144,605 research outputs found

    Information Processing view of Electricity Demand Response Systems: A Comparative Study Between India and Australia

    Get PDF
    Background: In recent years, demand response (DR) has gained increased attention from utilities, regulators, and market aggregators to meet the growing demands of electricity. The key aspect of a successful DR program is the effective processing of data and information to gain critical insights. This study aims to identify information processing needs and capacity that interact to improve energy DR effectiveness. To this end, organizational information processing theory (OIPT) is employed to understand the role of Information Systems (IS) resources in achieving desired DR program performance. This study also investigates how information processing for DR systems differ between developing (India) and developed (Australia) countries. Method: This work adopts a case study methodology to propose a theoretical framework using OIPT for information processing in DR systems. The study further employs a comparative case data analyses between Australian and Indian DR initiatives. Results: Our cross case analysis identifies variables of value creation in designing DR programs - pricing structure for demand side participation, renewable integration at supply side, reforms in the regulatory instruments, and emergent technology. This research posits that the degree of information processing capacity mediates the influence of information processing needs on energy DR effectiveness. Further, we develop five propositions on the interaction between task based information processing needs and capacity, and their influence on DR effectiveness. Conclusions: The study generates insights on the role of IS resources that can help stakeholders in the electricity value chain to take informed and intelligent decisions for improved performance of DR programs

    Supporting decision making process with "Ideal" software agents: what do business executives want?

    Get PDF
    According to Simon’s (1977) decision making theory, intelligence is the first and most important phase in the decision making process. With the escalation of information resources available to business executives, it is becoming imperative to explore the potential and challenges of using agent-based systems to support the intelligence phase of decision-making. This research examines UK executives’ perceptions of using agent-based support systems and the criteria for design and development of their “ideal” intelligent software agents. The study adopted an inductive approach using focus groups to generate a preliminary set of design criteria of “ideal” agents. It then followed a deductive approach using semi-structured interviews to validate and enhance the criteria. This qualitative research has generated unique insights into executives’ perceptions of the design and use of agent-based support systems. The systematic content analysis of qualitative data led to the proposal and validation of design criteria at three levels. The findings revealed the most desirable criteria for agent based support systems from the end users’ point view. The design criteria can be used not only to guide intelligent agent system design but also system evaluation

    Designing Interfaces to Support Collaboration in Information Retrieval

    Get PDF
    Information retrieval systems should acknowledge the existence of collaboration in the search process. Collaboration can help users to be more effective in both learning systems and in using them. We consider some issues of viewing interfaces to information retrieval systems as collaborative notations and how to build systems that more actively support collaboration. We describe a system that embodies just one kind of explicit support; a graphical representation of the search process that can be manipulated and discussed by the users. By acknowledging the importance of other people in the search process, we can develop systems that not only improve help-giving by people but which can lead to a more robust search activity, more able to cope with, and indeed exploit, the failures of any intelligent agents used

    How Philosophy of Mind Can Shape the Future

    Get PDF

    Autonomic computing architecture for SCADA cyber security

    Get PDF
    Cognitive computing relates to intelligent computing platforms that are based on the disciplines of artificial intelligence, machine learning, and other innovative technologies. These technologies can be used to design systems that mimic the human brain to learn about their environment and can autonomously predict an impending anomalous situation. IBM first used the term ‘Autonomic Computing’ in 2001 to combat the looming complexity crisis (Ganek and Corbi, 2003). The concept has been inspired by the human biological autonomic system. An autonomic system is self-healing, self-regulating, self-optimising and self-protecting (Ganek and Corbi, 2003). Therefore, the system should be able to protect itself against both malicious attacks and unintended mistakes by the operator
    • 

    corecore