28,803 research outputs found

    Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations

    Get PDF
    The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded. The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded

    On the role of Prognostics and Health Management in advanced maintenance systems

    Get PDF
    The advanced use of the Information and Communication Technologies is evolving the way that systems are managed and maintained. A great number of techniques and methods have emerged in the light of these advances allowing to have an accurate and knowledge about the systems’ condition evolution and remaining useful life. The advances are recognized as outcomes of an innovative discipline, nowadays discussed under the term of Prognostics and Health Management (PHM). In order to analyze how maintenance will change by using PHM, a conceptual model is proposed built upon three views. The model highlights: (i) how PHM may impact the definition of maintenance policies; (ii) how PHM fits within the Condition Based Maintenance (CBM) and (iii) how PHM can be integrated into Reliability Centered Maintenance (RCM) programs. The conceptual model is the research finding of this review note and helps to discuss the role of PHM in advanced maintenance systems.EU Framework Programme Horizon 2020, 645733 - Sustain-Owner - H2020-MSCA-RISE-201

    Predictive Maintenance in Industry 4.0

    Get PDF
    In the context of Industry 4.0, the manufacturing-related processes have shifted from conventional processes within one organization to collaborative processes cross different organizations, for example, product design processes, manufacturing processes, and maintenance processes across different factories and enterprises. The development and application of the Internet of things, i.e. smart devices and sensors increases the availability and collection of diverse data. With new technologies, such as advanced data analytics and cloud computing provide new opportunities for flexible collaborations as well as effective optimizing manufacturing-related processes, e.g. predictive maintenance. Predictive maintenance provides a detailed examination of the detection, location and diagnosis of faults in related machinery using various analyses. RAMI4.0 is a framework for thinking about the various efforts that constitute Industry 4.0. It spans the entire product life cycle & value stream axis, hierarchical structure axis and functional classification axis. The Industrial Data Space (now International Data Space) is a virtual data space using standards and common governance models to facilitate the secure exchange and easy linkage of data in business ecosystems. It thereby provides a basis for creating and using smart services and innovative business processes, while at the same time ensuring digital sovereignty of data owners. This paper looks at how to support predictive maintenance in the context of Industry 4.0. Especially, applying RAMI4.0 architecture supports the predictive maintenance using the FIWARE framework, which leads to deal with data exchanging among different organizations with different security requirements as well as modularizing of related functions

    Predictive Maintenance in Industry 4.0

    Get PDF
    In the context of Industry 4.0, the manufacturing-related processes have shifted from conventional processes within one organization to collaborative processes cross different organizations, for example, product design processes, manufacturing processes, and maintenance processes across different factories and enterprises. The development and application of the Internet of things, i.e. smart devices and sensors increases the availability and collection of diverse data. With new technologies, such as advanced data analytics and cloud computing provide new opportunities for flexible collaborations as well as effective optimizing manufacturing-related processes, e.g. predictive maintenance. Predictive maintenance provides a detailed examination of the detection, location and diagnosis of faults in related machinery using various analyses. RAMI4.0 is a framework for thinking about the various efforts that constitute Industry 4.0. It spans the entire product life cycle & value stream axis, hierarchical structure axis and functional classification axis. The Industrial Data Space (now International Data Space) is a virtual data space using standards and common governance models to facilitate the secure exchange and easy linkage of data in business ecosystems. It thereby provides a basis for creating and using smart services and innovative business processes, while at the same time ensuring digital sovereignty of data owners. This paper looks at how to support predictive maintenance in the context of Industry 4.0. Especially, applying RAMI4.0 architecture supports the predictive maintenance using the FIWARE framework, which leads to deal with data exchanging among different organizations with different security requirements as well as modularizing of related functions

    Analysis framework for the interaction between lean construction and building information modelling

    Get PDF
    Building with Building Information Modelling (BIM) changes design and production processes. But can BIM be used to support process changes designed according to lean production and lean construction principles? To begin to answer this question we provide a conceptual analysis of the interaction of lean construction and BIM for improving construction. This was investigated by compiling a detailed listing of lean construction principles and BIM functionalities which are relevant from this perspective. These were drawn from a detailed literature survey. A research framework for analysis of the interaction between lean and BIM was then compiled. The goal of the framework is to both guide and stimulate research; as such, the approach adopted up to this point is constructive. Ongoing research has identified 55 such interactions, the majority of which show positive synergy between the two

    A Literature Review on Predictive Monitoring of Business Processes

    Get PDF
    Oleme läbi vaadanud mitmesuguseid ennetava jälgimise meetodeid äriprotsessides. Prognoositavate seirete eesmärk on aidata ettevõtetel oma eesmärke saavutada, aidata neil valida õige ärimudel, prognoosida tulemusi ja aega ning muuta äriprotsessid riskantsemaks. Antud väitekirjaga oleme hoolikalt kogunud ja üksikasjalikult läbi vaadanud selle väitekirja teemal oleva kirjanduse. Kirjandusuuringu tulemustest ja tähelepanekutest lähtuvalt oleme hoolikalt kavandanud ennetava jälgimisraamistiku. Raamistik on juhendiks ettevõtetele ja teadlastele, teadustöötajatele, kes uurivad selles valdkonnas ja ettevõtetele, kes soovivad neid tehnikaid oma valdkonnas rakendada.The goal of predictive monitoring is to help the business achieve their goals, help them take the right business path, predict outcomes, estimate delivery time, and make business processes risk aware. In this thesis, we have carefully collected and reviewed in detail all literature which falls in this process mining category. The objective of the thesis is to design a Predictive Monitoring Framework and classify the different predictive monitoring techniques. The framework acts as a guide for researchers and businesses. Researchers who are investigating in this field and businesses who want to apply these techniques in their respective field

    Cyber-physical business systems modelling : advancing Industry 4.0

    Get PDF
    Abstract: The dynamic digital age drives contemporary multinationals to focus on delivering world-class business solutions with the use of advanced technology. Contemporary multinationals relate to a present-day business primarily engaged to generate profits. These complex multinationals offer value through the manufacture, sale, and management of products and services. Disruptive strategies in operations driven by emerging technological innovations demand continuous business improvements. These insightful opportunities are inclusive of operations, enterprise systems, engineering management, and research. Business sustainability is a strategic priority to deliver exceptional digital solutions. The Fourth Industrial Revolutions (4IR) offer significant technological advancements for total business sustainability. The underlying 4IR technologies include Cyber-Physical Systems (CPS). The collective challenges of a large global business are not easy to predict. CPS protocols deliver sustainable prospects required to integrate and model physical systems in real-time driven by the 4IR implementations. The goal of this thesis is to develop a model (CPS) suitable for self-predicting and to determine ideal operational practice driven by technologies of the 4IR. The model (CPS) seeks a novel tool effective for comprehensive business evaluation and optimisation. The competence of the anticipated tool includes suitability to collaborate current operations and predict the impact of change on a complex business. ..D.Phil. (Engineering Management

    Analysis Framework for the Interaction Between Lean Construction and Building Information Modelling

    Get PDF
    Building with Building Information Modelling (BIM) changes design and production processes. But can BIM be used to support process changes designed according to lean production and lean construction principles? To begin to answer this question we provide a conceptual analysis of the interaction of lean construction and BIM for improving construction. This was investigated by compiling a detailed listing of lean construction principles and BIM functionalities which are relevant from this perspective. These were drawn from a detailed literature survey. A research framework for analysis of the interaction between lean and BIM was then compiled. The goal of the framework is to both guide and stimulate research; as such, the approach adopted up to this point is constructive. Ongoing research has identified 55 such interactions, the majority of which show positive synergy between the two

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure
    corecore