240 research outputs found

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    XML document design via GN-DTD

    Get PDF
    Designing a well-structured XML document is important for the sake of readability and maintainability. More importantly, this will avoid data redundancies and update anomalies when maintaining a large quantity of XML based documents. In this paper, we propose a method to improve XML structural design by adopting graphical notations for Document Type Definitions (GN-DTD), which is used to describe the structure of an XML document at the schema level. Multiples levels of normal forms for GN-DTD are proposed on the basis of conceptual model approaches and theories of normalization. The normalization rules are applied to transform a poorly designed XML document into a well-designed based on normalized GN-DTD, which is illustrated through examples

    Modeling ontology views: An abstract view model for semantic web

    Get PDF
    The emergence of Semantic Web (SW) and the related technologies promise to make the web a meaningful experience. However, high level modelling, design and querying techniques proves to be a challenging task for organizations that are hoping to utilize the SW paradigm for their industrial applications. To address one such issue, in this paper, we propose an abstract view model with conceptual extensions for the SW. First we outline the view model, its properties and some modelling issues with the help of an industrial case study example. Then, we provide some discussions on constructing such views (at the conceptual level) using a set of operators. Later we provide a brief discussion on how such this view model can utilized in the MOVE [1] system, to design and construct materialized Ontology views to support Ontology extraction

    Semantic Modelling of e-Solutions Using a View Formalism with Conceptual and Logical Extensions

    Get PDF
    In industrial informatics, there exists a requirement to model and design views at a higher level of abstraction. Since the classical view definitions are only available at the query or instance level, modelling and maintaining such views for complex enterprise information systems (EIS) is a challenging task. Further, the introduction of semi-structured data (namely XML) and its rapid adaptation by the commercial and industrial systems increased the complexity for view design and specification. To address such and issue, in this paper we present; (a) a layered view model for XML, (b) a design methodology for such views and (c) some real-world industrial applications of the view model. The XML view formalism is defined at the conceptual level and the design methodology is based on the XML semantic (XSemantic) nets, a high-level object-oriented (OO) modelling language for XML domains

    Designing and querying XML views based on the ORA-SS data model

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Engineering XML solutions using views

    Get PDF
    In industrial informatics, engineering data intensive Enterprise Information Systems (EIS) is a challenging task without abstraction and partitioning. Further, the introduction of semi-structured data (namely XML) and its rapid adaptation by the commercial and industrial systems increased the complexity for data engineering. Conversely, the introduction of OMG's MDA presents an interesting paradigm for EIS and system modelling, where a system is designed at a higher level of abstraction. This presents an interesting problem to investigate data engineering XML solutions under the MDA initiatives, where, models and framework requires higher level of abstraction. In this paper we investigate a view model that can provide layered design methodology for modelling data intensive XML solutions for EIS paradigm, with sufficient level of abstraction

    Global schema generation and query rewriting XML integration

    Get PDF
    Master'sMASTER OF SCIENC

    XML documents schema design

    Get PDF
    The eXtensible Markup Language (XML) is fast emerging as the dominant standard for storing, describing and interchanging data among various systems and databases on the intemet. It offers schema such as Document Type Definition (DTD) or XML Schema Definition (XSD) for defining the syntax and structure of XML documents. To enable efficient usage of XML documents in any application in large scale electronic environment, it is necessary to avoid data redundancies and update anomalies. Redundancy and anomalies in XML documents can lead not only to higher data storage cost but also to increased costs for data transfer and data manipulation.To overcome this problem, this thesis proposes to establish a formal framework of XML document schema design. To achieve this aim, we propose a method to improve and simplify XML schema design by incorporating a conceptual model of the DTD with a theory of database normalization. A conceptual diagram, Graph-Document Type Definition (G-DTD) is proposed to describe the structure of XML documents at the schema level. For G- DTD itself, we define a structure which incorporates attributes, simple elements, complex elements, and relationship types among them. Furthermore, semantic constraints are also precisely defined in order to capture semantic meanings among the defined XML objects.In addition, to provide a guideline to a well-designed schema for XML documents, we propose a set of normal forms for G-DTD on the basis of rules proposed by Arenas and Libkin and Lv. et al. The corresponding normalization rules to transform from a G- DTD into a normal form schema are also discussed. A case study is given to illustrate the applicability of the concept. As a result, we found that the new normal forms are more concise and practical, in particular as they allow the user to find an 'optimal' structure of XML elements/attributes at the schema level. To prove that our approach is applicable for the database designer, we develop a prototype of XML document schema design using a Z formal specification language. Finally, using the same case study, this formal specification is tested to check for correctness and consistency of the specification. Thus, this gives a confidence that our prototype can be implemented successfully to generate an automatic XML schema design

    On view processing for a native XML DBMS

    Get PDF
    Master'sMASTER OF SCIENC
    corecore