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Abstract 

Background: Neuronal interactions are fundamental for information 

processing, cognition and consciousness. Anesthetics reduce spontaneous 

cortical activity; however, neuronal reactivity to sensory stimuli is often 

preserved or augmented. How sensory stimulus-related neuronal interactions 

change under anesthesia has not been elucidated. Here we investigated visual 
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stimulus-related cortical neuronal interactions during stepwise emergence 

from desflurane anesthesia. 

Methods: Parallel spike trains were recorded with 64-contact extracellular 

microelectrode arrays from the primary visual cortex of chronically 

instrumented, unrestrained rats (N=6) at 8%, 6%, 4%, 2% desflurane 

anesthesia and wakefulness. Light flashes were delivered to the retina by 

transcranial illumination at 5-15s randomized intervals. Information 

theoretical indices, integration and interaction complexity, were calculated 

from the probability distribution of coincident spike patterns and used to 

quantify neuronal interactions before and after flash stimulation. 

Results: Integration and complexity showed significant negative associations 

with desflurane concentration (N=60). Flash stimulation increased integration 

and complexity at all anesthetic levels (N=60); the effect on complexity was 

reduced in wakefulness. During stepwise withdrawal of desflurane, the largest 

increase in integration (74%) and post-stimulus complexity (35%) occurred 

prior to reaching 4% desflurane concentration – a level associated with the 

recovery of consciousness according to the rats' righting reflex. 

Conclusions: Neuronal interactions in the cerebral cortex are augmented 

during emergence from anesthesia. Visual flash stimuli enhance neuronal 

interactions in both wakefulness and anesthesia; the increase in interaction 

complexity is attenuated as post-stimulus complexity reaches plateau. The 

critical changes in cortical neuronal interactions occur during transition to 

consciousness. 

Introduction 

Communication among neurons is sine qua non for information 

processing in the central nervous system. Consciousness, presumably 

the highest known form of information processing, has been 

associated with the complex interactions of neurons and their networks 
1-6. A failure of neuronal communication has been postulated as a key 

element in the mechanism of anesthetic-induced unconsciousness 7. 

Anesthetics are known to reduce spontaneous ongoing neuronal 

activity, particularly in the cerebral cortex, which has been linked to a 

failure of conscious information processing 8-15. Less is known about 

the effect of anesthetics on intracortical neuronal communication as 

induced by sensory stimuli. Stimulus-related neuronal interactions may 

inform us about the ability of the brain to integrate information more 

directly than does spontaneous activity 16,17. Interestingly, the early 

phase of cortical neuronal response to sensory stimuli is often 

preserved or even augmented under anesthesia 18. This raises the 

question of how the capacity for information processing of neuronal 

networks may change following sensory stimulation. The latter 
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property may be quantified by entropy and complexity of neuronal 

interactions both theoretically 1 and experimentally 17,19. To our best 

knowledge, there has been no systematic experimental study of 

sensory stimulus-related cortical neuronal interactions under graded 

levels of anesthesia and wakefulness. 

To gain insight into the question as outlined, in this work, we 

used information theoretical indices to characterize neuronal 

interactions in the visual cortex of chronically instrumented, 

unrestrained rats during visual stimulation using light flashes. We 

applied four steady-state levels of desflurane anesthesia, reduced from 

deep to shallow levels, and wakefulness. Specifically, we sought to 

determine how integration and complexity – two established entropy-

based measures of neuronal interactions, are altered as consciousness 

is regained as indicated by the righting reflex. The change in reactivity 

of neuronal interactions to flash stimuli, as reflected by these indices, 

was compared between the pre-and post-stimulus periods. We found 

that the important changes in neuronal interactions occur in the 

anesthetic concentration range associated with the recovery of 

consciousness. 

Materials and Methods 

The experimental procedures and protocols were reviewed and 

approved by the Institutional Animal Care and Use Committee of the 

Medical College of Wisconsin, Milwaukee, WI. All procedures 

conformed to the Guiding Principles in the Care and Use of Animals of 

the American Physiologic Society and were in accordance with the 

Guide for the Care and Use of Laboratory Animals (National Academy 

Press, Washington, D.C., 2011). All efforts were made to minimize the 

number of animals used and their suffering. 

The surgical protocol has been previously described 20-22. Briefly, 

microelectrode arrays with 64-contacts (8×8, 200 μm contact spacing, 

Neuronexus Technologies, Inc., Ann Arbor, MI) were chronically 

implanted in the monocular region of the primary visual cortex (V1M, 

7.0 mm posterior, 3.0-3.5 mm lateral to Bregma) 23 for extracellular 

recording of neuronal activity in adult male Sprague-Dawley rats (250-

350 g, n=6). In addition, a light-emitting diode (LED, American Bright 

Optoelectronics Corp, Chino, CA) was implanted at a retrobulbar 
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position for transcranial illumination 22,24. At 600 nm peak wavelength, 

light from the LED penetrates the cranium and tissues and provides 

reproducible illumination of the retina free from interference from the 

optics of the eye and from animal position or movement 24. A 

reference electrode in the homotopic contralateral hemisphere, 

anchoring screws, and miniature connector completed the implanted 

assembly. Figure 1A schematically illustrates the implant. 

 

Figure 1. Schematic of unit recording and spike pattern analysis. (A) Multielectrode 

array (MEA) implantation in the monocular region of the rat primary visual cortex, for 
extracellular recording. Retro bulbar light emitting diode (LED) for visual flash 
stimulation is implanted extra cranially. (B) Binary representation of parallel spike 
trains and the identification of coincident spike patterns at 1 ms time bins. Letters A to 
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M indicate unique spike patterns. Pattern C repeats three times, and pattern E repeats 

two times in this short imaginary sequence. 1=spike, 0=no spike. 

On the experiment day, rats were placed in a cylindrical 

anesthesia chamber equipped with a heated plate, and servo-

controlled, internal turntable to prevent the tangling up of electrode 

wires while the rat was freely moving. The room was darkened and the 

rat was allowed to freely move around in the box for about one hour to 

accommodate to the environment. Desflurane was applied in the 

sequence of 8, 6, 4, 2 and 0% inhaled concentrations (added to 30% 

O2 in N2) for 45-50 minutes at each level; gas concentrations in the 

chamber were monitored (POET IQ2, Criticare Systems, Waukesha, 

WI). Core body temperature was rectally monitored (model 73A, YSI, 

Yellow Springs, OH) and maintained at 37°C with radiant heat. The 

recovery of consciousness was operationally identified by the return of 

the rats' righting reflex. Recording of neuronal activity was initiated 

after 15 to 20-minute equilibration. In each condition, visual 

stimulation was applied as a train of 120 light flashes delivered at 5-

15s randomized inter-stimulus intervals. Spikes were digitally sampled 

at 30 kHz and band-pass filtered at 250-7500 Hz (Cerebus, Blackrock 

Microsystems, Salt Lake City, UT). Spikes were thresholded at -6.25 

standard deviation at 8% desflurane and left unchanged afterwards. 

Data analysis 

The recorded spikes from each electrode contact were 

independently sorted into individual units using the public domain 

offline spike sorter PowerNAP (OSTG, Inc., Fremont, CA). This offline 

spike sorter software applies principal component analysis (PCA) along 

with various clustering methods for sorting. PCA determines the 

linearly dependent factors in the spike waveform data and transforms 

them into an ordered set of orthogonal basis vectors that capture the 

direction of the largest variation 18,20,25. A scatterplot using the first 

two principal components was then constructed, and K-means 

clustering analysis was used to define the cluster boundaries of 

individual units. Occasional remaining outliers were removed manually, 

if necessary. Only units with a minimum spike rate of 1 per second 

were used for further analysis. The time stamps of sorted units were 

binned at 1 ms interval to obtain binary spike time series. For each 

time bin, the coincident pattern of unit spikes was coded as binary 

http://dx.doi.org/10.1097/ALN.0000000000000690
http://epublications.marquette.edu/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626389/#R18
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626389/#R20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626389/#R25


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Anethesiology, Vol 123, No. 1 (2015): pg. 171-180. DOI. This article is © Lippincott Williams & Wilkins, Inc. and permission 
has been granted for this version to appear in e-Publications@Marquette. Lippincott Williams & Wilkins, Inc. does not 
grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission 
from Lippincott Williams & Wilkins, Inc.. 

6 

 

strings (Figure 1B). The frequency distribution of unique spike patterns 

was calculated and normalized to the total number of patterns 

observed. From the distribution of spike patterns, two information-

based quantities were calculated for pre- and post-stimulus trials in 

each condition. Integration I(X) and interaction complexity C(X) were 

calculated according to 26 as 

𝐼(𝑋) =∑𝐻(𝑥𝑖)

𝑁

𝑖=1

− 𝐻(𝑋) 

𝐶(𝑋) = 𝐻(𝑋) −∑𝐻(𝑋𝑖|𝑋 − 𝑋𝑖)

𝑁

𝑖=1

 

In these expressions, xi is the binary state of an individual unit 

(1=spike, 0=no spike), H(xi) is the entropy of the of the unit, and H(X) 

is the joint entropy of the coincident spike patterns of all units (N), 

and H(Xi|X-Xi) is the conditional entropy of subpatterns with one unit 

removed, conditioned on its complement X-Xi. Entropy H is calculated 

as −Σpi log pi where pi is the probability of a spike or spike pattern and 

the sum is over the index i. Integration I(X) is a multivariate 

generalization of mutual information, also known as multi-information 
27 or total correlation 28. It quantifies the average information shared 

among the units of a system. If the system is composed of units that 

are statistically independent, then I(X) = 0. Its value reaches 

maximum when all spikes are synchronized. The values of I(X) and 

C(X) are measured in units of bits. Due to the base-2 logarithm in the 

definition of entropy, their values can be fractional. For example, the 

entropy or information gained after the toss of a fair 6-face die is 

2.585 bits. 

Similar to I(X), complexity measures the amount of the entropy 

of a system that is accounted for by the interactions among its 

elements. However, C(X) is different from I(X) in that its value is low 

for systems with independent units as well as for those with highly 

synchronous units 26. Theoretically, its value reaches maximum when 

the complexity of unit interactions is maximal. Both quantities were 

calculated from concatenated pre- and post-stimulus periods, 
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respectively. Each flash trial was segmented into a post-stimulus 

component (0 to 200 ms) and a pre-stimulus component that had 

variable duration. The duration of the latter in each trial was adjusted 

to match the total number of post-stimulus spikes. This was done to 

minimize the possible difference in sampling bias. The trial segments 

were then concatenated to form two spike trains for each sorted unit 

pre and post-stimulus. The calculations were performed using MATLAB 

2011a (MathWorks, Natick, MA). Unit population vectors were 

constructed with NeuroExplorer (Nex Technologies, Madison, AL). 

To examine a possible bias in the results due to the relatively 

short duration of post-stimulus data samples, we chose three rats with 

relatively stable baseline firing in the absence of flash stimulation and 

calculated both integration and complexity with three different data 

segmentation schemes as follows. First, we extracted 120 of 200 ms-

long data segments from the baseline data using the 120 randomized 

stimulus time stamps from a flash experiment and concatenated the 

extracted segments to yield a data sequence of 24 s total duration. 

I(X) and C(X) were then calculated for the concatenated data. Second, 

we divided the same data set into ten 60 s segments, calculated I(X) 

and C(X) for each, and averaged the results. Third we used the entire 

600 s data set to calculate I(X) and C(X). 

Statistical analysis 

The concentration-dependent effect of desflurane on overall 

firing rates, and the number of active units was estimated using the 

repeated measures analysis of variance (RM-ANOVA) test with the 

anesthetic concentration and the subject (rat) as within factor. 

Deviation from the zero slope was tested using a linear trend planned 

comparison test. The effect of desflurane on integration, complexity, 

the number of unique patterns, number of spikes for pre- and post-

stimulus conditions was tested using two-way RM-ANOVA with the 

anesthetic condition as a fixed factor, the rat and stimulus (pre or 

post) as within factors. Tukey-Kramer (T-K) post-hoc test, linear trend 

at alpha=0.05 and one planned comparison at alpha=0.01 were used 

to test for the effect of desflurane level as indicated in the results. 

Sample sizes were determined based on previous experience. Blinding 

methods were not feasible because of the close involvement of all 
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investigators in the experimental and analytical work. Statistical 

analyses were performed using NCSS 2007 (NCSS, Kaysville, UT). 

Results 

Depending on the depth of anesthesia, unit activity could be 

recorded from approximately 30-50 units per animal. Starting at the 

deepest anesthesia level, the average spike rate was 2.3 s-1, gradually 

increasing to 6.1 s-1 as the anesthetic was withdrawn. Flash 

stimulation increased the spike rate and the average number of unique 

spike patterns in all conditions. Table 1 shows the corresponding mean 

and standard deviation values for the pre- and post-stimulus periods. 

The average number of unique spike patterns, both pre- and post-

stimulus, also increased toward wakefulness in a graded manner. 

Table 1. Properties of units, spike rate, and spike pattern at four levels of 

desflurane anesthesia and wakefulness. 

Desflurane 8% 6% 4% 2% 0%  

 

 mean SD mean SD mean SD mean SD mean SD p 

Nu
* 29 10 39 11 49 12 50 15 50 17 0.00001 

Fu
* 0.53 0.10 0.52 0.14 0.40 0.11 0.38 0.08 0.34 0.09 0.00001 

T-pre (ms)* 1127 196 624 195 471 197 425 207 301 198 0.035 

SR-pre (s-1)* 2.9 1.0 4.1 0.9 5.6 1.0 6.8 2.2 9.5 4.1 0.00002 

SR-post (s-1) 14.4 2.8 12.8 2.1 13.1 2.6 13.3 2.0 13.3 2.5 0.534 

Np-pre* 704 399 885 692 1347 753 1494 754 1538 973 0.0073 

Np-post* 927 521 1189 856 1753 993 1977 937 2167 1378 0.0042 

Data reveal a concentration-dependent increase during recovery in the number of 
active units (Nu), pre-stimulus sample duration (T-pre), spike rate (SR) pre- and post-
stimulus, and the number of unique spike patterns (Np) pre- and post-stimulus. The 
fraction of units that respond to flash (Fu) decreases. Data are mean± standard 
deviation from six rats. T-pre was adjusted to compensate for the change in spike 
rate. p value is the significance level from repeated measures analysis of variance. 
*significant linear trend at p<0.05. 

To examine the temporal pattern of the flash response, in each 

unit, the 99% confidence intervals were defined from the 0-500 ms 

pre-stimulus period. Units with a post-stimulus increase in spike rate 

above the upper confidence interval were selected and used to form a 

population vector (average spike rate per second binned at 5 ms). 

Figure 2 shows the results from all rats in all conditions. At 8% 

desflurane, the unit response was relatively simple (monophasic), 
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limited to the first 250 ms after flash. As the anesthetic is withdrawn, 

the responses became temporally more complex. 

 

Figure 2. Flash-evoked unit activity in six rats at four levels of desflurane anesthesia 

(8%, 4%, 6%, 2%) and wakefulness (0%). Lines show average spike rate from all 
units that respond to flash (exceeding 99% confidence interval of the pre-stimulus 
baseline). Single flash is applied at time zero. The flash response is large but simple 
and often delayed in deep anesthesia (8%). The response pattern becomes 
increasingly complex during lighter anesthesia and especially, in wakefulness. 

Figure 3 illustrates the spatial distributions of all recorded units 

and of those that responded to flash at the 99% confidence interval 

criterion. Most units were found in the supragranular region and also 

deeper layers more caudally. The flash-responding units followed a 

similar distribution. 

 

Figure 3. Spatial distributions of all recorded units (A) and of those that respond to 

flash stimulation (B). The recording sites numbered as 1-8 are at 200 μm increments 
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both vertically and horizontally. Recording sites span the entire cortical depth from 

layer I to layer VI. The entire array is primary visual cortex (V1M); frontal is to the 
left, caudal is to the right. Data were pooled from all experiments (N=6) and all states 
(0%-8% desflurane). At some of the recording sites, more than one unit was found. 

In the following analyses data from all active units were used 

(including those not responding to flash). The probability distributions 

of unique spike patterns are illustrated in Figure 4 for four anesthetic 

depths and wakefulness. Here two observations can be made. First, 

the number of frequently occurring patterns during the pre-stimulus 

period is relatively low in deep anesthesia and gradually increases as 

the animal wakes up. However, the post-stimulus distribution is 

virtually unchanged. Second, consistent with the first observation, 

flash stimulation augments the probability distribution of spike 

patterns especially in deep anesthesia – an effect that gradually 

disappears as the anesthetic is withdrawn. Thus, even during 

anesthesia, the number of unique spike patterns could be increased by 

flash stimulation to near its maximum value at wakefulness. Means 

and standard deviations of the unique spike patterns in various 

conditions are included in Table 1. In Figure 5 we illustrate the relative 

frequency of spike patterns containing different number of spikes. The 

frequency of occurrence of patterns fell off rapidly as a function of the 

number of spikes present in each pattern. This was true to all 

anesthetic conditions; that is, large multi-spike patterns were 

generally rare. 
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Figure 4. Probability distribution of unique spike patterns pre- and post-stimulus at 

four levels of desflurane anesthesia (8%, 4%, 6%, 2%) and wakefulness (0%). Spike 
patterns are sorted in descending order (left to right) as a function of their frequency 
of occurrence. The number of no-spike patterns was omitted. Flash stimulus increases 
the prevalence of frequent spike patterns - an effect that dominates in deep 
anesthesia but absent in wakefulness. The last panel (lower right) illustrates the 
change in pre-stimulus pattern distributions. Post-stimulus distributions are virtually 
unchanged. Pre: pre-stimulus, Post: post-stimulus. 
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Figure 5. The frequency of occurrence of coincident spike patterns as a function of the 

number of spikes present in each pattern. Large multi-spike patterns are rare. 

The main result of our study is summarized in Figure 6. 

Integration and complexity showed significant negative correlations 

with desflurane concentration (p=0.0036 and p=0.0006, respectively, 

N=60, RM-ANOVA). Visual stimulation increased both integration and 

complexity at all anesthetic levels (p<0.00001, RM-ANOVA, N=60). As 

the anesthetic was withdrawn, a relatively large increase occurred in 

pre-stimulus integration (119%) and in post-stimulus complexity 

(25%) between 6% and 4% desflurane - a regime that includes the 

transition between unconsciousness and consciousness. Integration 

and complexity were significantly larger at 0%-4% vs. 6%- 8% 

(alpha=0.01, planned comparison). There was no significant difference 

in the range of 0%-4%, i.e. in the conscious regime (alpha=0.05, T-

K). Approaching the state of wakefulness, the magnitude of the effect 

of flash stimulation on integration increased, whereas its effect on 

complexity decreased, (25% vs. 12% for integration, and 84% vs. 

180% for complexity, at 0% and 8% desflurane, respectively). 
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Figure 6. Effects of desflurane and visual flash stimulation on cortical neuronal 
interactions as measured by integration and complexity. Note that desflurane was 
administered from high to low concentrations. The steepest increase in integration 
occurs from 6% to 4% desflurane (shaded region), close to regaining consciousness. 
Post-stimulus complexity plateaus at 4% desflurane. Pre: pre-stimulus, Post: post-

stimulus. *: significant at alpha=0.01 for 0%-4% combined vs. 6%-8% combined. 

Next we investigated whether the observed changes in 

integration and complexity may have been due to a change in spike 

rate. As the data in Table 1 show, there was no change in post-

stimulus firing rate with anesthetic depth, yet both integration and 

complexity changed significantly. This point is augmented by the 

illustrations in Figure 7 showing anesthetic-dependent changes in post-

stimulus integration and complexity in the absence of a change in 

spike rate. The figure also suggests that integration and complexity 

were more closely related to a change in the number of unique spike 

patterns from which they were calculated. However, in a few cases 

these variables were dissociated. 
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Figure 7. Integration and complexity as a function of the average spike rate and the 
number of unique patterns. The two end states of the experiment, anesthesia at 8% 
desflurane (A), and wakefulness (W) are indicated. Note the changes in integration 

and complexity post-stimulus (Post) in the face of unchanged spike rate. 

The potential effect of spike rate in integration and complexity 

was further examined using the baseline data that are unaffected by 

stimulation. The effect of the anesthetic was removed by subtracting 

the group means at each concentration and the residuals were plotted 

as a scatter plot (Figure 8). No significant effect of spike rate was 

found by this analysis for integration (R=0.047, p=0.806, N=30,) and 

perhaps a hint of a weak effect on complexity that did not reach 

statistical significance (R=0.353, p=0.056, N=30). 
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Figure 8. Scatter plot of the changes in integration and complexity vs. the change in 

spike rate. Changes were calculated as the difference from the mean in each 
experiment. The plots reveal no significant association. 

In order to test the results against a suitable null hypothesis, we 

created surrogate data by two methods. First we shuffled the spike 

trains in their entirety relative to each other by applying a random 

time lag. This operation retains the neurons' firing characteristics but 

removes the interneuronal correlations other than those occurring by 

chance. Second we generated spike time stamps by drawing random 

numbers from a binomial distribution at the same spike rate as 

measured in each spike train. Both original and generated interspike 
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intervals approximated the Poisson distribution. Integration and 

complexity were then calculated from the surrogate data. The results 

from the two surrogate data sets were very similar. For brevity, we 

report those obtained with the second method. As Table 2 shows, data 

randomization substantially decreased integration (-58±27%, N=120, 

p<0.00001, RM-ANOVA) with no difference for anesthetic state 

(p=0.402, interaction) or for pre- and post-stimulus condition 

(p=0.099, interaction). There was no change in complexity with 

randomization (3.1±2.2%, N=120, p<0.440, RM-ANOVA). The number 

of spike patterns increased by a small degree (13.6±6.2%, N=120, 

p<0.000021, RM-ANOVA). 

Table 2. Relative changes after data randomization 

  Integration (%) Complexity (%) Nsp (%) 

 

  mean SD mean SD mean SD 

0% Pre -31.5 25.3 2.1 3.1 8.0 4.5 

Post -62.6 36.3 4.7 2.8 17.8 8.4 

 

2% Pre -61.7 14.6 3.1 2.4 14.7 5.7 

Post -48.5 8.7 2.9 1.8 13.5 4.4 

 

4% Pre -85.5 14.0 4.6 2.2 17.9 6.7 

Post -40.9 16.6 2.2 1.1 11.3 3.5 

 

6% Pre -85.8 16.4 3.1 1.3 14.7 6.8 

Post -45.1 16.7 1.7 1.1 10.8 3.5 

 

8% Pre -84.7 20.5 5.6 4.4 21.5 12.5 

Post -82.1 55.5 3.4 2.3 16.7 6.7 

 

All Both *-57.7 26.6 #3.1 2.2 *13.6 6.2 

Nsp: number of all spike patterns excluding the no-spike pattern. 
*significant change, p<0.0001. 
#not significant, p=0.402. 

Finally, because entropy-based measures can be biased by the 

number of samples used for their estimation, we also examined the 

effect of sample duration on integration and complexity in a separate 

data set. We chose three rats with relatively stable baseline firing in 

the absence of flash stimulation and calculated integration and 

complexity with three different data segmentation schemes 
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corresponding to the total data durations of 24 s, 60 s, and 600 s. 

Figure 9 shows the results compiled from these rats and all anesthetic 

concentrations broken down to the three versions of data 

segmentation. There was no statistically significant difference among 

the results obtained with the three segmentation schemes suggesting 

that the integration and complexity values obtained in the flash 

experiments were unbiased by the chosen sample duration (p=0.057, 

N=90). 

 

Figure 9. Comparison of integration I(X) and complexity C(X) obtained at different 
data segmentations. Data shown are normalized to the mean of values obtained at 24 
s, 60 s, and 600 s data segmentation in each condition. Standard deviation reflects the 

variation of normalized data among rats and anesthetic conditions. There is no 
significant difference among the means. 

Discussion 

Our aim was to determine how cortical neuronal interactions 

were altered at various depths of anesthesia and wakefulness. We 

used visual flash stimulation to facilitate neuronal interactions in the 

visual cortex. We postulated that stimulus-related unit activity would 
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reflect the ability of neuronal populations to process sensory 

information before and after the subjects regained consciousness. As 

anticipated, both integration and complexity - two information-

theoretic measures of neuronal interactions - were enhanced at 

anesthetic levels associated with the recovery of consciousness. Visual 

flash stimulation augmented the interactions - an effect that varied 

with the anesthetic level. 

The effect of anesthetic agents on spontaneous and stimulus-

evoked neuronal activity has been studied extensively in vitro and in 

vivo 8-13,15,29,30. Much less is known about the interaction of neurons in 

an intact network as influenced by anesthesia in vivo. Neuronal 

interactions were quantified here using entropy-based parameters, as 

motivated by the Information Integration Theory of Consciousness 31. 

The theory postulates that consciousness is integrated information, 

depending on both the amount of information, defined by the number 

of discriminable brain states, and integration, instantiated by the 

interaction among the units of a neuronal system. Under anesthesia, 

information integration may be suppressed by a diminution of the 

repertoire of brain states or by a breakdown of interactions within the 

system 7. Conversely, regaining consciousness may depend on the 

restoration of the brain's state repertoire and the interaction of its 

units. There is experimental evidence for reduced functional 

integration in large-scale systems under general anesthesia 32-35 but 

corresponding data in neuronal populations have not been obtained to-

date. 

We found that both neuronal interactions and number of unique 

spike patterns that reflect the repertoire of local brain states changed 

with the depth of anesthesia. Interestingly, the increase in the number 

of unique spike patterns toward wakefulness was only evident in the 

pre-stimulus period suggesting that the state repertoire was 

suppressed by anesthesia during the unstimulated condition only. 

Visual stimulation was able to increase the number of spike patterns 

even in deep anesthesia. Moreover, integration and complexity varied 

with the anesthetic level per se rather than with a change in spike 

rate. 

Certain differences between the behaviors of integration and 

complexity were also observed. During wakefulness, pre-stimulus 
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complexity already reached high values, whereas integration continued 

to increase after flash stimulation. As noted, complexity tends to 

decrease in both random and stereotypic regular systems 26 and may 

reach maximum at an intermediate state. In contrast, integration 

changes monotonically, it continues to increase with flash and as the 

anesthetic is gradually removed. Also, integration shows a stronger 

dependence on the number of unique spike patterns than does 

complexity. 

As anticipated, shuffling the spike trains or randomizing the 

spike time stamps at constant spike rate decreased integration, 

suggesting that neuronal interactions were reduced when the spike 

correlations were destroyed. Surprisingly, complexity was not altered 

by this procedure. As defined, complexity is calculated from the 

difference of entropies of the entire spike pattern and of its subsets 

reduced by one spike train at a time. Given the sparsity of coincident 

spikes, this difference in entropies may be relatively insensitive to 

randomization. 

The critical or important changes in neuronal interactions 

occurred in the anesthetic range associated with the recovery of 

consciousness. Specifically, the steepest increase in integration 

occurred at anesthetic concentrations associated with transitioning to 

the conscious state and an increase in post-stimulus complexity also 

occurred up to the point of recovery. An objective identification of 

conscious and unconscious state, particularly in animals, is a difficult 

one. Behavioral assessment falls short of being a faithful reflection of 

the mental state except in obvious conditions. Most of the 

experimentally measured changes in electrophysiological properties 

are more gradual than abrupt, although theoretical modeling studies 

suggest that in neuronal systems abrupt state transitions may occur 
36. From an information processing point of view, the level of 

consciousness is considered a graded property 31; nevertheless, overt 

responsiveness and spontaneous behavior may change abruptly 37. As 

indicated by the commonly used behavioral surrogate index in rats, 

the righting reflex 38, consciousness is regained between 6% and 4% 

desflurane concentration 39,coinciding with the largest change in 

neuronal integration and complexity. 
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The complexity of neuronal interactions may also depend on the 

complexity of the sensory stimulus. We chose to use simple flash 

stimuli that uniformly illuminated the retina 24. The full-field stimulus 

excites a relatively large population of visual cortex neurons that can 

be simultaneously recorded using a fixed-position electrode array, 

which facilitates the estimation of integration and complexity of a 

neuronal population. However, recording large neuron populations 

requires more data to adequately sample the diversity of coincident 

spike patterns – a problem known as the limited sampling bias 40. 

Theoretically, for N neurons, 2N possible patterns could be observed. 

For a typical number of 50 neurons, a period of 35700 years would be 

required to record each pattern if it strictly occurred just once during 

this period! Fortunately, due to the high degree of connectivity of 

neuronal networks, the number of distinct spike patterns that occur is 

much smaller. As shown in Figure 3, the probability distribution of 

measured spike patterns decreased exponentially. For example, in the 

wakeful condition, approximately half of the recorded patterns fell into 

50 distinct types (not counting the pattern with absent spikes). 

Increasing the sampling duration 25-fold did not alter the estimated 

values of integration or complexity suggesting that the 24-second 

post-stimulus data should have provided an adequate sampling of the 

diversity of spike patterns. 

The post-stimulus spike patterns were extracted from 

concatenated 200 ms segments of data. The cortical unit response to 

flash in visual cortex of the rat is composed of two main components: 

an early or middle-latency (0-150 ms), and a late, sustained or long-

latency (>200 ms) response 8,18,41,42. Desflurane anesthesia selectively 

attenuates the long-latency response 18, which presumably reflects a 

failure of the top-down feedback arm of sensory processing 39,43-45. Our 

results show that flash stimuli were able to increase the repertoire of 

spike patterns to the wakeful level within 200 ms post-stimulus 

suggesting that sensory information processing in primary visual 

cortex can be augmented in the early response period. However, this 

information may not be consolidated into conscious experience, 

perhaps due to a lack of cortical integration. Post-stimulus values of 

integration and complexity in the unconscious states did not reach 

their corresponding levels in wakefulness. 
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Our measures of neuronal interactions were based on the 

entropy of coincident spike patterns rather than the entropy of spike 

trains 46. Our goal was to quantify the momentary interaction of 

neurons using the unitary event analysis of multineuronal coincident 

spike patterns 47. Spike patterns were defined at 1 ms precision, which 

ensures that only one spike of a spike train can occupy each time bin. 

The interaction measures were then computed from the statistical 

distribution of these instantaneous spike patterns. Therefore, the 

neuronal code considered here was a coincident population code, not a 

temporal one. While this may appear simplistic as a measure of 

entropy, the calculation only needed the probability of observing a 

spike or not in each time bin. Theoretically, one could also consider 

spatio-temporal spike patterns similar to an analysis of neuronal 

avalanches. However, the inclusion of temporally extended patterns 

would lead to an exponential explosion of the number of spike 

configurations and a serious sampling problem. With n neurons and m 

time steps, the maximum number of configurations to be accounted 

for would be 2nm. In addition, the mathematics for quantifying 

neuronal interactions in terms of temporo-spatial spike configurations 

has not been established 48, although a possible approach has been 

outlined 49. 

Finally, we chose a temporal order of anesthetic levels from high 

to low concentration (emergence protocol). The practical reason for 

this was that at 8% desflurane, the signal-to-noise ratio for spike 

threshold selection was optimal. The anesthetic thresholds for loss and 

return of righting reflex may be slightly different as a consequence of 

neuronal hysteresis or “inertia” 50. Because of the fast equilibration 

time of desflurane, we did not anticipate a substantial hysteresis 

effect. Indeed, in a small set of control studies with similar 

equilibration periods, we observed no significant difference between 

induction and emergence conditions. 

In summary, neuronal interactions were characterized by the 

information-theoretic parameters, integration and complexity in the 

visual cortex of chronically instrumented animals in vivo. Neuronal 

interactions were enhanced by visual stimulation and a reduction in 

anesthetic concentration. Post-stimulus complexity was maximum 

upon the recovery of consciousness while integration continued to 

increase albeit at a slower rate. Critical changes in neuronal 
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interactions appeared to occur in the anesthetic range associated with 

the recovery of consciousness. 
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