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Abstract

Mobile devices pose a particular security risk because they hold personal de-
tails (accounts, locations, contacts, photos) and have capabilities potentially
exploitable for eavesdropping (cameras/microphone, wireless connections).
The Android operating system is designed with a number of built-in security
features such as application sandboxing and permission-based access control.
Unfortunately, these restrictions can be bypassed, without the user noticing,
by colluding apps whose combined permissions allow them to carry out at-
tacks that neither app is able to execute by itself. While the possibility of
app collusion was first warned in 2011, it has been unclear if collusion is used
by malware in the wild due to a lack of suitable detection methods and tools.
This paper describes how we found the first collusion in the wild. We also
present a strategy for detecting collusions and its implementation in Prolog
that allowed us to make this discovery. Our detection strategy is grounded
in concise definitions of collusion and the concept of ASR (Access-Send-
Receive) signatures. The methodology is supported by statistical evidence.
Our approach scales and is applicable to inclusion into professional malware
detection systems: we applied it to a set of more than 50,000 apps collected
in the wild. Code samples of our tool as well as the detected malware are
available.
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1. Introduction

Mobile devices, such as smartphones and tables are pervasive in modern
everyday life. The number of smartphones in use is predicted to grow from
2.6 billion in 2016 to 6.1 billion in 2020 [1]. One reason for this fast adop-
tion is the extensive ecosystem of apps which enable a very wide range of
functions: taking photos, sending messages, financial transactions, as well
as a great variety of other uses. Smartphones hold a great deal of personal
information (e.g., photos, financial data, credentials, messages) making them
very appealing targets for criminals who often employ malicious apps to steal
sensitive information [2], extort users [3], or misuse the device services for
their own purposes [4].

To mitigate these threats, mobile operating systems offer a multi-sandbox
environment where each app is executed in isolation from the rest. This iso-
lation is intended to limit the harm from any potential malicious activity of
each app. An obvious attack to get around this restriction is to execute a
privilege escalation exploit or, even simpler, employ social engineering and
convince the user to grant additional permissions to the app. This usually
works quite well because users are generally unaware of the risks associated
with granting permissions to apps [5]. However, malware detection tech-
niques keep improving, and it is getting more difficult for attackers to deploy
their creations without being detected. Furthermore, attackers are interested
in malware to stay longer on phones. As the short time required to identify
the latest wave of clones of popular apps like “WhatsApp” [6] illustrates,
social engineering attacks do not necessarily provide longer access to an at-
tacked phone.

Attackers have a better chance of evading detection in both pre-deployment
and after-deployment scenarios by using app collusion where the malicious
activity is split across multiple apps and coordinated through inter-app com-
munications (IAC). This kind of attack is possible because sandboxed sys-
tems, such as Android, are designed to prevent threats from individual apps.
However, they do not restrict or monitor inter-app communications, and
therefore they would fail to protect from multiple apps cooperating in order
to achieve a malicious goal. Most malware analysis systems, such as antivirus
software for smartphones, also check apps individually only.

Collusion attacks are more complex than single malicious app attacks.
In order for such an attack to be successful, the attacker must be able to
embed colluding code in more than one app, and have at least two of those
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apps installed on the victim’s device. However, there are strategies, such as
infecting development libraries and SDKs (e.g. the XCode Ghost case [7])
that can facilitate this task.

While collusion is not a common attack vector today, we believe this
is likely to grow because of constant enhancements in efficacy of static and
dynamic analysis of individual apps as well as in calculating their reputations.

1.1. Contributions

In this paper, we present a methodology to detect the potential for app
collusion by using logic programming. For each app, we extract what we
call an ASR (Access-Send-Receive) signature. Then Prolog rules are used
to characterize app collusion behaviours. These rules reflect two aspects of
collusion: access to protected resources and communication channels between
apps. Using the rules and the set of ASR signatures codified as Prolog facts,
it is possible to obtain a list of potentially colluding app sets from large
datasets of apps.

We have validated the approach against a set of colluding apps which we
crafted ourselves for testing purposes. We further applied it to an unclassified
set of more than 50,000 apps collected in the wild. Our approach allowed us
to shed light on how apps in the Android ecosystem communicate. We could
also identify a set of apps in the wild all including a malicious SDK which
used collusion to maximize the effects of its payload [8].

As with any rule-based method, our approach is limited to being able
to flag only known types of collusion which are represented in the rules. In
principle, an alternative approach such as anomaly detection might be able to
detect new types of collusion that known rules can not, but it is not possible
to confirm the efficacy of anomaly detection until new collusion attacks occur
in the wild (or become known).

This paper provides a thorough and detailed documentation and discus-
sion of our approach, including a description of our detection strategy, our
implementation, and how to scale the application of our tool to app sets
consisting of many tens of thousands of apps.

The remainder of this paper is structured as follows. Section 2 reviews
the Android security model focusing mainly on the aspects related to app
collusion. In Section 3 we propose a definition of app collusion and describe
possible communication channels that can be used by colluding apps. Section
4 describes our approach in detail and gives validation of our approach against
a set of manually created colluding apps. Section 5 elaborates on how our
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method can scale up. Section 6 offers experimental results with a relatively
large dataset of apps collected in the wild. Section 7 describes a group of
colluding apps which we discovered in the wild by using our method. To the
best of our knowledge, this is the first example of app collusion found in the
wild. Section 8 reviews previous work done to detect and protect against app
collusion.

2. The Android Operating System

The Android operating system model is designed to protect users, apps,
the device and the network from malicious code. By default, all third party
apps are considered untrusted by the OS and run inside a sandbox that
isolates them from any sensitive resources and from all other apps. Until
Android 4.3, the sandboxing mechanism was implemented by assigning a
different Linux user id (UID) to each app and configuring file permissions
accordingly. Since Android 4.4 SELinux domains are used in addition to the
Linux UID so apps can only access files inside their sandbox, as these are the
only ones in their domain.

Access to sensitive resources outside the app sandbox is possible by using
APIs provided by the operating system. Calls to these APIs are managed
by a permission system, which has a deny-by-default policy. Apps that want
to access sensitive resources, must include a permission declaration inside
their AndroidManifest.xml file. When an app is being installed (in Android
versions below 6.0), the system will ask the user to accept the permissions
used by the app before proceeding with the installation. At this point, the
user must accept or deny all permissions requested by the app.

Starting with Android 6.0, apps can ask for permissions at runtime and
users have a choice of granting or denying each permission individually. How-
ever, permissions must still be declared in the manifest file. For a more de-
tailed description of Android security features, we refer the reader to [9, 10].

2.1. App Components

Android apps are built with the following components:

• Activities represent screens of the user interface and allow the user to
interact with the app. Activities run only in the foreground. Apps are
generally composed of a set of activities.
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• Services execute operations in the background. They are generally
used by other components of the app to perform long-running tasks:
listening to incoming connections, downloading a file, etc.

• Broadcast receivers respond to messages that are sent through Intent

objects, by the same or other apps.

• Content providers manage access of other apps to the app’s own data.
Apps with content providers enable other apps to read and write their
local data.

In order to be reachable by other apps, components must be declared as
exported in the app manifest file.

2.2. Communications

Besides the standard Unix files, sockets, etc., Android offers three inter-
process communication (IPC) mechanisms:

• The Binder is a remote procedure call mechanism designed to enable
fast and efficient IPC between processes. The Binder Framework uses a
server-client architecture. It is implemented as a Linux driver, allowing
communications across sandbox boundaries. This allows the operating
system to mediate communication through Binder. The rest of the
Android IPC (Intents and Content Providers) are, in fact, abstractions
based on the Binder.

• An Intent is a messaging object which is used to request actions from
other apps’ components. These may belong to the same or different
apps. Intents can be explicit or implicit. Explicit intents target spe-
cific activities or services. Implicit intents target generic actions that
can be performed by many different activities (e.g. send a message,
open a web link, etc.). Activities, services and broadcast receivers ad-
vertise the intents which they want to handle by declaring a set of
IntentFilters. For activities and services, intent filters must be de-
clared in the app’s manifest. Broadcast receivers can also register their
intent filters through API calls during execution.

• Content Providers are used to offer other apps a method to access
their own structured data. Content providers store information in one
or more tables, similarly to relational databases. Apps access data of
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content providers using ContentResolver objects. A content provider
offers methods, which can be called by other apps, not only to read
data, but also to update, create and delete information encapsulated
in the content provider object.

None of these three IPC mechanisms, which all are standard in Android,
is covered by the mandatory access control offered by SELinux [11]. As
a result, apps can share any kind of information by using standard IPC
without any restriction. To avoid security problems, Android allows apps
communicating through IPC to request specific permissions from any app
that wants to communicate with them. As an example, Android includes a
Contact Provider to interact with the device’s contact list. Apps accessing
this provider need to declare READ_CONTACTS or WRITE_CONTACTS permissions
in their manifest. Similarly, apps using Intents to start phone calls require
the CALL_PHONE permission.

Unfortunately, Android does not enforce this protection mechanism. It
is left to app developers to decide if they want to apply it. Consequently,
permission-protected resources are potentially exposed. This fact can be
exploited to build colluding apps which access sensitive resources without
permission. Apps might also communicate in order to aggregate permissions
necessary to perform malicious actions which individual apps would not be
able to perform.

3. App Collusion

The first demonstration of app collusion was Soundcomber, a proof-of-
concept malware described in 2011 [12]. It was comprised of two apps
which used inter-app communications to steal the user’s banking creden-
tials. Soundcomber shows the limitations of the Android permission model
to protect against apps that collude to aggregate their permissions [13]. Al-
though collusion has inherently a malicious component, sometimes it is hard
to distinguish collusion from collaboration.

A direct frontal attack to look for collusion of pairs, triplets, and larger
sets of Android apps is not practical because of the size of the search space.
Thus, in this work, we develop an effective filtering system to quickly analyze
relatively large app sets to detect collusion potential, and thus narrow down
the search space to help a security analyst (or other more computationally
expensive automatic tools) to focus their efforts on the most suspicious app
sets.
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3.1. Definitions

In this work, collusion refers to the ability of a set of apps to carry out an
attack through collaboration. We assume that colluding apps carry out the
same malicious actions as single apps do, such as information theft, money
theft, service misuse, sabotage, denial of service, ransom, etc. [14].

To the best of the authors’ knowledge, there is no evidence that collusion
can create new threats in mobile operating systems, as they depend on the
assets, which remain the same regardless of how the malicious code is sliced
and diced. However, collusion can drastically change the appearance of the
attack which may severely complicate its detectability during static code
inspection and during dynamic behavioural analysis. In the Soundcomber
scenario, collusion is simply used to make an information leakage attack
more stealthy.

Additionally, malicious apps can also take advantage of collusion for co-
ordination and synchronization. In this case, each app could be considered
to be malicious on its own. When colluding apps are installed on the same
device, they may coordinate their actions to improve their capabilities (com-
pared to acting on their own). An example could be one app encrypting
users’ documents and photos and another one asking for a payment to re-
verse the action (ransomware). Considering this, we base the meaning of
“collusion potential” on the following definitions:

Definition 1 (Action). An Action a is an operation that can be executed
via the operating system (Android) API such as recording audio, sending data
through the Internet, receiving data from another app, etc. Actions can be
categorised in three groups:

• Access actions involve access to system-protected resources (e.g. record
audio).

• Send actions allow apps to send information to other apps on the same
device (e.g. an implicit intent).

• Receive actions allow apps to receive information from other apps (e.g
declaration of a broadcast receiver).

Definition 2 (ASR Signature). An ASR signature is a triplet (Aapp, Sapp, Rapp)
where Aapp represents a set of actions that allow app to access system-protected
resources, and Sapp and Rapp represent sets of actions included in app to send
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and receive information from other apps (using inter-app communications),
respectively. Note that we consider a capability as the ability to execute an
action.

Definition 3 (Threat). A threat is a sequence of actions 〈a1, a2, · · · , an〉.
In this work, we consider threats to be the ones that can be realised by a single
app. Let τ denote the set of all these threats.

Definition 4 (Collusion Potential). We say that a set S consisting of at
least two apps has collusion potential iff the apps in S together can execute
a sequence Seq of actions such that:

1. Seq restricted to Access actions is a sequence in τ ;

2. Seq is collectively executed involving all apps in S, i.e., each app in S
executes at least one action in Seq; and

3. considering the Send and Receive actions in Seq, all apps in S are
connected through communication channels. That is, it is possible to
build a directed graph G = (S,C) where the elements of C are pairs of
Send and Receive actions, in which there are no unreachable nodes, i.e.
apps in S.

Our definition of collusion potential highlights two steps required for col-
lusion: execution of a malicious activity (threat) and the need to communi-
cate between the apps executing the actions of the treat. Malicious actions
and types of threats that can be executed by smartphone malware have been
extensively studied by researchers [14, 15]. Due to the high level description
of the actions it may happen that an app set marked as having collusion
potential is taking advantage of another app (via permission re-delegation
attack [16]) or just collaborating with it. In this work we consider that both
cases should be detected and highlighted as having collusion potential.

As already noted by other researchers [17], to effectively differentiate
between malicious and non-malicious behaviours one needs to be able to
inspect (apart from the app code itself, that is) the application description,
developer’s intentions and system implementations. This is very difficult to
achieve during static analysis. It is up to the security analyst (probably
with the help of other taint analysis tools) to decide whether (1) one app
is executing a permission re-delegation attack over another app or (2) if
they are merely collaborating (with the user knowledge as described in the
documentation) or (3) if they are actually colluding. Therefore, in these
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three cases, apps may exhibit exactly the same behaviour, and so must be
considered to have collusion potential (i.e. in all these cases apps have the
capability to maliciously collude).

In the next section we review the main communication channels that can
be used by colluding apps. The development of the definition into a Prolog
program to detect collusion potential is described in section 4.

3.2. Communication Channels for App Collusion

Colluding apps execute Send and Receive actions to synchronize their
actions and achieve their common goal. In some cases, these apps will use
standard communication APIs (as described previously in Section 2). Col-
luding apps may also use APIs that are not specifically meant to be used
for inter-app communication but allow the creation of covert channels. The
following list summarises all the actions that can be included in the Send
and Receive groups:

• Intents can be used by colluding apps to share information. Broad-
cast receivers and services allow apps to exchange data without user
intervention. In addition, intents used to open activities can include
information that is not necessarily required to present the new activity
to the user.

• Malicious apps can use content providers as a dropbox to exchange
information. This runs the risk of being visible to the user (e.g. creating
a new contact to exchange information). Access to system content
providers requires apps to request permissions (e.g. WRITE_CONTACTS

for the contact database).

• External storage of an Android device can also be used as a shared
dropbox to exchange information. External storage is generally avail-
able through a USB connection, SD card or, sometimes, even via non-
removable storage. Apps accessing the external storage need to declare
the READ_EXTERNAL_STORAGE or WRITE_EXTERNAL_STORAGE, depending on
the required access. Files in the external storage can be accessed using
the common file access API.

• Shared preferences are an Android feature that allows apps to store
key-value pairs of data. Although it is not intended for inter-app com-
munication, apps can use key-value pairs to exchange information if
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proper flags are defined (WORLD_READABLE or WORLD_WRITABLE) when ac-
cessing and storing data. Since the adoption of SELinux (Android 5.0),
apps cannot access the world readable files of other apps, as they are
confined to different SELinux domains.

• Colluding apps can also use standard Unix sockets to communicate
through the local network interface. Apps can use sockets opened to
localhost to communicate as if they were communicating through the
network. Communication between two apps that is mediated by an
external server is not generally counted as collusion, because the com-
munication happens outside the device domain.

• Covert channels may take advantage of APIs or features offered by the
operating system to enable communication between processes [12, 18].
In Android, this includes publicly readable and writable settings (e.g.
speaker volume level) and capturing broadcast intents generated by the
system. Additionally, processes can take advantage of covert channels
present in most computing systems like file locks, process enumeration,
free storage or memory space and CPU usage.

Table 1 summarises the keywords that can be used to enable Send and
Receive actions through overt channels in Android. The presence of these
keywords indicates that an app is able to communicate to other apps within
the same device.
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Overt channel Action Object Keywords

Intent
Send

Java (startActivity or startServer )
and (putExtra or setData)

Receive XML intent-filter

BroadcastReceivers
Send Java sendBroadcast and (putExtra or setData)
Receive Java registerReceiver

Receive XML receiver and intent-filter

Intent Results
Send Java startActivityForResult

Receive Java provider and grantUriPermissions

External Storage
Send XML WRITE_EXTERNAL_STORAGE

Receive XML READ_EXTERNAL_STORAGE

Content Providers
Send Java getContentResolver

Receive Java getContentResolver

SharedPreferences
Send Java getSharedPreferences and edit and put

Receive Java getSharedPreferences and get

Table 1: Keywords enabling communication between apps using overt channels.

Table 2 shows a similar table for covert channels in Android documented
in the literature. These API calls have two effects. First, they perform the
action they were designed for (e.g. increase volume) but, at the same time,
these API calls can be used to transmit information.
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Covert channel Action Object Keywords

Audio settings [12]
Send Java

Context.AUDIO_SERVICE and
(adjustStreamVolume or
adjustSuggestedStreamVolume or
adjustVolume)

Receive Java
Context.AUDIO_SERVICE and
getStreamVolume

Settings broadcast [12]
Send Java

Context.AUDIO_SERVICE and
setVibrateSetting

Receive Java or XML RINGER_MODE_CHANGED

Wake lock [12, 18]
Send Java

(Wakelock and acquire) or
WakefulBroadcastReceiver

Receive Java ACTION_SCREEN_ON and ACTION_SCREEN_OFF

File lock [12, 18]
Send Java FileLock and lock and release

Receive Java isValid

Proc. enumeration [18]

Send C fork or pthread_create

Receive
C proc

XML GET_TASKS

Java ActivityManager and getRunningServices

Socket discovery [18]
Send Java Socket

Receiver Java Socket and isClosed

Free space [18]
Send Java *

Receive
Java StatFs and getAvailableBlocks

Java MemoryInfo and availMem

CPU Usage [18]
Send Java *
Receive Java *

Table 2: Keywords enabling communication actions between apps using covert channels.

4. Detecting Collusion Potential

Mobile apps can be downloaded from the web or app markets such as
Google Play. These apps are analyzed by market operators and anti-malware
services that constantly crawl these markets. A combination of static and
dynamic analysis techniques as well as statistical and machine learning meth-
ods are used to establish reputation and risk values for each app. However,
all these techniques consider apps in isolation and neglect to take into ac-
count other apps that could be installed on the same device. This hinders
detection of possible collusions between apps installed on the same device.
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Our approach aims to extend these app analysing services by also consid-
ering the potential for collusion among sets of apps; the reputation and risk
of an app are measured not only in terms of its own features, but also taking
into account additional capabilities when installed together with other apps
on the same device.

To do so, for each app we extract the actions which it is able to perform
as ASR signatures. These are described as Prolog facts. In a similar way,
collusion potential is described as a set of logic rules that are composed by
Prolog facts. Collusion rules can be applied to query for apps that may be
potentially colluding. A detailed view of the process is given in the following
sections.

4.1. Extracting ASR Signatures

ASR signatures are extracted by means of a static analysis of the app
manifest and app code. In this work we consider the usage of (i) implicit
intents, (ii) shared preferences and (iii) external storage for communication,
i.e., a subset of the channels listed in Section 3.2. Therefore, the ASR signa-
ture of an app is a combination of all permissions, intents, shared preferences
and external storage channels that can be used by an app to send or receive
information. Noted that, as described in Section 3, one mechanism can be
utilized to create several communication channels. For instance, an app that
stores information in two shared preferences files, would be creating two
communication channels.

To analyze app code, we have extended Androguard [19], a reverse engi-
neering tool for Android apps written in Python1. Our extension looks up
API calls involved in the creation and broadcast of intents and broadcast
receivers and the access and modification of shared preferences files. Param-
eters that specify the communication channel for each method are tracked
back through the code. We trace back the value of the action parameter for
each broadcast intent and corresponding intent filters. In the case of shared
preferences, we track the name of the shared preferences file. As with any
static analysis tool, our tool is not able to trace back values that are dynam-
ically defined. In those cases, we return the API call path that generates the
value.

1Our code is available at https://github.com/acidrepo/collusion_potential_

detector
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Table 3: ASR signature of the SMS app (id 4) that is part of the Botnet group.

Aid4

Permissions
READ_SMS

SEND_SMS

Sid4 = ∅
Rid4

Intent
SMS_SENT

sms

The app manifest is analyzed to identify usage of external storage or
static broadcast receivers. We are not able to obtain the specific channel
used by apps through external storage. This requires identifying all API
calls that can modify the external storage file system. PScout is able to
identify the Android library API calls that require READ_EXTERNAL_STORAGE

and WRITE_EXTERNAL_STORAGE permissions [20]. However, standard I/O calls
are not included in this mapping; this task is left for future work.

As an example, Table 3 shows the ASR signature of a simple artificial col-
luding app that sends premium SMS messages. This app requires READ_SMS to
display the user’s SMS and SEND_SMS to send SMS. This permission is abused
to send SMS messages when an intent with the action sms is received. Details
about this app, and the rest of the apps created for validation purposes, can
be found on section 4.4.

4.2. Characterizing Collusion Potential with Logic Rules

Our approach to detect collusion potential utilizes logic programming in
Prolog. We have created a Prolog program, the ACiD (Application Collusion
Detection) rule set, that defines when a set of apps shows collusion potential.

Access actions have been categorized into four high level actions: (i)
accessing sensitive information (ii) using an API that can incur a financial
loss (iii) controlling device services (e.g. camera) and (iv) sending information
outside the device. These actions are characterised by permissions and API
calls which are mapped to one or more of the four high level actions. For
example, an app that declares the INTERNET permission will be capable of
sending information outside the device:

access(App, PInternet)→ information outside(App)
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Similarly:

access(App, PRead contacts) → sensitive info(App)

access(App, PSend SMS) → money(App)

access(App, PKill process) → control service(App)

In Android 4.3, overall 35 permissions can be used to access sensitive in-
formation; 12 to send information outside the device; 3 to execute financially-
sensitive APIs (invoking actions which can cost money, e.g. making a phone
call or sending an SMS); and 39 to control device services. The complete
mapping of permissions to actions can be found in the project repository 2.

Send and Receive actions are characterised by specific API calls offered
by the Android OS. We create a fact for each to describe that communi-
cation action. When using Intents and SharedPreferences, we are able to
specify the communication channel using the intent actions and preference
file, respectively. As an example, if an app sends a BroadcastIntent with an
action SEND_FILE we consider the following:

send broadcast(App, Intentsend file)

→ send(App, Intentsend file)

We consider that two apps communicate if one of them is able to send and
the other to receive via the same channel.

send(Appa, channel) ∧ receive(Appb, channel)→
communicate(Appa, Appb, channel)

Note that communication is directed, i.e., information flows from Appa to
Appb.

Finally, each of the threats is characterised by a sequence of actions. Our
threat set τ considers information theft, money theft and service misuse.
Specifically, we consider that two apps have collusion potential to execute an
information theft when one of them has access to sensitive information and

2https://github.com/acidrepo/collusion_potential_detector
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communicates with another app which can do external communications:

sensitive info(Appa) ∧
information outside(Appb) ∧

communicate(Appa, Appb, channel) →
information collusion(Appa, Appb)

We consider that two apps have potential to collude for money theft
when one app has access to cost sensitive APIs and receives information
from another app:

money(Appb) ∧
communicate(Appa, Appb, channel) →

money collusion(Appa, Appb)

An internet connection in Appa would allow a server to send commands
to an app with access to cost sensitive APIs:

information outside(Appa) ∧
money(Appb) ∧

communicate(Appa, Appb, channel) →
money collusion(Appa, Appb)

In a similar sense, this same app could also send commands from a C&C
server to other apps that have access to device services:

information outside(Appa) ∧
control service(Appb) ∧

communicate(Appa, Appb, channel) →
service collusion(Appa, Appb)

4.3. ACiD Rule Set in Prolog

We have translated the ACiD rules into a Prolog program including rules
required to identify communication paths (and specific channels) between
applications. Then, once the ASR signatures have been extracted from an
app set, they can be translated into Prolog facts to be part of the Prolog
program that is executed to find collusion potential.
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On the code level in Prolog, we represent ASR signature as facts, see
Listing 1 for an excerpt. The package predicate relates the name of the
app with the filename of the apk, the access, send, and receive predicates
gather information on what permissions and keywords were found in the code
of an app.

package(’bbc.mobile.weather’,’
BBC Weather androidappsapk.co 215.apk’).

...

access( ’bbc.mobile.weather’,
’android.permission.INTERNET’).

access( ’bbc.mobile.weather’,
’android.permission.ACCESS NETWORK STATE’).

...
send(’bbc.mobile.weather’,

’ i android . intent .action.GET CONTENT’).
send(’bbc.mobile.weather’,

’ i android . settings .APPLICATION DETAILS SETTINGS’).
...
receive ( ’bbc.mobile.weather’,

’ i android .net.conn.CONNECTIVITY CHANGE’).
receive ( ’bbc.mobile.weather’,

’ i android .nfc .action.NDEF DISCOVERED’).
...

Listing 1: Facts on the BBC Weather App

In general, a Prolog fact access(app, permission) is created for every
permission used by an app. For every channel sending information outside the
app sandbox, we generate a send(app,channel) fact and receive(app,channel)

for all channels receiving information from outside the sandbox. The extrac-
tion of ASR signatures is carried out by a modified version of Androguard.
We created a Python script to translate the obtained signatures into Prolog
facts. This same script is used to generate a version of the Prolog progam
that includes both the facts and the ACiD rule set. If new apps are analyzed,
the generated file can be updated with the additional facts extracted from
the apps.

The complete Prolog program is structured in seven sections:

• Package facts: map the file names of the APKs to the package name of
the app inside each APK file.

• Access facts: codify the accessed permissions, Aapp, extracted from the
apps in the analysed set.
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• Communication facts: codify the communication facts, Sapp and Rapp,
extracted from the apps as communication actions in com.

• Access to action rules: map access facts, Aapp, to application actions,
Actprolog.

• Communication rules: detect when two or more apps are communicat-
ing based on the extracted Sapp and Rapp.

• Collusion rules: describe the possible collusion behaviours. These rules
are fired when action and communications facts are fired from their
respective rules.

• Channel rules: allow to detect which channels are using a set of col-
luding apps, once the colluding app set has been detected with the
previous rules.

A Prolog predicate (q :- p) describes a logical rule of the form p → q.
Prolog uses modus ponens to evaluate queries and look for results. If p is
true, then it will consider q to be also true. The identification of communi-
cation paths between apps is performed by using recursive Prolog predicates
(Listing 2). The base case (first rule) identifies when two apps are com-
municating. This is, if AppA sends information through Channel and AppB

receives information from the same channel, it means they communicate
(comm_l(AppA,AppB,2,_,[]). The recursive predicates (last two rules) add
more apps to the communication path. To avoid circular paths, all rules
check if the app that is being analysed is already a member of the path
(nonmember).

comm l(AppA,AppB,2, ,[]) :− trans(AppA,Channel), receive(AppB,Channel), AppA\=AppB.
comm l(AppA,AppB,Length,[],[AppD|Rest]) :− Length > 2,send(AppA,Channel),

receive(AppD,Channel), AppA\=AppD, PrevL is Length −1,
comm l(AppD,AppB,PrevL,[AppA],Rest), AppA\=AppB.

comm l(AppA,AppB,Length,Visited,[AppD|Rest]):− Length > 2, send(AppA,Channel),
receive(AppD,Channel), AppA\=AppD, nonmember(AppD,Visited), PrevL is Length − 1,
comm l(AppD,AppB,PrevL,[AppA|Visited],Rest), AppA\=AppB.

Listing 2: Communication rules

The channel rules allow, once a collusion path has been obtained, to
extract the list of communication channels used by the apps (Listing 3).
Similarly, the first predicate (first rule) saves the channel used when two
apps are communicating. The second predicate looks recursively for the rest
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of the channels. These rules facilitate the security analyst task to investigate
how the potential collusion can happen.

chanl(AppA,AppB,[],Channel) :− send(AppA,Channel),receive(AppB,Channel), AppA\=AppB.
chanl(AppA,AppB,[AppD|Rest],[Channel|Channels]) :− send(AppA,Channel), receive(AppD,Channel),

chanl(AppD,AppB,Rest,Channels).

Listing 3: Channel identification rules

4.4. Validation

We performed an initial validation by running our tool against a set of
eleven specifically developed artificial apps that include colluding and non-
colluding apps3 which are summarized in Table 4. We decided to use apps
developed by ourselves for two reasons. First, to the best of our knowledge, no
colluding apps had been identified in the wild at that time. Thus, we lacked
a set of previously known positive examples. Second, even if there were apps
identified as colluding, we could not be 100% certain about the quality of a
non-colluding set: even apps downloaded from a reputable market might be
colluding, i.e., we lacked a set of previously known negative examples.

There are nine colluding apps that have been developed to cover all col-
lusion scenarios described in Section 3. They belonged to three groups:

• The Document Extractor group is comprised of two apps. One of
the apps in the group looks for sensitive documents (txt, pdf, db, xls,
etc.) on the external storage (app1). This information is shared with
app2 using the shared preferences. The information received is sent to
a remote server.

• The Botnet group is comprised of four apps. One of the apps (app4)
acts as a relay that receives orders from the command and control
center. The other colluding apps execute commands depending on their
requested permissions. They are capable of sending SMS messages
(app4), stealing the user’s contacts (app5) and starting and stopping
tasks (app6). This group uses intents as communication channel.

• The Contact Extractor group is comprised of three apps. This group
sends the device’s address book to a remote server. The first app (app7)
reads the contacts from the address book, the second (app8) forwards

3Due to the malicious nature of the apps, they are only available upon request.
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Table 4: Summary of colluding app groups included in our basic app set.

Group Id Threats Permissions Coll. with Channel
Document 1

Inf. theft
READ_EXTERNAL_STORAGE 2 Shared Prefs.

Extractor 2 INTERNET 1 Shared Prefs.

Botnet

3
Inf. theft

INTERNET 4,5,6 Intents

4
READ_SMS

3 Intents
Service misuse

SEND_SMS

5 READ_CONTACTS 3 Intents

6 Money theft
GET_TASKS

3 Intents
KILL_BACKGROUND_PROCESSES

Contact
7

Inf. theft

READ_CONTACTS 8,9 Intents

Extractor
8 WRITE_EXTERNAL_STORAGE 7,9 Ext. Storage

9
INTERNET

7,8
Intents

READ_EXTERNAL_STORAGE Ext. Storage

Non 10 - - - -
Colluding 11 - INTERNET - -

them to the third (app9), which sends them to the Internet. This group
uses intents and the external storage as communication channels.

In addition to the colluding apps, the validation set included two non-
colluding apps. These are a document viewer (app10) and an information
sharing app (app11). The first app displays different file types on the device
screen and uses other apps (through an intent with the action android.intent.action.SEND)
to share their uniform resource identifier. The second app receives text
(through the same action) and sends it to a remote server.

4.5. Validation Run

Table 5 shows the results obtained from analyzing the crafted colluding
app set. “Dark red club” entries show when we detect collusion potential.
As an example, the entry in row 1, column 2 means: the program detects
that app1 sends information to app2, and these two apps collude to perform
“information theft”. As we take communication direction into consideration,
the resulting matrix is non-symmetric, e.g., there is no entry in row 2, column
1. Additionally, our approach is able to identify transitive collusion attacks
(i.e. app7 colluding with app9 through app8).
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Table 5: Collusion Matrix of the Prolog program. ♣ = Information theft. $ = Money
theft. ♠ = Service misuse. ♣, $, ♠ = Benign showing collusion potential.

app 1 2 3 4 5 6 7 8 9 10 11
1 ♣ ♣ ♣
2
3 $♣ ♠ ♠
4
5 ♣ ♣ ♣
6 ♣ ♣
7 ♣ ♣ ♣ ♣ ♣
8 ♣
9
10 ♣
11

“Gold club” symbol marks apps flagged as having some collusion poten-
tial according to our approach but not colluding in reality. For instance, the
entry in row 1, column 10 means: the program flags collusion of type “infor-
mation theft” though the set {app1, app10} is clean. However, they are just
exchanging information. As stated in our definition of collusion potential,
some benign apps can share access to sensitive resources (e.g. a location
being shared from a maps app to a social media app). As we consider all
channels available in Android as suitable for collusion in our first approach,
apps using common channels such as intents with VIEW or SEND actions (which
are very frequently used in Android apps) are also considered to have collu-
sion potential. However, it is unlikely to see apps using these channels for
collusion as other apps could have registered to receive the same information.
We have taken this fact into consideration when scaling up our methodology
(Section 5).

Overall, our approach identifies all colluding app sets but it also flags
eight cases with collusion potential where apps are just collaborating.

5. Scaling up

Our initial methodology takes an app set and finds all potentially collud-
ing app sets. This works as long as the app set to analyze is of a reasonable
size (i.e., the number of apps that are regularly installed on a regular smart-

21



phone, about 20 to 30). However, if the number of applications to analyze is
larger, scalability becomes a more serious issue.

5.1. Collusion Potential and Computational Complexity

Figure 1 shows an estimate of the maximum number of potentially collud-
ing sets depending on the size of the app set to be analyzed. These estimates
correspond to the possible combinations of k apps in a group of n apps.
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Figure 1: Maximum number of potentially colluding app sets that can be found depending
on the size of the number of apps analyzed.

As the number of apps increases, the number of potentially colluding
sets rapidly increases. Therefore, if the analyzed apps show a high degree
of communication capabilities, the number of potentially colluding app sets
will become unmanageably large.

5.2. Managing Complexity

To address scalability, we improved the Prolog-based methodology tak-
ing into account the philosophy of Android: it strongly promotes the use of
intents and other IPC communications in order to improve user experience.
Consequently, many communication paths detected by our method will be
benign, flagging app sets that have collusion potential, but are just collabo-
rating. If we were able to identify and remove these benign communications,
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then the corresponding potentially colluding sets would be drastically re-
duced in size.

We analyzed communication signatures generated by more than 50,000
apps included in our experiment dataset (Section 6). Up to 40% of the
analyzed apps have the capability to read from and write to external storage.
Our approach does not identify specific files accessed in the external storage.
Consequently, our crude initial approach would consider all these apps to
be capable of communicating with each other. However, this is not the
case and fails to represent their real behaviour. We decided to leave out
external storage as a communication channel when scaling up our approach.
Identification of specific files opened by each app (via tracking their locations
and names) is left for future work.

Similarly, we filtered out some common intents used by apps to exchange
information. Specifically, we removed the following intent-based communi-
cations4:

• Intents that can only be generated by the operating system. These
can be found in the Android Open Source Project Git page5. We have
identified 253 intent actions in this category.

• Intent actions that are created by common and trusted third party
applications such as Facebook, Dropbox, etc. These are sent by appli-
cations that want to interact with these apps, but only the apps from
the same developer (Facebook, Dropbox, etc.) receive them. We can
detect them by inspecting intents sent and received by the clean apps
of our data set – c.f. Section 6.1 for details. Intents exhibiting this
behaviour will be received by one (e.g. Facebook) or a small number
of apps (e.g. apps implementing the Facebook API). To rule out such
intents we measured the amount of apps that send the intent divided
by the ones that are able to receive it:

cintent =
apps sendingintent
apps receivingintent

Any intent action included in the aforementioned apps or with a Cintent ≥
5 has been included in this list. We have obtained 693 intent actions
to filter by using this approach.

4The full list of such intents can be found in our github repository.
5https://android.googlesource.com
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• Intents that are used to execute common tasks such as view a document
(android.intent.action.VIEW); send something (android.intent.action.SEND);
or open an application (android.intent.action.MAIN) are widely used
in the Android ecosystem. Some of these are defined in the Android
documentation6. These kinds of intents are widely sent and received by
apps. As they are declared by many apps, in most cases, the user will
be asked to select the app to handle the intent, making the collusion
attack infeasible. We have identified 208 intent actions matching these
characteristics.

6. Experiments

We have used our methodology to look for collusion potential in a set of
50,174 apps provided by McAfee. The goal of this analysis was to shed light
on the way Android apps communicate and to test whether our approach can
deal with large numbers of apps found in the wild. As our approach focuses
on specific, selected communication channels, it might happen that apps not
flagged by our approach could be colluding as they use a channel which our
analysis does not track.

6.1. Dataset Description

The dataset contains 50,174 Android apps collected from February 2012
up to February 2016. These apps have been categorized by McAfee into
three app categories: malicious ; potentially unwanted ; and clean. Potentially
unwanted apps are typically related to excessive advertising, mild privacy
invasions and other misbehaviours which cannot be classified as outright
malicious. Apps that are known to lack any malicious behaviour are labelled
as clean. Table 6 shows a summary of the three groups.

Table 6: Summary of app sets used in our analysis.

Malware Unwanted Clean
# of apps 13,805 13,991 22,378
# of overall installs 3,696,720 7,656,755 21,205,724,533
Avg size in KB 3,007.9 7,394.52 10,208.3

6http://developer.android.com/reference/android/content/Intent.html
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6.2. Usage of Communication Channels

We first checked if there is a difference between the usage of intents and
shared preferences as communication channels. Figure 2 shows the distri-
bution of individual channels found in each of the analyzed app sets (after
filtering out common intents). Our first observation is that intent based
communication is more predominant in the three analyzed app sets. This is
an expected result because intent-based communications are the suggested
method for inter-app communication in Android.

6.2.1. Shared Preferences based Channels

We found a significant difference in the amount of individual channels
that use shared preferences for the malicious and unwanted app sets. Shared
Preferences are not originally intended for application communication. If a
developer wants to make a shared preference file accessible outside of the
sandbox, this needs to be done explicitly by changing the default flag value
(WORLD_READABLE or WORLD_WRITABLE). Therefore, it is likely that the pres-
ence of such channels indicates deliberate information sharing rather than a
mistake during app development.
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Figure 2: Distribution of unique shared preference and intent based communication chan-
nels. Recv channels are used to receive information. Trans channels used to transmit
information.
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We have further analyzed how the most common shared preference chan-
nels are used. Figure 3 shows the number of apps in each set using each of
the top ten identified channels to send or receive information.
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Figure 3: Apps using any of the top 10 shared preference channels. The string before the
’-’ specifies the app package of the shared preference file. The second string specifies the
file name used to store the information. “AppPackage” specifies the application package.
“CallGraphX” describes a call graph that is being used by different apps.

Next we manually analyzed samples of the apps employing these commu-
nication channels. We found that apps using shared preferences as channels
fall into three categories. First, there are some apps that dynamically define
the package and preference file they write to or read from (SP4). In this case,
each app uses the preference file for a specific purpose and it is not possible to
extract a behavioural pattern. Second, some apps access preference files that
have the same name as their app package (SP7). These apps also exhibit
different behaviours so it is not possible to extract a pattern from them. The
third category consists of the rest of the channels, which are the ones that
can be directly mapped to a string value or a call graph. We have found out
that all these channels were related to using specific software libraries.

The most used shared preference channels in Figure 3 were traced back
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to five different libraries. Channels SP1, SP5 and SP8 are included inside
a SDK that belongs to the Chinese company Play.cn. While most apps
including it are categorized as malicious or potentially harmful, some of them
are considered clean. These apps should be further analyzed to determine
their behaviour. Channel SP2 is created by the OpenUDID library. This
library, which is now discontinued, was used to generate a unique identifier
that could be shared between different apps. This behaviour puts the user’s
privacy at risk: it can be used by different apps to correlate if they are
installed on the same device. SP3 and SP9 belong to a library developed
by the Chinese company Baidu. We have been able to identify a colluding
behaviour by apps using this SDK, which is described in detail in Section 7.
Channel SP6 belongs to apps including the Adobe Air SDK. The preference
file is read by a method named getTelemetrySettings. We did not find any
app writing into that file in any of our three app sets. Finally, channel SP10
belongs to apps including the Heyzap advertising library. Again, no apps in
our three datasets were found writing data into that file.

6.2.2. Intent based Channels

Figure 4 shows the number of apps that use the most frequent intents in all
the three sets of apps. Analyzing intent communication is more challenging
than shared preferences communications. Depending on the app component
(activity, service or broadcast receiver) used to match an intent, it is not
possible to see by static analysis if it is intended for the same app or a
different one. Additionally, as seen with I3 and I4, we have not detected
any receiver that uses intent actions defined programatically. This is because
components that receive intents are generally defined statically with strings
inside the AndroidManifest.xml file.

We found that intent-based communications can also be used to help with
app classification. In Figure 4, malicious and unwanted apps use inter-app
communication channels that are not being used by clean apps.

As with the shared preferences, we analyzed the origin of the predomi-
nant communication channels found in our analysis. Most of them belong to
libraries provided by advertisement companies. I1 is included in an aggres-
sive ad library known as apperhand. I2, I4, I8 and I9 belong to the AirPush
advertisement library. The Sendroid ad library includes the communication
channel I3. Finally, I5, I6 and I7 are included inside the Startapp ad library
while I10 appears in a Chinese library called umeng.
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Figure 4: Apps using any of the top ten used intent enabled channels. CallGraphX
describes a call graph that is being used by different apps. Quoted values are strings.

6.3. Collusion Potential

Using Prolog to analyze collusion potential provides a great deal of flexi-
bility, by simply modifying the Prolog rules to define collusions we are looking
for. We focused on analyzing collusion potential of app sets formed by 2 or 3
apps that may try to extract the accounts, SMS messages or the user contact
list. We have limited the size of app sets to two and three for two reasons.
First, it is unlikely that an attacker has the resources to make the user to
install more than 3 apps. Second, larger app sets will be composed of smaller
subsets. Finding them is just a matter of combining smaller colluding app
sets. Listing 4 shows the Prolog rules required to identify apps with collusion
potential that may affect the accounts, SMS messages or the contacts of the
device.

coll accounts (AppA,AppB,Path,Length):− uses(AppA,’GET ACCOUNTS’),
comm(AppA,AppB,Length, ,Path), out comm(AppB).

coll contacts (AppA,AppB,Path,Length): uses(AppA,’READ CONTACTS’),
comm(AppA,AppB,Length, ,Path), out comm(AppB).

coll sms(AppA,AppB,Path,Length): uses(AppA,’READ SMS’), comm(AppA,AppB,Length, ,Path),
out comm(AppB).
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Figure 5: Percentage of applications that access accounts, SMS and contacts with and
without collusion potential in each of the datasets.

Listing 4: Selection of collusion potential Prolog rules

Figure 5 shows the percentage of apps inside each set that exhibit collusion
potential for any of the analyzed permission-protected resources (accounts,
SMS and contacts). Results show that at least 75% of apps in each of the
datasets do not exhibit collusion potential regarding the analyzed resources.
This greatly reduces the number of possible apps requiring further analysis.
Apps inside the malware group exhibit more collusion potential than apps
in the other categories (with the exception of apps that access accounts in
the clean dataset). This is because malware apps generally request more
permissions [21] and the inclusion of advertisement libraries, as we saw in
the previous section.

The potentially unwanted app set includes apps with less collusion po-
tential. At first sight this is an unexpected result. However, when analyzing
the amount of apps that have colluding potential inside each of the groups,
we found an explanation. Figures 6 and 7 show the number of apps that can
receive each sensitive protected resource from an app that has been identi-
fied to have collusion potential. Although apps inside the unwanted group
have a smaller number of apps capable of leaking sensitive information, they
are able to share them with a much higher number of apps than apps in
the other categories. This is because apps in this group include aggressive
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advertisement libraries such as the ones described in the previous section.
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Figure 6: Number of potentially colluding app pairs obtained for each app that exhib-
ited collusion potential in each of the sets for each of the analyzed permission-protected
resources.

Apps in the clean set have the smallest number of potentially colluding
pairs, while malware apps have a higher number of potentially colluding app
pairs regarding accounts (Figure 6). This happens because clean apps request
account related permissions more often but communicate with fewer apps,
while malware apps require slightly less access to accounts, but communicate
with many more apps.

Clean Potentially Unwanted Malware

×105

0

2

4

6

8

10

12

14

16
Accounts

Clean Potentially Unwanted Malware

×105

0

2

4

6

8

10

12

SMS

Clean Potentially Unwanted Malware

×105

0

2

4

6

8

10

12

14

16
Contacts

Figure 7: Number of the potentially colluding app triplets obtained for each app that ex-
hibited collusion potential in each of the sets for each of the analyzed permission-protected
resources.

This pattern remains when analyzing the number of potentially colluding
triplets generated by apps with access to the analysed resources (Figure 7).
The main difference is the magnitude on the number of colluding triplets, as
the number of possible combinations increases.
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6.4. Time Efficiency

The process required to find app sets with collusion potential is split in
two phases: extracting the ASR signatures and executing the Prolog pro-
gram. The first phase needs to be executed only once per app, as signatures
can be stored in a database. The second phase is executed every time the
fact database is updated (i.e. when a new app is analyzed). It should be
noted that our analysis is not bidirectional as we identify the direction of the
information flow.
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Figure 8: Time required to extract ASR signatures from an app, depending on the size
of the classes.dex file.

Figure 8 shows the time required to extract the ASR signatures from
an app, depending on the size of the classes.dex file. All experiments were
executed on a commodity PC with an Intel Core i5 2.7 GHz processor and
8GB DDR3 RAM. As expected, time grows with the amount of code to be
analyzed. Obtained times fit with a linear function with an R-Square of 76%.
For example, a 9.5 Mbyte dex file requires around 4 seconds to process. Note
that we have not put an emphasis on optimizing the ASR extraction code.

Figure 9 plots the time required to list all apps colluding with a specific
app. This time depends on the number of colluding sets found for the queried
app. Queries for apps that do not exhibit any colluding behaviour take 30 ms
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on average. When looking for potentially colluding app pairs, the maximum
query time obtained during our experiments was 216 ms. The higher times
shown in Figure 9 were obtained when looking for colluding app triplets.
Obtained times fit with a polynomial of grade 2 with a R-square of 71%.
Analysis time could be reduced by stopping queries at the first match; this
way, only apps with a match would be analyzed further.
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Figure 9: Time required to execute a Prolog query depending on the amount of potentially
colluding app sets the app belongs to.

7. Colluding Behaviour of MoPlus SDK

During our experiments querying for potentially colluding app pairs, we
identified a group of apps that was communicating using both intents and
shared preference files. A manual review of the flagged apps revealed that
they were sharing information through shared preferences files to synchronize
execution of a potentially harmful payload. This payload was embedded into
all the apps through a library, the MoPlus SDK. MoPlus is included in more
than 5,000 Android installation packages (APKs). This library has been
known to be malicious since November 2015 [22]. However, the collusion
behaviour of the SDK was unknown. In the rest of this section, we briefly
describe the malicious behaviour of the SDK and provide a more detailed
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analysis of its colluding behaviour. To the best of our knowledge, this is the
first instance of collusion found in the wild.

7.1. Malicious Payload

The MoPlus SDK has the ability to open a local HTTP server on the user
device. This enables the attacker to perform a series of malicious operations
including:

• Send arbitrary intents received via the command and control (C&C)
server.

• Obtain sensitive information from the users device, including the user
location and the IMEI (International Mobile Equipment Identity).

• Install apps silently in rooted devices.

• Add contacts received from the C&C server.

The malicious payload embedded inside the MoPlus SDK inherits all
permissions requested by the app. As these are chosen by the app developer,
which may differ from the SDK developer, it is possible that an app including
the SDK does not have the necessary permissions to execute all the library’s
malicious payload. The colluding behaviour of the MoPlus SDK aims to
avoid this problem by identifying which of the apps that include the MoPlus
SDK and are installed on a device has the most comprehensive access to
system resources.

7.2. Colluding Behaviour

The detected colluding behaviour differs from the standard colluding be-
haviour studied in most app collusion research [12, 18]. In a nutshell, all
apps including the MoPlus SDK that are running on a device will talk to
each other to check which of the apps has the most privileges. This app
will then be chosen to execute the local HTTP server able to receive com-
mands from the external C&C server, maximizing the effects of the malicious
payload.

The MoPlus SDK includes the MoPlusService and the MoPlusReceiver

components. In all analyzed apps, the service is exported. In Android, this
is considered to be a dangerous practice, as other apps will be able to call
and access this service. However, in this case it is a feature used by the SDK
to enable communication between its apps.
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The colluding behaviour is executed when the MoPlusService is cre-
ated (onCreate method). This behaviour is triggered by the MoPlus SDK
of each app and can be divided in two phases: establishing app priority
and executing the malicious payload. In the next sections, we will de-
scribe this behaviour in detail with reconstructed code samples. These have
been obtained by disassembling part of the code from the Baidu Search-
box app (MD5=062f91b3b1c900e2bc710166e6510654). Locations of different
payloads may differ from app to app, as code is generally obfuscated by using
Proguard.

7.2.1. Establishing app priority

During SDK initialization, the MoPlusService is created inside each app
with the MoPlus SDK. The service executes three checks (Listing 5):

1. The version of the MoPlus SDK is checked against a value stored in a
preference file (lines 3 to 5).

2. The SDK looks for the tag DisableService inside the AndroidManifest
(!a(Context), line 8). If it is found, it will not continue to execute.

3. The SDK checks if the app executing the SDK has all the necessary
components of the SDK and the minimum permissions required by the
SDK have been granted (j(Context), line 8). The minimum permis-
sions required to continue execution are: INTERNET, READ_PHONE_STATE,
ACCESS_NETWORK_STATE, BROADCAST_STICKY, WRITE_SETTINGS, WRITE_EXTERNAL_STORAGE,
SET_ACTIVITY_WATCHER, GET_TASKS.

1 SharedPreferences localSharedPreferences = paramContext.getSharedPreferences(”pst”, 0);
2 int i = c(paramContext, paramContext.getPackageName());
3 int j = localSharedPreferences.getInt(”pr v”, 0);
4 SharedPreferences.Editor localEditor1;
5 if (( j < i) || (paramBoolean)){
6 Log.d(”Utility”, ”oldVCode=” + j + ” vcode=” + i + ” isForce ” + paramBoolean);
7 localEditor1 = paramContext.getSharedPreferences(paramContext.getPackageName() +

”.push sync”, 1).edit();
8 if ((! a(paramContext)) && (j(paramContext)))
9 break label197;

10 localEditor1 .putLong(”priority”, 0L);
11 }

Listing 5: Code used to check for execution conditions. This code is included in the class
com.baidu.android.moplus.util.a.

If any of these checks fail, the service assigns itself a zero priority inside
a preference file readable by the rest of the apps installed in the system
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(line 10). The name of the preference file is created adding the extension
.push_sync to the app package name. The SDK uses the WORLD_READABLE

flag to save the file so other apps can access it.
If the three checks hold, the service executes the method f(Context).

This method computes a priority to the app that depends on several factors
(Listing 6).

1 public static long f(Context paramContext){
2 long l1 = 0L;
3 if (paramContext == null)
4 return l1 ;
5 if (!g(paramContext, paramContext.getPackageName()))
6 l1 += 1L;
7 long l2 = l1 << 1;
8 if (! i (paramContext))
9 l2 += 1L;

10 long l3 = l2 << 1;
11 if (! f(paramContext, paramContext.getPackageName()))
12 l3 += 1L;
13 long l4 = l3 << 1;
14 if (d(paramContext, paramContext.getPackageName()))
15 l4 += 1L;
16 long l5 = l4 << 1;
17 if (p(paramContext))
18 l5 += 1L;
19 long l6 = l5 << 1;
20 if (b(paramContext, paramContext.getPackageName()))
21 l6 += 1L;
22 return 0x79000000000000 | (l6 | 0xFF & i(paramContext, ”moplus addon priority”) << 40);
23 }

Listing 6: Code used by MoPlus SDK to assign priority execution to each app MoPlusService.
This code is included in the class com.baidu.android.moplus.util.a.

These include, from lowest to highest priority:

1. Several meta-data values from the manifest (lines 3 to 15): DisableLocalServer,
DisableStatistic, DisableApplist, isBaiduApp.

2. Access to the contact lists (lines 17 and 18).
3. If the app is part of the system image (l. 20 and 21).
4. A priority value included in the manifest (line 22).

The obtained priority is saved in the preference file with push_sync ex-
tension. This behaviour is executed by all apps including the MoPlus SDK
(Figure 10).

7.2.2. Executing the malicious payload

After the priority has been obtained and stored, the service method
OnCreate() calls the method a(Context,long) (Listing 7) to create and broad-
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Figure 10: Phase 1 of the colluding behaviour execution. Each app saves a priority value
that depends on the degree of access it has to the system resources. Shown priority values
are examples.

cast a new intent object.

1 public static void a(Context paramContext, long paramLong){
2 Context localContext = paramContext.getApplicationContext();
3 Intent localIntent = c(localContext);
4 localIntent .setPackage(d(localContext));
5 a(localContext, localIntent , paramLong);
6 }

Listing 7: Creation of a new intent object. The method a is used to broadcast it. This
code is included in the class com.baidu.android.moplus.util.a.

The localIntent value is obtained from the execution of the method
c(Context) (line 3). This method creates the intent that will start the
MoPlusReceiver (Listing 8).

1 public static Intent c(Context paramContext){
2 Intent localIntent = new Intent(”com.baidu.android.moplus.action.START”);
3 localIntent .addFlags(32);
4 localIntent .putExtra(”method version”, ”V1”);
5 return localIntent ;
6 }

Listing 8: Creation of a new intent object. The method a is used to broadcast it. This
code is included in the class com.baidu.android.moplus.util.a.

The call to d(Context) (line 4) looks for the app package with highest
priority through the method a(Context,String,String) (Listing 9).

1 public static String d(Context paramContext){
2 return a(paramContext, ”.push sync”, ”priority”);
3 }

Listing 9: Method that returns the app package with highest priority. This code is included
in the class com.baidu.android.moplus.util.a.
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The method a(Context,String,String) looks for all the packages that
are able to answer the Intents included in the MoPlus SDK (Listing 10, lines
3 to 6). These include both com.baidu.android.moplus.action.START and
com.baidu.android.pushservice.action.BIND_SYNC.

1 public static String a(Context paramContext, String paramString1, String paramString2){
2 List localList = h(paramContext);
3 if (( localList == null) || ( localList . size () <= 1)){
4 localObject1 = paramContext.getPackageName();
5 return localObject1;
6 }
7 long l1 = paramContext.getSharedPreferences(paramContext.getPackageName() + ”.push sync”,

1).getLong(”priority”, 0L);
8 String str = paramContext.getPackageName();
9 Iterator localIterator = localList . iterator () ;

10 while ( localIterator .hasNext()){
11 localObject2 = ((ResolveInfo) localIterator .next()) . activityInfo .packageName;
12 SharedPreferences localSharedPreferences2 =

paramContext.createPackageContext((String)localObject2,
2).getSharedPreferences((String)localObject2 + paramString1, 1);

13 ...
14 }
15 }

Listing 10: Method that inspects all shared preference files of packages that answer the
MoPlus SDK actions. This code is included in the class com.baidu.android.moplus.util.a.

For each package found, it inspects the contents of the push_sync file to
get its priority, returning the package name of the one with highest priority
(Listing 10, line 10 to end). The intent to be launched is configured so that
only receivers listed in the returned package can receive it (Listing 7, line 4).
Finally, the method a(Context, Intent, long) (Listing 11) cancels previous
intents being registered (to avoid launching the service more than once) and
sends the intent after a delay passed as a parameter.

1 public static void a(Context paramContext, Intent paramIntent, long paramLong){
2 PendingIntent localPendingIntent = PendingIntent.getBroadcast(paramContext, 0, paramIntent,

268435456);
3 AlarmManager localAlarmManager = (AlarmManager)paramContext.getSystemService(”alarm”);
4 localAlarmManager.cancel(localPendingIntent);
5 localAlarmManager.set(3, paramLong + SystemClock.elapsedRealtime(), localPendingIntent);
6 }

Listing 11: Method that cancels previous intents matching the service, and registers a new
intent to be launched.

The described behaviour is executed by all apps that include the MoPlus
SDK libraries (Figure 11).
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Figure 11: Phase 2 of the colluding behaviour execution. Each app checks the
WORLD_READABLE SharedPreference files and sends and intent to the app with highest
priority

8. Related Work

Android malware detection has been an attractive and active research
area during the last few years. As a result, techniques for detecting Android
malware are readily available [23, 24, 25]. These can be categorised into static
analysis, dynamic analysis or a combination of both. In static analysis, cer-
tain features of the app binary are extracted and analysed using different
approaches such as machine learning techniques. Examples of these are [26],
using hardware components, requested permissions, critical and suspicious
API calls, and network addresses. Conversely, dynamic analysis detects mal-
ware at run-time. It employs suitable app monitoring to track actions and
features that indicate malicious behaviours. An example of this is [25], which
first uses static analysis to guide the dynamic analysis while tracking network
traffic and API calls among others.

Detecting colluding apps involves not only obtaining features that appear
if an app carries out a malicious action, but also revealing whether commu-
nication between apps occurs during those actions. Previously described
malware detection techniques focus only on detecting whether a single app is
malicious, but do not analyse their communication channels. This approach
limits their usage for collusion detection. Approaches based on taint analy-
sis like Amandroid [27] and FlowDroid [28] could be extended for collusion
detection. These are focused on analyzing single apps to detect informa-
tion leaks through inter-component communications, ICC, (i.e. a location
leaking from a service to an activity within the same app). This limits its
usefulness for detecting collusions. First, they are only able to analyse single
apps. This means that, although they are able to detect leaks to other apps
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through inter-app communications7, (i.e. and activity/service from one app
sending information to an activity/service from another app), they are not
able to tell which other app is taking part in the collusion. In addition to
this, colluding apps may use other communication channels for collusion (i.e.
covert channels) rather than standard IAC channels.

To overcome this limitation, there are approaches like APKCombiner [29]
which joins two applications into a single APK. This way, a security analyst
can use information flow tools to analyse the inter-app communication mech-
anisms. Their evaluation over a set of 3000 apps shows that the approach is
valid, as it is capable of joining together 88% of the possible app pairs. The
average time required to join two apps is three minutes. This makes it hard
to use for practical large-scale app analysis.

Countermeasures specifically designed to mitigate collusion attacks cur-
rently employ either static analysis or they utilize Android OS extensions.
ComDroid [30] is a static analysis tool that looks for confused deputies
through Intents. Kdroid [31] detects collusion via software model-checking a
set of Android apps utilising the K framework. PermissionFlow uses taint
analysis to automatically detect inter-application permission leaks [32]. In
their work they found that more than 50% of the top 313 apps (in 2012)
actively used inter-component information flows and four of them leaked per-
missions to other apps. Our work differs from PermissionFlow in our lack of
taint analysis and our consideration of channels that may be used specifically
for collusion (e.g. shared preferences). Taint analysis allows PermissionFlow
to be more precise, but at the same time it is more computationally costly.
Our system could be used to filter out app sets without colluding poten-
tially, focusing the more computationally complex analysis on those that
exhibit collusion potential.

In contrast to these, XManDroid [13], TrustDroid [33] and [34] extend
the Android OS by providing finer control over app communications. These
extensions identify possible communication paths between apps and allow to
define policies that control how they exchange information. These are similar
to the ones provided by the Intent Firewall included as a component, not
enabled, in recent Android versions [35]. TrustDroid provides additional con-
trols to monitor the file system and network connections. However, none of
them provides a monitoring system for shared preference files or covert chan-

7In Android, IAC and ICC are implemented through very similar APIs.

39



nels. As we have found during our research, these communication channels
are also a viable means of communication between colluding apps.

9. Conclusions

Detecting app collusion on a large scale is a challenging task due to the
sheer amount of possible app combinations and communication channels. We
have presented a method to analyze large sets of apps to look for collusion
potential. Our method is based on a lightweight analysis of apps that ex-
tracts ASR signatures. These are transformed into Prolog facts, so logic
programming can be used to identify collusion potential between apps in an
efficient way.

We have validated our approach against an artificial set of apps and tested
it against a large dataset of “in the wild” apps. Our results show that
malicious apps use inter-app communications in a different way than clean
ones. Malware classification methods could take advantage of this fact to
increase their accuracy and to detect collusion.

A manual analysis of some of the apps flagged by our detection system
allowed us to identify the first known case of collusion in the wild. This
discovery demonstrated the risk of using untrusted or maliciously modified
SDKs. The designers of these app communication scheme even considered
the possibility of the SDK being included as part of a system image. Identi-
fied colluding apps synchronize with each other (by sharing a priority value)
activating only the service within the more privileged app. This finding
demonstrates the need to cover more communication methods when looking
for colluding apps. Although intent-based communications are more com-
mon, other means of communication (such as the shared preferences and
covert channels) should also be considered. Our future direction of work
aims to explore these communication channels and to use formal verification
methods to automatically analyze apps flagged by our system [36].
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