1,139 research outputs found

    Detection of app collusion potential using logic programming

    Get PDF
    Mobile devices pose a particular security risk because they hold personal details (accounts, locations, contacts, photos) and have capabilities potentially exploitable for eavesdropping (cameras/microphone, wireless connections). The Android operating system is designed with a number of built-in security features such as application sandboxing and permission-based access control. Unfortunately, these restrictions can be bypassed, without the user noticing, by colluding apps whose combined permissions allow them to carry out attacks that neither app is able to execute by itself. While the possibility of app collusion was first warned in 2011, it has been unclear if collusion is used by malware in the wild due to a lack of suitable detection methods and tools. This paper describes how we found the first collusion in the wild. We also present a strategy for detecting collusions and its implementation in Prolog that allowed us to make this discovery. Our detection strategy is grounded in concise definitions of collusion and the concept of ASR (Access-Send-Receive) signatures. The methodology is supported by statistical evidence. Our approach scales and is applicable to inclusion into professional malware detection systems: we applied it to a set of more than 50,000 apps collected in the wild. Code samples of our tool as well as of the detected malware are available

    Program Analysis Based Approaches to Ensure Security and Safety of Emerging Software Platforms

    Full text link
    Our smartphones, homes, hospitals, and automobiles are being enhanced with software that provide an unprecedentedly rich set of functionalities, which has created an enormous market for the development of software that run on almost every personal computing devices in a person's daily life, including security- and safety-critical ones. However, the software development support provided by the emerging platforms also raises security risks by allowing untrusted third-party code, which can potentially be buggy, vulnerable or even malicious to control user's device. Moreover, as the Internet-of-Things (IoT) technology is gaining vast adoptions by a wide range of industries, and is penetrating every aspects of people's life, safety risks brought by the open software development support of the emerging IoT platform (e.g., smart home) could bring more severe threat to the well-being of customers than what security vulnerabilities in mobile apps have done to a cell phone user. To address this challenge posed on the software security in emerging domains, my dissertation focuses on the flaws, vulnerabilities and malice in the software developed for platforms in these domains. Specifically, we demonstrate that systematic program analyses of software (1) Lead to an understanding of design and implementation flaws across different platforms that can be leveraged in miscellaneous attacks or causing safety problems; (2) Lead to the development of security mechanisms that limit the potential for these threats.We contribute static and dynamic program analysis techniques for three modern platforms in emerging domains -- smartphone, smart home, and autonomous vehicle. Our app analysis reveals various different vulnerabilities and design flaws on these platforms, and we propose (1) static analysis tool OPAnalyzer to automates the discovery of problems by searching for vulnerable code patterns; (2) dynamic testing tool AutoFuzzer to efficiently produce and capture domain specific issues that are previously undefined; and (3) propose new access control mechanism ContexIoT to strengthen the platform's immunity to the vulnerability and malice in third-party software. Concretely, we first study a vulnerability family caused by the open ports on mobile devices, which allows remote exploitation due to insufficient protection. We devise a tool called OPAnalyzer to perform the first systematic study of open port usage and their security implications on mobile platform, which effectively identify and characterize vulnerable open port usage at scale in popular Android apps. We further identify the lack of context-based access control as a main enabler for such attacks, and begin to seek for defense solution to strengthen the system security. We study the popular smart home platform, and find the existing access control mechanisms to be coarse-grand, insufficient, and undemanding. Taking lessons from previous permission systems, we propose the ContexIoT approach, a context-based permission system for IoT platform that supports third-party app development, which protects the user from vulnerability and malice in these apps through fine-grained identification of context. Finally, we design dynamic fuzzing tool, AutoFuzzer for the testing of self-driving functionalities, which demand very high code quality using improved testing practice combining the state-of-the-art fuzzing techniques with vehicular domain knowledge, and discover problems that lead to crashes in safety-critical software on emerging autonomous vehicle platform.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145845/1/jackjia_1.pd

    Web Tracking: Mechanisms, Implications, and Defenses

    Get PDF
    This articles surveys the existing literature on the methods currently used by web services to track the user online as well as their purposes, implications, and possible user's defenses. A significant majority of reviewed articles and web resources are from years 2012-2014. Privacy seems to be the Achilles' heel of today's web. Web services make continuous efforts to obtain as much information as they can about the things we search, the sites we visit, the people with who we contact, and the products we buy. Tracking is usually performed for commercial purposes. We present 5 main groups of methods used for user tracking, which are based on sessions, client storage, client cache, fingerprinting, or yet other approaches. A special focus is placed on mechanisms that use web caches, operational caches, and fingerprinting, as they are usually very rich in terms of using various creative methodologies. We also show how the users can be identified on the web and associated with their real names, e-mail addresses, phone numbers, or even street addresses. We show why tracking is being used and its possible implications for the users (price discrimination, assessing financial credibility, determining insurance coverage, government surveillance, and identity theft). For each of the tracking methods, we present possible defenses. Apart from describing the methods and tools used for keeping the personal data away from being tracked, we also present several tools that were used for research purposes - their main goal is to discover how and by which entity the users are being tracked on their desktop computers or smartphones, provide this information to the users, and visualize it in an accessible and easy to follow way. Finally, we present the currently proposed future approaches to track the user and show that they can potentially pose significant threats to the users' privacy.Comment: 29 pages, 212 reference

    MALICIOUS TRAFFIC DETECTION IN DNS INFRASTRUCTURE USING DECISION TREE ALGORITHM

    Get PDF
    Domain Name System (DNS) is an essential component in internet infrastructure to direct domains to IP addresses or conversely. Despite its important role in delivering internet services, attackers often use DNS as a bridge to breach a system. A DNS traffic analysis system is needed for early detection of attacks. However, the available security tools still have many shortcomings, for example broken authentication, sensitive data exposure, injection, etc. This research uses DNS analysis to develop anomaly-based techniques to detect malicious traffic on the DNS infrastructure. To do this, We look for network features that characterize DNS traffic. Features obtained will then be processed using the Decision Tree algorithm to classifyincoming DNS traffic. We experimented with 2.291.024 data traffic data matches the characteristics of BotNet and normal traffic. By dividing the data into 80% training and 20% testing data, our experimental results showed high detection aacuracy (96.36%) indicating the robustness of our method
    • …
    corecore