758 research outputs found

    Location estimation in smart homes setting with RFID systems

    Get PDF
    Indoor localisation technologies are a core component of Smart Homes. Many applications within Smart Homes benefit from localisation technologies to determine the locations of things, objects and people. The tremendous characteristics of the Radio Frequency Identification (RFID) systems have become one of the enabler technologies in the Internet of Things (IOT) that connect objects and things wirelessly. RFID is a promising technology in indoor positioning that not only uniquely identifies entities but also locates affixed RFID tags on objects or subjects in stationary and real-time. The rapid advancement in RFID-based systems has sparked the interest of researchers in Smart Homes to employ RFID technologies and potentials to assist with optimising (non-) pervasive healthcare systems in automated homes. In this research localisation techniques and enabled positioning sensors are investigated. Passive RFID sensors are used to localise passive tags that are affixed to Smart Home objects and track the movement of individuals in stationary and real-time settings. In this study, we develop an affordable passive localisation platform using inexpensive passive RFID sensors. To fillful this aim, a passive localisation framework using minimum tracking resources (RFID sensors) has been designed. A localisation prototype and localisation application that examined the affixed RFID tag on objects to evaluate our proposed locaisation framework was then developed. Localising algorithms were utilised to achieve enhanced accuracy of localising one particular passive tag which that affixed to target objects. This thesis uses a general enough approach so that it could be applied more widely to other applications in addition to Health Smart Homes. A passive RFID localising framework is designed and developed through systematic procedures. A localising platform is built to test the proposed framework, along with developing a RFID tracking application using Java programming language and further data analysis in MATLAB. This project applies localisation procedures and evaluates them experimentally. The experimental study positively confirms that our proposed localisation framework is capable of enhancing the accuracy of the location of the tracked individual. The low-cost design uses only one passive RFID target tag, one RFID reader and three to four antennas

    Tracking mobile targets through Wireless Sensor Networks

    Get PDF
    In recent years, advances in signal processing have led to small, low power, inexpensive Wireless Sensor Network (WSN). The signal processing in WSN is different from the traditional wireless networks in two critical aspects: firstly, the signal processing in WSN is performed in a fully distributed manner, unlike in traditional wireless networks; secondly, due to the limited computation capabilities of sensor networks, it is essential to develop an energy and bandwidth efficient signal processing algorithms. Target localisation and tracking problems in WSNs have received considerable attention recently, driven by the necessity to achieve higher localisation accuracy, lower cost, and the smallest form factor. Received Signal Strength (RSS) based localisation techniques are at the forefront of tracking research applications. Since tracking algorithms have been attracting research and development attention recently, prolific literature and a wide range of proposed approaches regarding the topic have emerged. This thesis is devoted to discussing the existing WSN-based localisation and tracking approaches. This thesis includes five studies. The first study leads to the design and implementation of a triangulation-based localisation approach using RSS technique for indoor tracking applications. The presented work achieves low localisation error in complex environments by predicting the environmental characteristics among beacon nodes. The second study concentrates on investigating a fingerprinting localisation method for indoor tracking applications. The proposed approach offers reasonable localisation accuracy while requiring a short period of offline computation time. The third study focuses on designing and implementing a decentralised tracking approach for tracking multiple mobile targets with low resource requirements. Despite the interest in target tracking and localisation issues, there are few systems deployed using ZigBee network standard, and no tracking system has used the full features of the ZigBee network standard. Tracking through the ZigBee is a challenging task when the density of router and end-device nodes is low, due to the limited communication capabilities of end-device nodes. The fourth study focuses on developing and designing a practical ZigBee-based tracking approach. To save energy, different strategies were adopted. The fifth study outlines designing and implementing an energy-efficient approach for tracking applications. This study consists of two main approaches: a data aggregation approach, proposed and implemented in order to reduce the total number of messages transmitted over the network; and a prediction approach, deployed to increase the lifetime of the WSN. For evaluation purposes, two environmental models were used in this thesis: firstly, real experiments, in which the proposed approaches were implemented on real sensor nodes, to test the validity for the proposed approaches; secondly, simulation experiments, in which NS-2 was used to evaluate the power-consumption issues of the two approaches proposed in this thesis

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    i-Light - Intelligent Luminaire Based Platform for Home Monitoring and Assisted Living

    Get PDF
    [EN] We present i-Light, a cyber-physical platform that aims to help older adults to live safely within their own homes. The system is the result of an international research project funded by the European Union and is comprised of a custom developed wireless sensor network together with software services that provide continuous monitoring, reporting and real-time alerting capabilities. The principal innovation proposed within the project regards implementation of the hardware components in the form of intelligent luminaires with inbuilt sensing and communication capabilities. Custom luminaires provide indoor localisation and environment sensing, are cost-effective and are designed to replace the lighting infrastructure of the deployment location without prior mapping or fingerprinting. We evaluate the system within a home and show that it achieves localisation accuracy sufficient for room-level detection. We present the communication infrastructure, and detail how the software services can be configured and used for visualisation, reporting and real-time alerting.This work was funded by a grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI-UEFISCDI, project number 46E/2015, i-Light-A pervasive home monitoring system based on intelligent luminaires.Marin, I.; Vasilateanu, A.; Molnar, A.; Bocicor, MI.; Cuesta Frau, D.; Molina Picó, A.; Goga, N. (2018). i-Light - Intelligent Luminaire Based Platform for Home Monitoring and Assisted Living. Electronics. 7(10):1-24. https://doi.org/10.3390/electronics7100220S124710World Report on Ageing and Health http://apps.who.int/iris/bitstream/10665/186463/1/9789240694811_eng.pdf?ua=1ECP Makes Switching to eMAR Easy http://extendedcarepro.com/products/Carevium Assisted Living Software http://www.carevium.com/carevium-assisted-living-software/Yardi EHR http://www.yardi.com/products/ehr-senior-care/Yardi eMAR http://www.yardi.com/products/emar/Botia, J. A., Villa, A., & Palma, J. (2012). Ambient Assisted Living system for in-home monitoring of healthy independent elders. Expert Systems with Applications, 39(9), 8136-8148. doi:10.1016/j.eswa.2012.01.153Lopez-Guede, J. M., Moreno-Fernandez-de-Leceta, A., Martinez-Garcia, A., & Graña, M. (2015). Lynx: Automatic Elderly Behavior Prediction in Home Telecare. BioMed Research International, 2015, 1-18. doi:10.1155/2015/201939Luca, S., Karsmakers, P., Cuppens, K., Croonenborghs, T., Van de Vel, A., Ceulemans, B., … Vanrumste, B. (2014). Detecting rare events using extreme value statistics applied to epileptic convulsions in children. Artificial Intelligence in Medicine, 60(2), 89-96. doi:10.1016/j.artmed.2013.11.007Better Health Assessments Every Day, for Better Everyday Living http://healthsense.com/Home Telehealth https://www.usa.philips.com/healthcare/solutions/enterprise-telehealth/home-telehealthThe Carelink Network http://www.medtronic.com/us-en/healthcare-professionals/products/cardiac-rhythm/managing-patients/information-systems/carelink-network.htmlHaigh, P. A., Bausi, F., Ghassemlooy, Z., Papakonstantinou, I., Le Minh, H., Fléchon, C., & Cacialli, F. (2014). Visible light communications: real time 10 Mb/s link with a low bandwidth polymer light-emitting diode. Optics Express, 22(3), 2830. doi:10.1364/oe.22.002830Indoor Positioning System http://www.gelighting.com/LightingWeb/na/solutions/control-systems/indoor-positioning-system.jspIndoor and Outdoor Lighting Solutions http://www.acuitybrands.com/solutions/featured-spacesHuang, C.-N., & Chan, C.-T. (2011). ZigBee-based indoor location system by k-nearest neighbor algorithm with weighted RSSI. Procedia Computer Science, 5, 58-65. doi:10.1016/j.procs.2011.07.010Charlon, Y., Fourty, N., & Campo, E. (2013). A Telemetry System Embedded in Clothes for Indoor Localization and Elderly Health Monitoring. Sensors, 13(9), 11728-11749. doi:10.3390/s130911728Patient/Elderly Activity Monitoring Using WiFi-Based Indoor Localization https://wiki.cc.gatech.edu/designcomp/images/3/3d/HHH_Report.pdfReal Time Location System http://zonith.com/products/rtls/Accurate Positioning https://www.pozyx.io/yooBee System Overview https://www.blooloc.com/over-yoobeeThe Top Indoor Location Engine for Smart Apps https://senion.com/Locating People, Way-Finding, and Attendance Tracking https://estimote.com/products/Indoor Navigation, Indoor Positioning, Indoor Analytics and Indoor Tracking https://www.infsoft.com/Lighting Reimagined https://www.lifx.com/Tabu. Lumen. Simply Brighter http://www.lumenbulb.net/Philips Hue http://www2.meethue.com/en-usElgato Avea https://www.elgato.com/en/aveaiLumi—The World’s Most Intelligent Light Bulbs hhttps://www.indiegogo.com/projects/ilumi-the-world-s-most-intelligent-light-bulbs--5#/Bluegiga BLE112 Bluetooth® Smart Module http://www.silabs.com/products/wireless/bluetooth/bluetooth-low-energy-modules/ble112-bluetooth-smart-moduleISO/IEEE 11073 https://www.iso.org/standard/67821.htmlDescription https://www.diodes.com/assets/Datasheets/ZXLD1366.pdfDigital Humidity Sensor SHT2x https://www.sensirion.com/en/environmental-sensors/humidity-sensors/humidity-temperature-sensor-sht2x-digital-i2c-accurate/Photo IC Type High Sensitive Light Sensor https://industrial.panasonic.com/cdbs/www-data/pdf/ADD8000/ADD8000CE2.pdfWSP2110 VOC Gas Sensor http://www.winsen-sensor.com/products/flat-surfaced-gas-sensor/wsp2110.htmlLow Power-Consumption CO2 Sensor http://www.winsen-sensor.com/d/files/PDF/Solid%20Electrolyte%20CO2%20Sensor/MG812%20CO2%20Manual%20V1.1.pdfGP2Y1010AU0F Compact Optical Dust Sensor http://www.sharp-world.com/products/device/lineup/data/pdf/datasheet/gp2y1010au_e.pdfEKMC (VZ) Series http://www3.panasonic.biz/ac/e/control/sensor/human/vz/index.jspSensors for Automotive & Industrial Applications: Grid-EYE Infrared Array Sensor https://na.industrial.panasonic.com/products/sensors/sensors-automotive-industrial-applications/grid-eye-infrared-array-sensorGeneric Attributes https://www.bluetooth.com/specifications/gattDeveloping NFC Applications. (2011). Near Field Communication, 151-239. doi:10.1002/9781119965794.ch5Matsuoka, H., Wang, J., Jing, L., Zhou, Y., Wu, Y., & Cheng, Z. (2014). Development of a control system for home appliances based on BLE technique. 2014 IEEE International Symposium on Independent Computing (ISIC). doi:10.1109/indcomp.2014.7011751Standard ECMA-404. The JSON Data Interchange Format http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdfThe EU General Data Protection Regulation http://www.eugdpr.org/Tews, E., & Beck, M. (2009). Practical attacks against WEP and WPA. Proceedings of the second ACM conference on Wireless network security - WiSec ’09. doi:10.1145/1514274.1514286Farooq, U., & Aslam, M. F. (2017). Comparative analysis of different AES implementation techniques for efficient resource usage and better performance of an FPGA. Journal of King Saud University - Computer and Information Sciences, 29(3), 295-302. doi:10.1016/j.jksuci.2016.01.004Luo, X.-L., Liao, L.-Z., & Wah Tam, H. (2007). Convergence analysis of the Levenberg–Marquardt method. Optimization Methods and Software, 22(4), 659-678. doi:10.1080/10556780601079233Wammu https://wammu.eu/gammu

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    5G-PPP Technology Board:Delivery of 5G Services Indoors - the wireless wire challenge and solutions

    Get PDF
    The 5G Public Private Partnership (5G PPP) has focused its research and innovation activities mainly on outdoor use cases and supporting the user and its applications while on the move. However, many use cases inherently apply in indoor environments whereas their requirements are not always properly reflected by the requirements eminent for outdoor applications. The best example for indoor applications can be found is the Industry 4.0 vertical, in which most described use cases are occurring in a manufacturing hall. Other environments exhibit similar characteristics such as commercial spaces in offices, shopping malls and commercial buildings. We can find further similar environments in the media & entertainment sector, culture sector with museums and the transportation sector with metro tunnels. Finally in the residential space we can observe a strong trend for wireless connectivity of appliances and devices in the home. Some of these spaces are exhibiting very high requirements among others in terms of device density, high-accuracy localisation, reliability, latency, time sensitivity, coverage and service continuity. The delivery of 5G services to these spaces has to consider the specificities of the indoor environments, in which the radio propagation characteristics are different and in the case of deep indoor scenarios, external radio signals cannot penetrate building construction materials. Furthermore, these spaces are usually “polluted” by existing wireless technologies, causing a multitude of interreference issues with 5G radio technologies. Nevertheless, there exist cases in which the co-existence of 5G new radio and other radio technologies may be sensible, such as for offloading local traffic. In any case the deployment of networks indoors is advised to consider and be planned along existing infrastructure, like powerlines and available shafts for other utilities. Finally indoor environments expose administrative cross-domain issues, and in some cases so called non-public networks, foreseen by 3GPP, could be an attractive deployment model for the owner/tenant of a private space and for the mobile network operators serving the area. Technology-wise there exist a number of solutions for indoor RAN deployment, ranging from small cell architectures, optical wireless/visual light communication, and THz communication utilising reconfigurable intelligent surfaces. For service delivery the concept of multi-access edge computing is well tailored to host virtual network functions needed in the indoor environment, including but not limited to functions supporting localisation, security, load balancing, video optimisation and multi-source streaming. Measurements of key performance indicators in indoor environments indicate that with proper planning and consideration of the environment characteristics, available solutions can deliver on the expectations. Measurements have been conducted regarding throughput and reliability in the mmWave and optical wireless communication cases, electric and magnetic field measurements, round trip latency measurements, as well as high-accuracy positioning in laboratory environment. Overall, the results so far are encouraging and indicate that 5G and beyond networks must advance further in order to meet the demands of future emerging intelligent automation systems in the next 10 years. Highly advanced industrial environments present challenges for 5G specifications, spanning congestion, interference, security and safety concerns, high power consumption, restricted propagation and poor location accuracy within the radio and core backbone communication networks for the massive IoT use cases, especially inside buildings. 6G and beyond 5G deployments for industrial networks will be increasingly denser, heterogeneous and dynamic, posing stricter performance requirements on the network. The large volume of data generated by future connected devices will put a strain on networks. It is therefore fundamental to discriminate the value of information to maximize the utility for the end users with limited network resources

    OSEM : occupant-specific energy monitoring.

    Get PDF
    Electricity has become prevalent in modern day lives. Almost all the comforts people enjoy today, like home heating and cooling, indoor and outdoor lighting, computers, home and office appliances, depend on electricity. Moreover, the demand for electricity is increasing across the globe. The increasing demand for electricity and the increased awareness about carbon footprints have raised interest in the implementation of energy efficiency measures. A feasible remedy to conserve energy is to provide energy consumption feedback. This approach has suggested the possibility of considerable reduction in the energy consumption, which is in the range of 3.8% to 12%. Currently, research is on-going to monitor energy consumption of individual appliances. However, various approaches studied so far are limited to group-level feedback. The limitation of this approach is that the occupant of a house/building is unaware of his/her energy consumption pattern and has no information regarding how his/her energy-related behavior is affecting the overall energy consumption of a house/building. Energy consumption of a house/building largely depends on the energy-related behavior of individual occupants. Therefore, research in the area of individualized energy-usage feedback is essential. The OSEM (Occupant-Specific Energy Monitoring) system presented in this work is capable of monitoring individualized energy usage. OSEM system uses the electromagnetic field (EMF) radiated by appliances as a signature for appliance identification. An EMF sensor was designed and fabricated to collect the EMF radiated by appliances. OSEM uses proximity sensing to confirm the energy-related activity. Once confirmed, this activity is attributed to the occupant who initiated it. Bluetooth Low Energy technology was used for proximity sensing. This OSEM system would provide a detailed energy consumption report of individual occupants, which would help the occupants understand their energy consumption patterns and in turn encourage them to undertake energy conservation measures

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance

    TriSense: RFID, radar, and USRP-based hybrid sensing system for enhanced sensing and monitoring

    Get PDF
    This thesis presents a comprehensive approach to contactless human activity recognition (HAR) using the capabilities of three distinct technologies: radio frequency identification (RFID), Radar, and universal software-defined radio peripheral (USRP) for capturing and processing Wi-Fi-based signals. These technologies are then fused to enhance smart healthcare systems. The study initially utilises USRP devices to analyse Wi-Fi channel state information (CSI), choosing this over received signal strength for more accurate activity recognition. It employs a combination of machine learning and a hybrid of deep learning algorithms, such as the super learner and LSTM-CNN, for precise activity localisation. Subsequently, the study progresses to incorporate a transparent RFID tag wall (TRT-Wall) that employs a passive ultra-high frequency (UHF) RFID tag array. This RFID system has proven highly accurate in distinguishing between various activities, including sitting, standing, leaning, falling, and walking in two directions. Its effectiveness and non-intrusiveness make it particularly suited for elderly care, achieved using a modified version of the Transformer model without the use of a decoder. Furthermore, a significant advancement within this study is the creation of a novel fusion (RFiDARFusion) system, which combines RFID and Radar technologies. This system employs a long short-term memory networks variational autoencoder (LSTM-VAE) fusion model, utilising RFID amplitude and Radar RSSI data. This fusion approach significantly improves accuracy in challenging scenarios, such as those involving long-range and non-line-of-sight conditions. The RFiDARFusion system notably improves the detection of complex activities, highlighting its potential to reduce healthcare costs and enhance the quality of life for elderly patients in assisted living facilities. Overall, this thesis highlights the significant potential of radio frequency technologies with artif icial intelligence, along with their combined application, to develop robust, privacy-conscious, and cost-effective solutions for healthcare and assisted living monitoring systems

    New Approach of Indoor and Outdoor Localization Systems

    Get PDF
    Accurate determination of the mobile position constitutes the basis of many new applications. This book provides a detailed account of wireless systems for positioning, signal processing, radio localization techniques (Time Difference Of Arrival), performances evaluation, and localization applications. The first section is dedicated to Satellite systems for positioning like GPS, GNSS. The second section addresses the localization applications using the wireless sensor networks. Some techniques are introduced for localization systems, especially for indoor positioning, such as Ultra Wide Band (UWB), WIFI. The last section is dedicated to Coupled GPS and other sensors. Some results of simulations, implementation and tests are given to help readers grasp the presented techniques. This is an ideal book for students, PhD students, academics and engineers in the field of Communication, localization & Signal Processing, especially in indoor and outdoor localization domains
    corecore