58 research outputs found

    Detecting multineuronal temporal patterns in parallel spike trains

    Get PDF
    We present a non-parametric and computationally efficient method that detects spatiotemporal firing patterns and pattern sequences in parallel spike trains and tests whether the observed numbers of repeating patterns and sequences on a given timescale are significantly different from those expected by chance. The method is generally applicable and uncovers coordinated activity with arbitrary precision by comparing it to appropriate surrogate data. The analysis of coherent patterns of spatially and temporally distributed spiking activity on various timescales enables the immediate tracking of diverse qualities of coordinated firing related to neuronal state changes and information processing. We apply the method to simulated data and multineuronal recordings from rat visual cortex and show that it reliably discriminates between data sets with random pattern occurrences and with additional exactly repeating spatiotemporal patterns and pattern sequences. Multineuronal cortical spiking activity appears to be precisely coordinated and exhibits a sequential organization beyond the cell assembly concept

    A neuro-inspired system for online learning and recognition of parallel spike trains, based on spike latency and heterosynaptic STDP

    Full text link
    Humans perform remarkably well in many cognitive tasks including pattern recognition. However, the neuronal mechanisms underlying this process are not well understood. Nevertheless, artificial neural networks, inspired in brain circuits, have been designed and used to tackle spatio-temporal pattern recognition tasks. In this paper we present a multineuronal spike pattern detection structure able to autonomously implement online learning and recognition of parallel spike sequences (i.e., sequences of pulses belonging to different neurons/neural ensembles). The operating principle of this structure is based on two spiking/synaptic neurocomputational characteristics: spike latency, that enables neurons to fire spikes with a certain delay and heterosynaptic plasticity, that allows the own regulation of synaptic weights. From the perspective of the information representation, the structure allows mapping a spatio-temporal stimulus into a multidimensional, temporal, feature space. In this space, the parameter coordinate and the time at which a neuron fires represent one specific feature. In this sense, each feature can be considered to span a single temporal axis. We applied our proposed scheme to experimental data obtained from a motor inhibitory cognitive task. The test exhibits good classification performance, indicating the adequateness of our approach. In addition to its effectiveness, its simplicity and low computational cost suggest a large scale implementation for real time recognition applications in several areas, such as brain computer interface, personal biometrics authentication or early detection of diseases.Comment: Submitted to Frontiers in Neuroscienc

    Critical Changes in Cortical Neuronal Interactions in Anesthetized and Awake Rats

    Get PDF
    Background: Neuronal interactions are fundamental for information processing, cognition and consciousness. Anesthetics reduce spontaneous cortical activity; however, neuronal reactivity to sensory stimuli is often preserved or augmented. How sensory stimulus-related neuronal interactions change under anesthesia has not been elucidated. Here we investigated visual stimulus-related cortical neuronal interactions during stepwise emergence from desflurane anesthesia. Methods: Parallel spike trains were recorded with 64-contact extracellular microelectrode arrays from the primary visual cortex of chronically instrumented, unrestrained rats (N=6) at 8%, 6%, 4%, 2% desflurane anesthesia and wakefulness. Light flashes were delivered to the retina by transcranial illumination at 5-15s randomized intervals. Information theoretical indices, integration and interaction complexity, were calculated from the probability distribution of coincident spike patterns and used to quantify neuronal interactions before and after flash stimulation. Results: Integration and complexity showed significant negative associations with desflurane concentration (N=60). Flash stimulation increased integration and complexity at all anesthetic levels (N=60); the effect on complexity was reduced in wakefulness. During stepwise withdrawal of desflurane, the largest increase in integration (74%) and post-stimulus complexity (35%) occurred prior to reaching 4% desflurane concentration – a level associated with the recovery of consciousness according to the rats\u27 righting reflex. Conclusions: Neuronal interactions in the cerebral cortex are augmented during emergence from anesthesia. Visual flash stimuli enhance neuronal interactions in both wakefulness and anesthesia; the increase in interaction complexity is attenuated as post-stimulus complexity reaches plateau. The critical changes in cortical neuronal interactions occur during transition to consciousness

    A Semiparametric Bayesian Model for Detecting Synchrony Among Multiple Neurons

    Full text link
    We propose a scalable semiparametric Bayesian model to capture dependencies among multiple neurons by detecting their co-firing (possibly with some lag time) patterns over time. After discretizing time so there is at most one spike at each interval, the resulting sequence of 1's (spike) and 0's (silence) for each neuron is modeled using the logistic function of a continuous latent variable with a Gaussian process prior. For multiple neurons, the corresponding marginal distributions are coupled to their joint probability distribution using a parametric copula model. The advantages of our approach are as follows: the nonparametric component (i.e., the Gaussian process model) provides a flexible framework for modeling the underlying firing rates; the parametric component (i.e., the copula model) allows us to make inference regarding both contemporaneous and lagged relationships among neurons; using the copula model, we construct multivariate probabilistic models by separating the modeling of univariate marginal distributions from the modeling of dependence structure among variables; our method is easy to implement using a computationally efficient sampling algorithm that can be easily extended to high dimensional problems. Using simulated data, we show that our approach could correctly capture temporal dependencies in firing rates and identify synchronous neurons. We also apply our model to spike train data obtained from prefrontal cortical areas in rat's brain

    Repeating Spatial-Temporal Motifs of CA3 Activity Dependent on Engineered Inputs from Dentate Gyrus Neurons in Live Hippocampal Networks.

    Get PDF
    Anatomical and behavioral studies, and in vivo and slice electrophysiology of the hippocampus suggest specific functions of the dentate gyrus (DG) and the CA3 subregions, but the underlying activity dynamics and repeatability of information processing remains poorly understood. To approach this problem, we engineered separate living networks of the DG and CA3 neurons that develop connections through 51 tunnels for axonal communication. Growing these networks on top of an electrode array enabled us to determine whether the subregion dynamics were separable and repeatable. We found spontaneous development of polarized propagation of 80% of the activity in the native direction from DG to CA3 and different spike and burst dynamics for these subregions. Spatial-temporal differences emerged when the relationships of target CA3 activity were categorized with to the number and timing of inputs from the apposing network. Compared to times of CA3 activity when there was no recorded tunnel input, DG input led to CA3 activity bursts that were 7× more frequent, increased in amplitude and extended in temporal envelope. Logistic regression indicated that a high number of tunnel inputs predict CA3 activity with 90% sensitivity and 70% specificity. Compared to no tunnel input, patterns of >80% tunnel inputs from DG specified different patterns of first-to-fire neurons in the CA3 target well. Clustering dendrograms revealed repeating motifs of three or more patterns at up to 17 sites in CA3 that were importantly associated with specific spatial-temporal patterns of tunnel activity. The number of these motifs recorded in 3 min was significantly higher than shuffled spike activity and not seen above chance in control networks in which CA3 was apposed to CA3 or DG to DG. Together, these results demonstrate spontaneous input-dependent repeatable coding of distributed activity in CA3 networks driven by engineered inputs from DG networks. These functional configurations at measured times of activation (motifs) emerge from anatomically accurate feed-forward connections from DG through tunnels to CA3

    A Neuro-Inspired System for Online Learning and Recognition of Parallel Spike Trains, Based on Spike Latency, and Heterosynaptic STDP

    Get PDF
    Humans perform remarkably well in many cognitive tasks including pattern recognition. However, the neuronal mechanisms underlying this process are not well understood. Nevertheless, artificial neural networks, inspired in brain circuits, have been designed and used to tackle spatio-temporal pattern recognition tasks. In this paper we present a multi-neuronal spike pattern detection structure able to autonomously implement online learning and recognition of parallel spike sequences (i.e., sequences of pulses belonging to different neurons/neural ensembles). The operating principle of this structure is based on two spiking/synaptic neurocomputational characteristics: spike latency, which enables neurons to fire spikes with a certain delay and heterosynaptic plasticity, which allows the own regulation of synaptic weights. From the perspective of the information representation, the structure allows mapping a spatio-temporal stimulus into a multi-dimensional, temporal, feature space. In this space, the parameter coordinate and the time at which a neuron fires represent one specific feature. In this sense, each feature can be considered to span a single temporal axis. We applied our proposed scheme to experimental data obtained from a motor-inhibitory cognitive task. The results show that out method exhibits similar performance compared with other classification methods, indicating the effectiveness of our approach. In addition, its simplicity and low computational cost suggest a large scale implementation for real time recognition applications in several areas, such as brain computer interface, personal biometrics authentication, or early detection of diseases

    Higher Order Spike Synchrony in Prefrontal Cortex during Visual Memory

    Get PDF
    Precise temporal synchrony of spike firing has been postulated as an important neuronal mechanism for signal integration and the induction of plasticity in neocortex. As prefrontal cortex plays an important role in organizing memory and executive functions, the convergence of multiple visual pathways onto PFC predicts that neurons should preferentially synchronize their spiking when stimulus information is processed. Furthermore, synchronous spike firing should intensify if memory processes require the induction of neuronal plasticity, even if this is only for short-term. Here we show with multiple simultaneously recorded units in ventral prefrontal cortex that neurons participate in 3 ms precise synchronous discharges distributed across multiple sites separated by at least 500 μm. The frequency of synchronous firing is modulated by behavioral performance and is specific for the memorized visual stimuli. In particular, during the memory period in which activity is not stimulus driven, larger groups of up to seven sites exhibit performance dependent modulation of their spike synchronization

    Unsupervised Detection of Cell-Assembly Sequences by Similarity-Based Clustering

    Get PDF
    Neurons which fire in a fixed temporal pattern (i.e., "cell assemblies") are hypothesized to be a fundamental unit of neural information processing. Several methods are available for the detection of cell assemblies without a time structure. However, the systematic detection of cell assemblies with time structure has been challenging, especially in large datasets, due to the lack of efficient methods for handling the time structure. Here, we show a method to detect a variety of cell-assembly activity patterns, recurring in noisy neural population activities at multiple timescales. The key innovation is the use of a computer science method to comparing strings ("edit similarity"), to group spikes into assemblies. We validated the method using artificial data and experimental data, which were previously recorded from the hippocampus of male Long-Evans rats and the prefrontal cortex of male Brown Norway/Fisher hybrid rats. From the hippocampus, we could simultaneously extract place-cell sequences occurring on different timescales during navigation and awake replay. From the prefrontal cortex, we could discover multiple spike sequences of neurons encoding different segments of a goal-directed task. Unlike conventional event-driven statistical approaches, our method detects cell assemblies without creating event-locked averages. Thus, the method offers a novel analytical tool for deciphering the neural code during arbitrary behavioral and mental processes
    corecore