4,264 research outputs found

    Scale Invariant Interest Points with Shearlets

    Full text link
    Shearlets are a relatively new directional multi-scale framework for signal analysis, which have been shown effective to enhance signal discontinuities such as edges and corners at multiple scales. In this work we address the problem of detecting and describing blob-like features in the shearlets framework. We derive a measure which is very effective for blob detection and closely related to the Laplacian of Gaussian. We demonstrate the measure satisfies the perfect scale invariance property in the continuous case. In the discrete setting, we derive algorithms for blob detection and keypoint description. Finally, we provide qualitative justifications of our findings as well as a quantitative evaluation on benchmark data. We also report an experimental evidence that our method is very suitable to deal with compressed and noisy images, thanks to the sparsity property of shearlets

    Picasso, Matisse, or a Fake? Automated Analysis of Drawings at the Stroke Level for Attribution and Authentication

    Full text link
    This paper proposes a computational approach for analysis of strokes in line drawings by artists. We aim at developing an AI methodology that facilitates attribution of drawings of unknown authors in a way that is not easy to be deceived by forged art. The methodology used is based on quantifying the characteristics of individual strokes in drawings. We propose a novel algorithm for segmenting individual strokes. We designed and compared different hand-crafted and learned features for the task of quantifying stroke characteristics. We also propose and compare different classification methods at the drawing level. We experimented with a dataset of 300 digitized drawings with over 80 thousands strokes. The collection mainly consisted of drawings of Pablo Picasso, Henry Matisse, and Egon Schiele, besides a small number of representative works of other artists. The experiments shows that the proposed methodology can classify individual strokes with accuracy 70%-90%, and aggregate over drawings with accuracy above 80%, while being robust to be deceived by fakes (with accuracy 100% for detecting fakes in most settings)

    Rotation-invariant features for multi-oriented text detection in natural images.

    Get PDF
    Texts in natural scenes carry rich semantic information, which can be used to assist a wide range of applications, such as object recognition, image/video retrieval, mapping/navigation, and human computer interaction. However, most existing systems are designed to detect and recognize horizontal (or near-horizontal) texts. Due to the increasing popularity of mobile-computing devices and applications, detecting texts of varying orientations from natural images under less controlled conditions has become an important but challenging task. In this paper, we propose a new algorithm to detect texts of varying orientations. Our algorithm is based on a two-level classification scheme and two sets of features specially designed for capturing the intrinsic characteristics of texts. To better evaluate the proposed method and compare it with the competing algorithms, we generate a comprehensive dataset with various types of texts in diverse real-world scenes. We also propose a new evaluation protocol, which is more suitable for benchmarking algorithms for detecting texts in varying orientations. Experiments on benchmark datasets demonstrate that our system compares favorably with the state-of-the-art algorithms when handling horizontal texts and achieves significantly enhanced performance on variant texts in complex natural scenes

    Invariance of visual operations at the level of receptive fields

    Get PDF
    Receptive field profiles registered by cell recordings have shown that mammalian vision has developed receptive fields tuned to different sizes and orientations in the image domain as well as to different image velocities in space-time. This article presents a theoretical model by which families of idealized receptive field profiles can be derived mathematically from a small set of basic assumptions that correspond to structural properties of the environment. The article also presents a theory for how basic invariance properties to variations in scale, viewing direction and relative motion can be obtained from the output of such receptive fields, using complementary selection mechanisms that operate over the output of families of receptive fields tuned to different parameters. Thereby, the theory shows how basic invariance properties of a visual system can be obtained already at the level of receptive fields, and we can explain the different shapes of receptive field profiles found in biological vision from a requirement that the visual system should be invariant to the natural types of image transformations that occur in its environment.Comment: 40 pages, 17 figure

    Dynamic texture recognition using time-causal and time-recursive spatio-temporal receptive fields

    Full text link
    This work presents a first evaluation of using spatio-temporal receptive fields from a recently proposed time-causal spatio-temporal scale-space framework as primitives for video analysis. We propose a new family of video descriptors based on regional statistics of spatio-temporal receptive field responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms of receptive field responses, from the spatial to the spatio-temporal domain and from object recognition to dynamic texture recognition. The time-recursive formulation enables computationally efficient time-causal recognition. The experimental evaluation demonstrates competitive performance compared to state-of-the-art. Especially, it is shown that binary versions of our dynamic texture descriptors achieve improved performance compared to a large range of similar methods using different primitives either handcrafted or learned from data. Further, our qualitative and quantitative investigation into parameter choices and the use of different sets of receptive fields highlights the robustness and flexibility of our approach. Together, these results support the descriptive power of this family of time-causal spatio-temporal receptive fields, validate our approach for dynamic texture recognition and point towards the possibility of designing a range of video analysis methods based on these new time-causal spatio-temporal primitives.Comment: 29 pages, 16 figure

    Modeling of the Acute Toxicity of Benzene Derivatives by Complementary QSAR Methods

    Get PDF
    A data set containing acute toxicity values (96-h LC50) of 69 substituted benzenes for fathead minnow (Pimephales promelas) was investigated with two Quantitative Structure- Activity Relationship (QSAR) models, either using or not using molecular descriptors, respectively. Recursive Neural Networks (RNN) derive a QSAR by direct treatment of the molecular structure, described through an appropriate graphical tool (variable-size labeled rooted ordered trees) by defining suitable representation rules. The input trees are encoded by an adaptive process able to learn, by tuning its free parameters, from a given set of structureactivity training examples. Owing to the use of a flexible encoding approach, the model is target invariant and does not need a priori definition of molecular descriptors. The results obtained in this study were analyzed together with those of a model based on molecular descriptors, i.e. a Multiple Linear Regression (MLR) model using CROatian MultiRegression selection of descriptors (CROMRsel). The comparison revealed interesting similarities that could lead to the development of a combined approach, exploiting the complementary characteristics of the two approaches
    • …
    corecore