege/access/steal data 
Drain sensors/RTU/PLC of power Crack security keys & change set 

points 
Gain control of equipment/sensors Disrupt or reroute traffic 
 Desynchronize data streams 

 
Many of the hardware threats shown in the previous table have little 

defense when it comes to physical damage. At best, the process equipment can 
be fenced, guarded or locked to prevent damage. Most of the software threats 
can be combated with security that is up to date. Designing a system that is 
robust to these threats and detection of these threats is a key research 
challenge. To conclude this section, a description of some reported successful 
attacks, inadvertent or otherwise, against SCADA systems are given.  

2.1.2 SCADA Related Security Incidents   
 

As mentioned earlier, these systems are used in a wide variety of 
industries which control vital processes such as power and water distribution. It 
makes sense that malicious intruders would want to compromise these types of 
systems to cause the greatest amount of damage. To support this statement, in a 
recent survey of power utilities around the world, over 80% reported that the 
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plant had experienced a DoS attack and 85% reported that some part of the 
communication layer or related components had been attacked [31]. In the 
United States, Homeland Security reported in 2013 that nearly half of the 
reported security incidents for CPS were from the energy sector [32]. This high 
percentage of reported intrusion attempts shows that systems in the energy 
sector are prime intrusion targets [33]. While many of these intrusions never 
reach the public due to the insignificance of the attack or were not reported, there 
are a few well known attacks that have proven to be quite effective.  
 

The first security incident of intrusion against SCADA systems to be 
discussed is the well known Stuxnet attack that appeared in 2010 [34]. The 
attack used several previously unknown software exploits, PLC root kits that 
were designed to gain privilege to a PLC, and several malware evasion 
techniques. The end goal was to find PLCs and RTU systems that used the 
Siemens 7 communications protocol, which is used in about 30% of SCADA 
systems worldwide [35]. It was later discovered that the main target of attack was 
the control systems and centrifuges in Iran's enrichment facilities and that 
Stuxnet was designed to specifically disrupt these systems. The attack started as 
a worm on a flash drive that was ported to the facility, where it propagated 
through the system. Once the appropriate equipment was discovered, the worm 
disrupted the centrifuges. In Figure 2-4, the various infection routes that Stuxnet 
took to complete the intrusion are shown [36].  

 
 

 
Figure 2-4: Stuxnet Attack Outline [36] 
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Another example in the nuclear power industry was the Slammer worm 
that infected the Davis-Bessie power plant [37]. The process monitoring systems 
of this plant employed SQL along with their SCADA systems. The worm was able 
to bypass the firewalls between the external and internal networks and infect the 
system because the software had not been updated for over six months. The 
attack caused several plant monitoring computers to go offline for several hours, 
though there was no permanent damage to the facility or infrastructure. Also, the 
plant was already in a controlled shutdown, so there was no danger to the plant 
or to the general public. However, if the plant had been operating at the time, 
there would have been no way to monitor system processes. This would then be 
an effective means to disrupt and damage a facility of this type. 
 

In the oil and gas industry, a major disruption to a gasoline pumping 
system in Bellingham, Washington occurred in 1999 [38]. At the time, 
construction workers had installed water lines over the gas lines and had 
damaged the lines in the process. Also, the gas company had installed new 
valves in the system. These were poorly configured and caused a large rise in 
system pressure soon afterwards. While the MTU polled the RTUs regularly, the 
information was not updated to the HMI for several minutes. During the accident, 
an operator had also been updating the live SCADA system with untested 
programs. This action caused the system to be unresponsive to operator 
commands and they were unable to alleviate the pressure buildup. A rupture in 
the gas lines caused a large explosion that had severe environmental impacts, 
but most importantly caused three deaths. This incident displays the vulnerability 
of cyber-physical systems from authorized users and poorly configured 
monitoring and actuation systems. 

 
An additional intrusion incident in the gas and oil industry occurred in San 

Bruno, California in 2010 [39]. This incident involved an explosion of a natural 
gas pipeline. The cause of the accident involved a SCADA system that was 
receiving incorrect data, along with pressure sensors that were not reporting 
back to the control center. The initiating event was a power failure that caused an 
imbalance in the pipeline pressure; attempts to mitigate the pressure build based 
on incorrect data only served to cause an explosion. The final result was 
environmental damage, over 60 injuries and eight deaths. This incident shows 
how issues in system availability are a serious vulnerability.  
 

In the water sector, an attack against the SCADA system occurred in 
Australia, today it is known as the Maroochy attack [40]. The city had recently 
installed a process system to manage the nearly 900 kilometers of sewer lines 
and 142 pumping stations. After the system was installed, operators noticed that 
the system would lag, not respond to commands, and communications would be 
periodically lost. The culprit was one of the contractors that had installed the 
system and was resentful after being refused a position on the city council. Using 
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wireless connections and driving from pumping station to station, the intruder 
was able to disrupt the system enough that over 800,000 liters of sewage were 
pumped in parks and residential areas. This type of attack shows how these 
systems can be easily disrupted by internal threats. 
 

Another disruption of a control system in the water sector happened in 
California in 2007 [41]. The incident involved a water canal system located on the 
Sacramento River. It was discovered that an electrical engineer had installed 
unauthorized software on the system. This had the effect of diverting a large 
amount of water from the canal to other areas and caused a large loss in 
revenue for residential customers and threatened the local agriculture industry. 
The engineer had installed the software on the same day that he was fired after a 
17 year career. For this disruption of the system he received 10 years in prison. 
This shows that SCADA systems are just as vulnerable to insider attacks as they 
are from outside intrusions. 
 

When considering the electric power grid and related equipment, a major 
vulnerability was found in a brand of diesel generators called Aurora, reported in 
a US accountability report [42].This intrusion was called the Aurora Generator 
Test. These generators cost approximately $1 million and are one of the major 
brands used in the US and in the power grid. The intrusion was performed 
remotely against a generator at Idaho National Laboratory (INL). The end effect 
was the generator being destroyed quite easily. This type of attack caused a 
great deal of concern because it showed the vulnerability of the US power grid 
and related equipment to a simple intrusion 
 

2.2 Intrusion Detection Systems and Methods 
 

Given that SCADA systems exhibit many vulnerabilities and threats that 
can be exploited and lead to significant damage, methods of securing these 
systems against intruders need to be addressed. One of the main reasons for 
this given earlier is that SCADA systems control vital processes and disruption 
can in some cases lead to disastrous results. Intrusion detection can be termed 
any process that monitors current events in the system telemetry to determine if 
any use or security policies have been violated [43]. Any combination of software 
or hardware that actively monitors the communications, process signals, or other 
computer processes for unwanted activity is termed an Intrusion Detection 
System (IDS). The main functions that the system must have are real time 
availability, means to collect data from different sources, low compute cost, alert 
operators to anomalous activity and if implemented, take reactive measures to 
evict the intruder from the system before losses can occur [44]. The IDS can be 
broken into several layers that perform these tasks, an example of this is shown 
next in Figure 2-5 [45]. 
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Figure 2-5: Generalized IDS Architecture [45] 

 
The detection processes shown in the previous figure consist of 

monitoring current processes or operations, analysis of events, response actions 
to raised alarms, and data storage. The monitoring event layer consists of the 
IDS platform itself, sensors and data from monitored processes; such as network 
traffic or pressure readings; and one to several monitoring models. The analysis 
layer contains one to several models or methods that determine if the monitored 
event is actually an intrusion or if the output from the monitoring model is normal 
behavior. This layer can then generate alarms to alert operators. The response 
layer is a combination of either programmed actions or operator responses to 
stop any intrusion activities that are detected to evict the attacker. The last layer 
is for data storage. This stores the process data and output from the monitoring 
models. This data can be used for further examination offline. In the next section, 
some of the distinguishing characteristics of various IDS that have been 
developed will be discussed. The differences in these detection systems are due 
to deployment, the different data sources that are monitored, the type of 
monitoring model used, and what anomaly detection technique is employed.  

 

2.2.1 IDS Classification – Audit Data Sources 
 

The first classification of IDS will be based on the audit data that is 
collected for intrusion detection. Audit data can be extracted from several 
sources. These sources include the OS, running applications, network traffic, 
software/hardware measurements or system logs. The two main forms discussed 
in literature that will be examined are termed Host Intrusion Detection System 
(HIDS) and Network Intrusion Detection System (NIDS). Each of these 
distinctions naturally arises from the different audit data sources collected and 
configurations of the systems that are being monitored for intruders.  
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The first to be discussed are HIDS, in which a single host such as a 
computer or server is monitored to determine if there are any events that are 
show specific signatures of misuse [46, 47]. Even though several hosts may be 
connected in a network, if host monitoring is employed then only single hosts on 
the network are monitored and not the network as a whole. Each host would 
need its own IDS installed to monitor the various audit logs. The audit data used 
is primarily collected through OS, application, or keystroke logs. OS specific audit 
data are logs of events in the system. These consist of the event, what user was 
related to the event, and any commands or programs that were used during the 
event. Application audit data generates logs on specific applications and how 
they were used. Keystroke audit data logs every key that was pressed during 
operations; this can be used to determine how an intrusion occurred and how the 
system responded. The main idea behind this method is that the intruder will 
leave some sort of fingerprint in the audit logs. This is because well defined rules 
for the host can be developed. Anomalous activity would then be different from 
these specified rules [48]. In Figure 2-6, a generalized HIDS is shown [49].  
 

 
Figure 2-6: Host Based Intrusion Detection System [49] 

 
Some of the disadvantages that can arise when employing HIDS are that 

each of the hosts must use their own resources to monitor and analyze all of the 
relevant audit data. Next, the system can be limited by the specific OS that is 
used by the host. Many vendors and companies would be unwilling to purchase 
IDS software that is specific to an OS they don't currently use. Also, the software 
may be application specific. Some applications or log generating capabilities may 
not be installed or available across all vendors and companies. Finally, a clever 
intruder or well designed malware can mask the content of the audit files to 
masquerade their activities.   
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In contrast, NIDS examines the signals in the communication layer and 
between different hosts on a network [50]. The audit data can contain TCP/IP 
traffic, memory or CPU usage, and system process measurements. Other data or 
monitoring specific to NIDS are the various packet inspection methods. These 
examine incoming packet contents to determine intrusion activities. They are also 
used more extensively in SCADA. Because these are already large networks of 
interconnected systems, it makes sense to monitor the packets across this 
system for signs of attacks [51]. It is noted that most of these detection systems 
are passive, in that once an alert is given there is no other action taken besides 
sending an alert to an operator [52]. Also, host based methods have been found 
to be suited to internal rather than external threats, since the system is looking at 
any unauthorized actions on one host [53]. Network based methods are more 
suited for use in detecting external threats since they monitor the outside 
communication lines that connect several hosts together. 
 

One of the main advantages in using network detection is that resources 
are better utilized than in the previous type of system. This method can monitor 
several hosts at once and the monitored hosts do not have their resources 
constrained by having to analyze their own audit files. They are also more cost 
beneficial in this respect in that only one network monitor needs to be installed to 
protect the network. In HIDS, every component that needs intrusion detection 
must have this system installed [54]. Another advantage is that it is difficult to 
gain access to host OS and applications through the network, but is easier if the 
host is attacked. One disadvantage is that nodes collecting audit data can be 
viewed by intruders. Also, it is difficult at times to obtain a full view of all network 
activity. It has been found that different audit trails from several different hosts on 
a network can be correlated to gain a better picture of the network activity, but 
this must be implemented in the infrastructure to work properly [55]. Other issues 
that can arise with these systems are that networks on a switch are more difficult 
to monitor since the network is subdivided on a dedicated port. Also, most 
switches do not allow for global monitoring. Next, NIDS usually cannot analyze 
information that is encrypted unless given the proper encryption keys. This is not 
usually done because this creates an additional vulnerability in the system and 
can serve to increase resources used on resource constrained systems. Finally, 
a large amount of packets can be dropped during observation. This means an 
intrusion event or signature might be missed in the dropped packets.  

2.2.2 IDS Classification – Detection Techniques 
 

The other main classification and function of the IDS that needs to be 
discussed is the technique that is used to detect intruder attacks. In the open 
literature, there are three primary detection means that are used by host or 
network based systems. These are termed Knowledge Based, Behavior-Based, 
and Behavior-Specification-Based. Before each of these techniques is discussed, 
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some performance metrics related to IDS will be defined. Typically, performance 
metrics of these systems would be measured in terms of resource usage, 
installation cost, and speed. In the past decade, more focus has been placed on 
performance of the IDS in terms of detection accuracy and the number of missed 
or false alarms during observation [56]. There are four outcomes that are 
possible when observing events with the IDS. These can be classified into a 
confusion matrix for actual and predicted states, shown next in Table 2-3 [57]. 
 

Table 2-3: Confusion Matrix of Actual vs. Predicted Outcomes 

Actual Predicted 
 Normal Intrusion 

Normal True Negative (TN) False Positive (FP) 
Intrusion False Negative (FN) True Positive (TP) 

 
In the previous table, a TN and TP indicate that the detection system 

correctly identified the current system state; respectively these are normal or 
attack states. The reverse of these is the FN and FP. These measures indicate 
that the system incorrectly identified normal behavior as faulted and vice versa. 
As the outcomes shown in the table are for a single event, several equations that 
give a numerical value of alarm rates are used to further evaluate the 
performance of the IDS, shown next in Equations 1-4. 
 

True Negative Rate 
FPTN

TNTNR
+

=    (1) 

 

True Positive Rate  
FNTP

TPTPR
+

=    (2) 

 

False Negative Rate 
FNTP

FNFNR
+

=              (3) 

 

False Positive Rate 
TNFP

FPFPR
+

=    (4) 

 
The FPR provides a measure of the proportion of normal observed data 

that is classified as an intrusion. If this measure is too high, the system will face 
down time for needless inspection and users will lose confidence in the IDS. On 
the other hand, a high FNR will introduce vulnerability into the system because 
many actual intrusions will be labeled as normal. Intruder actions will then be 
missed. An effective detection system must have low or zero FNR/FPR 
measures and also maintain high TPR/TNR functionality.  
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The first detection technique is termed Knowledge-Based detection. This 
method examines the audit material for specific signatures or features of an 
intrusion contained in an attack dictionary. If the specific signature matches one 
that is contained in the attack dictionary, then an intrusion is said to be detected 
[58]. This type of detection is also called misuse, pattern-based or supervised 
detection. The signatures used in the attack dictionary can be known patterns of 
an attack, system log deviations or other sensor measurements that display a 
particular signature. Since these systems only respond when a pattern in the 
audit data matches a specific pattern of misuse, they have a low FPR [59]. The 
main drawback for this detection technique is that the system will only respond to 
a known signature. If an intrusion attack is underway that has an unknown 
signature, then it will be ignored and treated as normal behavior [60]. This has 
the effect of increasing the FNR, which means that too much trust can be placed 
in a system that employs this type of detection technique. The other drawback is 
that a library of signatures will need to be developed and continuously updated 
since the intruder can come up with a new attack pattern that does not match 
known signatures. Finally, the key challenge to using this technique is defining an 
effective attack signature library and keeping it up to date [61].  
 

In contrast, Behavior-Based detection techniques look at any behavior in 
monitored audit data that is anomalous to normal behavior [62]. In this technique, 
normal behavior consists of data from the system that is operating without any 
intrusions present. This is usually termed training data. Using the training data, 
an empirical model is developed for the system that is used to generate 
predictions of current observations. Some machine learning approaches that 
have been employed in this type of IDS are NN, GA, clustering methods or 
Bayesian classifiers [63, 7, and 10]. The training data used can be either 
multivariate system data such as memory usage, packet information, and 
hardware measurements. Statistical techniques can also be included in this 
detection scheme. These use statistical features of signals such as Root Mean 
Square (RMS) or if an actuator sensor value is a set number of standard 
deviations away from normal behavior. The main advantage in using this type of 
detection technique is that there is no signature library that needs to be 
developed or updated. Any behavior that deviates from what has been defined as 
normal is flagged as anomalous. This means that zero-day attacks can be 
detected, which is impossible with the previous detection method.  A drawback to 
this method is the high FPR seen in many developed model predictions. This 
issue may be alleviated with an optimized model and will also be addressed later 
in this dissertation with the implementation of the SPRT. Another possible 
disadvantage with this method is that the system may be vulnerable to attackers 
during retraining stages if the IDS had been taken offline [64]. However, given 
that most critical systems have added layers of security nowadays, this would 
only be an issue if all layers of security failed. 
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The last intrusion detection technique is termed Behavior-Specification-
Based. This technique is similar to knowledge and behavior based methods in 
that a specific behavior of the signal or system behavior is defined beforehand 
and the system only looks for these specific behaviors [8]. In contrast to 
knowledge-based methods, the specific behavior is defined, formalized, and 
programmed by human operators. Also, known signatures are not used since 
these are susceptible to future attacks. Some advantages to using this type of 
method are that there is a low FPR since only the specified behaviors or rules 
are examined for intrusion. However, this can again lead to a high FNR since the 
system cannot distinguish some unknown attacks. Another advantage of this 
method is that there is no training or user profiling stage, the IDS is developed 
before the system is brought online. The main drawbacks in utilizing this type of 
detection technique is the determination and formalization of system behaviors 
and attack signatures, this can be quite difficult in practice. Also, since a human 
must define all specifications, the process can be time consuming and prone to a 
large amount of errors. To summarize the ideas presented in this section, a 
listing of the advantages and disadvantages of the three detection techniques 
and audit material sources that were discussed are provided next. 
 
Intrusion Detection Technique & Audit Data Advantages: 
 

• Knowledge-based IDS have low FPR  
• Behavior-based IDS have the ability to detect unknown or zero-day 

intrusions 
• Behavior-Specification-based IDS have the ability to detect unknown 

intrusions and have a low FPR 
• Using network based audit data helps reduce loading of systems or nodes 

that have resource constraints 
• Using host based audit data allows for distribution of control and can ease 

detection of host-based intrusions 
 
Intrusion Detection Technique & Audit Data Disadvantages: 
 

• Knowledge-based IDS will not detect any unknown intrusions and attack 
signature dictionary must be developed and continually updated 

• Behavior-based IDS have traditionally suffered from unreasonably high 
FPR, a challenge that will be addressed later in this thesis.   

• Behavior-Specification-based IDS must be implemented by human 
operators and formal specification development is costly and error prone 

• Using network based audit data can leave nodes or networks visible to 
intruders 

• Using host based audit data can lead to high resource utilization of hosts, 
visibility of host, IDS and data to intruders and are difficult to generalize to 
other systems 
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2.2.3 IDS Developed for SCADA 
 

This section will provide a review of major detection systems that have 
been specifically designed or reported for SCADA system security. Initially, 
security concerns for SCADA systems were relatively nonexistent because there 
were few who had the capabilities or drive to attack these types of systems. Also, 
the standard practice of plant network isolation made intrusion into these 
systems somewhat difficult. It has only been in the past decade that serious 
attacks like Stuxnet, combined with the proliferation of technology in all aspects 
of daily life, has there been interest in developing detection software for these 
systems. For this review, nine SCADA specific IDS found in the open literature 
will be discussed. The review will focus on what audit material is used, what 
detection technique or method was applied, different intrusion scenarios 
considered and reported results.   
 

In [65], the researchers developed a Java based HIDS called Middleware-
based Intrusion Detection for Embedded System (MIDES), this was used in 
conjunction with MicroQoSCORBA middleware framework. Middleware is 
typically installed in the low levels of a SCADA system; this is software that 
bridges applications to databases and OS on a network. The MIDES system was 
not actually used for intrusion attacks or detection in the results, rather several 
different applications and sensor configurations were employed to test the 
system usage. This was performed on two PCs running a Linux based OS and 
using Java Tiny Network Interface (TINI) boards. The system usage statistics 
included memory usage for increased number of applications, latencies in 
running programs and scalability. The main goal of this research was to evaluate 
the overhead cost of running this type of detection system in the middleware 
level of a SCADA system.  
 

Oman and Phillips [66] developed a knowledge-based HIDS that 
considered power systems. The audit material used for the study consisted of 
typical host based data, such as login attempts, commands issued, password 
identification, frequency and installation of new firmware, and keystroke logging, 
to name a few. To simulate intrusions, the authors used ping flood attacks, 
change of settings and Snort to monitor if the system is online and if it is being 
sent legal commands. The authors also develop an intrusion system that in the 
current results only monitors the RTUs on the test bed; future work would extend 
the system to other devices on the network. There are no numerical results of 
system performance given and the intrusion detection model is not fully 
described. The main focus of this research was to develop a detection system 
that would examine host based audit material for signs of attack. Signatures used 
for intrusion detection purposes were simulated in a SCADA power system 
laboratory test bed at the University of Idaho.  
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The authors in [67] develop a network-based IDS based on ant colony 
clustering. This multi-agent system has several agents that monitor, perform 
learning of behavior and have either passive or reactive actions to evict intruders. 
This actual system is based on previous work that develops models based on 
mathematical behaviors of ants [68]. The clustering is further exemplified by 
deriving mathematical models of pheromone reactions. The authors use the well 
known KDD-Cup99 dataset to validate their model. They consider several attack 
vectors; including probing, DoS, U2R and R2L. The results provided are an 
average detection rate of 92% and 1.5% FPR. The main goal of this research 
was to develop a multi-agent detection system to reduce the high FPR seen in 
network-based detection systems. 
 

Next, the researchers in [69] developed a behavior-specification-based 
detection system for SCADA network systems. The main communication protocol 
that was studied for the research was Modbus, which uses a master-slave 
technique to monitor and control process systems. The authors develop several 
models for normal behavior that include protocol-level models, expected 
communication pattern models and server availability models. The protocol 
model examines Modbus headers to determine if bad protocols have been used, 
the pattern model learns the communications patterns of servers and the sever 
availability model learns service patterns of a server to detect intrusions. Audit 
data consisted of process sensor data. Some of the signatures used were 
unauthorized read and write attempts to the Modbus server and unsupported 
function codes. The authors do not present any numerical results or any 
performance metric results. The focus of this research was to detect intrusions in 
the communication layer. 
 

In [70], the authors developed a network-based detection system that 
checks if incoming data content has been altered. Several modules are placed in 
between two SCADA devices; the data from one device is sent to a transmitter 
that encrypts the data. After encryption, the information is then sent across 
potentially unsecure lines that could be targets of internal or external attackers. 
The encrypted data is then sent to a receiver that decrypts the data and sends it 
to the required target SCADA device. The modules consider Type-I and Type-II 
protocols, the first compares octets in each packets checksum value for 
deviations, while the second compares packet header information and length for 
attacks. The research solution consists of appending specific encrypted 
information to each packet, if the received packet does not contain this 
information it is rejected. The authors do not present any numerical results of the 
experiment and provide no performance metric results. The main goal of this 
research was to provide a lightweight and secure intrusion prevention method. 
This method is known as a Bump-In-The-Wire (BITW) security solution since the 
modules are placed between devices; the schematic of this type of security is 
shown next in Figure 2-8.  
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Figure 2-7: Bump-In-The-Wire Security Approach [70] 

 
In [71], the authors investigate a behavior-based detection system for 

SCADA that uses network audit material. The audit data consists of TCP/IP 
traffic from a SCADA system and HTTP traffic taken from the perimeter network 
of an institution. The intrusion tools employed were Metasploit, Nessus, 
securityfocus.com and remote-exploit.org. Other exploits considered were taken 
from the US Common Vulnerabilities and Events (CVE) database [72]. For the 
HTTP data, overflow and application based exploits were considered, the results 
were an 88% detection rate and .2% FPR. For the TCP/IP data, overflow attacks 
were also considered; the results were a 92% detection rate and .2% FPR. The 
authors also supplied performance metric evaluation of their detection system, 
showing that with deeper levels of packet inspection there is a marked decrease 
in performance. The main goal of this research was to develop behavior-based 
IDS that can detect zero-day attacks with a low false alarm rate.  
 

Last, the authors in [73] developed a Java host-based IDS termed 
SCADA-Hawk. The audit material that is used comprises non-functional events, 
such as logins, file access, firmware/software updates and other I/O records. The 
idea behind SCADA-Hawk is to place security perimeters around sensitive 
communication lines or equipment, the isolated equipment is then monitored for 
behavior that is abnormal. The authors also develop taxonomy of common 
events that relate to events in the SCADA system. The actual detection of 
intrusions is a misuse detection method; that is any preprogrammed signatures 
that match any in the audit data will raise an alarm. There are minimal results 
shown and no evaluation of actual performance of the system. The main goal of 
was to develop a detection system based on isolation of sensitive equipment.  

 
While there are many other simple and complex IDS that have been 

developed for SCADA systems, the best approach for nuclear and other critical 
infrastructures is plant network isolation. Though network isolation won't stop 
insider threats, the vast majority of outside threats can be mitigated with this 
particular strategy. For other types of SCADA systems, a dedicated detection 
system is required to stop outsider threats.  
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2.2.4 IDS False/Missed Alarm Reduction Techniques 
 

As stated earlier in the IDS detection technique section, one of the main 
drawbacks in using a behavior-based detection system is that there is often an 
unreasonably high level of false and missed alarms. This is a problem because if 
a system has a high FPR, then operators won't trust the system and there will be 
resources lost to investigate all spurious alarms. If the system has a high FNR, 
then there will be many intrusions missed because the system will never detect 
them.  
 

A network behavior-based IDS called POSEIDON, which is based on 
using network traffic and self organizing maps, is developed in [74]. The idea is 
to correlate incoming and outgoing data so that false alarm rates are reduced. 
The authors only use three features to characterize the audit material: host IP 
address, service port and payload length. They also used a modified 
Mahalanobis distance function for similarity measurements. Using the DARPA 
1999 benchmark data, the developed system gave FPR of 0 – 6%, in contrast 
with the .07 – 11.4% FPR obtained when using Snort. The main drawback in 
implementing this method is that authors do not fully describe the process used 
to reduce FPR, but only report the detection results.  
 

Next, probabilistic models are formulated in [75] that uses Snort and 
university network traffic. The detection system uses a set of definitions to arrive 
at what is considered a true alarm. These definitions are total alarms generated, 
total alarms that match or partially match signature library, total that exactly 
matched and alarms from spoofed IP address. Using these definitions, the 
detection system calculates a formula to reduce false alarms. The main 
drawbacks with this paper are that there are no results presented and only a 
basic description of definitions used.  
 

Last, in [76] the authors develop a signature based detection system that 
also uses Snort and network data supplied from university servers. The main 
idea behind this research is that tuning of rules and suppression of alarms will 
reduce the FPR. Indeed, the authors claim an 89% reduction in FPR before and 
after tuning, but simply removing all alarms is not actually a reduction in FPR. 
The main drawback in applying this work is that the detection system is not 
behavior based, and the main FPR reduction method was simply suppressing 
repeated alarms. 
 

There were other papers considered, such as [77 and 78], however both of 
these systems also used a tuning algorithm that effectively suppresses repeated 
attacks signatures after they are noticed by the detection system. Some issues 
are that if the attack is long in duration, the system might never realize the 
intrusion and never creates an updated rule.  
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2.3 Variable Grouping Methods 
 

Traditional variable grouping methods are employed to arrive at an optimal 
subset of predictors with the overall goal of improving predictive performance. 
Variable grouping is also used to reduce data dimensionality, storage needs, 
model training and computation times [79]. Some popular techniques used 
include methods such as cross correlation criteria, forward/backward selection, 
wrappers, and embedded methods. Each of these listed techniques have their 
own strengths and weaknesses, which will be discussed briefly next. 
 

2.3.1 Correlation Coefficient Criteria 
 

The first variable selection method to be discussed is the use of the 
correlation coefficient. The correlation coefficient is a measure of the linear 
relationship between a variable X and Y. The standard Pearson correlation 
coefficient in MATLAB is used in this work, the equation for the correlation 
coefficient between variables X and Y is shown next in Equation 5: 
 

 (5) 
 

In the previous equation, R is the cross correlation coefficient for variable 
i, cov is the covariance between X and Y, and the denominator is the standard 
deviations of X and Y. The main strength of using this method for variable 
grouping is that a metric or score can be obtained for variables from different 
sources. That is, the same data set may have variables that deal with velocity, 
power, or mass-flow rates. Thus, the correlation coefficient is a metric that is 
used to determine linear relationships among different data sources. The main 
weakness of this method is that the coefficient can only provide a unitless 
quantity about linear dependence between X and Y and nothing else about the 
physical dynamics of the data set. This means that it is left to the user to decide if 
the coefficients for a particular data set are useful for further modeling. 

 

2.3.2 Backward/Forward Selection 
 

Forward and Backward variable selection processes are basically the 
same idea, just reverse implementations [80]. In forward selection, p-values are 
typically used to score incoming variables for model development. The basic 
steps for this method are to score all variables and then add them to the model 
one at a time until no new variables can be added. In backwards selection, all 
variables are used to build a model and are progressively eliminated by a scoring 
function until the subset that returns the least model error is found. The main 
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strengths of these two methods are that they are very easy to implement, require 
no special software and with today's high performance computer technology, are 
computationally efficient. One of the main drawbacks for these two methods is 
that it is possible to exclude relevant variables during the selection process. Also, 
these methods are criticized for being computationally intensive and that the full 
relationships between all variables are not explored since one variable is 
continuously being removed or added to the initial model.  

 

2.3.3 Wrapper Methods 
 

In much the same vein as forward/backward selection, the wrapper 
method instead attempts to find a subset of predictors from a particular data set 
to be used in a specific Machine Learning (ML) algorithm [81]. Here, the ML 
method is used to access and arrive at suitable subsets of variables based on 
the performance of the ML model. Subsets that offer the best performance in the 
particular ML model are then chosen as the best subset. For practical purposes, 
the user must define some way to search all the possible subsets for a given 
data set and how to stop the search once a suitable subset is found. If there are 
several hundred or thousand variables to consider, this type of procedure can be 
very computationally intensive. The issue of removing and adding variables to a 
subset to reduce overall model error is criticized as not taking into account the 
full relationships in the input data.  

 

2.3.4 Embedded Methods 
 

Embedded methods perform the variable selection process as part of the 
model training phase; hence the variable selection is embedded in the ML model 
development. This method arrives at subsets of variables by attempting to 
minimize the cost of an objective function as variables are excluded or included 
during the selection process [82]. Examples of these objective functions include 
finite difference, quadratic approximations or taking derivatives of the objective 
function. Other parameters may be optimized, such as model error, instead of 
using an objective function. The main strengths of embedded methods are that 
they are often easy to implement and the process can occur during model 
training. The embedded method faces the same criticism as wrapper methods, in 
that the search algorithm can be computationally inefficient for larger data sets.  

 
In conclusion, the previous techniques constitute only a small subset of 

available variable selection methods. One or more of these techniques are often 
combined and/or favored over more mathematically complex or computationally 
intensive search strategies. For more information on several other selection 
methods, see the paper described in [79] and supplied references. 
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2.4 Time Synchronous Averaging Techniques 
 

In this last section, the issues of time-phased data streams, or those with 
a clock mismatch, are discussed. A difference in sample rates of data streams or 
those with mismatched timestamps that are used in SCADA or IDS is a major 
issue that can lead to severe consequences. This was shown earlier in the 
section on SCADA security issues, where a time delay of data polled by the MTU 
was not seen by the HMI for several minutes. Untimely control commands by 
operators caused a large gas explosion and several deaths. This type of issue 
arises in almost any system or process that uses circuitry, in that several 
components in a system can use different software and hardware to record and 
transmit telemetry sources [83].  
 

When considering this issue for intrusion detection, the problem that can 
arise is that several different monitored data streams can have vastly different 
sampling rates. For example, hardware signals in a server can collected at one 
sample per minute, while software signals can be collected several times a 
minute. If models for IDS are developed with these phase shifted signals, then 
the detection results can be quite poor. To alleviate this problem, the simplest 
solution is to set all data collection at the same sampling frequency. However, 
this may not be possible in practice due to resource constrained systems or if 
there are different software and hardware telemetry collection tools.  

 
One method developed matches specific strings in both data streams and 

only considers those observations for intrusion detection [84]. The model works 
by attaching specific headers to normal data sources and to incoming data 
sources. Those that have matching strings are then considered for additional 
analysis or intrusion detection purposes. The main strength of this method is that 
only telemetry with specific properties is considered for intrusion detection 
purposes. The main weakness of this method is that it is possible for much of the 
telemetry to be lost if it does not contain the specific strings. This means that if 
intrusion signatures are in the telemetry not considered, then attackers can gain 
access to the system. 

 
Another method developed is known as an Analytical Resampling Process 

(ARP), which has been developed by Oracle [85]. The resampling process 
involves the use of several variants of regression functions that generate data 
streams that are evenly sampled from data streams that have different sampling 
rates. This is a benefit because all telemetry sources being monitored arrive in a 
timely manner. This allows operators to make effective decisions about 
monitored processes. The main strength of this method is that telemetry can be 
resampled from sources that have vastly different sampling rates. A possible 
disadvantage of this method is an attacker has substituted incoming telemetry 
with false telemetry that would be resampled as well.   
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3 METHODOLOGY 

Now that SCADA and intrusion detection systems have been introduced, 
the focus of this chapter will be on the different methodologies used for this 
research. Since the process of intrusion detection as a whole can seem 
complicated and confusing for the layperson, Section 3.1 will first provide an 
overview of this research and why specific methods were employed. After this, 
the following sections will cover contributions related to empirical modeling and 
intrusion detection. The first of these topics is the development of a time 
synchronization method that is used to resample time-phased data streams. 
Next, a complete description of the newly developed variable grouping algorithm 
is provided. This is followed by a description of the empirical-based modeling 
techniques used for this research. The chapter concludes with a full description 
of the Sequential Probability Ratio Test (SPRT), which was used for intrusion 
detection purposes.  

 

3.1 Project Description & Related Methodologies  
 

This section will provide a basic overview of the project and introduce 
various methodologies that were used to fulfill the overall research goals. As 
stated earlier, the main goal of this research project was to develop behavior-
based IDS that employed specific empirical modeling techniques for intrusion 
detection of a simulated SCADA system. The empirical modeling techniques 
were chosen because they, along with the SPRT for anomaly detection, have not 
been previously employed by industry for intrusion detection purposes. It was 
unknown at the start of the research project if any of the intrusions tested could 
be detected using the developed methods. Then the overall goal was to 
determine which types of exploits that were targeted against a simulated SCADA 
system could be detected using the developed behavior-based IDS.  

 
The first step in this research was to develop a simulated SCADA test 

bed. This step is required because no industries that use SCADA systems will 
allow researchers access to their facilities to test the efficacy of a developed 
method during real or simulated attacks. The rational behind this is that industries 
need to maintain the integrity and security of their systems. Combined with this is 
the reluctance to share sanitized data sources for research, which again is a 
security concern. The concern is that researchers will be able to learn certain 
dynamics about the processes in the system. This knowledge could then be used 
to learn proprietary methods or to even bypass system security. The test bed 
allows the researchers to collect normal operational data that will be used for 
model development. Anomaly data is collected during intrusion testing activities 
and is used in the developed models to quantify intrusions. A full description of 
the test bed and the various penetration testing tools is provided in Chapter 4.  
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Once normal operational data is collected from the test bed, the 
development of the empirical based models can begin. First, the data collected 
from the test bed must be processed. The data processing step entails removing 
signals that are unsuitable for further modeling. Here, unsuitable means that the 
original input signals were constant or near-constant valued, white noise, stuck 
data, and so on. Because these signals offer little information about the original 
process, they are excluded from further modeling efforts. In this stage, time 
synchronization methods can also be employed to resample all data sources to 
the same sampling rate, if required. This ensures that all available telemetry can 
be utilized and will be discussed in more detail in the following section.  

 
As discussed in the previous chapter, variable grouping is employed to 

arrive at a suitable set of well correlated predictors that return low model 
prediction errors. This is important because if there is a large amount of error in 
the predictions, this would indicate a poorly selected set of predictors or poorly 
optimized model. Also, for the data-driven models that are utilized for this 
research, subsets of well correlated predictors are required for these modeling 
techniques. Discussed in greater detail later is a newly developed variable 
grouping method that is used to select a suitable set of predictors. 

 
After the data is processed and suitable sets of predictors have been 

extracted, the development of data driven models can begin. Figure 3-1 provides 
a schematic of the following described steps for monitoring purposes. Starting 
with the input data, an AAKR or AAMSET model is developed. In this step, 
models are initialized, optimized and validated. Once this step is complete, data 
can be run through the models to generate predictions. Subtracting the 
predictions from the input data results in what are known as residuals. Once this 
step is complete, anomaly data generated from intrusion testing activities can be 
input into the developed models. The anomaly residuals are then supplied to the 
fault detection algorithm, here it is the SPRT. The SPRT is used to arrive at a 
decision of the current input being in an unfaulted or faulted state. These states 
are returned as hypothesis values, where 1 is a faulted state and 0 is an 
unfaulted state. The final step is to input these hypothesis values to a diagnostic 
system. Here, this can be an algorithm or human that gives a final decision.  
 

 
Figure 3-1: Data Driven Modeling Example 
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3.2 Java-based Time Synchronous Averaging Technique 
 

This section describes the methodology used to develop the Java-based 
Time Synchronous Averaging Technique (JTSAT). As stated previously, JTSAT 
is based on a similar technique developed in [85]. It is noted that this method 
does not use the same resampling algorithms used by the method developed by 
Oracle. Also, the JTSAT algorithm in its current form is an off-line procedure. 
This algorithm was developed for this research because the hardware and 
software variables of the test bed servers have very different sampling rates and 
need resampling so both telemetry sources can be utilized for intrusion detection.  

 
To begin, this method is used for two or more telemetry sources that have 

been collected from the same system. However, due to differences in circuitry, 
software or hardware components, the telemetry may have different sampling 
rates. It is known that processes in computers tend to speed up or slow down 
based on the number of applications running or during high memory usage 
periods. When this occurs, some of the clocks for some processes may start to 
shift. That is, one process may report a time stamp that is several seconds 
behind or ahead of the timestamp reported by a different process. If a detection 
system attempts to use this time shifted input telemetry, then the results may be 
unreliable if this time-phase becomes more pronounced. To use JTSAT, all that 
is required is unevenly sampled input data and the new desired sampling rate.  

 
Using the asynchronous input data, JTSAT first examines each input file 

for overlapping time stamps. This is important because it doesn't make sense to 
resample data that is outside of the observed time ranges for each telemetry 
source. Once the overlapping time ranges are determined, the algorithm then 
generates new timestamps based on these ranges and the desired new sampling 
rate. For example, if a new sampling rate of one per minute is desired, then the 
new time stamps will start using the first overlapping range. Then, new 
timestamps which occur every once per minute are generated, ending with the 
timestamp corresponding to the last overlapping range.  

 
The last step is to use these new timestamps and the resampling 

algorithms to generate the new, time synchronous telemetry. The Oracle 
algorithm uses several regression algorithms to arrive at the final resampled 
telemetry. In the JTSAT algorithm, linear interpolation is used to generate the 
newly sampled telemetry. The newly resampled data is then written to text files to 
be used for further data analysis or in this case, intrusion detection purposes. 
Because linear interpolation is used to generate the resampled data and not 
regression methods, there are of course slight differences between the Oracle 
method and JTSAT. In keeping with the outlined data processing methods 
described earlier, the next section introduces a newly developed variable 
grouping method for empirical based modeling.  
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3.3 ACFgroup Variable Grouping Description 
 

In this section, the newly developed variable grouping algorithm that is 
based on the Auto Correlation Function (ACF) is discussed. This algorithm is 
hereafter termed ACFgroup. All equations shown in this section can be found in 
most standard textbook on signal processing and waveform analysis [86]. In 
simple terms, the ACF provides a measure of the correlation of a signal with a 
delayed copy of the same signal. This means that the ACF relates how similar or 
dissimilar the observations in a signal are with time-lagged versions of those 
same observations. The standard equation for the ACF is shown next: 

 
Rx (t) = lim (1/2To)*Integral x(t) x*(t-t)dt  (6) 

 
In Equation 6, Rx is the ACF of x(t), tau is the number of time lags used to 

calculate the ACF, and To is one period. Also, x* represents the complex 
conjugate of the time-lagged signal x(t). The ACF can be thought of as a 
measure of change in x(t) with time. Because the ACF is a measure of change of 
the original input signal x(t), then the resulting shapes and various statistical 
properties of the ACF can be used for variable grouping. The basic idea is that 
variables that show similar changes in their respective ACFs must have 
responded in similar ways to the same system inputs. Then as a selection 
criterion, variables with similar system dynamic responses should be grouped 
together and variables that do not show these changes in system dynamic 
responses should be excluded. Finally, because the ACFs for variables with 
similar dynamics will also have similar trends and properties, variable grouping 
can then be based on these observed ACF properties.  
 

3.3.1 ACF Shapes & Persistence 
 

In this first section, the shape of the ACF for several different time series 
are examined and then shown how these shapes can be used for variable 
grouping. To facilitate this, a special property of the ACF known as persistence is 
also employed to develop several selection criteria. For this algorithm, the 
autocorr and k-means clustering functions contained in MATLAB are used. The 
ACFs generated by autocorr are normalized between -1 and 1 and are centered 
at 0. Also, the ACFs generated by this function can be considered as a sum of 
slowly decaying exponential functions. Due to the symmetric property of the 
ACFs, the developed method only considers ACF shapes for positive tau. 
Examples of specific time series that are considered in this work include trend, 
periodic, white noise, constant, near-constant, quantized/discrete, and 
combinations of these time series. Each of these time series and what the 
expected ACF shapes indicate about the changes in the original input signal are 
discussed next.  
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Trend Time Series:  
 

The first of the time series to be considered is what is known as a trend 
time series. Though it is difficult to define explicitly what is meant by a trend time 
series, in this work trend time series are those that do not contain periodic 
components. Also, time series that are monotonically increasing or decreasing 
will not be considered as a trend time series for this work. Examples of trend type 
data can include temperature, flow rates or differential pressure measurements. 
It is noted that the previously mentioned list can in many processes contain 
periodic components. This is not a problem for this work as time series that 
contain trend and periodic components can easily be handled by the developed 
algorithm. In Figure 3-2, an example trend time series is shown along with the 
respective ACF for 100 time lags.  

 
 

 
Figure 3-2: Example Trend Time Series & ACF 

 
In the previous figure, the trend time series in the left plot is a pressure 

measurement taken from a nuclear power plant. The steady decline to negative 
values seen in the ACF in the right plot is important because this indicates that 
the input data has changed over time. This means that current observations are 
dissimilar to future observations in the time series. Also, because the time series 
considered was taken from a real system, then the changes seen in the time 
series indicate that the system responded to some form of input. For a given set 
of input data, trend time series that experienced similar changes over time or 
respond in kind to similar system inputs will also have similar ACFs.  
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Periodic Time Series: 
 

In contrast to trend time series, periodic time series contain weak to strong 
sinusoidal components. As expected, ACFs generated from periodic time series 
are also periodic. More importantly, the period for these types of ACFs is the 
same as the input data. Also, because the information contained in a typical 
sinusoidal signal x(t) merely repeats with each new period, the time series for x(t) 
can then be restricted to one period. This also means that the information in a 
periodic ACF merely repeats with each new period. Then, because of this 
property, only one period is needed to generate ACFs for this type of time series. 
Shown next in Figure 3-3 is an example of a typical periodic time series with the 
respective ACF for 100 time lags. 

 
 

 
Figure 3-3: Example Periodic Time Series & ACF 

  
The left plot in the previous figure shows a typical periodic time series, 

while the right plot is the respective ACF. It is noted that the time series shown in 
the left plot can be considered a "perfect" sinusoid; however, this makes no 
difference on the outcome of the algorithm. This means that even if the 
periodicity is not observed visually in the time series, the resulting ACF will be 
similar to that shown in the right plot. As stated earlier, because a periodic ACF 
has the same period as the original time series, then we are allowed to restrict 
the ACF to this one period. This result indicates that we do not need to use the 
entire time series for variable grouping. This also allows us to perform variable 
grouping with the developed methodology for data with large sampling rates 
because the period will be visible in the generated ACF. Periodic input data that 
show similar changes over time will also generate similar periodic ACFs.  
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White Noise Time Series: 
 

White noise time series contain unrelated, random components. One of 
the original uses for the ACF was to detect what is known as serial correlation in 
data, such as periodic components. In this light, the ACF can also be used to 
detect serially uncorrelated data or white noise time series. For a pure white 
noise time series, the ACF is zero for all tau > 1. For time series that contain 
strong white noise components or white noise time series that have been 
multiplied by a scalar, the ACF will show very small oscillations around zero for 
all tau > 1. Shown next in Figure 3-4 is a typical white noise time series with the 
respective ACF for 100 lags. 

 
 

 
Figure 3-4: Example White Noise Time Series & ACF 

 
In the previous figure, the left plot is a typical white noise time series 

generated in MATLAB. In the right plot is the respective ACF for this particular 
time series. The ACF takes on a maximum value at 0 and shows small 
oscillations around zero for all other time lags. Furthermore, the blue limits in the 
ACF plot indicate whether a particular time series contains strong white noise 
components. If the values of the ACF for tau > 1 are all between these two limits, 
then the series is considered as white noise. Conversely, if the ACF values for 
tau > 1 are outside these limits, then the series is most likely a trend, periodic or 
a combination of these. As seen in the ACF plot, all values for tau > 1 are 
between the limits, which prove that the input data was indeed a white noise time 
series. Because white noise time series have minimal changes with time over the 
range of the data, then this property can be used to reject these types of signals 
for further model development.  
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Constant Time Series: 
 

As the name implies, constant time series never change value. For this 
type of time series, the ACF shows extremely slow exponential decay and is 
always positive for all tau. With this in mind, the properties of the ACFs for 
constant time series can used to reject these series during variable selection. 
The reason the ACFs for constants and other time series exhibit exponential 
behaviors is that all ACFs can be considered as a sum of slowly decaying 
exponential functions. This is also the standard output when using the autocorr 
function contained in MATLAB. Shown next in Figure 3-5 is an example of a 
constant valued time series and the respective ACF for 100 time lags.  

 
 

 
Figure 3-5: Example Constant Valued Time Series & ACF 

 
In the previous figure, the left plot shows a constant valued signal, while 

the right plot shows the respective ACF. What is interesting about the generated 
ACF for this particular time series is the very slow change in ACF values for all 
tau. Because the input time series never changes value, the respective ACF will 
also have very slow changes. Examination of the ACF in the previous figure 
shows that for 100 time lags, all of the ACF values remained above .99. This 
indicates that there were very minor changes in the original data. Another 
property of the ACF generated from constant time series is that the ACF will 
always be positive for all tau. This means that this property and the very slow 
change in ACF values can also be used to remove these types of time series 
during variable grouping. The benefit is that these particular time series do not 
need to be removed before variable grouping, as in most other VGM.  
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Near-Constant Time Series: 
 

For this work, near-constant time series indicate signal dynamics that 
show very few changes over the entire observation range. An example is a 
temperature sensor that recorded few temperature changes over the course of 
one day. Depending on the nature of this type of time series, the ACFs will either 
take on the behaviors of a constant valued or white noise time series. For 
example, if the input time series only has one change in signal values over the 
entire range of the data, then the ACF will take on the behavior of a constant 
valued time series. If the time series has very small oscillations around a 
constant value, then the resulting ACF will take on the behavior as that seen 
previously for white noise time series. Both of these cases indicate that the 
changes in the original time series do not change with time. Shown next in Figure 
3-6 is an example of a time series that is near-constant with the respective ACF 
for 100 time lags. 

 
 

 
Figure 3-6: Example Near-Constant Time Series & ACF 

 
In the previous figure, the left plot shows a time series that has a shift in 

value near observation 4000. In the right plot, the ACF behavior and values 
indicate that the input time series is not changing much with time. The behavior 
of the ACF for this particular time series is very similar to that seen for the 
constant valued time series in Figure 3-5. The difference in the near-constant 
time series ACF shows a slightly more rapid decrease in ACF values over all tau, 
though these values are still all positive. For near-constant time series that show 
small oscillations around a constant value, the ACF would take on the behavior 
seen in Figure 3-4. Due to the small changes in ACF values for this time series, 
they are removed by the algorithm as these signals are unsuitable for modeling.  



 

39 
 

Quantized/Discrete Time Series: 
 

Quantized or discrete time series are data that take on, in general, a very 
specific range of values. For example, quantized voltage data might only take on 
values of 12.1, 12.2 and 12.3 V over the entire observation range. If the signal 
dynamics reflect this type of behavior, then the dynamics are said to be 
quantized. It is noted that quantized time series can contain components of trend, 
periodic, white noise and near-constant time series. Depending on the range of 
values for each input variable, the resulting ACF shapes can vary greatly. In 
general, quantized time series that take on 2 – 5 distinct values will generate 
ACFs typically seen for near-constant time series. If the input variable also has 
periodic components, then the resulting ACF will be similar to those seen for 
periodic time series. However, due to the quantized nature of this type of periodic 
data, the ACF also contains unique behavior that can be used for variable 
selection. A typical quantized variable that contains periodic and white noise 
components is shown next in Figure 3-7 with the ACF for 100 time lags.  
 

 
Figure 3-7: Example Quantized Time Series & ACF 

 
In Figure 3-7, the left plot shows distinct quantized behavior at three 

different values. Also, there appears to be sufficient randomness in some of the 
variable dynamics that are between these three different quantized values. The 
ACF shown indicates that the input variable was indeed periodic, but some of the 
peaks have flat sections for several time lags. These flat sections in the ACF 
indicate that the input signal is stuck or not changing with time. This behavior can 
also indicate that the time series for this process will never exceed these 
quantized levels. Even though the majority of these signals will give small errors 
in model predictions, they were found to not be useful for intrusion detection 
purposes since many exploit dynamics are lost during data collection. 
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Persistence:  
 

Now that the behaviors and expected ACF shapes for specific time series 
have been discussed, it remains to show how these ideas can be employed for 
variable grouping. A special property of the ACF that can bridge these two ideas 
is known as persistence. This property has been used to describe changes in 
geophysical processes, many of which do not show significant changes over long 
periods of time [88]. For this work, we adopt this same notion and define 
persistence as the physical property of a variable to remain at the same state or 
have minor state changes with time. Then because this method was developed 
using real data from a variety of real systems, the changes in state by the system 
in response to various inputs can be related as varying degrees of persistence. 
Finally, because the ACF shapes have been previously defined as responding in 
expected ways to certain time series, then the ACF shapes themselves are 
indicators of persistence.  

 
This property can manifest in several different ways for observed ACF 

shapes. The first is that the ACF values are all positive or negative for all tau > 1. 
This was seen in the discussion of constant and near-constant time series, where 
the ACF values remained positive for all tau and had values close to 1. This 
indicates that the system state is not changing or changing very little with time. 
Next, the ACF can have combinations of positive and negative values over a 
large portion of the ACF. When this occurs, it indicates that the system has 
remained at the same state for long time periods, shifts to a different state and 
then remains at that new state for long periods of time. When considering white 
noise or certain near-constant time series, the ACF values can also exhibit small 
oscillations around 0 for all tau > 1. This indicates again that the system state has 
not changed greatly with time. In other words, the system dynamics persist at the 
same state. This type of behavior is also seen for certain quantized signals. Last, 
if the ACF values have a steady decline to negative values over small tau, then 
this indicates a small degree of persistence. In this case, the system has had 
meaningful state changes. This type of behavior was seen for trend type time 
series, which are useful for empirical modeling. If the ACF takes on a periodic 
shape, then this also indicates a small degree of persistence. The periodic 
behavior only arises because the system responds in this way to various inputs. 
In summary, trend and periodic time series show persistent behavior that 
indicates a meaningful change in the state of the system. In contrast, constant, 
near-constant, white noise, and quantized variables indicate undesired levels of 
persistence.  
 

Based on the definition of persistence and the observed ACF behaviors, 
several selection criteria can now be defined. This means that the developed 
algorithm does not simply group variables together because several might have 
the same ACF shape. As will be discussed next, the developed algorithm is 
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actually a two stage filter that removes variables based on certain observed 
persistence values before final variable grouping. This means that the selection 
criteria for both filters are solely based on observed properties of the calculated 
ACFs for a given set of input data.  
 

The first set of developed selection criteria is based on the time spent by 
the calculated ACFs for various levels of persistence. This persistence time is 
labeled Ψ and can be thought of as an indicator of time spent at the same state 
for each ACF. The calculation of this first selection parameter is shown next in 
Equation 7. 

 
Ψ = (ΣACF/tau) (7) 

 
In Equation 7, the Psi parameter is simply the sum of all ACF values 

divided by the number of time lags tau. Equation 7 can be considered as the 
mean of the ACF that is normalized between 0 and 1 by tau. Variables with large 
values of Ψ are mainly either constant or certain quantized time series. 
Conversely, variables with small values of Ψ are mainly either white noise or 
near-constant time series. Each case indicates that the system state does not 
change greatly and that these signals should be excluded. Shown next Equation 
8, lower and upper bounds are used to exclude variables with levels of unwanted 
persistence to arrive at a first set that is used for further selection procedures.  
 

ΨF(m) = .01 < ΨI(l) < .7 (8) 
 

In Equation 8, ΨF(m) is a [1 x m] vector for the first set of selected 
variables. Here, m is the final number of variables selected from ΨI(l), where l is 
the original number of variables. Variables placed in ΨF(m) had Ψ values that 
were between the upper bound of .7 and lower bound of .01. The upper bound 
indicates that the signal spent more than 70% of the observed range at the same 
state. These signals are constants, near-constant or certain quantized variables. 
The lower bound indicates that the signal spent less than 1% of the observed 
range at the same state. These signals are mainly white noise or certain near-
constant signals. Variables not selected for ΨF(m) are permanently excluded. 
 

In the second filter, the variables contained in ΨF(m) are used as inputs for 
the next selection process. This final metric will be termed Ω and is the 
dispersion of persistence for each remaining ACF, shown next in Equation 9. 

 
Ω = σ2(ΨF(m)) (9) 

 
In Equation 9, Omega is simply the variance of each remaining ACF in 

ΨF(m). It is noted that Ω is also the final metric that is used to develop the 
number of groups selected by the user. A critical value for Ω is selected, termed 
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ΩC, which is used as a final rejection criterion. Shown next in Equation 10, only 
variables with Ω values above this critical value are selected for final variable 
grouping.   
 

ΩF(n) = Ω(m) > .01 (10) 
 

In Equation 10, ΩF(n) is a [1 x n] vector, which are the final n remaining 
variables that had Ω values greater than ΩC. Ω(m) is a [1 x m] vector, where m is 
the number of variables in ΨF(m). The limit in Equation 10 indicates that the 
signal had less than 1% persistence over the observed range. The final set ΩF(n) 
is used as the input to the k-means clustering algorithm. This remaining set can 
contain trend, periodic or combinations of these time series. What is important is 
that the values calculated for ΩF(n) represent variables whose dynamics 
responded in kind to similar system inputs. This then satisfies the goal of 
grouping variables that show similar changes in persistence level. 
 

Before the developed algorithm procedure is discussed in the next section, 
this large section will be summarized. First, the ACF was defined and shown that 
it was related as a measure of change in a signal with time. Next, various types 
of time series and the expected ACF shapes were shown. The persistence 
property was then defined and was also found to be related to the observed ACF 
shapes. Based on the observed ACF shapes and persistence relationships, 
several selection criteria were developed that first related the time spent by the 
ACF in relation to persistence. This first filter removes variables that were found 
to show small state changes or those that remained at the same state for long 
time periods. Next, a mathematical property of the ACF was used to quantify the 
observed persistence changes in each remaining variable. This final metric is 
used as a second rejection filter to remove any remaining signals that show low 
levels of persistence. The final group of remaining variables can then be used 
together or placed in smaller groups by use of the k-means clustering algorithm.  

 

3.3.2 Developed Algorithm Procedure 
 
The basic procedures used by the developed algorithm for variable 

selection purposes are discussed in this section. First, the required inputs and 
expected outputs are provided. Next, a generalized procedure for the developed 
algorithm is given. Also provided are flow diagrams that outline the procedure.   

 
The first item to be discussed is exactly what inputs are required to use 

the developed method. For this method, the only three items required by the user 
are a time series data set, final number of desired groups, and whether the time 
series is average or fast sampled. 
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Time Series Input: 
 

The time series data set can first contain any number of observations and 
variables. That being said, data sets with few observations and/or variables (e.g. 
50 observations and 3 variables) should be used in a different variable selection 
technique. Data sets can contain variables that are a combination of any of the 
previously discussed time series or that are all characters. This means that the 
user is not required to preprocess the data set to remove potentially troublesome 
variables, such as characters or constant valued variables. The developed 
method is capable of identifying and removing these types of data. The 
developed method has been tested on data sets with observation and variable 
sizes ranging from 100 – 10.24 x 106 and 4 – 710, respectively.  
 
Number of Final Groups: 
 

The number of final groups is selected by the user. This option is used as 
the input to the k-means clustering algorithm, which is nested in ACFgroup. The 
k-means algorithm attempts to minimize the error between each of the given 
inputs and the center of each selected number of groups to determine which 
group each input belongs. Currently, the developed method can return 2 – 8 
groups, if applicable. Based on the values obtained for ΩF(n) discussed earlier, it 
was found during development that rarely are more than 6 groups required for 
data sets with even a large number of variables.  
 
Fast Sample Rate Option: 
 

The last required input for the user gives the option of performing variable 
selection on fast sampled data sets or not. For this work, "fast sampled" can 
mean data sampled in the KHz or MHz range. The only real limiting factor is the 
computer processing capabilities running the algorithm. An important point is that 
the user is not required to enter a sampling rate. The developed method is 
capable of arriving at expected results without this information. However, as 
more information is needed to develop the required ACFs, the fast sample option 
has a longer run time. The method has been tested on data sets with sampling 
rates ranging from 3 x 10-4 Hz – 102.4 KHz.   

 
Expected Outputs:  
 

The expected outputs returned to the user first include the final number of 
groups and all removed variables, in matrix format. Next, the method returns all 
variables contained in ΩF(n) and their respective ACFs, in matrix format. Finally, 
the indices for all of these listed outputs, along with the number of time lags 
selected by the algorithm, are also returned.  
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ACFgroup Procedure Outline:  
 

Using notation defined in previous sections, the generalized outline of the 
ACFgroup algorithm for time series data set is as follows: 
 

• Begin Stage 1: Obtain user inputs – data, number of groups and Fast 
Sample (FS) option 

 
• Is FS option set to NO? 

– Obtain data size N, N is number of observations 
– If N < S1, where S1 is size limit for small data sets, then lag τ for 

ACF = τ1 
– If N > S1, then proceed to Proprietary Algorithm 1 (PA1), then τ = τ2 

 
• Is FS option set to YES?  

– Obtain data size N 
– Proceed to PA2, then τ = τ3 
– Note that this option increases computation time 

 
• Based on value obtained for τ1, τ2 or τ3, begin Stage 2  

– Calculate ACFs for each input variable l 
– Proceed to PA3 to obtain ΨI(l) 

 
• Using ΨI(l), proceed to PA4, this is first described filter.  

– Generate ΨF(m) and first set of removed variables R1 
 

• Using ΨF(m), proceed to PA5, this is second described filter.   
– Generate Ω values for each variable of ΨF(m) to obtain Ω(m)  

 
• Using Ω(m), proceed to PA6, this is still part of second described filter. 

– Generate ΩF(n) and second set of removed variables R2 
 

• Use ΩF(n) as inputs to k-means clustering algorithm 
 
• Return number of selected groups, removed variables, variables 

corresponding to those in ΩF(n) and their respective ACFs. Return 
relevant indices for these data sets and selected τ   

 
This concludes the generalized outline for the developed ACFgroup 

algorithm. To conclude this section on the ACFgroup, two flow diagrams are 
provided next in Figures 3-8 and 3-9. These diagrams provide the basic flow 
starting from the input data to the selection of final groups. In the figures, the 
acronym PA stands for Proprietary Algorithm. 
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Figure 3-8: Stage 1 of ACFgroup Algorithm 

 
 

 
Figure 3-9: Stage 2 of ACFgroup Algorithm  
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3.4 Empirical-based Modeling 
 

The core algorithms used for the data-driven models will now be 
discussed. Recall from Section 3.1 that these machine learning methods include 
the Auto Associative Kernel Regression (AAKR) and Auto Associative 
Multivariate State Estimation Technique (AAMSET). These and other machine 
learning methods can be broken down into several steps. First, data is collected 
from the system during normal operations. This data is assumed to be fault free 
and covers the entire range of operating conditions. After this data has been 
processed to remove unwanted time series, it is supplied to the grouping 
algorithms discussed in previous sections. After variable grouping, this data is 
used to develop and train the initial models. Next, the model parameters are 
tuned and optimized to ensure that there is minimal error in the model 
predictions. The models are tested for performance by running fault-free data 
that the model has not been exposed to before, this is termed the validation 
stage. Last, anomaly data or current telemetry is analyzed by the optimized 
model to generate predictions and anomaly detection results. For all time-series 
signatures under surveillance, the predictions are subtracted from the actual 
observations to generate residuals. These residuals can then be used in 
detection algorithms to arrive at a decision of normal versus anomalous behavior. 
The algorithms needed to generate model predictions and performance 
assessment will be discussed more fully in the next section. 
 

The main idea behind the use of machine learning for behavior-based 
intrusion detection is that for some types of malicious exploits that escape 
detection by conventional knowledge-based IDS, the activities of an intruder may 
generate patterns in monitored time-series telemetry that are different from those 
that were modeled as normal behavior. The benefit in using a behavior-based 
approach is that new or zero-day attacks can be detected using these methods. 
Recall that the knowledge-based approach is unable to detect new or zero-day 
attacks. As will be discussed later, there are many intrusion activities that will not 
show up in time-series telemetry due to the rapid nature of the intrusion or small 
size of the payload injection. Many of these exploits will thus escape detection by 
the behavior-based approach because there may not be enough data to cause 
alarms. For these types of intrusions, a knowledge-based approach or some form 
of log analytics is required for detection.  
 

3.4.1 Auto Associative Kernel Regression 
 

The AAKR model is a form of nonlinear, non-parametric (NLNP) 
regression used to generate predictions of input data by computing the similarity 
of an input observation to known training exemplars [89 and 90]. The auto 
associative name convention means that predictor and response variables are 
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identical. This is opposed to “inferencing” wherein a subset of variables is used to 
predict the response of a different variable. All that is required to develop an 
auto-associative model is a set of normal, fault free data of the system, 
hereinafter termed training data. It is assumed that the training data accurately 
reflects the full range observed during normal system operations. This 
assumption is required because these model types cannot predict outside of the 
range of the data that was used for training. A subset of observations is selected 
from each signal of the training data set that is assumed to accurately reflect all 
possible behaviors observed in the set. This subset of observations will be 
termed the memory matrix Xm, shown next in Equation 11: 
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In the previous equation, the columns represent observations for each 

signal considered, n is the number of memory observations selected and p is the 
number of signals considered. Query vectors can then be defined as a 1 x p 
vector of inputs. The query vectors are data that is run through the developed 
model to generate predictions. After the memory matrix has been defined, the 
distance or similarity between these vectors and the query vectors is calculated. 
For this work, the Euclidean distance measure is used to calculate the 
similarities. Equation 12 defines this distance measure, where d is the distance 
calculated between the new input x and memory observation X.  
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Once these distance measures are calculated, a kernel function converts 

these values to weights. These weights will then be used to determine how 
similar or dissimilar the new input is to the values contained in the memory 
matrix. In this research, a Gaussian kernel function is used and is shown next in 
Equation 13. 
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In the preceding equation, d are the distance values calculated from (12) 

and h is termed the kernel bandwidth. The resulting weights are multiplied by the 
query vectors to yield the model predictions. The bandwidth parameter in (13) 
needs to be optimized to avoid under or over fitting of model predictions.  
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Optimization routines are used in order to minimize the error between the 
model predictions and input data. The tradeoff here is between an increase or 
decrease in the model accuracy and uncertainty. Regularization of the bandwidth 
can either increase the accuracy but introduce variance, or reduce the 
uncertainty but increase model bias. For this work, a grid search optimization 
routine is used to find the bandwidth that offers the least error between model 
predictions and input data. 

 

3.4.2 Auto Associative Multivariate State Estimation Technique 
 

The AAMSET modeling technique is based upon the same class of 
nonlinear nonparametric (NLNP) mathematics as the well-known MSET 
algorithm developed by Argonne National Laboratory (ANL) and commercialized 
by SmartSignal, but does not use the same proprietary kernel as the ANL MSET 
[90 and 91]. Instead, the AAMSET algorithm uses the same Gaussian kernel 
function that was shown in Equation 13. The same training data used to develop 
the models discussed in the previous section can also be used to develop this 
model type. This modeling method also uses less memory vectors than the 
AAKR model, though the predictions generated by this method are very similar to 
those obtained using the modeling methods described in the previous section. 
This means that using less memory vectors can reduce the overall compute cost 
when building and running these types of models. Aside from the similarity in 
using the same input data to build an AAKR model, there are differences in how 
predictions are calculated from input data.  
 

As in the AAKR method, the distance between the memory matrix and 
query data is calculated using the same distance measure shown in (12). These 
distances are hereafter termed the similarity matrix. To obtain the model 
predictions, a pseudo-inverse method is first used to normalize the similarity 
matrix. The equation for the pseudo-inverse solution used to obtain the 
normalized similarity matrix "Nsimx" is shown next in Equation 14: 
 

Nsimx= (XT*X)-1*XT  (14) 
 

In the preceding equation, X is the similarity matrix of distances. In 
keeping with the previous example, Nsimx would then be a 40 x 40 matrix. Once 
this normalized matrix is developed, the weights and predictions can be 
calculated for query vectors. The weights are obtained by using the Euclidean 
distance shown in (12). These are then multiplied by the query vector and Nsimx 
to generate the predictions, Equation 15 shows this combined result: 
 

Yp= w'*((XT*X)-1*XT )*Q (15) 
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In Equation 15, Yp are the model predictions, w are the transposed weights 
multiplied by the normalized similarity matrix and the current query vector Q. The 
resulting residuals can then be used in the exact same way as those generated 
by the AAKR model. One drawback that can arise when using this method is that 
the pseudo-inverse solution can result in poor model predictions if the input data 
is ill-conditioned. Regularization of the similarity matrix during the inversion 
process mitigates and avoids this complication [92].  

 

3.5 Sequential Probability Ratio Tests 
 

The last core algorithm to be discussed is also the sole anomaly detection 
engine for this study. The SPRT is a binary hypothesis test that determines if the 
current observation being tested is in an unfaulted or faulted state [93]. The one 
assumption in using this test is that the data used to develop the model and 
residuals tested are Gaussian distributed, which in practice may not always be 
true. As the name implies, each observation in the query data is examined in 
sequence to determine the current operating state. The normal operating state is 
assigned to the null hypothesis Ho, while the faulted operating state is assigned 
to an alternative hypothesis H1. For each observation, a test statistic is calculated 
as the natural log of a ratio of probabilities that either H1 or Ho is true. This test 
statistic is known as the likelihood ratio LN, and is shown next in Equation 16.  
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To apply the likelihood ratio shown in (16) for anomaly detection, a 

decision criterion is used to calculate a lower and upper test bounds, A and B. 
For each observation, the likelihood ratio will be compared with these test 
bounds to determine if the observation is in a nominal or faulted state. In 
Equation 17, the A and B limits are defined using false and missed alarm 
probabilities.   
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In the previous equation, α is the false alarm probability and β is the 

missed alarm probability. These two parameters are the probability of making a 
Type I or Type II error, respectively. If the value of the likelihood ratio is less than 
the lower bound A, then the observation is still in a nominal state. If the likelihood 
ratio is greater than the upper bound B, then the observation will be considered 
to be in a faulted state. If the likelihood ratio lies between these two bounds, then 
no decision can be made due to insufficient information and testing continues 
until the one of the test bounds is crossed. 
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It is important to mention that a cumulative sum of the likelihood ratio is 
calculated as testing continues. This sum is to account for the increasing 
probability that the test will eventually terminate. An example of this procedure for 
an unfaulted data set is shown next in Figure 3-10. 

 
 

 
Figure 3-10: Example SPRT – Unfaulted Data 

 
In the previous figure, the test bounds A and B are represented as the 

dashed lines and have values of -4.6 and 4.6, respectively. A and B are also 
termed the lower and upper test bounds of the SPRT, respectively. The black 
plot is the fault hypothesis, which assigns 0 for unfaulted and 1 for faulted states. 
The red plot is the likelihood ratio per observation. The oscillations in this plot are 
due to the small sum discussed earlier being added to each cumulative likelihood 
value, and from the sign of the current likelihood ratio value. The first point to 
mention is that the value of LN was less than the lower limit A on two occasions. It 
is seen that the next observation after these two occasions that the running sum 
has been reset to 0, but no alarm indicator is given. This is because we only 
consider a 1-sided SPRT, in that we are only interested when the value of LN 
exceeds the upper limit B. The likelihood ratio exceeds the upper limit B on one 
occasion. The sum is reset to 0 and the observation is flagged with a 1 as 
anomalous. Testing then continues until all observations in the data are tested.  

 
If the reader has not been exposed to the SPRT outputs, Figure 3-11 on 

the following page provides an example output. This will be followed by a basic 
discussion on how to interpret the results and color scheme for the fault scores.  
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Figure 3-11: Example SPRT Output 

 
In the previous figure, the expected output for a typical SPRT using 

anomaly data is shown. For the discussion on how to interpret the output, the 
reader is advised to review the previously discussed definitions for the True 
Positive Rate (TPR), True Negative Rate (TNR), False Positive Rate (FPR), and 
False Negative Rate (FNR) shown on page 20. The top subplot in Figure 3-11 is 
the residual generated by the particular model employed. Recall that the residual 
is the model prediction subtracted from the input data. For this case, actual 
anomaly data is used to generate the residual and fault scores. The x-
observation ranges for each anomaly are 245:345, 430-550, 580:640, 655:710, 
880:960, and 975:1100. That is, these regions are where an actual fault in the 
system is occurring. The bottom subplot is the fault hypothesis scores discussed 
earlier that is generated by the SPRT. Here, a 1 means that the SPRT flagged 
the particular observation as being in a faulted state and a 0 means the 
observation is unfaulted. Next, a red 1 indicates that the SPRT has correctly 
identified the observation as being in a faulted state, or a True Positive. A blue 0 
indicates that the SPRT has correctly identified the observation as being in an 
unfaulted state, or a True Negative. Examination of the figure with the supplied 
anomaly ranges will confirm these previous statements. Next, a red 0 indicates 
that the SPRT incorrectly identified a faulted observation as unfaulted, or a False 
Negative. In the figure, there are a few red 0 values in the first half of the data 
and a lager segment from about 1050 – 1100. This means that the observations 
should have been labeled as faulted but were not. Last, a blue 1 would indicate 
that the SPRT incorrectly labeled an unfaulted observation as faulted, or a False 
Positive. Though slightly masked, there are a few FP near observation 980.  
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 There are four possible probability states, or alternative hypothesis, tested 
by the SPRT in this work. The first two test whether there is a positive or negative 
shift in the mean, with constant variance, of the query data when compared to 
the mean of Ho. This type of test would indicate degradation of a monitored 
process. The other two hypotheses examine an increase or decrease in the 
variance of the query data, with constant mean, when compared to the variance 
of Ho. This type of test would indicate changes in the variability of a monitored 
process and could indicate the presence of a fault. Figure 3-12 provides a 
graphical representation of these alternative hypotheses. 
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Figure 3-12: Mean and Variance Shift SPRT Distributions 

  
The respective increase or decrease in the mean or given as M+ and M-, 

while the respective increase or decrease in the variance are given as V and 1/V. 
A shift in the mean would indicate that there is degradation of a process. A shift 
in the variance would indicate that there is an introduction of variability in a 
monitored process. The nominal distribution Ho is a normal distribution with zero 
mean and unit variance. Again, the nominal distribution is the distribution that the 
SPRT compares each succession with to determine if there is a shift in mean or 
variance. Each of these tests is run separately for all residuals of the query data. 
The alarm results for the mean shift tests are then combined to obtain the final 
fault hypothesis values. The same is true for the variance shift tests. Another 
consideration for the SPRT is alarm consolidation, which is used to remove 
spurious alarms. Per the original Wald theorem, spurious alarms occur randomly 
for even unfaulted data due to the cumulative sum discussed earlier.  

 



 

53 
 

For completeness, the equations for the mean and variance shift SPRTs 
are provided. More information on the derivation of the mean and variance shift 
SPRTs can be found in [93]. In the following equations, xk indicates the current 
observation being tested, while M and V are defined as disturbance magnitudes 
for the mean and variance tests, respectively. Again, the mean shift SPRT tests if 
there is some form of change in a monitored process, while the variance shifts 
SPRT tests if there is some introduction of variability in a monitored process. All 
of these tests can be run simultaneously for each observation tested in a data 
set. The test for a positive mean shift is shown first in Equation 18. 

 
 

  (18) 
 
 

The negative mean shift SPRT is obtained by replacing the xk term in (18) 
with –xk, shown next in Equation 19. 

 
 

  (19) 
 
 

The variance shift SPRTs consider the current observation faulted if the 
variance of the observation shifts by V or the inverse of V. Next, Equation 20 
gives the variance shift SPRT for a change by a factor of V. 

 
 

  (20) 
 
 

Last, the inverse variance SPRT tests for a change in the distribution by a 
factor of 1/V, shown next in Equation 21. 
 
 

  (21) 
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4 EXPERIMENT SETUP & INTRUSION TESTING 

This chapter will provide a description of the components and software 
used in the development of the simulated SCADA test bed. Also included is a 
description of the various assumptions and task scripts that were developed to 
generate the simulated SCADA dynamics. Next, a description of the different 
intrusion testing software and codes that were used in this research is given.  
 

4.1 SCADA Test Bed Description 
 
 The simulated SCADA test bed utilizes a set of Linux based enterprise 
servers that were isolated from the larger UT Nuclear Engineering Research 
Cluster. Isolation was required to ensure that activities on the test bed and on the 
larger cluster would not be reflected in the dynamics of each system. Isolation 
also ensures that intrusion-injection experiments would not impair the 
performance of the larger cluster. One server in the test bed acts as the Master 
Terminal Unit (MTU) in a typical SCADA system. This component is tasked with 
monitoring field equipment, issuing command actions and a variety of data 
processing actions. The remaining isolated servers act as Remote Terminal Units 
(RTUs), this equipment is tasked with maintaining field equipment operations and 
data transfer activities. Also included in the setup is a separate server that acts 
as a Human Machine Interface (HMI) or engineering workstation. In a typical 
SCADA system, this station serves to monitor the system and to issue control 
actions to the MTU. In the test bed, the HMI is used to monitor the simulation and 
to perform intrusion-injection experiments. Shown next in Figure 4-1 is a basic 
diagram of this setup.  
 
 

 
Figure 4-1: SCADA Test Bed Diagram 
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As mentioned previously, the experimental test bed is a simulation of a 
typical SCADA system. This is necessary because, for security reasons, 
sanitized process data from a SCADA or business-critical network is very difficult 
to obtain. A simulation does not devalue the research or results, as many of the 
advances made in the nuclear industry began with small scale simulations and 
test bed experiments that were then shown to have scalability to larger systems. 
With this in mind, the simulation is based on several assumptions. First, the 
dynamics of the MTU in a typical industry or asset manufacturing setting can 
exhibit periodic components. This is valid due to the fact that the MTU performs 
specific tasks such as data polling and processing on a regular basis. However, it 
is noted that some industrial systems will not show periodic components in 
monitored telemetry. This is not a problem as having periodic data is not a 
requisite to use any of the empirical-based models and SPRT algorithms 
described in this dissertation. It is also assumed that there will be a large amount 
of network traffic for systems with hundreds of components and sensors.   

 
Task scripts were developed to first generate a baseline working profile of 

the MTU. These tasks perform what can be called short and long duration core 
loading activities. The short task loads all cores to around 95% of capacity. This 
simulates data polling and collection activities, as well as simple control actions. 
The MTU rests for a short period and then begins the long duration activities. 
Here, all cores are first loaded to simulate the data processing and other 
activities performed by the MTU. After a certain time period, three cores are 
loaded and must complete the same activities as all four cores. This continues 
until the long duration activities end. After this, the MTU rests for a short time 
period and begins the short duration activities. While these task scripts are 
running, the MTU is also collecting data from several sources and writing to a 
data store. This simulates additional data polling and storage activities of this 
component. Additionally, separate task scripts are run by both MTU and RTUs to 
simulate command actions and other network related activities. Combined, these 
additional task scripts generate sufficiently randomized and large amounts of 
network traffic. 

 
 All of these particular network actions are sent over SSH. The 

combination of MTU and network actions results in telemetry with periodic and 
random components that would be observed in the dynamics of a typical SCADA 
system. Monitored telemetry included resource and network related statistics 
taken from the Linux kernel. This telemetry includes measurements such as 
memory usage, packet numbers, page swaps and other network traffic related 
measurements. Also, information is collected that is related to the MTU internal 
hardware power usage and tachometer measurements. The software and 
hardware telemetry sources were chosen for this study because these are 
collected and recorded in typical industry networks already. This means that no 
additional telemetry sources need to be collected to implement these methods.  
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4.2 Intrusion Testing  
 

As stated earlier in this dissertation, the goal of this research is to 
determine which types of intrusion activities can be detected using the 
methodologies presented. Also, there have been no reported uses of these 
methodologies in industry for cyber-security purposes. Then, successful 
detection of intrusion activities using these methods proves the efficacy of this 
study. Due to the ease of implementation of these modeling methods, and that 
telemetry already recorded by SCADA systems can be used, scaling of these 
techniques to a larger network seen in a typical Nuclear Power Plant (NPP) 
would be feasible with current technology. The one assumption in performing all 
of the intrusion testing is that an attacker has already gained access in some way 
to the private network. In practice, gaining access to a NPP may be more difficult 
due to the plant network isolation and various firewalls in the network. 

 
Intrusion testing software primarily utilized Kali Linux and Metasploit [95, 

96]. Kali is a well-known OS that contains several different penetration testing 
software packages. These software packages in Kali can be used to test for 
vulnerabilities on private networks or web-based applications, crack passwords, 
install backdoors and other post exploitation activities. Metasploit is another well-
known penetration testing software package. This package contains hundreds of 
exploits that can be used against various types of OS, computer systems, 
processes and services. Metasploit was primarily used though a Graphical User 
Interface (GUI) called Armitage. This GUI allows for easier penetration testing as 
all of the codes and vulnerabilities are contained in modules with various options 
for the user to test. It is noted that many of the software packages in Kali and 
many of the Linux based exploits contained in Metasploit are not applicable to 
our system. For example, Kali contains several software tools related to web 
based or wireless attacks. Our system does not use web applications and is also 
connected to a private, wired network.  

 
 Intrusion testing codes utilized for this research next included past and 

current exploit codes related to Linux based systems taken from the Common 
Vulnerabilities and Exposures (CVE) database and Exploit Data Base (EDB) [72, 
94]. These two sites provide references for hundreds of exploits that have been 
discovered for various systems. The CVE database lists past and current 
vulnerabilities discovered for many systems, software, and applications. This site 
also has exploit code to test. The EDB solely provides exploit codes developed 
by several users, though these are also based on past and current vulnerabilities.  
It is noted that many of these codes aren't applicable to our system or showed no 
perceivable effects on the system or dynamics after successful exploitation. This 
means the exploit was successfully implemented but the system showed no 
change in behavior. The last section of Chapter 5 will provide a complete list of 
what exploits were successfully detected and why others were not detected. 
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5 RESULTS AND APPLICATIONS 

This chapter presents the results and applications related to the 
methodologies presented earlier in this dissertation. First, Section 5.1 presents 
the results of the developed Java-based time synchronous averaging technique 
called JTSAT. Time synchronous averaging techniques are used to resample 
telemetry sources that have different sampling rates. Next, Section 5.2 provides 
several case studies to prove the efficacy of the newly developed variable 
grouping technique called ACFgroup. Recall that variable grouping methods are 
needed to extract sets or subsets of variables that give the lowest model 
prediction errors. Last, Section 5.3 presents AAKR and AAMSET model results 
for several successfully detected intrusion activities from two different data sets. 
The models utilized four different clusters of telemetry taken from the Linux 
kernel to determine which class of telemetry was more effective for intrusion 
detection. The section concludes with a description of all intrusion activities that 
were performed during this research. This summary will discuss why each class 
of exploit was detectable or why not.   
 

5.1 Java Time Synchronous Averaging Results 
 

In this first results section, a comparison of the Oracle Analytical 
Resampling Process (ARP) algorithm with the developed Java Time 
Synchronous Averaging Technique (JTSAT) algorithm is given. These types of 
algorithms are required for intrusion detection and basic monitoring purposes 
because telemetry sources in most computer systems can tend to speed up or 
slow down depending on the number of processes running or other loading 
patterns. Also recall in Chapter 2 that one of the reported SCADA accidents 
which led to a loss of life was due to unevenly sample monitored telemetry. This 
led to inappropriate control actions that severely damaged the system in 
question. Related to this cyber-security research, the test bed collects two 
different sources of telemetry. These are software measurements taken from the 
Linux kernel and hardware measurements, such as power usage by various 
components of the server, that are taken from a separate piece of 
hardware/software embedded in the blade servers. The software measurement 
sampling rate is set by the Linux kernel and is 1 sample every 15 seconds. The 
sampling rate for the server hardware measurements is roughly 1 sample per 
minute. Then, to use both of these telemetry sources for intrusion detection 
purposes, the software and hardware data sources must be sampled to the same 
rate. For this comparison, resampled outputs from both algorithms are provided, 
followed by a comparison of the Auto Correlation Functions (ACFs) for each of 
the algorithm outputs. The ACFs are calculated because this will show if the 
JTSAT outputs captured the same signal dynamics of the resampled data as 
what was provided in the ARP algorithm. 
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To begin, these methods use two data sets with different sampling rates, 
hereafter termed D1 and D2. D1 is a slow sampled data set that records one 
sample every minute. This set also contains 1,000 observations and one signal. 
D2 is an irregular sampled set that records a sample roughly every second. This 
set also has 65,536 observations and four signals. Also provided with each data 
set are the corresponding time stamps. The main difference between the ARP 
and JTSAT methods is that the ARP method uses a regression type of 
interpolation to resample data streams, while JTSAT uses linear interpolation. 
This was done so that the JTSAT algorithm would not be identical to the ARP 
algorithm. This means that there will be observable differences in the resampled 
time series. The first result that will be shown is a comparison of the ARP and 
JTSAT algorithms when resampling data set D1, shown next in Figure 5-1. 
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Figure 5-1: Comparison of ARP and JTSAT Output – Slow Sampled Data 

 
In the previous figure, the first point to mention is that D1 has been 

reduced to about 700 observations, which were the regions of overlapping time 
stamps discussed previously. It is seen that the JTSAT output closely matches 
the ARP algorithm output. Again, these differences arise from the different 
resampling techniques employed by the two methods. Next, to prove that JTSAT 
was able to correctly capture the same signal dynamics as the ARP method 
when resampling data, Figure 5-2 shows the developed ACFs using 100 time 
lags for the outputs of each method. 



 

59 
 

0 10 20 30 40 50 60 70 80 90 100
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Comparison of ARP (black) & JTSAT (red) ACF

 
Figure 5-2: Comparison of ARP and JTSAT ACFs – Slow Sampled Data 

 
In Figure 5-2, the black ACF is for the ARP method and the red ACF is for 

the JTSAT method. The point of showing the ACFs for these resampled signals 
is to prove that similar signal dynamics were captured by JTSAT as in the ARP 
method. While there are slight differences observed between both ACFs, it is 
easily seen in the figure that the JTSAT method was able to correctly capture 
many of the same signal dynamics as the ARP method. If the ACF for JTSAT 
was vastly different, then this would indicate that the signal dynamics were not 
captured during the resampling process.  

 
On the following page, Figures 5-3 and 5-4 provide similar results when 

resampling data set D2. For these results, this large data set is resampled to the 
same size as the previous results, which results in about 700 observations. In 
Figure 5-3, it is seen that JTSAT was able to obtain similar dynamics as the ARP 
method. The main difference is that JTSAT did not fully capture the full range of 
the large downward spikes, though these spikes occur in the same location. This 
behavior is due to the linear interpolation used by JTSAT. The important point is 
that JTSAT was able to capture the same period in the data as the ARP method. 
In Figure 5-4, the ACFs for both techniques are again calculated using 100 time 
lags. Both ACFs in the figure are very similar, which means that JTSAT was 
again able to correctly capture similar signal dynamics when compared to the 
ARP method. This then proves that the JTSAT algorithm is as useful as the ARP 
method for slow and uneven sampled data sets.   
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Figure 5-3: Comparison of ARP and JTSAT Output – Fast Sampled Data 
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Figure 5-4: Comparison of ARP and JTSAT ACFs – Fast Sampled Data 
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5.2 ACFgroup Applications 
 

In this section, the proof of principle for the ACFgroup algorithm is 
provided using seven real-world data sets. For these studies, several functions 
contained in the Process and Equipment Monitoring (PEM) toolbox, which is a 
MATLab based set of tools developed at the University of Tennessee, are used 
for variable grouping and model development [86, 87]. For all studies, the AAKR 
model is developed to quantify overall error. By necessity, an AAMSET or NN 
model will also return equivalent average model errors when using the same 
input data and signals. For these studies, the performance of ACFgroup is 
compared against two other correlation coefficient variable grouping functions 
contained in the PEM toolbox called "roughgroup" and "autogroup". While both of 
theses functions use correlation coefficients to arrive at final variable groups, 
each of these algorithms has vastly different functionality. In both of these 
algorithms, signals with an absolute correlation coefficient value of .7 and above 
indicate strong linear relationships, values between .3 and .7 indicate moderate 
linear relationships, and values below .3 indicate little to no linear relationships.  
 

To start, roughgroup is a very simplistic approach to variable grouping. 
This function calculates the correlation coefficients for the input data and places 
variables in groups based on how many other variables have similar correlation 
coefficients. This function will at most return only three groups, if applicable: a 
strong and moderately correlated group, and a group of removed variables. In 
contrast, autogroup is much more sophisticated than roughgroup. This particular 
function still uses the correlation coefficients to group variables, but also 
combines what is known as the Symmetric Reverse Cuthill-McKee algorithm with 
many other nested sub-functions. These sub-functions attempt to merge smaller 
groups into larger groups or place single variables into larger groups. Autogroup 
can return several final groups of variables, along with a removed set of 
variables. 
 

For each case study, the outputs from each algorithm are treated with 
complete trust. That is, the user does not check that each group returned by the 
functions contains variables appropriate for further model development. In five of 
these studies, potentially troublesome variables were removed beforehand. 
Troublesome variables include constant, near-constant, quantized and those with 
minor changes over the entire range of the data. In two case studies, no 
variables were removed before using the grouping algorithms for a so-called 
"double blind" test. This means that the input data for all grouping functions in 
these two cases could contain variables that were all characters, constants, or 
near-constant. This was done to access the overall performance of all variable 
selection techniques when exposed to unknown data sets that can contain any 
type of variable. These two studies will be called out for the reader.   
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To quantify overall performance, the average error in the model 
predictions is shown. Each case study will provide available information about 
the data set being used, such as size, algorithm runtime and any other special 
notes. Also provided for each case study is a correlation coefficient matrix plot of 
the input data. This plot is provided so the user can compare the signals selected 
by the PEM functions and compare these with the variable groups obtained from 
ACFgroup. Using the correlation coefficient ranges described earlier and the 
color bar provided for each plot, strongly correlated variables will be red, 
moderately correlated variables will be yellow and those with little correlation will 
be blue. Also, if a variable is constant valued, these will be white. All models are 
trained, optimized and validated using the same data sets. The only difference in 
the results will be what signals were selected for each model.  
 

5.2.1 Case Study 1: Blade Server Hardware Data 
 

This first case study uses hardware measurements for a blade server 
used in the SCADA test bed described in this dissertation. This data set has 
22,868 observations and 28 signals. Based on the correlation coefficient plot 
shown in Figure 5-5, Signals [1:4, 9 & 14] are motherboard temperature 
measurements, Signals [8, 12:13 & 15:28] are fan speeds and related system 
voltages. The remaining variables are current measurements for specific small 
components of the blade server.  

 
 

 
Figure 5-5: Case Study 1 Correlation Coefficient Matrix 
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The described data is then input through each of the previously described 
grouping algorithms. The signals selected by each of these grouping algorithms, 
along with the average percent model error, are shown next in Table 5-1.  
 

Table 5-1: Case Study 1 Grouping Results 

Method/Groups Auto Rough ACF 
Gr1 1:5, 8, 9, 12:28 3, 8, 9, 12, 13, 15:28 8, 12, 13, 15:28 
Gr2 [] 1, 2, 4, 5, 14 1:4, 9 
Removed 6, 7, 10, 11 6, 7, 10, 11 5:7, 10, 11, 14 
Model Error (%) 7.30 5.43 

5.61 
3.77 
1.39 

 
 

In Table 5-1, it is first seen that autogroup extracted one group of 
variables, which were all the strongly correlated variables shown in the previous 
figure. The roughgroup algorithm extracted two groups of variables and also 
removed the same variables as autogroup. ACFgroup extracted two groups of 
variables, however these groups were slightly different than those obtained using 
the correlation coefficient algorithms. Also, ACFgroup removed a slightly different 
group of variables than the other two algorithms. When examining the average 
model errors in the table, it is seen that ACFgroup had the lowest error 
measurements for both extracted groups. The question to be answered now is 
why the model error values for ACFgroup are lower than the other two grouping 
functions.  

 
First, the group extracted by the autogroup algorithm used all strongly 

correlated variables of the input data. This can be confirmed by examining the 
correlation coefficient values for these variables in the previous figure. Because 
this and the roughgroup function select variables based solely on the resulting 
correlation coefficients, then if a variable that is unsuitable for modeling; such as 
a near-constant time series; has a strong correlation with others in a date set, it 
will be included. Then the resulting model error values for the group obtained by 
the autogroup function indicate that one or more variables included in this group 
was in actuality not suited for modeling. Next, the model errors for both groups 
obtained by the roughgroup function were slightly less than that seen for 
autogroup. However, what is interesting is that Gr1 obtained by ACFgroup had 
an even lower model error than Gr1 of autogroup. The difference in Gr1 of 
ACFgroup was only two signals, which were numbers 3 and 9. This indicates that 
maybe these two signals have some dynamics that will increase the overall 
model error. Shown in Figure 5-6 on the following page is a comparison of the 
ACFs for the variables in Gr1 that were obtained by the roughgroup and 
ACFgroup algorithms. 
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Figure 5-6: Comparison of ACFs for Gr1 - roughgroup & ACFgroup 

 
In the previous figure, it is seen in the left hand plot that there the ACFs for 

two of the signals are very different in shape or behavior than the others in this 
group. These two signals are indeed numbers 3 and 9 that were called out 
earlier. The ACFs for these two signals are examples of what was termed a trend 
time series that show a moderate degree of persistence because the ACF values 
for these signals are always positive. However, these two signals are still suitable 
for modeling as both have a slowly decaying trend towards negative ACF values. 
Inclusion of these signals by roughgroup has the effect of increasing the average 
model error. It is also seen in the right hand plot that ACFgroup did not include 
these signals. Next, Figure 5-7 shows Gr2 extracted by these two algorithms. 

 
 

 
Figure 5-7: Comparison of ACFs for Gr1 - roughgroup & ACFgroup 
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In the previous figure, it is seen that the ACFs obtained by roughgroup in 
the left hand plot have two signals that are problematic. These are the teal and 
purple signals, which correspond to original signals 5 and 14. The ACF for signal 
5 is an example of a near-constant time series, which shows minor oscillations 
around zero. Signal 14 is an example of a highly persistent ACF, the ACF values 
for this signal have a very slow decay and most values are around .8. This 
means that the original signal is unsuitable for modeling, even though it had 
moderate to strong correlations with other signals of the input data. The ACF 
shape also indicates that the original signal had very few changes over the entire 
range of the data. The ACFs in the right hand plot of Figure 5-7 are examples of 
trend time series; this is indicated by the rapid decline of the ACF values. Also of 
interest in this figure is the teal ACF, which is an example of a periodic time 
series. This signal was included in this group by ACFgroup because the ACF had 
similar statistical values as the ACFs for other signals of this group. Recall that 
ACFgroup can place many different types of time series in a group so long as the 
statistical measures were similar. This means that the original signals 
experienced the same changes in dynamics for the same system inputs. For 
completeness, the ACFs for Gr1 extracted by autogroup are shown in Figure 5-8. 
In this figure, the ACFs show that there are many time series that show 
persistent behavior or slow changes over the entire range of the original data. 
There are also trend and periodic signals that are included in this group. 
However, the ACFs again indicate that many of these signals did not show the 
same changes in dynamics for the same system inputs.  
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5.2.2 Case Study 2: Anonymous Nuclear Power Plant Data 
 

This second case study uses a data set that is contained in the PEM 
toolbox and was taken from a nuclear power plant. The set comprises signals 
from three different, unrelated plant systems. Signals 1:2 belong in System 1, 3:7 
in System 2 and 8:19 belong to System 3. Not other information was provided 
about this data. This set has 800 observations and 19 signals. Figure 5-9 shows 
the correlation coefficient plot for this data set. 

 
 

 
Figure 5-9: Case Study 2 Correlation Coefficient Matrix 

 
The groups obtained by each of the grouping algorithms using this data 

set and the average model errors are presented next in Table 5-2. 
 

Table 5-2: Case Study 2 Grouping Results 

Method/Groups Auto Rough ACF 
Gr1 1,2,4:6, 8:19 8:13, 15:19 8:13, 15:19 
[] [] [] [] 
Removed 3, 7 1:7, 14 1:7, 14 
Model Error 
(%) 

15.39 1.46 1.46 
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In Table 5-2, it is first noted that all grouping algorithms were able to 
extract only one group from this data set. Another interesting item is that 
roughgroup and ACFgroup removed the same set of variables and thus obtained 
the same variables for Gr1. The variables for this group were all from taken from 
System 3. While it may not seem impressive that ACFgroup arrived at the same 
set of variables as roughgroup, what is impressive is that this was accomplished 
by using a completely different approach to variable selection than correlation 
coefficient criteria. The average percent model error for roughgroup and 
ACFgroup was 1.46%. Next, the autogroup function placed many variables from 
all listed systems into one group. Because these variables had so little in 
common, the resulting model error of 15.39% for the autogroup model was 
substantially larger than what was obtained by the other two algorithms.   
 

5.2.3 Case Study 3: SCADA Test Bed Telemetry Data 
 

For this case study, the data set used the software variables for the 
SCADA test bed. All of these signals are taken from the Linux kernel. This data 
set has 22868 observations and 54 signals. In Figure 5-10, Signals 1:15 are 
memory usage metrics, Signals16:35 are network or TCP/IP related, Signals 
36:45 are disk usage measurements, and Signals 46:54 are CPU usage 
measurements.  
 
 

 
Figure 5-10: Case Study 3 Correlation Coefficient Matrix 
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Table 5-3 shows the groups selected by all grouping methods. In the 
table, it is first noticed that autogroup was able to extract five different groups, 
while the other two algorithms extracted only two groups. When considering 
autogroup, it is seen that Gr2 has a very small model error of 0.70%. All of the 
signals in this group were highly correlated and highly quantized. Thus, 
autogroup placed them into their own group based on their high degree of cross 
correlation. Also note that ACFgroup removed all signals seen in this group. The 
remaining four groups selected by autogroup had small to large model errors, 
many of the signals contained in these groups were selected or removed by the 
other two grouping algorithms. 

 
Table 5-3: Case Study 3 Grouping Results 

Method/Groups Auto Rough ACF 
Gr1 8, 12:16, 46:53 3, 6, 9:12, 16, 18, 

20, 23:26, 36, 
38:41, 43:46 

8, 15:18, 20, 
23:30, 32:34, 36, 
38:41, 43:46, 50, 
51 

Gr2 1, 3, 6, 9:11 2, 4, 5, 8, 13:15, 
17, 19, 21, 22, 
28:30, 32:37, 42, 
47, 50, 51 

7, 12:14, 19, 
21:22 

Gr3 17, 18, 20, 24:26, 
28:30, 35 

[] [] 

Gr4 19, 21, 22, 32:34 [] [] 
Gr5 2, 4, 5, 36:45 [] [] 
Removed 7, 27, 31, 54 1, 7, 27, 31, 48, 

49, 52:54 
1:6, 9:11, 31, 35, 
37, 42, 47:49, 
52:54 

Model Error (%) 7.43, 0.70, 4.20, 
3.08, 39.9 

5.77, 28.5 8.30, 4.91 

 
 

When considering the two groups extracted by roughgroup, Gr1 had a low 
model error. It is noted that all but one variable in autogroup Gr2 is also 
contained in this group. Due to the extremely low error of autogroup Gr2, then 
roughgroup Gr1 will also have a lower overall error. Many of the signals in this 
group were also selected by ACFgroup Gr1. However, ACFgroup removed all 
signals from autogroup Gr2. Because these are not included in any of the 
ACFgroup models, Gr1 of ACFgroup has a slightly larger model error. Gr2 
selected by roughgroup and Gr5 of autogroup also had a very large model errors 
due to problematic time series. It is noted that many of the variables in these two 
mentioned groups were removed by ACFgroup.  
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5.2.4 Case Study 4: HRSG Boiler Leakage Data 
 

This data set was supplied by Alstom Power and was taken from a natural 
gas power plant that utilized a Heat Recovery Steam Generator (HRSG). The 
process measurements contained in this set are a mix of plant temperatures, 
pressures, flow rates, turbine speed and related power measurements. This data 
set also has a very slow sampling rate. The information provided states that this 
data set was average over a 1 year period. It is noted that several signals of this 
data set are constant or near-constant valued, indicated as white rows/columns 
in the correlation coefficient plot shown in Figure 5-11. This particular data set 
has 7,000 observations and 56 signals. 

 
 NOTE: For this study, no signal preprocessing is performed before using 

the three grouping algorithms. That is, no constants, near-constant or other 
troublesome types of signals are removed to improve the performance of all 
grouping methods. This blind study was done to assess ACFgroup performance 
for these types of unknown inputs, and to compare performance with the other 
correlation grouping methods. On the following page, Table 5-4 lists all of the 
groups extracted in this blind case study. 

 
 

 
Figure 5-11: Case Study 4 Correlation Coefficient Matrix 
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Table 5-4: Case Study 4 Grouping Results 

Method/Groups Auto Rough ACF 
Gr1 21, 28, 29, 32:35 1, 3, 4, 6, 7, 9, 12, 

13, 17:19, 22, 24, 
28, 29, 32:35, 
45:48, 50:56 

9, 12, 13, 
17:19, 22, 24, 
26, 40, 41, 44, 
45, 50:56 

Gr2 1, 2, 9, 12, 13, 
17:20, 22:31, 
36,37, 40:48, 
50:56 

2, 10, 14, 15, 20, 
21, 23, 25:27, 30, 
31, 36, 37, 40:44 

16, 25, 27, 36, 
37, 42, 43 

Gr3 3, 4, 6, 7, 10, 
14:16 

[] [] 

Removed 5, 8, 11, 38, 39, 
49 

5, 8, 11, 16, 38, 
39, 49 

1:8, 10, 11, 14, 
15, 20, 21, 23, 
28:35, 38, 39, 
46:49 

Model Error (%) Inf, Inf, 13.38 10.88, Inf 3.24, 5.18 
 
 

In Table 5-4, the "Inf" values seen for several of the models indicate 
infinite model error. This unreasonable error metric means that some time series 
type has been included in the final groups whose dynamics will cause 
mathematical issues. These mathematical issues are mainly division by zero or 
division by very large or small values. Because the PEM toolbox utilizes 
statistical measures of the predictions to arrive at the final error metric, a signal 
with few changes over the entire range of data will cause this very large error. 

 
In this data set, Signals 20, 21 and 23 are near-constant time series that 

cause this large error. These three variables were included by auto and 
roughgroup because they had some degree of strong cross correlation with other 
variables in this set. However, the ACFgroup algorithm has correctly removed 
these and other troublesome signals due to their insignificant signal changes. 
The groups extracted by ACFgroup also had the lowest model error values for all 
extracted groups shown. Next, all three algorithms were able to correctly remove 
Signals 8, 11, 38 and 39. These were all constant valued time series and are 
indicated by the white rows/columns seen in the previous figure. This means that 
the cross correlation algorithms could identify constant valued signals as 
unwanted signals, but they could not identify signals that have very few changes 
over the entire range as unwanted signals. The results shown in the table 
indicate that the ACFgroup method is more robust to data sets that contain many 
different types of time series than correlation coefficient grouping methods. This 
means that examining observed changes in signals of a data set can be more 
useful for grouping applications.   
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5.2.5 Case Study 5: Fossil Power Plant Turbine Blade Failure Data 
 

This data set was also provided by Alstom Power, but is taken from a 
different type of plant than what was shown in the previous case study. Also, the 
information provided states that this data set was averaged over a 1.3 year 
period. This set contains 9,790 observations and 30 signals. In Figure 5-12, the 
two large clusters of red variables are process temperature and pressure 
measurements; while the blue are turbine speeds and other related power 
variables. Also on this page is Table 5-5, which provides all extracted groups and 
error metrics. 

 
 

 
Figure 5-12: Case Study 5 Correlation Coefficient Matrix 

 
Table 5-5: Case Study 5 Grouping Results 

Method/Groups Auto Rough ACF 
Gr1 1:15, 17:30 1:6, 8, 11, 13:15, 

18, 23:30 
1, 3, 9, 24, 25,30 
 

Gr2 [] 7, 9, 10, 12, 17, 
20:22 

16, 17, 20:23, 26 

Gr3 [] [] 2, 4:8, 10, 11, 
19, 27:29 

Removed 16 16, 19 12:15, 18 
Model Error (%) 7.56 6.98, 4.49 4.58, 4.21, 3.17 
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In the previous table, autogroup was able to extract one group of variables 
and removed one variable. This is the main turbine RPM speed. Roughgroup 
also removed this signal, along with the variable for generated power. ACFgroup 
includes these two important variables in two of the three extracted groups and 
removes an entirely different set of variables than the other two methods. The 
turbine RPM and generated power are important measurements for a steam 
powered plants and should have some relationship with the other plant 
measurements. When considering the model errors, Gr1 for auto and roughgroup 
were both larger than the similar group extracted by the ACF method. In fact, all 
of the model errors for the groups extracted by ACFgroup were lower than the 
other two methods. These results again show how grouping variables based on 
observed signal changes can result in models with lower average error. 
 

5.2.6 Case Study 6: Heat Exchanger Fouling Data 
 

The data set for this case study was taken from a heat exchanger fouling 
test bed experiment performed at UT. This set has 1,000 observations and 13 
signals. In Figure 5-13, Signals 1:4 and 9:13 are temperature related, while 
Signals 5:8 are mass flow rates. On the following page, Table 5-6 provides the 
grouping results for this data set. 

 
 

 
Figure 5-13: Case Study 6 Correlation Coefficient Matrix 
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Table 5-6: Case Study 6 Grouping Results 

Method/Groups Auto Rough ACF 
Gr1 1, 4, 10:13 12, 13 1, 4, 11, 13 
Gr2 2, 3, 7:9 1:4, 7, 8, 10, 11 2, 3, 7:10, 12 
Removed 5, 6 5, 6, 9 5, 6 
Model Error (%) 8.97, 14.76 (9.31), 15.66 7.08, 13.65 

 
 

In Table 5-6, it is seen that all algorithms removed only mass flow related 
variables, which were variables 5 and 6. Autogroup placed many of the 
temperature measurements into one group and several temperature variables 
and mass flow rates into a separate group. The second group extracted by 
roughgroup also used signals from both subsets. While autogroup and ACFgroup 
were able to arrive at two somewhat similar groups, roughgroup could only arrive 
at one final group. Gr1 extracted by roughgroup only had two variables; in reality 
it makes no sense to develop any type of model with only two variables. 
However, for completeness, the error value for this insignificant model is also 
provided. Gr2 of roughgroup is similar to Gr1 of the other two methods; however, 
roughgroup termed this group as a set of moderately correlated variables. When 
comparing all average error results, it is seen that ACFgroup was again able to 
arrive at final model groups that have lower model errors.  
 

5.2.7 Case Study 7: CMAPSSData: Motor Failure Data 
 

The last data set that will be described in this section is a motor 
degradation data set that was taken from the NASA Prognostics Data Repository 
[98]. This data set contains normal operational and anomaly data from an 
accelerated aging motor test bed. In this data set, Signals 5, 23 and 24 are 
constant valued. This is shown as the white rows/columns in Figure 5-14 on the 
following page. The remaining signals in this set are either temperature or 
vibration related. This data set contained 20,631 observations and 36 signals.  

 
NOTE: As in Case Study 4, a blind case study is performed on this data 

set. This means that no additional preprocessing of this data set is performed to 
remove potentially problematic variables. Again, problematic variables include 
constant, near-constant, quantized or variables that show very few changes over 
the entire range of the data. These can cause sever mathematical issues that 
can potentially lead to very poor model predictions and errors. This blind study 
was done to assess ACFgroup performance for these types of unknown inputs, 
and to compare performance with the other correlation grouping methods. On the 
following page, Table 5-7 lists all of the groups extracted and the average model 
errors obtained in this second blind case study. 
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Figure 5-14: Case Study 7 Correlation Coefficient Matrix 

 
Table 5-7: Case Study 7 Grouping Results 

Method/Groups Auto Rough ACF 
Gr1 2, 7:9, 12:14, 

16:20, 22, 25,26 
6, 9, 10, 12, 13, 
15:18, 20, 21 

2, 9, 14, 16, 17 

Gr2 [] 2, 7, 8, 14, 19, 22, 
25, 26 

7, 8, 12, 13, 
18:20, 22, 25, 
26 

Removed 1, 3:6, 10, 11, 15, 
21, 23,24 

1, 3:5, 11, 23,24 1, 3:6, 10, 11, 
15, 21, 23, 24 

Model Error 
(%) 

5.51 Inf, 4.45 3.78, 4.65 

 
 

In Table 5-7, the first item of interest is Gr1 for roughgroup had an "Inf" 
error value. This means that some type of time series was included in this group 
and not the other groups that cause this very large error value. Next, it is noted 
that autogroup and ACFgroup removed exactly the same variables under a blind 
case study. When considering the model error results, ACFgroup arrives at 
models with better error values for all but one group. In this case, the increase in 
error for ACFgroup is only 0.2% over a similar group that was extracted by 
roughgroup. These results again show that the ACFgroup algorithm is more 
robust to data sets with a wide range of time series.  
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5.2.8 Summary of ACFgroup Results 
 

The proof of principle for the ACFgroup algorithm was shown using seven 
different data sets. These data sets were taken from a NPP, two different fossil 
fuel plants, the SCADA test bed simulation, and several accelerated aging test 
beds. The algorithm was compared against two other VGM that are based on 
correlation coefficient criteria. Recall that the engineering basis of the ACFgroup 
algorithm utilizes the observed signal changes among all input variables of a data 
set to group variables. For this study, AAKR models were developed using the 
final variables selected by each of the grouping algorithms. To compare overall 
effectiveness of each algorithm, the average percent model error for each 
developed model is provided. This error metric is the obtained by summing the 
error metric for each signal, dividing by the total number of signals, finally 
multiplying this value by 100%. The average percent error for each case study, 
model and VGM is shown next in Table 5.8.  

 
Table 5-8: Summary of Average Model Errors for Each Case Study 

Method/Case Autogroup Roughgroup ACFgroup 
1 7.30  5.43, 5.61 3.77, 1.39 
2 15.39 1.46 1.46 
3 7.43, 0.70, 4.20, 

3.08, 39.9 
5.77, 28.5 8.30, 4.91 

4 Inf, Inf, 13.38 10.88, Inf 3.24, 5.18   
5 7.56 6.98, 4.49 4.58, 4.21, 

3.17 
6 8.97, 14.76 9.31, 15.66 7.08, 13.65 
7 5.51 Inf, 4.45 3.78, 4.65 

 
 

In the previous table, the "Inf" score indicates that the respective model 
had infinite error. This result is due to the grouping algorithms selecting final 
variables that were unsuitable for modeling. These unsuitable signals include 
constant or near-constant valued variables that cause mathematical issues, such 
as division by zero. It is noted that none of the ACFgroup average errors had an 
"Inf" value, while several variable groups selected by cross correlation criteria 
returned this particular error. Next, it is noted in Case 3 that ACFgroup has larger 
average errors than the other two algorithms. However, given that the error for 
the first model of this case in ACFgroup contained variables also seen in models 
1, 3 and 4 for autogroup, the increase in error of 0.93% for ACFgroup is 
acceptable. In the last case study, the increase in average error for the second 
model of ACFgroup when compared to the second model of roughgroup was 
only 0.2%. The overall results definitively show that ACFgroup was able to 
extract superior groups of variables for data-driven modeling.  
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5.3 SCADA Test Bed Intrusion Testing Results 
 

The last section of this chapter will present the model and intrusion 
detection results using for two different data sets. The first set was collected in 
June of 2016 and contains six different intrusions tested in succession. The 
second set was collected in March of 2017 and contains eight different intrusions 
tested in succession. During the course of this cyber-security research, there 
have been several sets of data collected using the SCADA experiment. As many 
of these data sets show the same types of intrusions with variants in options 
chosen, for brevity only the results for the previously two mentioned data sets are 
shown. The methods for specific signal processing of certain telemetry sources 
and variable grouping is first discussed. These specific signals were all 
monotonically increasing and had to be pre-processed before being used in for 
model development. This is then followed by the results of the June and March 
data sets. The results for each set will describe intrusions tested, correlation 
coefficient plots for all variables groups, and SPRT plots for two selected signals 
from each developed model. It is noted in these results that every intrusion tested 
could be detected in one or more models using the developed methods. Last, 
this section concludes with a summary of all intrusion classes tested during this 
research, along with the various intrusion testing software or exploit codes. The 
discussion will focus what each class of intrusion is used for, how they are 
implemented, and the reasons a particular tested intrusion could or could not be 
detected. This will provide the reader with a qualitative assessment of the 
presented methods for intrusion detection. 
 

5.3.1 Signal Processing and Variable Grouping 
 

In total, there were 665 signals collected from various telemetry sources 
from the servers of the SCADA test bed. These can be separated into various 
telemetry classes that include memory usage, TCP/IP related statistics, disk 
usage, CPU usage, and page swaps. It was found during initial signal processing 
that a large majority of these signals were either constant valued, had minor 
changes over the range of the data, or were monotonic. For the modeling 
methods discussed in this dissertation, all of these signals would be removed by 
correlation coefficient grouping algorithms as these signals have little to offer for 
diagnostic purposes. However, as the TCP/IP and disk usage signals were all 
monotonically increasing, it was decided to transform these particular signals into 
a time series could be used for modeling. This was done because many of the 
tested exploits send large numbers of packets or consume disk resources. Then 
the TCP/IP and disk signals should then show large deviations in the respective 
monitored telemetry during these intrusion activities. Because of this, the TCP/IP 
and disk usage signals are valuable sources of telemetry that should not be 
discarded. 
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In Figure 5-15, several examples of raw TCP/IP signals are shown before 
any additional signal processing is performed. 
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Figure 5-15: Raw TCP/IP Signals 

 
All TCP/IP and disk usage signals that were collected exhibit the same 

basic shapes and trends seen in the previous figure. The reason monotonically 
increasing signals are unsuitable for the modeling methods described earlier is 
twofold. First, signals with a highly varying range will only be correlated with other 
signals with highly varying ranges. This means that the grouping algorithms 
would only place these monotonic signals into a group, though these signals may 
have commonality with other telemetry classes. Second, it is impossible to train a 
model on these signal types because any values outside of the training range 
cannot be predicted. When considering anomaly detection, any values outside of 
the range of the data that the model was trained on will be considered to be in a 
faulted state, even if the data is unfaulted.  
 

In order to use these signals for modeling, data processing involved two 
stages. The first stage takes the difference of each of these signals. This step 
has the effect of lining up each of the step changes in these signals in sequential 
order. However, many of the values for this transformed signal will have a value 
of zero, which would be deemed as faulted states during anomaly detection. To 
resolve this issue, a windowed RMS filter is applied to the transformed signal. 
The final result is a signal that looks like a typical time series that is suitable for 
modeling. On the next page, Figures 5-16 and 5-17 show these two data 
processing steps for an expanded view of the "TW" TCP/IP signal. 
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Figure 5-16: Expanded View of TCP/IP Signal "TW" – Difference 
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Figure 5-17: Expanded View of TCP/IP Signal "TW" – Windowed RMS 
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On the previous page, Figure 5-16 shows the TCP/IP after taking the 
difference of the raw signal. As stated previously, many of the values seen in this 
figure are zero. This would cause the anomaly detection algorithms to label all of 
the indices with zero values as being in a faulted state, when in fact this is all 
normal unfaulted data. In Figure 5-17, a windowed RMS filter is applied to the 
differenced signal. It is seen after using the filter that the signal now resembles a 
typical time series. The one item to mention is that in performing these data 
processing steps is that there was only a loss of 15 data points. This is due to 
losing one data point when taking the difference of the raw signal and losing 
points when using the windowed RMS filter that utilized a window size of 14. 
Other than these minor losses, there is no other loss of information when 
compared with the original raw signal. Also, other windowed filters were 
employed, but it was found that the RMS filter provided the desired results in 
generating the final time series signal. This two stage processing was performed 
on all TCP/IP and disk usage signals. 

 
Before the selected model results are shown, the last item to be discussed 

is variable rejection and grouping. As stated earlier, there were 665 total signals. 
After removing constant valued or near-constant time series, 219 signals 
remained for consideration. Of these 219, many were TCP/IP and disk usage 
signals that were processed before variable grouping. It is also noted that some 
of the memory usage, CPU usage and page swap signals were quantized time 
series that were discussed in previous chapters. These particular signals were 
also removed by the grouping algorithms. Last, a consideration for this work was 
to determine if using small clusters of signals for intrusion detection purposes 
would be preferred over using hundreds or thousands of signals. Using large 
numbers of signals to develop models for intrusion detection purposes is a 
common practice in computer science applications. The idea for this work is that 
using smaller clusters of well correlated signals would be more beneficial as 
many signals in computing equipment are redundant and offer the same results 
when performing intrusion detection. This would then have the effect of reducing 
overall compute cost for IDS. 

 
For this work, the correlation coefficient grouping algorithms discussed 

previously extracted four separate groups from the remaining 219 signals 
discussed in the previous paragraph. The first group contained strongly 
correlated variables selected from all available telemetry classes. The majority of 
signals in this group are TCP/IP and disk related. The second group used a 
combination of memory and CPU resource usage telemetry. The third and fourth 
groups contained only disk usage and TCP/IP related statistics, respectively. 
Also, these groups are small in size, ranging from 9 to 21 total signals. Each of 
the previously listed variable groups is used to develop both AARR and AAMSET 
models for both considered data sets. All signals for each of the extracted 
variable groups are contained in the Appendices for reference.  
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5.3.2 Selected Model Results – June Intrusion Tests 
 

In this first data set, six different intrusion types were tested in succession 
after collecting normal operational data. For this set, the intrusion classes tested 
were network/host discovery, DoS, brute force password attack, elevation of 
privilege and information theft from the victim machine. The software packages 
used are, respectively, SPARTA, Network Time Protocol (NTP) fuzzer, SSH 
fuzzer, Samba2 fuzzer, followed by a SSH brute force password attack. Last, 
Metasploit is used to elevate privilege to root user and then download several 
files from the victim desktop. The main assumption made in testing these 
particular intrusions is that an attacker has already gained access to the network. 
SPARTA is first used to obtain information about all ports, processes and 
services for each device on the network, followed by the three fuzzers. The 
fuzzers are then followed by a brute force password attack to gain access. Once 
access is gained, the guest user privilege is upgraded to root user. For this test, 
the entire victim desktop was downloaded. This theft included files, pictures and 
folders. Each of these intrusion activities is followed by a short rest period to 
allow the system dynamics to recover.  

 
As stated previously, there were four separate groups that were used 

during model development and intrusion detection activities. These groups used, 
in order, signals from all telemetry classes, memory/CPU usage signals, disk 
usage signals and TCP/IP signals. These groups will be termed Models 1 - 4, 
respectively. For each of these groups, a selected SPRT plot from the developed 
AAKR and AAMSET models will be shown. For reference in the upcoming 
figures, the observation ranges for the intrusions presented are listed: 

 
• SPARTA – 245:345 
• NTP Fuzzer – 430:550 
• SSH Fuzzer – 580:640 
• Smb2 Fuzzer – 655:710 
• SSH Brute Force/Privilege Escalation – 880:960 
• Information Theft – 975:1100 

 
In the upcoming figures, the SPRT plot is shown for a selected signal in 

each model. Recall from Chapter 3, page 51 the discussion of how to interpret 
the results. Briefly, the top subplot is the generated anomaly residual. The bottom 
subplot is the fault hypothesis scores. A 1 is assigned to a faulted state, while a 0 
is an unfaulted state. Next, a red 1 is a True Positive, these all occur in the above 
listed regions for each tested intrusion. This means the SPRT correctly identified 
the intrusions as anomalous. A blue 0 indicates a True Negative, which means 
the unfaulted observations were correctly identified as normal behavior. A red 0 
is a faulted state incorrectly identified as unfaulted, or a False Negative. A blue 1 
is a False Positive, an unfaulted state incorrectly labeled as faulted.  
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Set 1 Model 1 Results - All telemetry classes: 
 

Model 1 uses 21 variables that were selected from all available and usable 
telemetry classes. These classes include memory, disk and CPU usage, as well 
as network related TCP/IP signals. It is noted that for this research that the 
hardware signals collected had little to offer in the way of intrusion detection. 
That is, it was not possible to find any of the tested intrusions in any of the 
hardware signal residuals. Shown next in Figure 5-18 is the correlation coefficient 
plot that is generated from the training data for this first group. 

 
 

 
Figure 5-18: Set 1, Model 1 Training Data Correlation Coefficient Plot 

 
In the previous figure, Signals 1-2 are memory usage, Signals 3-7 are 

TCP/IP, Signals 8-19 are all disk usage and Signals 20-21 are CPU usage 
related. It is immediately noticed in the plot that only the memory and CPU usage 
signals have any degree of correlation. Also, the TCP/IP and disk usage signals 
have nothing in common with any other signals besides TCP/IP or disk usage, 
respectively. This particular set was used because, for monitoring purposes, a 
utility might want to utilize a combination of all telemetry sources, regardless of 
the observed correlations for a particular data set. Later in this chapter, models 
will be developed using only specific classes of telemetry. This is done to 
compare if there was any benefit in developing models with specific telemetry 
classes over a model that contains signals taken from all telemetry sources.  
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After the models are trained and optimized, the anomaly data discussed 
previously is run through the developed models. For these results, the residual 
and SPRT fault hypothesis plot for a TCP/IP signal labeled "InNoECTPkts" is 
shown for both the AAKR and AAMSET models. This was done to show that both 
model types can generate the same basic residual and fault hypothesis scores. 
Shown next in Figure 5-19 is the results generated by using the AAKR model.  
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Figure 5-19: Set 1, Model 1: AAKR SPRT Results "InNoECTPkts"  

 
In the previous figure, the magnitude of the large residuals that extend 

beyond the range of the graph was on the order of -2 x 107. These large 
residuals correspond to the SPARTA, SSH, Smb2 fuzzers, and information theft 
activities. Compare this to the small magnitude of the NTP fuzzer and brute force 
attack, both of which were several orders of magnitude smaller. This is important 
to mention because a simple threshold technique might miss the smaller 
magnitude intrusions if the threshold was inappropriately chosen. This also 
shows the ability of the SPRT to correctly identify all of the tested intrusions, 
even though the resulting residual magnitudes may be quite small. While the 
above results show that all tested intrusions were detected, there are some false 
alarms present. First, the red zeros between observations 350 – 850 are false 
negatives. These are relatively minor when compared with the false negatives 
after observation 1000. This region was during the information theft attack, the 
results indicate that while detected, half of the intrusion region was labeled 
incorrectly. The reason for these false alarms for this attack is that the value of 
the residuals sometimes falls into regions the model learned as normal. Figure 5-
20 show the SPRT results for the same signal using the AAMSET model.  
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Figure 5-20: Set 1, Model 1: AAMSET SPRT Results "InNoECTPkts"  

 
The AAMSET model results are similar to the AAKR results, though there 

are a larger number of false negatives for the last two listed intrusions. Recall 
that these are the password and information theft attacks. These results indicate 
that the residual generated by the AAMSET for this region had some magnitudes 
that fell into the range of learned, normal behavior. However, both attacks are 
detected in spite of the larger number of false negatives. Further model or SPRT 
optimization could alleviate this unwanted behavior. For this model that uses 
signals taken from all available telemetry sources, each of the previously listed 
intrusions was detected. This indicates that a model developed using different 
telemetry sources can be an effective means to detect a variety of attacks. 

 
 

Set 1 Model 2 Results – Memory/CPU usage: 
 
 The remaining models of this section utilize signals taken from specific 
telemetry classes. This was done to determine if using subsets of available 
telemetry to develop models could be just as effective at intrusion detection. This 
also makes sense for systems that are resource constrained because a smaller 
set of signals could reduce the overall compute cost of monitoring activities. 
Model 2 uses a selection of memory and CPU usage measurements for a total of 
12 signals. These particular signals were selected for this model because many 
had some degree of moderate to strong correlations with each other. Shown on 
the following page in Figure 5-21 is the correlation coefficient plot for this signals 
of this subset. 
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Figure 5-21: Set 1, Model 2 Training Data Correlation Coefficient Plot 

 
In the previous figure, Signals 1-5 are memory usage and Signals 6-12 

are CPU usage telemetry selected by cross correlation grouping methods. Many 
signals show moderate to strong correlations. This makes sense because 
memory and CPU usage are coupled activities in computing systems. The SPRT 
results for a memory signal "Min1-load-avg" are shown next in Figure 5-22. 
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Figure 5-22: Set 1, Model 2 AAKR SPRT Results "Min1-load-avg"  
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In the previous figure, it is seen that the SSH, Smb2 fuzzer and 
information theft activities cause the greatest change in the model residual 
behaviors. The SPARTA intrusion activity also is detected, though there are 
many false alarms for this attack. The other interesting item to mention about 
these results is that the information theft activity was more easily detected with 
this model when compared with the results in the previous section. This particular 
behavior was seen for all residuals in this data set for both model types. Next, 
Figure 5-23 shows the AAMSET residuals and SPRT results for this same signal. 
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Figure 5-23: Set 1, Model 2 AAMSET SPRT Results "Min1-load-avg"  

 
As in the previous results, the residuals in Figure 5-23 show the same 

changes for the SSH, Smb2 and theft activities. However, there is a great deal 
more false alarms seen in these results than displayed for the AAKR model. 
Also, the SPARTA and brute force attacks are almost completely missed. All 
signals in this model showed significant delay time to detection. This is seen by 
the red zeros at the start and end of each listed intrusion range. These results 
indicate that many of the anomaly residuals in both models had large portions of 
the signal in the anomaly regions that were similar to learned, normal behavior. 
This also means that an intruder could possible do damage since there is such a 
long delay time to detect these attacks. It is noted that all tested intrusions were 
able to be detected in both models. However, given the large delay times and 
false alarm rates, it can be concluded that the memory and CPU usage signals 
would not be ideal candidates to use for intrusion detection purposes.    
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Set 1 Model 3 Results – Disk usage: 
 

Model 3 contained 12 signals that were all disk usage telemetry. These 
signals were selected by the grouping algorithms because these only had strong 
correlations with each other and no other telemetry classes. Next, Figure 5-24 
shows the correlation coefficient plot for this data set. 
 
 

 
Figure 5-24: Set 1, Model 3 Training Data Correlation Coefficient Plot 

 
In the previous figure, it is seen that all of the selected signals have strong 

relationships. This makes sense because all of these signals are only disk usage 
measurements and they all should have some relationships with each other. On 
the following page, Figures 5-25 and 5-26 show the SPRT results using signal 
"Disk-sda1-writes-merged" for the AAKR and AAMSET models, respectively. The 
first interesting point is that in Figure 5-25 all of the intrusions were able to be 
detected with a minimum of false negatives. This is confirmed by the small 
number of red zeros. The false negatives are slightly higher between 
observations 600 – 700, but again the intrusions in this region were detected. 
Last, there are some false positives in this figure, with the largest number at the 
end of the test. In contrast, the results seen in Figure 5-26 for the same residual 
generated using the AAMSET model are almost the exact opposite of the AAKR 
results. It is noted that the same SPRT missed and false alarm values were used 
for both models. While all intrusions were detected, the results have a very large 
and unacceptable amount of false negatives. Operators would not trust the IDS 
that returned these outputs. These results indicate that the residuals generated 
using the AAMSET method may be unreliable for intrusion detection.  
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Figure 5-25: Set 1, Model 3 AAKR SPRT Results "Disk-sda1"  
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Figure 5-26: Set 1, Model 3 AAMSET SPRT Results "Disk-sda1"  
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Set 1 Model 4 Results – TCP/IP: 
 

Model 4 used nine signals, which were all TCP/IP measurements. These 
signals were also selected by the grouping algorithms because these all had 
strong correlations with each other and no other telemetry classes. It is also 
noted that many of the TCP/IP signals used for this group were not used in 
Model 1. Shown next in Figure 5-27 is the correlation coefficient plot for this data. 
 
 

 
Figure 5-27: Set 1, Model 4 Training Data Correlation Coefficient Plot 

 
In the previous figure it is seen that many of these network related 

variables have strong correlations. On the following page, Figures 5-28 and 5-29 
show the AAKR and AAMSET results for the TCP/IP signal "OutOctets". All 
tested intrusions were able to be detected in this model. There are a minimal 
number of total false positives, and a minimal number of false negatives before 
observation 1000. After this observation, the rate of false negatives increase. 
These results indicate that much of the residual had magnitudes that were similar 
to normal behavior. The AAKR results shown are similar to that seen in Model 1. 
The AAMSET results in Figure 5-29 have more false negatives for the SPARTA, 
NTP fuzzer, brute force, and information theft attacks. For the NTP fuzzer and 
password attacks, the residuals are also smaller than those seen in the AAKR 
model. Due to the smaller size, much of the residuals for these attacks are 
considered by the SPRT to be in an unfaulted state. Despite the higher rate of 
false negatives for the AAMSET results, all tested intrusions were able to be 
detected in this and the AAKR model. Based on these results, we can conclude 
that a model developed with only TCP/IP telemetry is quite effective for detecting 
a vide variety of intrusion types.  
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Figure 5-28: Set 1, Model 4 AAKR Results "OutOctets"  
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Figure 5-29: Set 1, Model 4 AAMSET Results "OutOctets"  
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 To conclude this section, the results for each of the four models are 
summarized on the following page in Table 5-9. This summary will list each of the 
tested intrusions and provide if an attack was detected or not in the each of the 
models. Here, "Y" indicates that the attack was detected by the model and "N" 
indicates the attack was not detected by the model.  
 

Table 5-9: Summary of June AAKR/AAMSET Results 

Model/Attack Model 1 Model 2 Model 3 Model 4 
AAKR     
SPARTA Y N Y Y 
NTP fuzzer Y N Y Y 
SSH fuzzer Y Y Y Y 
Smb2 fuzzer Y N Y Y 
Password Y N Y Y 
Theft Y Y Y Y 
AAMSET     
SPARTA Y N Y Y 
NTP fuzzer Y N Y Y 
SSH fuzzer Y Y Y Y 
Smb2 fuzzer Y N Y Y 
Password Y N Y Y 
Theft Y Y Y Y 

 
  
 In the previous table, the reason that Models 1, 3, and 4 detected the 
tested intrusions is that all of the attacks sufficiently altered the monitored signal 
dynamics for the SPRT to recognize this behavior as anomalous. These results 
make sense, as Model 1 used some of the same signals as Models 3 and 4. 
Thus, if an intrusion is detected in a model developed using signals taken from all 
telemetry sources, then the intrusion can most likely be detected in models 
developed on subclasses of these signals.  
 

This is not always the case, as Model 2 had several attacks that were not 
able to be detected. The main reason for this is that the particular attacks did not 
alter the monitored signals dynamics for detection to be possible. This means 
that the residual behavior for the SPARTA, NTP, Smb2, and password attacks 
looked very similar to regions where no attacks were occurring. The reason that 
Model 2 was able to detect the SSH fuzzer and information theft attacks is that 
these two attacks did cause large changes in the signal dynamics. This 
statement makes sense because all information flowing through the network is 
done using SSH. The fuzzer and theft attacks then cause the SSH process to 
use more memory and CPU resources.  
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5.3.3 Selected Model Results – March Intrusion Tests 
 

In this second data set, several different intrusion types were tested in 
succession after collecting normal data. The software packages used in this set 
are, respectively, SSH fuzzer, Zenmap, SPARTA, Dmitry, SSH brute force 
password, NTP fuzzer, and SSH fuzzer. This is followed by running SPARTA 
twice at the same time, followed by another application of this package. Running 
SPARTA twice at the same time was performed to determine if the residual 
behavior doubled in size or not when compared to just running this software 
package once. These types of activities can be considered as an attacker gaining 
access to a network and attempting several different network reconnaissance 
and DoS attempts. Again, each of these intrusion injection activities is followed 
by a short rest period to allow the system dynamics to recover.  

 
This data set also uses the same signals that were used to develop 

Models 1- 4 in the June results shown previously. This was done to validate that 
the same signals could be used again for intrusion detection purposes. This 
means that once a suitable signal set is decided on that only those signals need 
to be used for detection purposes. For each of these groups, a selected signal 
from both developed AAKR and AAMSET models will be shown. For reference in 
the upcoming figures, the observation ranges for each of the intrusions presented 
in this section are listed next: 

 
• SSH Fuzzer – 40:50 
• Zenmap – 70:116 
• SPARTA – 238:311 
• Dmitry – 540:550 
• SSH Brute Force – 554:637 
• NTP Fuzzer – 836:910 
• SSH Fuzzer – 938:948 
• SPARTA x 2 – 985:1068 
• SPARTA – 1085:1165 

 
In the upcoming figures, the SPRT plot is shown for a selected signal in 

each model. Recall from Chapter 3, page 51 the discussion of how to interpret 
the results. Briefly, the top subplot is the generated anomaly residual. The bottom 
subplot is the fault hypothesis scores. A 1 is assigned to a faulted state, while a 0 
is an unfaulted state. Next, a red 1 is a True Positive, these all occur in the above 
listed regions for each tested intrusion. This means the SPRT correctly identified 
the intrusions as anomalous. A blue 0 indicates a True Negative, which means 
the unfaulted observations were correctly identified as normal behavior. A red 0 
is a faulted state incorrectly identified as unfaulted, or a False Negative. A blue 1 
is a False Positive, an unfaulted state incorrectly labeled as faulted.  
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Set 2 Model 1 Results - All telemetry classes: 
 

The first results shown for the second data set use the same 21 signals 
that were used to develop the June results. In fact, for this and all other results 
shown in this section, the same models that were developed using the June data 
are also used to develop the results of this second data set. This was done to 
show that it is possible to use only one or several developed models from a set of 
normal operational data and then supply these models with new anomaly data at 
a later date. Shown next in Figure 5-30 is the AAKR SPRT results for the TCP/IP 
signal labeled "InOctets". 
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Figure 5-30: Set 2, Model 1 AAKR SPRT Results "InOctets"  

 
In the previous figure, the large residuals that extend off the range of the 

graph were on the order -4 x 107. All of these large residuals correspond to all 
fuzzers, Zenmap and SPARTA. Of interest is that the network discovery package 
Dmitry and the brute force password attack in this data set are the smallest in 
magnitude. Both of these attacks cause very small changes in the residual 
behavior and Dmitry was completely missed. The password attack and the NTP 
fuzzer attack that followed were able to be detected, but the rate of false 
negatives was high. All of the previously listed intrusions tested were able to be 
detected in this model, many with very small false negative rates. Next, Figure 5-
31 shows that AAMSET SPRT results for the same TCP/IP signal. 
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Figure 5-31: Set 2, Model 1 AAMSET SPRT Result "InOctets"  

 
In the previous figure, the main differences in the AAMSET results are that 

the Dmitry and password attack activities were detected in this model. However, 
there are some false negatives for both of these attacks seen in both model 
types. Other than this distinction, the results in Figure 5-31 for all other tested 
intrusions have minimal or no false negatives present. This means that the time 
delay for detection was very small for these results. The disk signals used in this 
and the AAKR model had similar results as seen in the previous two figures. The 
remaining signals in this model used memory and CPU usage telemetry, all of 
which had a very large amount of false negatives. However, as all tested 
intrusions were detected in both the AAKR and AAMSET models, we can 
conclude that models developed with signals taken from all telemetry classes are 
an effective means to detect a wide variety of intrusion types. 
 
 
Set 2 Model 2 Results – Memory/CPU Usage: 
 

Next, the results for Model 2 are shown. Recall that this model only uses 
twelve memory and CPU usage signals that have strong correlations. Also, it was 
previously shown that these signals had little to offer for intrusion detection 
purposes. This particular model is also the same model that was used to develop 
the June data set results for Model 2; the only difference is the new intrusion data 
used. On the following page, Figures 5-32 and 5-33 provide the AAKR and 
AAMSET SPRT results for a memory usage signal labeled "Min-5-load-avg". 
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Figure 5-32: Set 2, Model 2 AAKR SPRT Results "Min-5-load-avg"  
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Figure 5-33: Set 2, Model 2 AAMSET SPRT Results "Min-5-load-avg"  
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The first obvious item of interest seen in both of the previous figures is that 
none of the intrusions tested induced any clear change in the residual behavior. 
In the AAKR results, the only intrusion that had a large number of true positives 
was the Zenmap attack. However, the residuals are quite indistinguishable from 
the rest of the residual. All other intrusions tested for this model were not 
detected. In Figure 5-33, the AAMSET results are even worse, with only a 
minimal number of true positives. If this model was the only one used for 
intrusion detection purposes, then many attacks would not be detected and an 
attacker could perform many activities unnoticed. It is noted that all of the 
memory signal residuals show the same type of detection results. These results 
are similar to what was seen for the same model of the June data set. This again 
shows that the memory and CPU usage signals are not useful for general 
intrusion detection purposes.  

 
 
Set 2 Model 3 Results – Disk Usage: 
 

Next, the results for the second data set using the disk usage signals are 
shown. Recall that this model uses twelve strongly correlated disk usage signals 
that were selected by the grouping algorithms. Shown next in Figure 5-34 is the 
AAKR SPRT results for a disk signal labeled "Disk-sda-sectors-written".   
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Figure 5-34: Set 2, Model 3 AAKR SPRT Results "Disk-sda-sectors-written" 
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The first thing to mention is that many of the alarms shown in the previous 
figure correspond to the actual attack regions. Also, the residuals show clear 
indications of change during many of the attack regions. For this signal, the 
SPARTA and brute force password attacks cause the greatest change in residual 
behavior and thus are easily detected. The remaining fuzzers and Zenmap do 
not show very large changes during these events. This means that many of the 
intrusion activities were not recognized by the SPRT as anomalous behavior. 
These results are different from that seen in the June data set, where the disk 
usage signals were able to correctly identify most intrusion activities. Next, Figure 
5-35 shows the AAMSET SPRT results for the same disk signal. 
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Figure 5-35: Set 2, Model 3 AAMSET SPRT Results "Disk-sda-sectors-written" 

 
In the previous figure, the AAMSET SPRT results are not as conclusive as 

the AAKR results were. Though there are possible indications in the residuals 
that anomalous behavior is occurring, the fault hypothesis scores show that 
many of the listed intrusion activities are missed. However, all of the true positive 
alarms in the previous figure are in the regions were intrusion activities are taking 
place. Due to the large number of false negatives, these results indicate that the 
AAMSET model may need tuning to learn possible new operating conditions. 
Also, the SPRT would need to be retrained as well. Like the AAKR results, the 
AAMSET results are in contrast to what was seen in the respective model of the 
June data set. Recall that there were a dramatically lower number of false 
negatives and false positives during the intrusion regions.   

 



 

97 
 

Set 2 Model 4 Results – TCP/IP: 
 

The last results shown for this second data set are for Model 4. Recall that 
this model used only nine strongly correlated TCP/IP signals selected by the 
grouping algorithms. These results also use the same model that was used to 
develop the Model 4 results for the June data set. This was done to show that 
models can be developed for monitoring purposes and do not need to be 
updated to be useful for intrusion detection purposes. In Figure 5-36, the AAKR 
SPRT results are shown for the TCP/IP signal labeled "TCPHPHits".  
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Figure 5-36: Set 2, Model 4 AAKR SPRT Results "TCPHPHits" 

 
The large residuals that extend off the graph in the previous figure are on 

the order of -4 x 107. Again, these large residuals respectively correspond to 
SPARTA, Zenmap, SSH fuzzer, and two applications of SPARTA. Though there 
are some false negatives for some of the attacks, all listed intrusions were 
detected by this model. The intrusion with the largest number of false negatives 
is the NTP fuzzer. The main reason is portions of the residual during this attack 
were of similar magnitude as normal behavior. However, there were still enough 
true positives in succession for this attack that it was detected. These results 
show the overall effectiveness in using TCP/IP telemetry for intrusion detection. 
The last result to be shown is in Figure 5-37, which is the AAMSET SPRT result 
for the same TCP/IP signal.  
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Figure 5-37: Set 2, Model 4 AAMSET SPRT Results "TCPHPHits" 

 
In contrast to the residuals shown in Figure 5-36, the results in Figure 5-37 

are different in the ranges for many of the intrusions tested. For example, all of 
the residuals that extend beyond the range of the graph are the same as those 
shown in Figure 5-36. However, the residual behavior for these intrusions has 
much less effect on the system dynamics. This is evidenced by the large number 
of false negatives; or red zeros; during each of the previously listed ranges for 
each attack. Though there are a large number of false negatives in this particular 
signal, all intrusions tested were detected by this model. Based on the results 
shown in the previous figure, the AAMSET and SPRT parameters may need to 
be retuned.  

 
As in Table 5.9, the results for the March data set are summarized in 

Table 5.10 on the following page. Recall that a "Y" means that the tested 
intrusion was able to be detected in the model. This indicates that the attacks 
sufficiently altered the monitored signal dynamics for the SPRT to classify these 
alterations as anomalous. Next, "N" means that the attack did not cause 
sufficient alterations in the monitored signal dynamics for detection to be 
possible. This means that the residual behavior during each attack with an "N" 
classification had behaviors that were indistinguishable from normal behavior. 
Also, for these results an "N" classification could also indicate that there were 
true positives during the attack regions, but the number of false negatives was 
very large. This would indicate that the model or SPRT parameters should be 
retuned in an attempt to alleviate the large number of false negatives.  
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Table 5-10: Summary of March AAKR/AAMSET Results 

Model/Attack Model 1 Model 2 Model 3 Model 4 
AAKR     
SSH fuzzer Y N N Y 
Zenmap Y Y N Y 
SPARTA Y N Y Y 
Dmitry Y N Y Y 
Password Y N Y Y 
NTP fuzzer Y N Y Y 
SSH fuzzer Y N Y Y 
SPARTAx2 Y N Y Y 
SPARTA Y N Y Y 
AAMSET     
SSH fuzzer Y N N Y 
Zenmap Y N N Y 
SPARTA Y N N Y 
Dmitry Y N N Y 
Password Y N N Y 
NTP fuzzer Y N N Y 
SSH fuzzer Y N N Y 
SPARTAx2 Y N N Y 
SPARTA Y N N Y 

 
 
In the previous table, it is first seen that Models 1 and 4 could detect all of 

the tested intrusions. This was because the attacks caused significant alterations 
in the monitored telemetry. In contrast to the previous results seen in Table 5.9, 
Models 2 and 3 missed many of the tested intrusions. This was first because 
many of the attack activities did not alter the signal dynamics. Next, many of the 
attacks did give true positives for both models during the attack regions. 
However, the number of false negatives during the same regions was excessive. 
It was then decided to classify the attack as not detected if there were a large 
number of false negatives observed. The main difference in the March data set 
results is that all of these results were generated using the same models used to 
develop the June results. This was done to determine if models that had been 
previously trained on similar normal data could be used at a later date with new 
anomaly data. Because all intrusions tested were detected in Models 1 and 4, we 
can conclude that using previously developed models with new anomaly data 
could still be useful for intrusion detection purposes. It is noted that if there has 
been long time periods between these two activities that the model and SPRT 
parameters should be retuned, if possible. This will ensure that new operating 
conditions that may have arisen since the development of the models will be 
included and might reduce the observed rate of false negatives.  
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5.3.4 Summary of All Intrusion Testing Activities 
 
In this last section, a summary of all intrusion testing results performed in 

this project are provided. Recall that it was stated at the start of Section 5.3 that 
there were a large amount of tests and data sets collected. For brevity's sake, 
only the model results for the June and March data were shown. This was 
because many of the tests ran the same listed intrusions, but with several options 
changed for each of the software packages or modules contained in Kali and 
Metasploit. Also, all of the previously listed intrusions for the June and March 
data sets, as well as all CVE and EDB exploit codes, were tested in succession. 
This was done to determine if running the same exploit type several times in a 
row could be detected. However, there were many intrusion software packages 
and exploit codes tested that were successfully implemented but did not show 
any changes in the observed system dynamics. This summary will then provide a 
listing of all exploit types or classes tested and which ones could or could not be 
detected with the methods presented in this dissertation.  

 
Stated earlier in Chapter 4, the intrusion testing first utilized the well-

known Kali Linux OS. Kali contains several popular penetration testing software 
packages that can be used to test a variety of systems, software, and 
applications. Each of these software packages is related to a specific class of 
intrusion. Their purpose, implementation, and the reasons why they could or 
could not be detected are discussed next.  

 
The first type of exploit class is known as network reconnaissance. This 

exploit class attempts to discover information about all components connected to 
a network. This information can include computers, servers, network 
hubs/switches, open/closed ports, and identifiable running processes. The 
software packages listed and tested under this section are called Dmitry, dnmap-
server, ike-scan, maltego, recon-ng, Nmap, Zenmap, p0f, netdiscover, and 
SPARTA. Of these, Dmitry, Nmap, Zenmap, pOf, netdiscover, and SPARTA 
caused an alteration in the observed dynamics and were able to be detected 
using the described methods in this dissertation. The reason these packages 
could be detected is that they all send a large amount of packets over the 
network in their attempt to find information. The number of packets sent is usually 
always larger than what has been seen by the network and learned by the 
models as normal behavior. The other packages in this list either caused no 
alterations in the observed signal dynamics or the software package was unable 
to be initialized. An example of the latter is the maltego software package, which 
would not start due to some issue in the current version of Kali Linux. 

 
The next type of exploit in Kali is termed vulnerability analysis. These 

packages attempt to determine similar information as the network discovery 
packages, but also supply the user with additional information about running 
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processes. For example, a particular version of an application or process may be 
outdated and vulnerable to exploitation. The packages here are called 
Golismero, lynis, Nikto, Nmap, openvas, and unix-privesc-check. Out of these 
packages, the last two were not able to be detected as they caused no 
alterations in the signal dynamics. The first four caused large changes in the 
observed signal dynamics due to an increase in the network activity and were 
easily detected.  

 
Next, Kali contains several packages that are related to sniffing and 

spoofing. These packages attempt to either examine packets flowing across the 
network for vital information or spoof the identity of a user. These packages 
included bdfproxy, driftnet, ettercap, hamster, netsniff, responder, and Wireshark. 
Of these packages, only Wireshark caused any changes in the signal dynamics 
because this package must connect to a network to read packet information. 
Also, Wireshark periodically sends queries to various port and processes. This 
type of behavior consumes system resources that are larger than what is learned 
by the models as normal operating behavior. The remaining packages would not 
initialize, were not related to Linux systems, or did not show any changes in the 
signal dynamics. Examples of these were ettercap, netsniff, and bdfproxy. The 
first is only applicable for Windows systems, the second would not initialize, and 
the last did not cause any changes in the signal dynamics.  

 
Kali also contains several other testing packages that are related to web 

application analysis, database assessment, offline password cracking, and 
wireless attacks. Because the SCADA test bed did not utilize web applications, 
databases or wireless capabilities, these were not applicable to our intrusion 
testing and none of the tools were employed. Finally, because the password 
cracking software had to be performed offline, these packages were not used.  

 
The next major penetration testing tool that was employed was Metasploit. 

This tool contains hundreds of exploits that are related to many different OS, 
hardware, and software. All of these are implemented through the Armitage GUI. 
The GUI loads modules for each exploit contained in Metasploit to make testing 
easier. Each of these modules has several configurable user options. It is noted 
that many of these exploits are not related to Linux based systems or to any 
hardware and software utilized in the servers. For example, many exploits were 
only related to Windows based systems. These and other unsuited exploits are 
numerous and were not used during this research. For the Linux related exploits, 
there were several different exploit classes not discussed previously that were 
able to be successfully detected. These include port binding, Dos, password 
attack, and privilege escalation. Each of these is discussed next.  
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There are several modules that allow the attacker to undertake spoofing 
activities. This exploit class binds ports from the attacker to the target machine so 
that information can be rerouted or backdoors installed for later access. For this 
research, this was carried out by utilizing various port binding modules. The 
modules can bind to specific communications ports such as TCP or utilize flaws 
in specific running applications to bind other types of ports. In this work, there 
were six different port binding modules related to TCP/IP, User Datagram 
Protocol (UDP), executable payloads, and Java. All of these modules work by 
connecting to an open port on the server and injecting a payload to establish a 
permanent link. A payload is a set of code that contains specific intrusions for the 
computer system to perform and often take advantage of a known vulnerability. 
The reason these port binding modules work is because first a connection must 
be made over the network and then the payload must be injected. These 
activities cause changes in most network telemetry and are thus detected.  

 
The next exploit class is termed DoS. This class attempts to disrupt the 

system by flooding the network with an excessive number of packets so that all 
system resources are consumed. Other DoS variants attempt to break certain 
applications or processes by supplying them with nonsensical inputs. This is 
termed fuzzing. The end result for both is that the system is made unavailable to 
users or to perform critical tasks such as control actions. For this research, the 
modules for the TCP SYN flood, NTP, Smb2, and SSH fuzzers were all detected. 
The flood attack was able to be detected because over the course of 10 minute 
intervals, billions of packets were sent across the network. This far exceeds the 
number ever sent by the test bed. All the fuzzers were also able to be detected 
because they sent large amounts of nonsensical inputs to the respective 
processes. These inputs must be processed and thus increase the system 
resources used. The remaining fuzzer modules in Metasploit were not applicable 
to Linux or the servers did not utilize a specific software package, such as web 
hosting applications.  

 
Next, the brute force password attack exploit class is discussed. This type 

of attack is also known as a dictionary attack and attempts to gain access to a 
system by trying many different usernames and passwords. The idea here is that 
users often choose poor passwords or leave default passwords installed, so with 
a well-selected attack dictionary access can often be made. Metasploit contained 
only one module for a select process on the servers, which was termed brute 
force SSH. The other password attack modules were either for Windows systems 
or for different software and applications. For this research, several hundred 
different usernames and passwords were generated to test if the actions could 
be detected. It was shown earlier that this activity was detected in several 
signals. This module was detected because SSH is used to send all information 
over the network. The actions of trying several hundred different usernames and 
passwords caused the SSH process to use more resources.  
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In keeping with the previous paragraph, the last exploit class discussed is 
termed privilege elevation. This class of attack attempts to circumvent security 
protocols in order to elevate a guest user to one with administrator privileges. 
Usually after a successful brute force login, the attacker may be assigned as a 
guest user and the password must be reentered to gain root access. Metasploit 
contains privilege elevation software called Meterpreter. This is a payload type 
exploit that runs over the network and attempts to elevate a user to higher levels 
of access. Meterpreter also starts an Application Programming Interface (API) 
that allows the attacker to easily view files and turn off running processes. 
Because this software uses network resources, it was also detected. This was 
also the only module in Metasploit for this exploit class. 

 
The last exploits that were tested were taken from the CVE and EDB 

databases. Recall that the CVE database contains information for new and past 
exploits or vulnerabilities related to many systems. Often there is code available 
for testing. The EDB database contains user written code for testing of various 
vulnerabilities. This code is moth often in Python and contains a small payload of 
shellcode. Shellcode operates by opening a command window and using 
machine code to try and exploit the system. Many of these codes must also be 
compiled and uploaded to the target machine once sufficient access has been 
gained. For this research, several of these codes related to Linux vulnerabilities 
were tested. The exploit classes include spoofing, privilege elevation, and egg 
hunting, among others. While many of the codes taken from these two databases 
were successful in exploiting the system, none could be detected with the 
developed methods.  

 
The two main reasons for this are small size of the exploit code and rapid 

implementation time. Much of the codes taken from these databases had sizes 
ranging from 1 – 4 kB. In contrast, the size of the packets sent over the test bed 
network ranged from 5 kB – 125 MB. The number of packets sent over the 
network was on average 25/s. Then because the exploit code must be uploaded, 
the small size means that the impact on system resources will be masked by 
those of normal test bed activities. Next, all of the successful exploit codes took 
on average 1 second to complete. The server collects data once every 15 
seconds and the rapid execution of these codes will not be recorded in monitored 
telemetry. Finally, because the payload is usually very small, there will be no 
perceived impact on the system resources. Because the developed methods 
detect intrusions activities by a shift in mean or variance of the current 
observation, the uploading and execution of these exploit tools will not cause 
these effects. The only way to detect the actions of these codes would be if the 
executed code caused a DoS or similar attack. To detect the activities of these 
codes, other means must be utilized. This can include auditing of log files or 
development of specifications that would prohibit uploaded codes from executing. 
On the following page, Table 5.11 summarized these results.  
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Table 5-11: Summary of All Exploit Testing Activities 

Attack Class (software) Detected? (Y/N) Why/Why Not? 
   

Kali Linux   
Recon – Dmitry, Nmap, 
Zenmap, pOf, 
netdiscover, SPARTA 

Y Increase of network traffic 
caused large signal 
changes 

Recon – dnmap, ike-
scan, Maltego, recon-ng 

N Not detected because no 
change in signal 
dynamics or SW issues 

Vulnerability – Golismero, 
lynis, Nikto, Nmap 

Y Were detected because 
network traffic was 
increased 

Vulnerability – openvas, 
unix-privesc-check 

N Not detected because no 
change in signal 
dynamics or SW issues 

Sniffing – Wireshark Y Software increased 
network traffic 

Sniffing – netsniff, 
bdfproxy 

N Not detected because no 
change in signal 
dynamics or SW issues 

Metasploit   
Spoofing – Port binding Y Detected because 

module activity increases 
resource usage 

DoS – SYN flood, NTP, 
Smb2, SSH fuzzers 

Y Detected because attacks 
caused related processes 
to consume system 
resources 

DoS – other modules N No change in signal 
dynamics or not 
applicable to simulation 

Password – SSH brute Y Detected because of 
repeated login attempts 

Password -  Linux related N Not detected, no change 
in signal dynamics or not 
applicable to simulation 

Privilege Elevation/Theft - 
Meterpreter 

Y Detected because SW & 
theft consume resources 

   
CVE/EDB codes N Not detected due to small 

payload & execution time 
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6 CONCLUSIONS 

In recent decades, there has been a large shift worldwide in using 
technology in almost every aspect of our lives. This trend has been termed in 
many industries as the "Internet of Things" (IoT), where the Internet and cloud-
based activities are seeing more and more use for control, monitoring and data 
storage applications. This trend is also being adopted for the nuclear industry, as 
the shift to digital I&C is being considered by the Nuclear Regulatory Commission 
(NRC) and many reactor vendors. In fact, many of the new reactor designs from 
companies like Westinghouse are implementing digital I&C. These new designs 
still must be approved by the NRC before they are fully implemented in the US. 
Because of this new interest in digital I&C, there is also an immediate need to 
protect these new types of reactor systems and their networks from those with 
malicious intent. This need can be accomplished first and foremost by plant 
network isolation, which has seen reasonable success in the US nuclear 
industry. However, for these newer digital controlled plants, simple network 
isolation can no longer be relied upon for overall plant security. Any other 
industry that decides to shift to digital and cloud-based control, or has already, 
needs to ensure overall system security against intrusion activities.  

 
To address this need, there have been many types of IDS that have been 

developed over the years. Given the diversity of IDS, these systems can be 
generalized into three basic types: knowledge, behavior and specification-based. 
The knowledge-based system is certainly the most numerous and widely used 
type that uses signatures or features of known attacks for detection purposes. 
While this type is easy to implement and has a low rate of false/missed alarms, it 
will always miss the so-called zero-day attacks. Recall that a zero-day attack is a 
new, unknown intrusion. Because the knowledge-based system has never seen 
a zero-day intrusion event, it will classify this new behavior as normal. In 
contrast, the behavior-based system can detect known and zero-day attacks. 
This type uses data-driven modeling techniques to learn normal system behavior. 
Once trained, any future monitored telemetry that deviates from this learned 
behavior will be labeled as an intrusion event. The main weakness seen for this 
type is that here is often a high rate of false/missed alarms during the monitoring 
process. This can lead to poor and unreliable detection decisions for an 
improperly trained model and anomaly detection algorithm. The last type of 
detection system attempts to use the behavior-based technique along with 
specification of rules for acceptable system behavior. The rules for the 
specification-based system are developed and implemented by a security expert, 
which is one of the main weaknesses seen for this type. Because a human is 
developing all the rules and specifications for normal system behavior, this can 
lead to poorly defined rules and errors. The main strength of this type of 
detection system, which is not often used, is that there is a low rate of false and 
missed alarms during the monitoring process.   
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This research focused on the development of a behavior-based detection 
system that uses two empirical-based modeling techniques along with a well 
known anomaly detection algorithm. The empirical-based models employed in 
the dissertation are the AAKR and AAMSET, both of which can be termed 
nonlinear, nonparametric regression techniques that are used to generate 
predictions based on model inputs. Both of these modeling techniques have seen 
success for anomaly and sensor degradation detection in industrial systems. 
These modeling methods were also chosen as the focus of this research 
because they have not seen use in industry for computer security prognostic 
purposes. These modeling methods are combined with a mean and variance 
based SPRT for intrusion detection. The SPRT was chosen for this work 
because it is known to have the lowest mathematically possible false and missed 
alarm probabilities and is also employed to tackle the issue of high false and 
missed alarm rates.  

 
Based on the results shown, these techniques were able to detect a wide 

range of intrusion activities in the simulated SCADA test bed using telemetry that 
included memory, disk, CPU usage, and network related statistics. The exploit 
tools employed used Kali Linux, Metasploit, and codes taken from two well-
known exploit data bases. With a properly tuned SPRT, many of these intrusion 
events were detected with minimal false and/or missed alarms. In many of the 
models, there was also minimal delay time to detection. Using these methods, all 
but the fastest intrusions that were tested were able to be detected. Some 
exploits have a very rapid implementation time or small payload. Because of this, 
these activities are not reflected in the system dynamics and cannot be detected 
using these methods. For these, a knowledge or specification-based system 
would be required for successful detection. The reason that many of the exploits 
tested were detected by one or more models is that the exploits caused a large 
amount of system resources to be consumed. This then caused large changes in 
much of the monitored telemetry, which was recognized by the SPRT as 
anomalous.  
 

Next, this dissertation also presented a newly developed VGM termed 
ACFgroup. This VGM utilizes properties of the ACFs for a set of input data to 
arrive at a final group or groups of variables that are suitable for use in most 
data-driven modeling methods. This was proven by using seven different process 
data sets that were taken from NPPs, fossil plants, and several accelerated aging 
experiments. The ACFgroup outputs were compared with two other VGM that 
utilize correlation criteria for variable grouping. In all cases but one, ACFgroup 
was able to extract groups of variables that had an overall lower average model 
error when using AAKR. Given that the ACFgroup method performance was 
superior to the other two mentioned algorithms; we can conclude that this new 
VGM would be a useful addition to the field of signal processing and empirical-
based modeling. 
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Last, this dissertation also presented a Java-based time synchronous 
averaging method that is used to resample telemetry sources that have vastly 
different sampling rates. This method was compared against a different method 
developed by Oracle called ARP. The difference in these methods is that ARP 
uses a complex regression algorithm to resample telemetry sources, while the 
Java method uses linear interpolation. Using the provided data sources, the Java 
based method was able to correctly capture the same signal dynamics seen in 
the ARP method. Of course, there are slight differences in the outputs of each of 
these algorithms. The final proof of the efficacy of the Java based method was a 
comparison of the ACFs for each of the algorithms outputs. The ACFs for the 
ARP and Java method were remarkably similar, which indicates that the Java 
method captured the same system dynamics of the resampled signal when 
compared with the ARP method.  

 
The major and original contributions of this dissertation are summarized: 
 

• Development of behavior-based intrusion detection methods which use 
AAKR or AAMSET models to learn normal system behavior from various 
computer system telemetry sources 

• Development of a novel VGM known as ACFgroup that selects relevant 
variables for empirical-based modeling based on statistical properties of 
the ACF. The algorithm typically returns groups of variables with lower 
average model prediction errors when compared with other VGM 

• Development of time synchronous averaging technique that resample 
telemetry sources which have uneven sampling rates 

• Implemented the developed IDS methods in Java. This allows these 
methods to be used on any computer architecture that supports Java 
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7 RECOMMENDATIONS FOR FUTURE WORK 

While the behavior-based detection methods shown in this report were 
successful at detecting many different types of intrusion activities, there are 
several areas of focus outside of that described in this dissertation that could be 
implemented to further improve this work. 

 
First, the simulated SCADA test bed is, at the end of the day, a simulation 

that was based on several assumptions. These assumptions were that many 
industrial processes and the dynamics of an actual SCADA server can contain 
periodic components. Also, it was assumed that for a large NPP or related cyber-
physical system that contains hundreds or thousands of sensors will show a 
large amount of network traffic. As stated earlier, these assumptions were made 
because of the extreme difficulty in obtaining any related telemetry from an actual 
SCADA system or business-critical network. To improve the validity of the 
simulation, it would be beneficial to obtain even sanitized telemetry from an 
actual system. Then, the simulation could be refined to better reflect the 
dynamics of the signals in a real system.  

 
If actual SCADA system data is unobtainable, then the test by itself can be 

modified to reflect more processes seen in these systems. First, a small flow loop 
with sensing and control elements could be constructed and driven by the 
servers of the test bed. The primary server in the test bed that acts as the 
SCADA server could then be programmed to poll the sensors, issue commands 
and collect data. The other servers of the test bed that act as RTUs could then 
be used to control and monitor the flow loop. If this is not feasible, then a 
commercial, off the shelf NPP simulator could be purchased and driven by the 
test bed servers. Using either of these suggestions, intrusion testing could then 
attack several of the components of this new system to determine which can be 
detected using the methods presented in this dissertation. Both of these 
suggestions also have the added benefit of adding additional process telemetry 
that can then be used in the data-driven models.  

 
Last, it was noted that many exploits tested that had successful 

implementation were unable to be detected using the described methods. This is 
because many of these exploits have a rapid execution time and are not reflected 
in the system dynamics. Here, rapid means that it took only a few seconds for 
successful exploit implementation and thus these particular exploits are missed 
during data collection. This issue could be resolved by investigating other audit 
material sources that provide some indication that these particular types of 
exploits have occurred. Also, a knowledge-based detection system could be 
investigated and combined with these behavior-based techniques.  
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Appendix A: Variables Selected for Models 1 - 4 
 

 Signals Selected AAKR/AAMSET Model 1 
 

Signal Number Signal Name Software Subset 
1.  Min-1-loadavg Memory 
2.  Processes-total Memory 
3.  TCPPrequeued TCP/IP 
4.  TCPPureAcks TCP/IP 
5.  InOctets TCP/IP 
6.  OutOctets TCP/IP 
7.  InNoECTPkts TCP/IP 
8.  Disk-sda-writes-

completed 
Disk Stats 

9.  Disk-sda-writes-merged Disk Stats 
10.  Disk-sda-sectors-written Disk Stats 
11.  Disk-sda-msec-writing Disk Stats 
12.  Disk-sda-msec-IO Disk Stats 
13.  Disk-sda-weighted-msec-

IO 
Disk Stats 

14.  Disk-sda1-writes-
completed 

Disk Stats 

15.  Disk-sda1-writes-merged Disk Stats 
16.  Disk-sda1-sectors-written Disk Stats 
17.  Disk-sda1-msec-writing Disk Stats 
18.  Disk-sda1-msec-IO Disk Stats 
19.  Disk-sda1-weighted-

msec-IO 
Disk Stats 

20.  CPU-all-pct-idle CPU Usage 
21.  CPU-0-pct-user CPU Usage 
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Signals Selected for AAKR/AAMSET Model 2 
 

Signal Number Signal Name Software Subset 
1.  KernelStack Memory 
2.  Min-1-loadavg Memory 
3.  Min-5-loadavg Memory 
4.  Processes-running Memory 
5.  Processes-total Memory 
6.  CPU-all-pct-user CPU 
7.  CPU-all-pct-idle CPU 
8.  CPU-1-pct-user CPU 
9.  CPU-1-pct-idle CPU 
10.  CPU-2-pct-user CPU 
11.  CPU-2-pct-idle CPU 
12.  CPU-3-pct-idle CPU 

 
 
Signals Selected for AAKR/AAMSET Model 3 

Signal Number Signal Name Software Subset 
1.  Disk-sda-writes-

completed 
Disk 

2.  Disk-sda-writes-merged Disk 
3.  Disk-sda-sectors-written Disk 
4.  Disk-sda-msec-writing Disk 
5.  Disk-sda-msec-IO Disk 
6.  Disk-sda-weighted-msec-

IO 
Disk 

7.  Disk-sda1-writes-
completed 

Disk 

8.  Disk-sda1-writes-merged Disk 
9.  Disk-sda1-sectors-written Disk 
10.  Disk-sda1-msec-writing Disk 
11.  Disk-sda1-msec-IO Disk 
12.  Disk-sda1-weighted-

msec-IO 
Disk 
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Signals Selected for AAKR/AAMSET Model 4 
 

Signal Number Signal Name Software Subset 
1.  TW TCP/IP 
2.  TCPPrequeued TCP/IP 
3.  TCPHPHits TCP/IP 
4.  TCPPureAcks TCP/IP 
5.  TCPHPAcks TCP/IP 
6.  TCPRcvCoalesce TCP/IP 
7.  InOctets TCP/IP 
8.  OutOctets TCP/IP 
9.  InNoECTPkts TCP/IP 
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Appendix B: Additional Figures – June Data Set 
 

Additional Figures for June Data – Model 1 
 

0 200 400 600 800 1000 1200
-10

-5

0

5
Variable 1

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-1500

-1000

-500

0

500
Variable 2

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 



 

122 
 

 

0 200 400 600 800 1000 1200
-2000

-1000

0

1000
Variable 3

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-2000

-1000

0

1000
Variable 4

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

123 
 

0 200 400 600 800 1000 1200
-10

-5

0

5
x 10

5 Variable 5

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-2

-1

0

1
x 10

7 Variable 6

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

124 
 

0 200 400 600 800 1000 1200
-15000

-10000

-5000

0

5000
Variable 7

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-60

-40

-20

0

20
Variable 8

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

125 
 

0 200 400 600 800 1000 1200
-40

-20

0

20
Variable 9

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-10

-5

0

5
x 10

4 Variable 10

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

126 
 

0 200 400 600 800 1000 1200
-10000

-5000

0

5000
Variable 11

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-400

-200

0

200
Variable 12

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

127 
 

0 200 400 600 800 1000 1200
-10000

-5000

0

5000
Variable 13

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-60

-40

-20

0

20
Variable 14

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

128 
 

0 200 400 600 800 1000 1200
-40

-20

0

20
Variable 15

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-10

-5

0

5
x 10

4 Variable 16

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

129 
 

0 200 400 600 800 1000 1200
-10000

-5000

0

5000
Variable 17

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-400

-200

0

200
Variable 18

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

130 
 

0 200 400 600 800 1000 1200
-10000

-5000

0

5000
Variable 19

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-100

-50

0

50
Variable 20

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

131 
 

0 200 400 600 800 1000 1200
-50

0

50

100
Variable 21

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

132 
 

Additional Figures June Set – Model 2 
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Additional Figures June Set – Model 3 
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Additional Figures June Set – Model 4 
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Appendix C: SPRT Results – June Data Set 
 
 

Model 1 AAKR SPRT Results 
Int. 
#/Sig. # 

1 
Sparta 

2 
NTP 

3 
SSH 

4 
Smb2 

5 
Brute 

6 
Theft 

1.   X X   X 
2.   X X   X 
3.   X  X  X 
4.  X X X X X X 
5.  X X X X  X 
6.  X X X X X X 
7.  X X X X X X 
8.  X X X X  X 
9.   X X X X X 
10.  X X X X  X 
11.  X X X X  X 
12.  X X X X  X 
13.  X X X X  X 
14.  X X X X  X 
15.   X X X X X 
16.  X X X X  X 
17.  X X X X  X 
18.  X X X X  X 
19.  X X  X  X 
20.  X X    X 
21.    X X   
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Model 1 AAMSET SPRT Results 
Int. 
#/Sig. 
# 

1 
Sparta 

2 
NTP 

3 
SSH 

4 
Smb2 

5 
Brute 

6 
Theft 

1.  X X X   X 
2.  X X X X  X 
3.     X  X 
4.  X X X X  X 
5.  X X X X X X 
6.  X X X X X X 
7.  X X X X X X 
8.  X X X X X X 
9.  X X X X X X 
10.  X X X X X X 
11.  X X X X X X 
12.  X X X X X X 
13.  X X X X X X 
14.  X X X X X X 
15.  X X X X X X 
16.  X X X X X X 
17.  X X X X X X 
18.  X X X X X X 
19.  X X X X X X 
20.  X X X X  X 
21.  X   X  X 
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Model 2 AAKR SPRT Results 
Int. 
#/Sig. # 

1 
Sparta 

2 
NTP 

3 
SSH 

4 
Smb2 

5 
Brute 

6 
Theft 

1.  X X X X X X 
2.    X    
3.    X    
4.    X   X 
5.  X X X X  X 
6.   X X X  X 
7.   X X X  X 
8.  X X X X  X 
9.  X X X X  X 
10.    X X X X 
11.    X X  X 
12.    X X  X 

 
 
 

Model 2 AAMSET SPRT Results 
Int. 
#/Sig. # 

1 
Sparta 

2 
NTP 

3 
SSH 

4 
Smb2 

5 
Brute 

6 
Theft 

1.  X X X X X X 
2.    X    
3.    X    
4.    X   X 
5.  X X X   X 
6.    X   X 
7.    X   X 
8.   X X   X 
9.   X X X  X 
10.    X   X 
11.    X  X X 
12.   X X   X 
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Model 3 AAKR SPRT Results 
Int. 
#/Sig. # 

1 
Sparta 

2 
NTP 

3 
SSH 

4 
Smb2 

5 
Brute 

6 
Theft 

1.   X X X X X 
2.  X X X X X X 
3.  X X X X X X 
4.   X X  X X 
5.   X X   X 
6.   X X  X X 
7.  X X X X X X 
8.  X X X X X X 
9.  X X X X X X 
10.   X X  X X 
11.   X X X  X 
12.   X X  X X 

 
 
 
Model 3 AAMSET SPRT Results 
Int. 
#/Sig. # 

1 
Sparta 

2 
NTP 

3 
SSH 

4 
Smb2 

5 
Brute 

6 
Theft 

1.  X X X X X X 
2.  X X X X X X 
3.  X X X X X X 
4.   X X X X X 
5.   X X X X X 
6.   X X X X X 
7.  X X X X X X 
8.  X X X X X X 
9.  X X X X X X 
10.   X X X X X 
11.   X X X X X 
12.   X X X X X 
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Model 4 AAKR SPRT Results 
Int. 
#/Sig. # 

1 
Sparta 

2 
NTP 

3 
SSH 

4 
Smb2 

5 
Brute 

6 
Theft 

1.  X X X  X X 
2.  X X X X X X 
3.  X X X X X X 
4.  X X X X X X 
5.  X X X X X X 
6.  X X X X X X 
7.  X X X X X X 
8.  X X X X X X 
9.  X X X X X X 

 
 
 
Model 4 AAMSET SPRT Results 
Int. 
#/Sig. # 

1 
Sparta 

2 
NTP 

3 
SSH 

4 
Smb2 

5 
Brute 

6 
Theft 

1.  X      
2.     X  X 
3.  X X  X X X 
4.  X X X X X X 
5.  X   X  X 
6.  X X X X  X 
7.  X X X X X X 
8.  X X X X X X 
9.  X X X X X X 
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Appendix D: Additional Figures – March Data Set 
 
Additional Figures March Set – Model 1 

0 200 400 600 800 1000 1200
-5

0

5
Variable 1

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-10

0

10

20
Variable 2

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 



 

155 
 

0 200 400 600 800 1000 1200
-1000

-500

0

500
Variable 3

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-1000

-500

0

500
Variable 4

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

156 
 

0 200 400 600 800 1000 1200
-6

-4

-2

0

2
x 10

5 Variable 5

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-2

-1

0

1
x 10

6 Variable 6

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

157 
 

0 200 400 600 800 1000 1200
-10000

-5000

0

5000
Variable 7

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-40

-20

0

20

40
Variable 8

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

158 
 

0 200 400 600 800 1000 1200
-100

-50

0

50
Variable 9

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-10

-5

0

5
x 10

4 Variable 10

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

159 
 

0 200 400 600 800 1000 1200
-4000

-2000

0

2000

4000
Variable 11

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-200

-100

0

100

200
Variable 12

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

160 
 

0 200 400 600 800 1000 1200
-4000

-2000

0

2000

4000
Variable 13

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-40

-20

0

20

40
Variable 14

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

161 
 

0 200 400 600 800 1000 1200
-100

-50

0

50
Variable 15

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-10

-5

0

5
x 10

4 Variable 16

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

162 
 

0 200 400 600 800 1000 1200
-4000

-2000

0

2000

4000
Variable 17

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-200

-100

0

100

200
Variable 18

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

163 
 

0 200 400 600 800 1000 1200
-4000

-2000

0

2000

4000
Variable 19

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 

0 200 400 600 800 1000 1200
-100

-50

0

50
Variable 20

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 



 

164 
 

0 200 400 600 800 1000 1200
-50

0

50

100
Variable 21

R
es

id
ua

l

Observation Number

0 200 400 600 800 1000 1200

0

0.5

1

Fa
ul

t H
yp

ot
he

si
s 

(tr
ue

/fa
ls

e)

Observation Number
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

165 
 

Additional Figures March Set – Model 2 
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Additional Figures March Set – Model 3 
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Additional Figures March Set – Model 4 
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Appendix E: SPRT Results – March Data Set 
 
Model 1 AAKR SPRT Results 

Int. 
#/Sig. 
# 

SSH 
Fuzzer 

Zenmap SPARTA Dmitry Password NTP 
Fuzzer 

SSH 
Fuzzer 

SPARTA 
x2 

SPAR
TA 

1.  X X X X X X X X X 
2.   X X  X   X X 
3.  X X X X X X X X X 
4.  X X X X X X X X X 
5.  X X X X X X X X X 
6.  X X X X X X X X X 
7.   X X   X X   
8.  X X X X X X X X X 
9.  X X X X X X X X X 
10.  X X X X X X X X X 
11.  X X X X X X X X X 
12.  X X X X X X X X X 
13.  X X X X X X X X X 
14.  X X X X X X X X X 
15.     X X  X X X 
16.   X  X    X X 
17.  X X X X X X X X X 
18.  X X X X X X X X X 
19.   X  X  X  X X 
20.   X    X    
21.   X X  X X X   
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Model 1 AAMSET SPRT Results 
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17.  X X X X X X X X X 
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21.   X   X X X   
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Model 2 AAKR SPRT Results 
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6.   X      X X 
7.   X X  X X  X X 
8.  X X      X X 
9.   X X  X X X X X 
10.   X      X X 
11.  X X  X   X X X 
12.   X X X    X X 
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Model 3 AAKR SPRT Results 
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Model 4 AAKR SPRT Results 
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