94 research outputs found

    Navigation domain representation for interactive multiview imaging

    Full text link
    Enabling users to interactively navigate through different viewpoints of a static scene is a new interesting functionality in 3D streaming systems. While it opens exciting perspectives towards rich multimedia applications, it requires the design of novel representations and coding techniques in order to solve the new challenges imposed by interactive navigation. Interactivity clearly brings new design constraints: the encoder is unaware of the exact decoding process, while the decoder has to reconstruct information from incomplete subsets of data since the server can generally not transmit images for all possible viewpoints due to resource constrains. In this paper, we propose a novel multiview data representation that permits to satisfy bandwidth and storage constraints in an interactive multiview streaming system. In particular, we partition the multiview navigation domain into segments, each of which is described by a reference image and some auxiliary information. The auxiliary information enables the client to recreate any viewpoint in the navigation segment via view synthesis. The decoder is then able to navigate freely in the segment without further data request to the server; it requests additional data only when it moves to a different segment. We discuss the benefits of this novel representation in interactive navigation systems and further propose a method to optimize the partitioning of the navigation domain into independent segments, under bandwidth and storage constraints. Experimental results confirm the potential of the proposed representation; namely, our system leads to similar compression performance as classical inter-view coding, while it provides the high level of flexibility that is required for interactive streaming. Hence, our new framework represents a promising solution for 3D data representation in novel interactive multimedia services

    Interactive Streaming of Stored Multiview Video Using Redundant Frame Structures

    Full text link

    Light field coding with field of view scalability and exemplar-based inter-layer prediction

    Get PDF
    Light field imaging based on microlens arrays—a.k.a. holoscopic, plenoptic, and integral imaging—has currently risen up as a feasible and prospective technology for future image and video applications. However, deploying actual light field applications will require identifying more powerful representations and coding solutions that support arising new manipulation and interaction functionalities. In this context, this paper proposes a novel scalable coding solution that supports a new type of scalability, referred to as field-of-view scalability. The proposed scalable coding solution comprises a base layer compliant with the High Efficiency Video Coding (HEVC) standard, complemented by one or more enhancement layers that progressively allow richer versions of the same light field content in terms of content manipulation and interaction possibilities. In addition, to achieve high-compression performance in the enhancement layers, novel exemplar-based interlayer coding tools are also proposed, namely: 1) a direct prediction based on exemplar texture samples from lower layers and 2) an interlayer compensated prediction using a reference picture that is built relying on an exemplar-based algorithm for texture synthesis. Experimental results demonstrate the advantages of the proposed scalable coding solution to cater to users with different preferences/requirements in terms of interaction functionalities, while providing better rate- distortion performance (independently of the optical setup used for acquisition) compared to HEVC and other scalable light field coding solutions in the literature.info:eu-repo/semantics/acceptedVersio

    Multiview Video Coding for Virtual Reality

    Get PDF
    Virtual reality (VR) is one of the emerging technologies in recent years. It brings a sense of real world experience in simulated environments, hence, it is being used in many applications for example in live sporting events, music recordings and in many other interactive multimedia applications. VR makes use of multimedia content, and videos are a major part of it. VR videos are captured from multiple directions to cover the entire 360 field-of-view. It usually employs, multiple cameras of wide field-of-view such as fisheye lenses and the camera arrangement can also vary from linear to spherical set-ups. Videos in VR system are also subjected to constraints such as, variations in network bandwidth, heterogeneous mobile devices with limited decoding capacity, adaptivity for view switching in the display. The uncompressed videos from multiview cameras are redundant and impractical for storage and transmission. The existing video coding standards compresses the multiview videos effi ciently. However, VR systems place certain limitations on the video and camera arrangements, such as, it assumes rectilinear properties for video, translational motion model for prediction and the camera set-up to be linearly arranged. The aim of the thesis is to propose coding schemes which are compliant to the current video coding standards of H.264/AVC and its successor H.265/HEVC, the current state-of-the-art and multiview/scalable extensions. This thesis presents methods that compress the multiview videos which are captured from eight cameras that are arranged spherically, pointing radially outwards. The cameras produce circular fi sheye videos of 195 degree field-of-view. The final goal is to present methods, which optimize the bitrate in both storage and transmission of videos for the VR system. The presented methods can be categorized into two groups: optimizing storage bitrate and optimizing streaming bitrate of multiview videos. In the storage bitrate category, six methods were experimented. The presented methods competed against simulcast coding of individual views. The coding schemes were experimented with two data sets of 8 views each. The method of scalable coding with inter-layer prediction in all frames outperformed simulcast coding with approximately 7.9%. In the case of optimizing streaming birates, five methods were experimented. The method of scalable plus multiview skip-coding outperformed the simulcast method of coding by 36% on average. Future work will focus on pre-processing the fi sheye videos to rectilinear videos, in-order to fit them to the current translational model of the video coding standards. Moreover, the methods will be tested in comprehensive applications and system requirements

    From Capture to Display: A Survey on Volumetric Video

    Full text link
    Volumetric video, which offers immersive viewing experiences, is gaining increasing prominence. With its six degrees of freedom, it provides viewers with greater immersion and interactivity compared to traditional videos. Despite their potential, volumetric video services poses significant challenges. This survey conducts a comprehensive review of the existing literature on volumetric video. We firstly provide a general framework of volumetric video services, followed by a discussion on prerequisites for volumetric video, encompassing representations, open datasets, and quality assessment metrics. Then we delve into the current methodologies for each stage of the volumetric video service pipeline, detailing capturing, compression, transmission, rendering, and display techniques. Lastly, we explore various applications enabled by this pioneering technology and we present an array of research challenges and opportunities in the domain of volumetric video services. This survey aspires to provide a holistic understanding of this burgeoning field and shed light on potential future research trajectories, aiming to bring the vision of volumetric video to fruition.Comment: Submitte

    Dense light field coding: a survey

    Get PDF
    Light Field (LF) imaging is a promising solution for providing more immersive and closer to reality multimedia experiences to end-users with unprecedented creative freedom and flexibility for applications in different areas, such as virtual and augmented reality. Due to the recent technological advances in optics, sensor manufacturing and available transmission bandwidth, as well as the investment of many tech giants in this area, it is expected that soon many LF transmission systems will be available to both consumers and professionals. Recognizing this, novel standardization initiatives have recently emerged in both the Joint Photographic Experts Group (JPEG) and the Moving Picture Experts Group (MPEG), triggering the discussion on the deployment of LF coding solutions to efficiently handle the massive amount of data involved in such systems. Since then, the topic of LF content coding has become a booming research area, attracting the attention of many researchers worldwide. In this context, this paper provides a comprehensive survey of the most relevant LF coding solutions proposed in the literature, focusing on angularly dense LFs. Special attention is placed on a thorough description of the different LF coding methods and on the main concepts related to this relevant area. Moreover, comprehensive insights are presented into open research challenges and future research directions for LF coding.info:eu-repo/semantics/publishedVersio

    Compression pour la communication interactive de contenus visuels

    Get PDF
    Interactive images and videos have received increasing attention due to the interesting features they provide. With these contents, users can navigate within the content and explore the scene from the viewpoint they desire. The characteristics of these media make their compression very challenging. On the one hand, the data is captured in high resolution (very large) to experience a real sense of immersion. On the other hand, the user requests a small portion of the content during navigation. This requires two characteristics: efficient compression of data by exploiting redundancies within the content (to lower the storage cost), and random access ability to extract part of the compressed stream requested by the user (to lower the transmission rate). Classical compression schemes can not handle random accessibility because they use a fixed pre-defined order of sources to capture redundancies.The purpose of this thesis is to provide new tools for interactive compression schemes of images. For that, as the first contribution, we propose an evaluation framework by which we can compare different image/video interactive compression schemes. Moreover, former theoretical studies show that random accessibility can be achieved using incremental codes with the same transmission cost as non-interactive schemes and with reasonable storage overhead. Our second contribution is to build a generic coding scheme that can deal with various interactive media. Using this generic coder, we then propose compression tools for 360-degree images and 3D model texture maps with random access ability to extract the requested part. We also propose new representations for these modalities. Finally, we study the effect of model selection on the compression rates of these interactive coders.Les images et vidéos interactives ont récemment vu croître leur popularité. En effet, avec ce type de contenu, les utilisateurs peuvent naviguer dans la scène et changer librement de point de vue. Les caractéristiques de ces supports posent de nouveaux défis pour la compression. D'une part, les données sont capturées en très haute résolution pour obtenir un réel sentiment d'immersion. D'autre part, seule une petite partie du contenu est visualisée par l'utilisateur lors de sa navigation. Cela induit deux caractéristiques : une compression efficace des données en exploitant les redondances au sein du contenu (pour réduire les coûts de stockage) et une compression avec accès aléatoire pour extraire la partie du flux compressé demandée par l'utilisateur (pour réduire le débit de transmission). Les schémas classiques de compression ne peuvent gérer de manière optimale l’accès aléatoire, car ils utilisent un ordre de traitement des données fixe et prédéfini qui ne peut s'adapter à la navigation de l'utilisateur.Le but de cette thèse est de fournir de nouveaux outils pour les schémas interactifs de compression d’images. Pour cela, comme première contribution, nous proposons un cadre d’évaluation permettant de comparer différents schémas interactifs de compression d'image / vidéo. En outre, des études théoriques antérieures ont montré que l’accès aléatoire peut être obtenu à l’aide de codes incrémentaux présentant le même coût de transmission que les schémas non interactifs au prix d'une faible augmentation du coût de stockage. Notre deuxième contribution consiste à créer un schéma de codage générique pouvant s'appliquer à divers supports interactifs. À l'aide de ce codeur générique, nous proposons ensuite des outils de compression pour deux modalités d'images interactives : les images omnidirectionnelles (360 degrés) et les cartes de texture de modèle 3D. Nous proposons également de nouvelles représentations de ces modalités. Enfin, nous étudions l’effet de la sélection du modèle sur les taux de compression de ces codeurs interactifs
    • …
    corecore