27,395 research outputs found

    Designing learning object repositories : a thesis presented in partial fulfilment of the requirements for the degree of Master of Information Science in Information Sciences at Massey University

    Get PDF
    Learning object repositories are expanding rapidly into the role of independent educational systems that not only are a supplement to a traditional way of learning, but also allow users to search, exchange and re-use learning objects. The intention of this innovative technology is to have such repositories to collect a database of learning objects catalogued by the learning content management system. However, for users to perform an efficient search, these learning objects would need to use metadata standards or specifications to describe their properties. For learning objects stored within the repositories, metadata standards are often used to descibe them so users of the respositories are able to find the accurate resources they required, hence metadata standards are important elements of any learning object repository. In this paper, a courseware example is used to demonstrate how to define a set of characteristics that we want to describe for our courseware, and attempt to map the data schema in the database with the available metadata standards. The outcome is to identify a set of metadata elements that would fully describe our learning objects stored within the learning object repository, and these metadata elements will also assist instructors to create adaptable courseware that can be reused by different instructors. Metadata standard is known as a critical element for the management of learning objects, not only will it increase the accuracy of the search results, it will also provide more relevant and descriptive information about the learning objects to the searchers

    Advanced Cyberinfrastructure for Science, Engineering, and Public Policy

    Full text link
    Progress in many domains increasingly benefits from our ability to view the systems through a computational lens, i.e., using computational abstractions of the domains; and our ability to acquire, share, integrate, and analyze disparate types of data. These advances would not be possible without the advanced data and computational cyberinfrastructure and tools for data capture, integration, analysis, modeling, and simulation. However, despite, and perhaps because of, advances in "big data" technologies for data acquisition, management and analytics, the other largely manual, and labor-intensive aspects of the decision making process, e.g., formulating questions, designing studies, organizing, curating, connecting, correlating and integrating crossdomain data, drawing inferences and interpreting results, have become the rate-limiting steps to progress. Advancing the capability and capacity for evidence-based improvements in science, engineering, and public policy requires support for (1) computational abstractions of the relevant domains coupled with computational methods and tools for their analysis, synthesis, simulation, visualization, sharing, and integration; (2) cognitive tools that leverage and extend the reach of human intellect, and partner with humans on all aspects of the activity; (3) nimble and trustworthy data cyber-infrastructures that connect, manage a variety of instruments, multiple interrelated data types and associated metadata, data representations, processes, protocols and workflows; and enforce applicable security and data access and use policies; and (4) organizational and social structures and processes for collaborative and coordinated activity across disciplinary and institutional boundaries.Comment: A Computing Community Consortium (CCC) white paper, 9 pages. arXiv admin note: text overlap with arXiv:1604.0200

    Simplifying the Development, Use and Sustainability of HPC Software

    Full text link
    Developing software to undertake complex, compute-intensive scientific processes requires a challenging combination of both specialist domain knowledge and software development skills to convert this knowledge into efficient code. As computational platforms become increasingly heterogeneous and newer types of platform such as Infrastructure-as-a-Service (IaaS) cloud computing become more widely accepted for HPC computations, scientists require more support from computer scientists and resource providers to develop efficient code and make optimal use of the resources available to them. As part of the libhpc stage 1 and 2 projects we are developing a framework to provide a richer means of job specification and efficient execution of complex scientific software on heterogeneous infrastructure. The use of such frameworks has implications for the sustainability of scientific software. In this paper we set out our developing understanding of these challenges based on work carried out in the libhpc project.Comment: 4 page position paper, submission to WSSSPE13 worksho

    Designing social personalized adaptive e-learning

    Get PDF
    Here we introduce Topolor, a social personalized adaptive elearning system aiming to improve social interaction in the learning process as well as applying classical adaptation based on user modeling. Here, we focus on the system architecture and preliminary evaluation that showed high system usability

    A structured model metametadata technique to enhance semantic searching in metadata repository

    Get PDF
    This paper discusses on a novel technique for semantic searching and retrieval of information about learning materials. A novel structured metametadata model has been created to provide the foundation for a semantic search engine to extract, match and map queries to retrieve relevant results. Metametadata encapsulate metadata instances by using the properties and attributes provided by ontologies rather than describing learning objects. The use of ontological views assists the pedagogical content of metadata extracted from learning objects by using the control vocabularies as identified from the metametadata taxonomy. The use of metametadata (based on the metametadata taxonomy) supported by the ontologies have contributed towards a novel semantic searching mechanism. This research has presented a metametadata model for identifying semantics and describing learning objects in finer-grain detail that allows for intelligent and smart retrieval by automated search and retrieval software

    Supporting sustainable e‐learning

    Get PDF
    This paper draws upon work carried out within phase one of a national forum for support staff, funded by the UK Learning and Teaching Support Network Generic Centre. It sets out themes in current Learning Technology research within the context of institutional practice. It reports the responses of a range of e‐learning support staff to new developments in the reuse and sharing of Learning Objects. The article highlights tensions across support units, inconsistencies in support provision and confusion over issues concerning different modes of teaching. It also forewarns a growing gap between institutional practice and research in the development of approaches to sustainable e‐learning

    Managing evolution and change in web-based teaching and learning environments

    Get PDF
    The state of the art in information technology and educational technologies is evolving constantly. Courses taught are subject to constant change from organisational and subject-specific reasons. Evolution and change affect educators and developers of computer-based teaching and learning environments alike – both often being unprepared to respond effectively. A large number of educational systems are designed and developed without change and evolution in mind. We will present our approach to the design and maintenance of these systems in rapidly evolving environments and illustrate the consequences of evolution and change for these systems and for the educators and developers responsible for their implementation and deployment. We discuss various factors of change, illustrated by a Web-based virtual course, with the objective of raising an awareness of this issue of evolution and change in computer-supported teaching and learning environments. This discussion leads towards the establishment of a development and management framework for teaching and learning systems

    Generating collaborative systems for digital libraries: A model-driven approach

    Get PDF
    This is an open access article shared under a Creative Commons Attribution 3.0 Licence (http://creativecommons.org/licenses/by/3.0/). Copyright @ 2010 The Authors.The design and development of a digital library involves different stakeholders, such as: information architects, librarians, and domain experts, who need to agree on a common language to describe, discuss, and negotiate the services the library has to offer. To this end, high-level, language-neutral models have to be devised. Metamodeling techniques favor the definition of domainspecific visual languages through which stakeholders can share their views and directly manipulate representations of the domain entities. This paper describes CRADLE (Cooperative-Relational Approach to Digital Library Environments), a metamodel-based framework and visual language for the definition of notions and services related to the development of digital libraries. A collection of tools allows the automatic generation of several services, defined with the CRADLE visual language, and of the graphical user interfaces providing access to them for the final user. The effectiveness of the approach is illustrated by presenting digital libraries generated with CRADLE, while the CRADLE environment has been evaluated by using the cognitive dimensions framework

    Bioconductor: open software development for computational biology and bioinformatics.

    Get PDF
    The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry into interdisciplinary scientific research, and promoting the achievement of remote reproducibility of research results. We describe details of our aims and methods, identify current challenges, compare Bioconductor to other open bioinformatics projects, and provide working examples

    A conceptual architecture for interactive educational multimedia

    Get PDF
    Learning is more than knowledge acquisition; it often involves the active participation of the learner in a variety of knowledge- and skills-based learning and training activities. Interactive multimedia technology can support the variety of interaction channels and languages required to facilitate interactive learning and teaching. A conceptual architecture for interactive educational multimedia can support the development of such multimedia systems. Such an architecture needs to embed multimedia technology into a coherent educational context. A framework based on an integrated interaction model is needed to capture learning and training activities in an online setting from an educational perspective, to describe them in the human-computer context, and to integrate them with mechanisms and principles of multimedia interaction
    corecore