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Summary 

XML is emerging as the standard format for data exchange over the Internet. As the 

amount of XML data increases dramatically, XML views are generally presented on 

top of source data to enable data exchange. In this thesis, we develop a systematic 

approach to design valid XML views, and devise two methods to automatically 

generate query expressions for XML views. These techniques are introduced below: 

• Design valid XML views: Existing systems for XML views only support select 

operation applied in the views and do not guarantee that the designed views are 

valid in terms of semantics. We propose a novel method to design valid yet 

flexible XML views based on the semantically rich Object-Relationship-Attribute 

model designed for SemiStructured data (ORA-SS), which can express semantics 

that cannot be expressed in other data models such as XML, DTD or XML 

Schema, etc. We identify four main view operators for creating XML views, 

namely, select, drop, join and swap operators. For each operator, we develop a set 

of rules to guide the design of valid XML views. These rules guarantee the 

designed views are valid once a view operator is applied.  

• Generate XQuery view definitions: After designing valid XML views based on 

the ORA-SS data model with our view operators, we need to generate query 

expressions for the valid XML views. If the XML data are stored in a native XML 

database or as XML documents, we develop an algorithm to automatically 

generate XQuery expressions for the views so that XQuery can be directly 

executed against XML documents. Further, in cases where a view only involves 
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the select operator and does not change the structure of the source schema, the 

algorithm generates the XQuery expression for the views in a more efficient way. 

• Generate SQLX view definitions: XML source data are not only stored in native 

form, but are also increasingly being stored in object-relational databases. Thus, 

we also develop a method to automatically generate SQLX query expressions for 

the views. SQLX is the standard extension to SQL for supporting retrieving XML 

data from traditional databases. By executing SQLX view definitions against the 

databases, we can directly produce XML view results. The algorithm can 

efficiently generate the SQLX view definition for an arbitrary ORA-SS view 

designed with our view operators.  

Based on the proposed approach, we develop a CASE tool for users to design valid 

XML views, generate query expressions for the views and execute the query 

expressions to produce the view documents. To the best of our knowledge, our work 

is the first to employ a semantic data model for the design and query of XML views. 

In summary, using a conceptual model for designing and querying XML views not 

only validates XML views, but also provides a fast and user friendly approach to 

retrieve XML data. 
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Chapter 1  

Introduction 

In this chapter, we introduce the background of XML, which includes the concept of 

XML, the related technologies of XML and some issues in XML data management. 

Next, we present the research problems that we have addressed in the thesis, followed 

by our research contribution. 

1.1. Background 

1.1.1.   XML 

The eXtensible Markup Language (XML) [39] was originally designed as a new 

document format for large-scale electronic publishing, which is derived from the 

Standard Generalized Markup Language (SGML). As a markup language, however, 

XML is playing an increasingly important role in the exchange of a wide variety of 

data on the Web. It is because XML is able to describe both structured and semi-

structured data. In addition, XML is extensible, platform-independent, and fully 

Unicode compliant. 

XML identifies data using tags, which are identifiers enclosed in angle brackets. 

Collectively, the tags are known as “markup”. An XML document always starts with 

a prolog markup. The minimal prolog contains a declaration that identifies the 

document as an XML document. In general, there are five main markups in XML: 

element, entity, comment, processing instruction and marked section.  
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The most commonly used markup in XML data is element. Element identifies the 

content it surrounds. Element can also contain attributes that are name-value pairs as 

additional information of the element. The markup entity is used to represent some 

special characters that have been reserved in XML. The markup comments in XML 

are the same as HTML comments. They can be placed between markups anywhere in 

XML data. The markup processing instructions gives information or commands to an 

application that is processing the XML data. Finally, the markup marked section is 

also called CDATA section. It instructs the XML parser to ignore markup characters 

in this section. In the case where a piece of source code including characters that  the 

XML parser would ordinarily recognize as markup is listed in XML data, a CDATA 

section can be used.  

 

 

 

 

 

 

 

 

Figure 1.1. An XML document on courses and students 

Example 1.1. Figure 1.1 depicts a simple XML document. It starts with a prolog 

markup that identifies the document as an XML document that conforms to version 

<?xml version=”1.0” encoding=”UTF-8” ?> 
<!-- An XML file on courses and students - -> 
<!-- Processing Instruction - -> 
<?my.presentation.program Query=”which course”?> 
<doc>  
  <faculty name=“School of Computing”> 
    <course cno=“cs321”> 
        <title>software engineering</title> 
        <student sno=“s001”> 
            <name>paul</name> 
            <information> grade &lt; expected </information> 
            <information><![CDATA[<<<<<a test cdata>>>>>]]></information> 
            <grade>C</grade> 
        </student> 
        <student sno=“s002”> 
             <name>mike</name> 
             <information> grade &gt; expected </information> 
             <grade>A+</grade> 
        </student> 
   </course> 
  </faculty> 
</doc> 
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1.0 of the XML specification and uses the 8-bit Unicode character encoding scheme. 

Next, there are two lines of comments, which will be ignored by XML parsers. After 

that, a processing instruction is presented for a program called 

“my.presentation.program” that will query the user to find out which course to 

display. The root element of the document follows the processing instruction, which 

is named doc element. Generally, each XML document has a single root element. 

Next, there is an element faculty along with an attribute name, whose value is School 

of Computing to identify the name of the faculty. Under the faculty, there is a sub 

element course with attribute code = “cs321”, whose title is “software engineering”. 

Under this course, there are sub elements students that identify the students taking 

this course. Each student element contains information about the student, which 

includes the key attribute of the student, i.e., sno, the name of the student and the 

grade of the student for the course. 

For illustration purpose, each student has an information sub element to indicate 

whether the grade is greater than expected or not. The entity references such as 

“&gt;” or “&lt;” are used in the elements to represent the symbol “>” or “<”. A 

CDATA section is also added in the second information element of the first student 

element. The CDATA section starts with <![CDATA[ and ends with ]]>. It can be 

used in the case where large blocks of XML include many of the special characters. 

The text in the CDATA section will have arrived as it was written because XML 

parsers do not treat it as XML.        □ 

There are a number of reasons for XML’s surging acceptance. First of all, XML is in 

plain text instead of binary format. An XML document can be easily created and 
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edited with anything from a standard text editor to a visual development environment. 

One advantage of plain text is that it allows people, if necessary, to read the data 

without the program that produced it. That also makes it easy to debug applications. 

Secondly, the nature of XML is extensible. Unlike HTML, XML does not have a 

fixed vocabulary. Instead, one can define vocabularies specific to particular 

applications or industries using XML. The extensibility of XML allows it to identify 

not only structured data, but also semi-structured data. Thirdly, XML is platform 

independent. It is not tied to any programming language or operating systems. 

Currently, XML data can be produced, exchanged and consumed with a variety of 

programming languages on the Internet. Platform independence makes XML very 

useful as a means for achieving interoperability between different programming 

platforms and operating systems. 

1.1.2.   XML Technologies 

A number of XML related technologies have emerged for manipulating, structuring, 

transforming and querying data. These include: 

• XML schema languages. An XML schema language is used to describe the 

structure and content of an XML document. There are several schema 

languages existing for XML. Currently, XML DTD and XML Schema 

Definition Language [41] (XSD) from W3C are widely accepted. 

• Tree model-based APIs. An XML document is represented as a tree of nodes 

with a tree model API. Typically, it loads an XML document in memory all at 

once. The dominant tree model API is the W3C Document Object Model 
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(DOM) [37]. Developers can use the DOM for programmatic reading, 

manipulation and modification of an XML document. 

• Event-driven APIs. An event-driven API processes an XML document 

without storing much more than the context of the current node being 

processed in memory. The most popular event-driven API is the Simple API 

for XML (SAX). 

• XML Transformation. Developers often need to transform XML documents 

from one vocabulary to another. The structure of XML documents also need 

to be transformed so that they can be exchanged on the Internet. XSLT [38] is 

the premiere XML transformation language. A transformation expressed in 

XSLT describes rules for transforming a source tree into a result tree. 

• XML Query. An XML query language provides an alternative way to retrieve 

information from XML data other than the APIs for processing XML. The 

W3C XQuery [40] is the standard for querying XML data. It provides flexible 

query facilities to extract data from real and virtual documents on the Web. 

Ultimately, collections of XML files will be accessed like databases. 

1.1.3.   XML Data Management 

As XML becomes the standard for exchanging data on the Internet, more and more 

data are stored and retrieved in XML format. Thus, there is a need to efficiently and 

effectively manage XML data. There are many interesting topics on XML data 

management [79] [84] [85]. Some of the main topics are listed below: 

• Publishing relational data into XML. As most of commercial data are stored 

in traditional databases such as relational or object-relational databases, there 
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is a need to export those data into XML form in order to exchange them on the 

Internet. It will also be useful for web publishing and data integration. 

Publishing languages are frequently adopted to define the mapping between 

relational data and XML data. Alternatively, intermediate schema can also be 

extracted from relational data before they are mapped into XML data. In this 

case, XML views are always presented to users so that users can retrieve the 

underlying data through the XML views. 

• Storing XML data. The basic way to store XML data is to store them as text 

files, which offers a fast solution for storing and retrieving whole documents. 

There are also two other ways for storage. One is to design native XML 

databases, which stores XML documents as it is and offers database 

functionalities, such as index, query facility, etc. The other is to employ 

relational or object-relational databases to map XML data into a set of tables. 

• XML data integration. As a standard for exchanging data, XML plays a 

critical role in data integration because of the large amounts of heterogeneous 

distributed web data. XML schema can be extracted from these data and 

integrated as one global XML schema. Users can issue XML queries  on the 

integrated schema, which are then decomposed into local queries against 

source data. Finally, results of local queries are integrated into the result of the 

original XML query. 

1.2. Problem Statement & Motivation 

In this thesis, we focus on one particular issue in XML data management – presenting 

XML views on XML data. There are several advantages for XML views. Firstly, 
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XML views provide application specific views of source data. Secondly, XML views 

secure the source data by hiding the part users are not allowed to see. Thirdly, XML 

views provide for a basis for further data integration. Finally, XML views enable us 

to exploit the potential of XML as the standard of data exchange. 

Most of current systems [11] [14] [18] [43] [31] [73] for XML views focus on 

presenting XML views on relational data. Some of others also present XML views on 

XML data [21] [64] [44] [52] [67]. Unfortunately, there are several shortcomings in 

those systems.  

Firstly, they do not guarantee the designed views are valid in terms of semantics. In 

another words, the designed XML views may violate the semantics implied in XML 

source data. In general, these systems uses query languages to define XML views on 

source data. Users can define any views they want if the language can express it. 

Thus, it is easy for such views to violate the semantics in source data especially in the 

case where the semantics in source data are not explicitly expressed. The semantics to 

be violated may include functional dependencies, key and foreign key constraints, 

and relationship types, which exist in XML source data. To the best of our 

knowledge, the related work does not consider such semantics in designing XML 

views, which may results in invalid XML views. 

Secondly, query expressions for XML views are generally complex and hard to 

understand because of the tree structure of XML. As a simple example, an XML view 

involving supplier, part and the price of a part supplied by one supplier may need 20 

lines of XQuery expression. When an XML view has more elements and relationship 

types, the query expression for the view will be explosively longer. Thus, the 
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probability of making errors in writing query expression is high if users manually 

define XML views. It will not be user-friendly for users to manually write such query 

expression for XML views. As a matter of fact, one solution for this issue is to 

develop a CASE tool to enable users to design XML views graphically.  

Finally, most current related work considers XML views on top of relational 

database. That is, the source data for XML views are relational data. Some other work 

considers XML views on top of XML data. That is, the source data are XML data. 

However, currently no work considers designing flexible XML views for the case 

where XML data are stored in traditional database. Thus, there is a gap to be filled. 

We propose a systematic approach to allow XML views to be presented on XML 

source data. The source data can be stored in native form or in an object-relational 

database. In this way, we not only fill the gap mentioned before, but also cover more 

generic cases where XML data are stored by using two different storage methods. 

We also examine the design of valid XML views. We adopt a semantically rich data 

model – Object-Relationship-Attribute model for Semi Structured data (ORA-SS) 

[24] to express the schema of XML source data and XML views. We define a set of 

view operators to design XML views based on ORA-SS data model. By employing 

the semantics enriched in ORA-SS, we also develop a set of rules to guarantee that 

the designed XML views are valid. As the schema of XML views are expressed in 

ORA-SS, the schema for the XML views are thus called ORA-SS views. The 

difference between XML views and ORA-SS views are as follows: 

• XML views denote the XML documents for designed views. 
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• ORA-SS views denote the ORA-SS schema diagram of designed XML views. 

In another words, an arbitrary XML view document can be called an XML view for 

short. Its corresponding ORA-SS schema diagram can then be called an ORA-SS 

view. Note that we assume that the ORA-SS schema must always be conformed to its 

corresponding XML view in terms of semantics. We say an XML view is valid if it 

does not violate the semantics implied in source data. Similarly, we say an ORA-SS 

view is valid if it does not violate the semantics in its corresponding ORA-SS source 

schema. Thus, as we show in this thesis, if an ORA-SS view is valid, then an XML 

view conforming to the ORA-SS view is also valid. That is, the issue of the validity 

of XML views is the same as the issue of the validity of ORA-SS views.  

After we develop the set of rules for the validity of XML views or ORA-SS views, 

we develop algorithms to automatically generate query definitions from the ORA-SS 

views, as the ORA-SS views are graphical schema diagrams. When XML data are 

stored in native form, XQuery [40] view definitions are generated from the ORA-SS 

views. On the other hand, when XML data are stored in the object-relational database 

system, SQLX [75] view definitions are generated from the ORA-SS views.  

We formalize the issues addressed in this thesis above as follows: 

Valid XML Views Problem. Given an ORA-SS source schema S of XML data D, and 

a set of view operators, i.e. select, drop, join and swap, to design an ORA-SS view V, 

develop a set of rules to guarantee V is valid once a view operator is applied in V. 

XQuery View Definition Generation Problem. Given a designed valid ORA-SS view 

schema V and its ORA-SS source schema S, as well as its source document D 
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generate an XQuery view definition for V, which can be directly evaluated on the 

source data D with XQuery engines. 

SQLX View Definition Generation Problem. Given a designed valid ORA-SS view 

schema V and its ORA-SS source schema S, as well as its ORDB storage T generate a 

SQLX view definition for V, which can be directly evaluated on the storage T. 

1.3. Research Contributions 

To solve the three problems discussed, we employ a semantically rich data model – 

Object-Relationship-Attribute model for Semi Structured data (ORA-SS) [24] to 

express the schema of XML data. Based on the ORA-SS data model, we propose a 

novel approach to designing and querying XML views on XML source data. The 

architecture of our approach is shown in Figure 1.2.  

Firstly, an ORA-SS schema is extracted from XML data, XML DTD or XML 

Schema as a pre-process task. The XML data are stored as XML files or in an object-

relational database. Based on the extracted ORA-SS schema, we employee a set of 

view operators to design XML views. A set of rules have been developed to 

guarantee the views are valid. After that, the designed XML views are processed, and 

the corresponding view definitions are automatically generated. Two types of view 

definitions are generated depending on which storage we adopt. One is XQuery view 

definitions, which are executable against XML files. The other is SQLX view 

definitions, which are executable against the object-relational database. By executing 

those view definitions, the XML view documents can be directly produced.  
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Figure 1.2. The Architecture of designing and querying XML views based on ORA-SS 

In summary, the several research contributions in this thesis are as follows. 

1. Propose a set of view operators based on ORA-SS schema to design flexible yet 

valid XML views.  

2. Develop a set of rules to validate designed XML views for each operator applied 

on ORA-SS source schemas. 

3. Develop an algorithm to automatically generate XQuery view definitions for the 

designed valid XML views in the case where XML data are stored in native form. 

4. Develop an algorithm to automatically generate SQLX view definitions for the 

designed valid XML views in the case where XML data are stored in an object-

relational database. 

1.4. Thesis Overview  

The rest of the thesis is organized as follows. Chapter 2 introduces some of the main 

data models for XML data as well as the semantically rich ORA-SS data model. The 

advantages of ORA-SS over other data models are also presented. Chapter 3 presents 

the view operators based on ORA-SS schema as well as the set of rules for designing 
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valid XML views for each of these view operators. Chapter 4 describes the algorithm 

for automatically generating XQuery view definitions for XML views when the XML 

data are stored in native form (XML files or native XML databases). Chapter 5 gives 

the algorithm to automatically generate SQLX expressions for XML views for the 

case where XML data are stored in an object-relational database. Section 6 presents 

the CASE tool that we have implemented for the proposed approach. The related 

work is given in chapter 7, and we conclude the thesis in chapter 8. 
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Chapter 2  

Data Models for XML Data 

XML can represent the structure of data instance. However, we still need a data 

model to represent the schema of XML data. Since XML 1.0 was proposed, several 

data models were proposed for XML with different features. In this chapter, some of 

main data models for XML will be introduced, which include XML DTD, XML 

Schema and OEM. Finally, ORA-SS data model, which has been adopted in the work 

of this thesis, is presented. 

 

 

 

 

 

 

 

 

Figure 2.1. An XML Document on students and courses 

We use the XML document shown in Figure 2.1 to illustrate how these data models 

express XML data. Figure 2.1 depicts an XML document on students, 

<root> 
   <student sno=”s001”> 
      <sname>B. Cali</sname> 
      <course code=”cs1001” title=”Java programming”> 
         <grade>A</grade> 
         <faculty fno=”f001” fname=”T. Bray”/> 
         <tutor sno=”s401” sname=”B.McHugh”> 
            <payrate>20</payrate> 
            <feedback>good</feedback> 
         </tutor> 
      </course> 
      <course code=”cs1002’ title=”Introduction to Database”> 
         <grade>A+</grade> 
         <faculty fno=”f002” fname=”A. Milo”/> 
         <tutor sno=”s402” sname=”SY. Liu”/> 
            <payrate>25</payrate> 
            <feedback>excellent</feedback> 
         </tutor> 
      </course> 
   </student> 
</root> 
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their courses taken and faculty and tutor teaching the courses. The document only 

shows one student with sno equal to s001, who takes two courses, which are cs1001 

and cs1002. Each course’s grade of the student is also shown respectively. In addition, 

for each course taken by the student, there is one faculty and one tutor teaching it, 

which are presented as sub elements of course. Finally, the payrate of each tutor for 

the course is also presented as a sub-element of tutor in the document. The value of 

payrate depends on both course and tutor.  

2.1. XML DTD 

XML DTD [41] is the grammar along with XML 1.0 recommendation, which is 

known as Document Type Definition. It defines XML document structure with a list 

of markup declarations. It can be declared inline in an XML document, or as an 

external reference. An XML document can be checked against its DTD to ensure the 

document is valid. XML DTD may consist of three declarations: element declarations, 

attribute declarations and entity declarations.  

(1) Element declarations are used to declare the elements in an XML document. The 

syntax of element declarations in DTD is as follows. 

<!ELEMENT elementName elementContents> 

The elementName in the element declarations denotes the name of the element. The 

elementContents in the element declarations can be nested elements, #PCDATA, 

EMPTY or ANY. In the case where the elementContents contain nested elements, there 

are two symbols to separate the sub elements. One is “,”, which indicates each 

subsequent element follows the preceding element. The other is “|”, which indicates 
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one or the other element is used. In addition, there are also ways to indicate the 

occurrence of an element that can appear in a document by using ?, + or *. In 

particular, the ? sign declares that the element can occur zero or one time. The + sign 

declares that the element must occur one or more times. The * sign then declares that 

the element can occur zero or more times. #PCDATA indicates that the element 

contains data that will be parsed by a parser. The keyword EMPTY indicates that an 

empty element is declared. Finally, the keyword ANY declares an element with any 

content. 

(2) Attribute declarations are used to declare each attribute to appear in an XML 

document. The syntax of attribute declarations is as follows. 

                     <!ATTLIST elementName attributeName attributeType defaultValue 
                                                                …> 
Notice there can be a list of attributes for one element declared in one attribute 

declaration, as indicated by the ellipsis symbol in the syntax above. The elementName 

and attributeName in the attribute declarations denote the name of the element and 

attribute attached to the element. The attributeType in attribute declarations denotes 

the type of the attribute, which can have many different values. Three frequently used 

common types are as follows. The first type is CDATA, which indicates the value of 

the attribute is character data. The second type is ID, which indicates the value of the 

attribute is a unique identifier for the element. The third type is IDREF, which 

indicates the value of the attribute is the id of another element. The defaultValue is 

either the default value of the attribute or a keyword for the value. The keyword can 

be #required, #implied or #fixed. In particular, the keyword #required indicates the 

attribute value must be included in the element. On the other hand, the keyword 
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#implied indicates the attribute does not have to be included. Finally, the keyword 

#fixed indicates the attribute value is fixed. 

(3) Entity declarations are use to declare entity variables in an XML document, 

which are shortcuts to common text. The syntax of entity declarations is as 

follows.  

<!ENTITY    entityName    entityValue> 

The entityName in the entity declaration denotes the name of the entity. The 

entityValue in the entity declaration denotes the value of the entity, which can be any 

text string. As a simple example, the following entity declaration declares an entity 

named Copyright as the content of an XML element named Comment. 

DTD: 

<!ENTITY Copyright “Copyright XML 1.0”> 

 

XML: 

<Comment>&copyright;</Comment> 

 

 

Example 2.1. Figure 2.2 depicts the DTD of the XML document in Figure 2.1. 

 

 

 

 

 

 

Figure 2.2. The XML DTD for the XML Document in Figure 2.1 

<!ELEMENT     root          (student+)> 
<!ELEMENT     student     (sname, course+)> 
<!ATTLIST        student     sno         ID     #REQUIRED> 
<!ELEMENT      sname      (#PCDATA)> 
<!ELEMENT      course      (grade, faculty+, tutor+)> 
<!ATTLIST        course       code        CDATA     #REQUIRED 
                                              title        CDATA     #REQUIRED> 
<!ELEMENT      grade        (#PCDATA)> 
<!ELEMENT      faculty      EMPTY> 
<!ATTLIST        faculty      fno         CDATA     #REQUIRED 
                                             fname    CDATA    #REQUIRED>   
<!ELEMENT      tutor         (payrate, feedback)> 
<!ATTLIST         tutor         sno         CDATA    #REQUIRED 
                                             sname     CDATA   #REQUIRED> 
<!ELEMENT       payrate     (#PCDATA)> 
<!ELEMENT       feedback   (#PCDATA)> 
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Firstly, a root element is declared in the DTD, which may contain one or more 

student sub elements (indicated by the “+” sign following the student element). Next, 

a student element is declared with an attribute sno. Two sub-elements are also 

declared under student, which are sname and course. There must be one sname 

element and one or more course elements under each student element according to 

the DTD. Similarly, three sub elements are declared in the element course. They are 

grade, faculty and tutor. Under each course element, there must be one grade, one or 

more faculty and one or more tutor according to the DTD. Note the element content 

of faculty is EMPTY because faculty has no content or sub-elements in the XML 

document.          □ 

As Figure 2.2 shows, the XML DTD is able to define available elements and 

attributes in an XML document. It also expresses the sequence and the nesting 

structure of the elements, and the degree of occurrence of the elements. However, a 

lot of semantic information implied in XML documents cannot be expressed in their 

corresponding XML DTDs. For example, XML DTD cannot indicate the data type of 

an element to be integer, char, or some other types. In addition, XML DTD cannot 

support multi-attribute IDs. There is also no way to define relationships among 

elements in XML documents by using a DTD. As a result, a DTD cannot distinguish 

between attributes of elements and relationships. For example in the DTD in Figure 

2.2, the element sname is determined by the element student. Thus, it is actually an 

attribute of student. On the other hand, the element grade is determined by both 

student and course. Thus, it is not an attribute of course, but an attribute of a the 
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relationship type between student and course. Unfortunately, a DTD cannot express 

such semantics and the expressiveness of a DTD is limited. 

2.2. XML Schema 

The W3C XML Schema definition language [41] is an XML language for describing 

and constraining the content of XML documents. W3C XML Schema is a W3C 

Recommendation and an XML based alternative to DTD. Unlike XML DTD, an 

XML Schema document is also an XML document. Thus, it is more convenient to 

exchange XML Schemas than DTDs on the Internet.  

In general, there are two basic mechanisms of XML Schema to declare elements and 

attributes in an XML document. One is called simple type. The other is called 

complex type. In an XML document, if an element contains sub elements or carries 

attributes, then the element has complex type in XML Schema. If an element contains 

only text, such as strings, dates, etc., then the element has simple type in XML 

Schema. Attributes in XML documents always have simple types in XML Schema. 

We introduce the two main constructs in the following sub sections. 

2.2.1.   Simple types in XML Schema 

In XML Schema, the syntax for defining an XML element having simple type is 

follows: 

<xsd:element name = name value   type = simple type> 

Each element has a prefix xsd: which is associated with the XML Schema namespace. 

The simple type can be built-in simple types, such as strings, integer, etc. The syntax 

for defining an XML attribute in XML Schema is similar: 
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<xsd:attribute name = name value   type = simple type> 

In addition to the built-in simple types, other simple types can be derived from the 

built-in’s. Both built-in simple types and their derivations can be used in element and 

attribute declarations. In general, a new simple type can be derived by restricting an 

existing simple type. To define a derived simple type, a simpleType element is first 

used to name the new simple type. Then a restriction element is employed to 

constrain the range of values of the existing simple type.  

Example 2.2. Figure 2.3 defines a simpletype called agetype with a restriction 

element. Suppose the value of age is greater than 0 and lower than 120. Thus, we use 

two sub elements minInculsive and maxInclusive respectively within the restriction 

element to express the range of age. After defining the new simple type, we can define an 

element called age with this new type. 

                                          <xsd: element name = “age”   type = agetype>     □ 

                                  

 

 

 

 

 

 

 

Figure 2.3. A simple type definition for age with restriction 

2.2.2.    Complex types in XML Schema 

XML schema also supports complex types [41] such as: 

• Elements having sub elements 

           <xsd: simpleType name=”agetype”> 

                     <xsd: restriction base=”xsd: integer”> 

                                <xsd: minInclusive value=”0”/> 

                                <xsd: maxInclusive value=”120”/> 

                      </xsd: restriction> 

            </xsd: simpleType> 
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• Elements having attributes 

• Elements having no content 

• Elements having sub elements mixed with character content 

Note elements having attributes but containing only a simple type of value are also 

said to have complex types. The syntax to define complex type is similar to simple 

type in XML Schema. The following example illustrates this.  

Example 2.3. Suppose we define a complex type for an element employee, which has 

an attribute eno as its key attribute and other attributes name and address as its sub 

elements. The XML Schema definition is shown in Figure 2.4. Firstly, a complexType 

element is used to declare this is a complex type definition. Next, a sequence sub 

element is used to contain a sequence of element definitions for this complex type. 

Finally, an attribute sub element is used to declare an attribute eno for this complex 

type. After defining the complex type, we can define an element called employee 

using this complex type. 

                      <xsd: element name = “employee”   type = employeeType>   □ 

 

 

 

 

 

Figure 2.4. A complex type definition for employee 

           <xsd: complexType name=”employeeType”> 

                     <xsd: sequence> 

                             <xsd: element name=”name” type=”xsd:string”/> 

                             <xsd: element name=”address type=”xsd:string”/> 

                      </xsd: sequence> 

                      <xsd: attribute name=”eno” type=”xsd: string”/> 

            </xsd: complexType> 
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In general, there are different ways to present XML Schema based on one XML 

document. The following is a complete example that uses XML Schema to express 

the XML document in Figure 2.1.  

Example 2.4. The schema in Figure 2.5 first defines complex types for elements in 

the document that will be used. Then it uses these types to define the elements and 

attributes. This approach will make the XML Schema easy to understand when 

documents are complex. We first define two complex types for tutor and faculty 

elements. Then we define a complex type for course element, in which we use the 

two previous complex types for tutor and faculty when defining the sub elements 

tutor and faculty. Finally, we directly define the element student, in which we use the 

previous complex type for course. Notice that course has occurrence constraints, 

which indicates one student must attend at least 1 course and at most 6 courses. Note 

that the student element is contained in the declaration of root element.   □ 

XML Schema has the following advantages over DTD. First, XML Schema supports 

both simple and complex data types. Second, XML Schema is written in XML. Thus, 

it is easy for XML Schema to be parsed and transmitted on the Internet. Third, XML 

Schema provides a namespace mechanism. This is important for schema validation, 

since it enables us to distinguish between definitions and declarations from different 

vocabularies. In addition, XML Schema introduces some semantics, such as key 

attribute, reference, etc. However, relationship types still cannot be identified in XML 

Schema. Hence, attributes of relationship types cannot be distinguished from 

attributes of elements.  
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Figure 2.5. A XML Schema for the XML document in Figure 2.1 

<xsd:complexType   name=”tutorType”> 
   <xsd:sequence> 
      <xsd:element   name=”payrate”   type=”xsd:string”/> 
      <xsd:element   name=”feedback” type=”xsd:string”/> 
   </xsd:sequence> 
   <xsd:attribute    name=”sno”   type=”xsd:string”/> 
   <xsd:attribute    name=”sname”  type=”xsd:string”/> 
</xsd:complexType> 
<xsd:complexType   name=”facultyType”> 
   <xsd:attribute   name=”fno”      type=”xsd:string”/> 
   <xsd:attribute   name=”fname”  type=”xsd:string”/> 
</xsd:complexType> 
 
<xsd:complexType   name=”courseType”> 
   <xsd:sequence> 
      <xsd:element   name=”grade”  type=”xsd:string”/> 
      <xsd:element   name=”faculty” type=”facultyType”/> 
      <xsd:element   name=”tutor”    type=”tutorType”/> 
   </xsd:sequence> 
   <xsd:attribute   name=”code”   type=”xsd:string”/> 
   <xsd:attribute   name=”title”    type=”xsd:string”/> 
</xsd:complexType> 
 
<xsd:element name=”root”> 
      <xsd:complexType>  
      <xsd:sequence> 
         <xsd:element    name=”student”>    
           <xsd:complexType>  
              <xsd:sequence> 
                 <xsd:element   name=”sname”  type=”xsd:string”/> 
                 <xsd:element   name=”course”  type=”courseType”  
                                 minOccurs=”1”  maxOccurs=”6”/> 
              </xsd:sequence> 
              <xsd:attribute   name=”sno”  type=”xsd:string”/> 
            </xsd:compexType> 
          </xsd:element> 
        </xsd:sequence> 
   </xsd:compexType> 
</xsd:element> 
 

 



  Chapter 2. Data Models for XML Data 
     

  23 

2.3. OEM Data Model 

The Object Exchange Model (OEM) [61] is a schema-less, self-describing labeled 

directed graph that is used to model semi-structured data [57]. The OEM model 

consists of nodes as its key component. They are treated as objects, each of which has 

a unique Object Identifier (OID). There are two types of objects in OEM model. The 

first type is called atomic object, which are vertices with data and have no outgoing 

edge. Their values may be integer, string and image, etc. The second type is called 

complex object, which are vertices with outgoing edges. Their values are a collection 

of sub-objects. Formally, atomic object has the following structure in OEM model: 

(Label, Type, Value, Object-ID) 

The first field in the object structure is label, in which a variable-length character 

string describes what the object represents. The second field type indicates the data 

type of the object’s value. The third field value contains a variable-length value for 

the object. The final field Object-ID (OID) is a unique variable-length identifier for 

the object. Complex object has the following structure: 

(Label, Object-ID) 

In general, OEM is used to express the data instance diagram. The associated schema 

diagram for the data instance is named dataguides. Dataguides are derived from 

instance data. A dataguide can only describe the nested structure of the data. The 

other semantic information cannot be modeled using a dataguide.  

Example 2.5. Figure 2.6(a) depicts the OEM graph for the XML document in Figure 

2.1. To keep the example small, we show the details of only one course object under 
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the student s001. Each object is denoted as a circle, in which a number preceded by 

the symbol “&” is its OID, which determines the existence of the object in the OEM, 

such as &1 in the object root. The label of an object is attached to the incoming edge 

of an object. For example, root is the label on the incoming edge of the object &1. A 

complex object may contain other objects, such as the object student with OID &2 

which contains four other objects in the OEM graph. A simple object cannot contain 

other objects but the value of the object, such as the value s001 of the object sno with 

Object ID &3. The associated dataguide for the XML document in Figure 2.1 is 

shown in Figure 2.6(b). Obviously, the dataguide expresses the nested structure of 

XML document.          □ 

      

&1

&2

root

student

&3 &4 &6&5

sno
sname course course

"s001" "B. Cali"

&7 &8 &9 &10 &11

code title grade faculty tutor

"cs1001"
"Java

Probraming"
"A"

&12 &13 &14 &15

fno fname

&16

sno sname payrate

"f001" "T. Bray" "s401" "20""B. McHugh"

&17

feedback

"good"
 

Figure 2.6(a). The OEM model for the XML document in Figure 2.1 
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Figure 2.6(b). The Dataguide for the XML document in Figure 2.1 

In summary, OEM is a simple model for heterogeneous information exchange. It can 

represent data with irregular structure. OEM allows missing attributes or multiple 

occurrence of the same attribute. As a result, it can express semi-structured or XML 

data. However, weaknesses exist in OEM. Firstly, there are undesirable properties 

related to the use of an OID. For example, when using a logical OID in OEM, we 

have to do one more table lookups to access an object. Secondly, the semantic 

information expressed in OEM is not enough. For example, the attributes of objects 

and attributes of relationship types are represented in the same way in OEM. As 

shown in Figure 2.6, objects sname and payrate are expressed the same under the 

object tutor. There is no way to differentiate them in OEM. A similar limitation exists 

in the dataguide. While it can express the nested structure of the XML document, the 

dataguide cannot express the other semantics, i.e. distinguishing between attributes of 

objects and attributes of relationship types, and the degree of n-ary relationship types, 

etc.  

root 
student 

       sno 
       sname 
   course 
         code 
         title 
         grade 
     faculty 
           fno 
           fname 
     tutor 
           sno 
           sname 
           payrate 
           feedback 
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2.4. ORA-SS Data Model 

The ORA-SS data model expresses the hierarchical structure of XML data with three 

basic concepts: object classes, relationship types and attributes. An object class is 

similar to an entity type in an Entity-Relationship diagram or an element in XML 

documents. It is represented as a rectangle in ORA-SS. A relationship type describes 

a relationship among object classes in a hierarchical path with a label on the incoming 

edge of the lowest participating object class of the relationship type. The general form 

of the label is depicted as follows: 

name (list of object classes), n, p, c 

In particular, name indicates the name of the relationship type followed by the list of 

participating object classes. In the case where all the object classes are in a continual 

path, the list of object class is omitted. Next, an integer n indicating the degree of the 

relationship (n=2 indicates binary, n=3 indicates ternary, etc), the participation 

constraint p on the parent of the relationship, and the participation constraint c on the 

child. Note the participating object classes of a relationship type may not be next to 

each other in one path. In this case, the names of the participating object classes will 

be explicitly presented on the label. 

An attribute is a property that belongs to an object class or a relationship type. It is 

represented as a circle attached to the object class or the lowest participating object 

class of the relationship type. There can be many different types of attributes in ORA-

SS schema, such as key attributes, single-valued attributes and multi-valued attributes, 

etc. In addition, there are four diagrams in ORA-SS to describe XML data: schema 
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diagram, instance diagram, functional dependency diagram and inheritance diagram. 

In this thesis, we will focus on schema diagram and instance diagram. More details on 

other diagrams can be found in [24]. 

As a semantically rich data model, ORA-SS is able to express the following 

semantics implied in XML data: 

• Object class 

� Attributes of object class 

� Ordering on object class 

• Relationship type 

� Attributes of relationship type 

� Degree of n-ary relationship type 

� Participating object classes in relationship type 

� Participation of object classes in relationship type 

� Disjunctive relationship type 

� Recursive relationship type 

• Attribute 

� Key attribute 

� Single-valued attribute 

� Multi-valued attribute 

� Derived attribute 
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� Cardinality of attribute 

� Composite attribute 

� Disjunctive attribute 

� Attributes with unknown structure 

� Ordering on attribute 

� Fixed and default values of attribute 

The following example illustrates the basic concept of ORA-SS. 

Example 2.6. Figure 2.7 depicts the ORA-SS schema diagram of the XML data in 

Figure 2.1. There are four object classes in the ORA-SS schema shown in Figure 2.7, 

each of which is denoted as a rectangle with its name in it. The element student in the 

document in Figure 2.1 is expressed as the first object class from top to bottom in the 

ORA-SS schema in Figure 2.7. It has two attributes attached below it. They are sno 

and sname, which are expressed as circles in the schema diagram. As an identifier of 

student, the attribute sno is denoted as a filled circle. Note the attribute sname is 

presented as a sub element of student in the XML document. But it is shown in the 

ORA-SS schema diagram as an attribute of student because it is a property of student.  

The child object class of student in the schema diagram is course, which express the 

sub element of student, (i.e. course) in the XML document in Figure 2.1. It also has 

two attributes code and title, with code as a key attribute of course and title is a 

single-valued attribute of course.  

There is a relationship type called sc between object classes student and course, 

which indicates what courses are taken by a given student. The relationship type is 
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labeled as (sc, 2, 1:6, 1:n) on the incoming edge of object class course where sc is the 

name of the relationship type, 2 indicates the degree of the relationship type, 1:6 

indicates the participation constraints of the parent object class in the relationship 

type (one student must take at least 1 course and at most 6 courses), 1:n indicates the 

participation constraint of the child object class in the relationship type (one course 

can have one to many students). Note the sub element grade in the document is an 

attribute below object class course. Because grade is determined by both course and 

student, it is an attribute of relationship type sc. There is a label sc on the incoming 

edge of the attribute grade to indicate it is a relationship attribute.  

 

 

 

 

 

 

Figure 2.7. The ORA-SS schema for the XML document in Figure 2.1 

There are two child object classes for course in the schema diagram, which are 

faculty and tutor. They correspond to the sub elements of course, i.e. faculty and tutor 

respectively in the XML document in Figure 2.1 Object class faculty has two 

attributes fno and fname. There is also a binary relationship type (cf, 2, 1:n, 1:n) 

between course and faculty, which indicates which faculty member teaches a given 

courses. Object class tutor is a sibling of object class faculty. Tutor has two attributes 
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sno and sname. The binary relationship type (ct, 2, 1:n, 1:n) between course and tutor 

indicates which tutor teaches a given course. The attribute payrate belongs to the 

relationship type ct, and is attached to ct’s lowest participating object class – tutor 

with a label ct on its incoming edge in the schema diagram. Finally, there is a ternary 

relationship type named cst involving the object class course, student and tutor. The 

attribute feedback belongs to the relationship type, which indicates the feedback of 

one student for a tutor in a given course. It is clear that the ORA-SS schema diagram 

in Figure 2.7 not only expresses the hierarchical structure of the XML document in 

Figure 2.1, but also distinguishes object classes, attributes and relationship types 

implied in the document.         □ 

2.5. Summary  

The ORA-SS data model is a semantically rich data model compared to other models 

such as XML DTD, XML Schema or OEM. Table 2.1 lists the main features.  

Table 2.1.  Comparison of XML DTD, XML Schema, OEM/Dataguide & ORA-SS 

 XML DTD XML Schema OEM/Dataguide ORA-SS 

Nested structure Yes Yes Yes Yes 

ID/key attribute Yes Yes Yes Yes 

Degree of 
occurrence 

Yes Yes No Yes 

Data type No Yes No No 

Distinguishing 
object class, 

relationship & 
attribute 

No No No Yes 

Degree of 
relationship  

No No No Yes 

Distinguishing 
attributes of 

object class and 
attributes of 
relationships 

No No No Yes 
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We observe that ORA-SS supports all the main features except for data type. In 

particular, it not only reflects the nested structure of XML data, but it also 

distinguishes between object classes, relationship types and attributes. In addition, a 

lot of semantics are explicitly represented in an ORA-SS schema diagram. For 

example, it specifies the degree of n-ary relationship types and indicates if an attribute 

is an attribute of a relationship type or an attribute of an object class.  

While XML DTD, XML Schema and OEM have their own advantages in modeling 

XML data, they are unable to express many semantics, e.g., they cannot identify 

relationship types implied in the XML data, and do not distinguish between objects 

and attributes. Subsequently, the attributes of objects and attributes of relationship 

types cannot be distinguished too. These semantics are essential in designing valid 

XML views and generating query definition from XML views. For this reason, we 

adopt ORA-SS as our data model to express the schema of XML data in this thesis. 

We will illustrate why the semantics in ORA-SS are important for designing XML 

views and generating query definitions from XML views in later chapters. 
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Chapter 3  

Designing Valid XML Views 

In this chapter, we describe the problem of designing valid XML views and our 

approach to handle it. As mentioned in the previous chapter, an XML view document 

or an XML view conforms to an ORA-SS view schema. Thus, an XML view is valid 

if and only if its corresponding ORA-SS view is valid. In another words, an XML 

view is valid if and only if it conforms to a valid ORA-SS view. 

Definition 3.1. (Valid XML Views) Given an XML source data D, let S be the ORA-

SS source schema extracted from D, V be an ORA-SS view based on S, and XV be an 

XML view conforming to V,  XV is said to be valid iff its corresponding ORA-SS view 

V is valid. That is, V does not violate the semantics in S, i.e., functional dependencies, 

relationship types and their degrees (binary, ternary & n-ary) and key & foreign key 

constraints implied in D. 

Based on the definition for valid XML views, we must ensure the ORA-SS views are 

valid first before guaranteeing the validity of XML views conforming to the ORA-SS 

views. Thus, the problem of valid XML views is transformed into the problem of 

valid ORA-SS views. Once we have a valid ORA-SS view, we can produce a query 

expression for the view schema and then produce a valid XML view document. We 

define the valid XML views problem by using ORA-SS views as defined below. 
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Valid XML Views Problem. Given an ORA-SS source schema S of XML data D, and 

a set of view operators, i.e. select, drop, join and swap, to design an ORA-SS view V, 

develop a set of rules to guarantee V is valid once a view operator is applied in V. 

We employ a set of view operators, which are select, drop, join and swap operators, 

and develop a set of rules for each view operator to guarantee valid XML views based 

on the ORA-SS data model. Under these rules, the designed views will be guaranteed 

to be valid as they preserve the semantics in the underlying source data.  

The rest of this chapter is organized as follows. Section 3.1 first illustrates the 

importance of semantics for designing valid XML views. Section 3.2 provides an 

overview of our method to design valid XML views based on ORA-SS. We present 

the rules to design valid XML views based on ORA-SS in section 3.3. Section 3.4 

gives the complete view validation algorithm. 

3.1. Motivation  

Invalid views may be produced in the case where important semantics are not 

expressed in the underlying data model, such as XML DTD or Schema. 

Example 3.1. Figure 3.1 depicts an XML source document. We assume it satisfies 

the following functional dependencies: 

                      sno →  sname                     jno →  jname                        pno →  pname 

                     {sno, pno} →  price               {sno, pno, jno}→  qty 

The sub element price denotes the price of its parent element part supplied by its 

ancestor element supplier. The sub element qty denotes the quantity of its parent 

element part supplied by its ancestor element supplier in its ancestor element project.  
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The ORA-SS source schema of the XML document is shown in Figure 3.2. There are 

three object classes – supplier, project and part. Based on the functional 

dependencies satisfied in the XML document, sno, jno and pno are the key attributes 

of supplier, project and part respectively.  

There are two relationship types in the schema. The first one is a binary relationship 

type between supplier and part labeled sp(supplier, part) on the incoming edge of 

part. Since the two participating object classes of the relationship type are not next to 

each other in the path, their names are explicitly presented in the label. The attribute 

price is an attribute of the relationship type sp because of the functional dependency: 

{sno, pno} →  price 

The second relationship type is a ternary relationship type spj, which involves all the 

three object classes. It has an attribute qty based on the functional dependency:  sno, 

pno, jno→ qty. 

 

 

 

 

               

 

 

 

 

<supplier sno=”s001” sname=”supplier01”> 
   <project jno=“j001” jname=”project01”> 
      <part pno=“p001” pname=”part01”> 
           <price>100</price> 
           <qty>200</qty> 
      </part> 
   </project> 
   <project jno=“j002” jname=”project02”> 
      <part pno=“p002” pname=”part02”> 
         <price>150</price> 
         <qty>300</qty> 
       </part> 
   </project> 
</supplier> 

Figure 3.1. An XML document on supplier, 
project & part 

project

part

supplier

sp(supplier, part),2,1:n,1:n
spj,3,1:n,1:njno

sno

pno price

sp

sname

jname

pname qty

spj

Figure 3.2. The ORA-SS source schema of the  
XML document in Figure 3.1  
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To compare ORA-SS with other data models, we show the DTD of the XML 

document in Figure 3.3. In the DTD, the element price and qty are represented the 

same as the element supplier and part, and cannot express the functional 

dependencies:  

{sno, pno} →  price                     {sno, pno, jno} →  price. 

It also cannot differentiate object class, attribute and relationship type. 

Suppose we design a view based on the DTD that swaps the locations of the elements 

project and part. That is, project becomes a child of part and part becomes the parent 

of project. The attributes pno and pname of object class part will move up with part 

as they are attributes of part. Similarly, the attributes jno and jname of object class 

project will move down with project. However, the DTD in Figure 3.3 does not 

explicitly express the two functional dependencies:  

{sno, pno} →  price                         {sno, pno, jno} →  price. 

<!ELEMENT   supplier (project+)> 
<!ELEMENT   project   (part+)> 
<!ELEMENT   part        (qty, price)> 
<!ELEMENT   qty         (#PCDATA)> 
<!ELEMENT   price       (#PCDATA)> 
 
<!ATTLIST   supplier  sno        ID           #REQUIRED 
                                      sname   CDATA  #REQUIRED> 
<!ATTLIST   project    jno        CDATA  #REQUIRED 
                                      jname   CDATA  #REQUIRED> 
<!ATTLIST   part         pno       CDATA  #REQUIRED 
                                      pname   CDATA  #REQUIRED> 

Figure 3.3. The XML DTD of the XML doucment in Figure 3.1 
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Thus, an invalid view may be created based on the DTD, in which the elements price 

and qty also move up with part (see Figure 3.4). This view violates the original 

functional dependencies in the source document.  

{sno, pno, jno}→  qty 

However, based on the ORA-SS source schema in Figure 3.2, we can design the valid 

view that swaps project and part as shown in Figure 3.5. As the ORA-SS source 

schema explicitly expresses the two functional dependencies above, price must still 

be placed under part and qty must stay below project so that the original functional 

dependencies are preserved in the view. Thus, the view shown in Figure 3.5 does not 

violate the semantics in the source schema and is a valid view.   □ 

 

 

 

 

 

 

 

The above example shows that invalid views may be produced if we use XML DTD 

as the underlying data model, as it does not explicitly express the necessary semantics 

to design valid XML views, which are functional dependencies, relationship types 

and their degrees (i.e. binary, ternary or n-ary), and key & foreign key constraints. 

XML Schema and OEM also cannot express such semantics. We cannot determine an 

Figure 3.5. A valid XML view  
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spj,3,1:n,1:n
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jno

price

sp

sname

pname

jname qty

spj

sp,2,1:n,1:n

part

project

supplier

spj,3,1:n,1:n

pno

sno

jno

price

sname

pname

jname

qty

sp,2,1:n,1:n
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Figure 3.4. An invalid XML view  
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XML view is valid or not based on those data models. By contrast, ORA-SS can 

explicitly express the necessary semantics for designing valid XML views. The 

semantics are the differentiation of object classes and attributes, and the 

differentiation of relationship type attributes and object class attributes, etc. Based on 

ORA-SS source schema, we can determine if an XML view is valid or not. In the next 

section, we will give more details on how to design valid XML views based on ORA-

SS. 

3.2. Pre-Processing Steps 

We propose a novel method to design valid XML views based on ORA-SS model. 

There are three main steps. The first two steps are preparatory stages for valid XML 

view design. We first extract an ORA-SS source schema from XML data, and then 

enrich the source schema with necessary semantics implied in the XML data. The 

third step utilizes a set of rules for designing valid XML views. We will discuss the 

first two steps in the following subsections. 

3.2.1.   Extract ORA-SS Source Schema from XML Documents 

An ORA-SS source schema can be extracted from XML documents as follows: 

1. Map each element that has attributes or sub-elements into an object class in 

the ORA-SS schema diagram. 

2. Map each attribute of an element into an attribute of the object class 

corresponding to the element.  

3. Map each element that does not have attributes or sub-elements, into an 

attribute attached to the object class corresponding to the parent element of the 
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element. The attribute will be identified as an attribute of an object class or a 

relationship type in the next step. 

Note that we assume the XML documents are well-formed and conform to a DTD or 

XML Schema. In the extraction, we concentrate on the data of the XML documents 

and ignore the other aspects of the XML documents, such as comments and 

processing instructions, etc. Moreover, ORA-SS can also express the ordering, 

disjunction and recursive relationships in the XML documents. More details can be 

found in [34]. Note that the algorithms in Chapter 4 & 5 in this thesis have not 

included the cases for disjunction and recursive relationships yet. However, the 

algorithms can be easily extended to support these cases. 

3.2.2.   Enrich ORA-SS Source Schema with Semantics 

The ORA-SS schema diagram produced in the previous step reflects the basic tree 

structure of the XML document. It also distinguishes between object classes and 

attributes. Next, we enrich the ORA-SS schema with semantics such as: 

1. Identify key attributes of each object class.  

2. Identify other attributes of each object class, such as single-valued, multi-

valued attributes, etc.  

3. Identify relationship types among object classes.  

4. Identify attributes of relationship types.  

3.3. View Design Rules 

We propose four view operators to design XML views: select, drop, join and swap 

operators. The first three operators are analogous to the selection, projection and join 
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operators in relational databases. The swap operator is unique in designing XML 

views, because it exchanges the positions of ancestor and descendant object classes. 

We also have aggregate operators and an order by operator. The aggregate operators 

apply aggregate functions, such as sum, max/min or avg to attributes of relationship 

types to derive new attributes. The order by operator enforces order on attributes.  

3.3.1   Select Operator 

Select operators filter data by using predicates. They are similar to selection operators 

in relational databases. A select operator corresponds to a predicate on an attribute of 

an ORA-SS view schema. In particular, if a selection operator is applied to an 

attribute, those objects are retrieved if they have descendants or ascendants that 

satisfied the selection operator. If there are no objects with descendants or ascendants 

satisfying the selection operator, then no data will be retrieved. 

 

 

 

 

 

 

 

 

 

Example 3.2. Suppose we design a view that applies a select operator (qty > 500) on 

the source schema in Figure 3.2. The view schema is shown in Figure 3.6. The 

project

part

supplier

spj,3,1:n,1:n

pno

sno

pno

price

sp

sname

pname

jname qty > 500

spj

sp,2,1:n,1:n

Figure 3.6. An XML view applied with a selection operator in Figure 3.2  
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meaning of the view is that we retrieve those suppliers, each of which supplies some 

part in those projects, each of which need a part with quantity larger than 500. In 

other words, for each qualified supplier in the view document, it supplies in a certain 

project a certain part whose quantity is larger than 500.   □ 

In general, select operators place predicates on the view schema to retain some data 

and discard others. They do not restructure the view schema. Thus, the view schema 

will be the same as the source schema and will not violate semantics in the source 

schema. We do not need to set up rules for the validity of views when selection 

operators are applied. 

3.3.2.   Drop Operator 

Drop operators drop object classes or attributes in the source schema. They are 

similar to projection operators in relational databases. When an object class is 

dropped, it is because the object class itself is dropped, or because the key attribute of 

the object class is dropped. In addition, the drop operation will affect relationship 

types that involve the dropped object class. The following example illustrates the case 

where a drop operator is applied. 

 

 

 
 

 

 

 

project

part

jno

pno

jname

pname total_qty

pj

pj, 2, 1:n, 1:n

Figure 3.7. An XML view dropping supplier in Figure 3.2 
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Example 3.3.  Suppose we design a view in Figure 3.7 that drops the object class 

supplier based on the ORA-SS source schema in Figure 3.2. This view indicates that 

for a given project, all those parts needed in this project are placed below as its sub-

elements. Obviously, the attributes of supplier, i.e. sno and sname have to be dropped 

too in the view schema as attributes cannot exist without its owner object class. 

We also have to remove the relationship type sp and spj. As both of them involve the 

dropped object class supplier, the two relationship types will not exist in the view 

schema. In addition, the attribute of the relationship type sp (i.e. price) is dropped too 

in the view schema in Figure 3.7. Further, the attribute of the relationship type spj (i.e. 

qty) is mapped to an aggregate attribute (i.e. total_qty), which represents the total 

quantity of one part in a given project. It is actually an attribute of a new relationship 

type involving project and part, which is derived from spj.    □ 

This example shows that flexible views can be designed based on ORA-SS with its 

additional semantics. However, we have to handle the semantics properly so that 

valid views are guaranteed. The following four rules guarantee the validity of XML 

views when drop operators are applied. The first rule will handle the attributes of the 

dropped object class. The second rule will handle the relationship types affected by 

the drop operator. The last two rules will handle the relationship types derived by the 

drop operator. 

� Rule Drop_1: If an object class O in a source schema is dropped in designing a 

view, then the attributes of O are dropped too in the view. 
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Intuitively, we cannot leave an attribute in the view if its object class has been 

dropped. Without their object class, the attributes will lose their meaning in the view 

schema.  

� Rule Drop_2: If an object class O in a source schema is dropped in designing a 

view, then each relationship type involving O is dropped too in the view. 

As one participating object class of a relationship type is dropped in the view, the 

relationship type will be broken up. Although the relationship type will not be shown 

in XML document or XML schema, it needs to be dropped to keep the semantics in 

the ORA-SS view schema consistent.  

After a relationship type is dropped, the rest of the object classes of the relationship 

type still have semantic connection in the view. We can derive a new relationship 

type from the dropped relationship type as follows:  

� Rule Drop_3:  If an object class O in a source schema is dropped in designing a 

view, then for each n-ary (n≥2) relationship type R involving O, a new 

relationship type is generated by projecting the dropped object class O out of R: 

∏ +−
=

onoioio
RR

,...,1,1,...1
'  , where O1, … On are the participating object classes in R. 

And the attributes of R can be dropped, or mapped into attributes with an 

aggregate function, or mapped into attributes typed in a bag of values. 

Correctness of Rule Drop_3: Suppose object classes O1, O2, … , On participate in a 

relationship type R in a source schema. We assume one of the object classes (say Oi, 

1 ≤ i ≤ n) is dropped in designing a view. According to Rule Drop_3, a new 

relationship type R’ is derived by projecting out Oi and all R’s attributes from R:  
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∏ +−
=

onoioio
RR

,...,1,1,...1
'  

All the rest of the participating object classes of R except Oi are kept in the new 

relationship type. Obviously, R’ does not violate the semantics implied in R according 

to the theory of relational database. It is because the new relationship type keeps the 

semantic connection among the remaining object classes participating in R’ in the 

view. The attributes of R are dropped because they can not exist in the new 

relationship type R’. However, new meaningful attributes can be still derived from the 

attributes of R with aggregate functions. The new attributes will belong to the new 

relationship type. In this way, the semantics among the remaining object classes of R 

is correctly kept in the view and the view is still valid.     □ 

The following example illustrates Rule Swap_3 and shows an invalid view may be 

produced without this rule. 

Example 3.4. Consider the ORA-SS source schema in Figure 3.8. It contains three 

object classes: part, supplier and project. There is one binary relationship type called 

ps involving part and supplier and another ternary relationship type called spj 

involving all the three object classes. Suppose we design a view by dropping object 

class supplier. According to Rule Drop_1 and Drop_2, the attributes of supplier and 

relationship types involving supplier are dropped too. Without Rule Drop_3, we will 

produce a view shown in Figure 3.9, which has no relationship type between part and 

project. Thus, the view loses the semantic connection between the two object classes 

as implied in the relationship type spj in the source schema. That is, for a given part 

value, only those project values having the part value appear as its children in the 

view document. Obviously, the view in Figure 3.9 does not have such a meaning. It is 
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thus an invalid view. In order to keep the semantic connection between the two object 

classes, we design another view shown in Figure 3.10. In this view, we derive a new 

relationship type called pj from spj based on Rule Drop_3. A new attribute of pj 

called total_qty is also derived by applying a sum function to the attribute qty in the 

source schema. Thus, this view keeps the semantic connection between part and 

project and is a valid view.         □ 

 

 

 

 

 

 

 

In more complicated cases, the dropped object class may involve more than one 

relationship type in the source schema. Thus, we need to join those relationship types 

to keep the semantic connection among them. We have the fourth rule for drop 

operator.  

� Rule Drop_4: If an object class O in a source schema is dropped in designing a 

view, and O is the only common participating object class of two relationship 

types R1 and R2, and all participating object classes of R1 and R2 are in a 

continual path, and the participating object classes of R1 are not a subset of the 
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Figure 3.8. An ORA-SS source 
schema   

Figure 3.10. A valid 
view schema by dropping 

supplier  

Figure 3.9. An invalid view 
schema by dropping 

supplier  
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participating object classes of R2 and vice versa, then a new relationship type R’ 

is generated by joining R1 and R2 as below, where O1, O2, …, Om are the rest 

object classes participating R1 and R2.  

R’ = ∏ omoo ,...,2,1
(R1 R1.o=R2.o R2) 

Correctness of Rule Drop_4:  

1. We will first show why the conditions in Rule Drop_4 are necessary.  

Suppose the first condition is false. That is, there are other common object 

classes for R1 and R2. Obviously, we do not have to join R1 and R2 in this case as 

the semantic connection between R1 and R2 is still explicitly expressed through 

the other common object classes.  

Now suppose the second condition is false. That is, all participating object 

classes of R1 and R2 are not in the same path. In this case, we cannot join R1 and 

R2 as the object classes of the new relationship type will not be in the same path 

and the new relationship type will be meaningless.  

Finally, suppose the third condition is false. Then either all participating object 

classes of R1 participate in R2 or vice versa. In this case, if the only common 

object class of R1 and R2 is dropped, all object classes of R1 must have been 

removed in the view schema. Thus, we do not need to join R1 and R2 in the view 

schema. 

2. Next, we examine the validity of view obtained. 
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Suppose O11, O12, …, O1n participate in the relationship type R1 in the order 

from ancestor to descendant and O21, O22, …, O2m participate in the relationship 

type R2 in the same order in the source schema. R1 and R2 are in the same path in 

the schema and they do not contain each other. We assume O1n = O21 is the only 

common object class of R1 and R2, which is dropped in designing a view. 

Satisfying all conditions of the Rule Drop_4, we derive a new relationship type 

R’ in the view schema by joining R1 and R2 as follows: 

R’ = ∏ moooo 2,...21,...,12,11
(R1 o1i=o2j R2) 

Notice the join operator is actually an equijoin for R1 and R2 based on the 

identifiers’ values of O1i and O2j. The derived relationship type R’ does not 

violate the semantics of R1 and R2 according to the theory of relational database. 

Instead, it keeps semantic connection among the two relationship types. Thus, 

the semantics among the rest object classes participating in R1 and R2 in the 

view is correctly kept and the view is still valid.    □ 

The following example illustrates the Rule Drop_4. It also shows that an invalid view 

may be produced if the rule is not applied.  

Example 3.5. Consider the ORA-SS source schema in Figure 3.11. There are three 

object classes project, staff and publication. The binary relationship type js between 

project and staff indicates that which staff participates in a project. The binary 

relationship type sp between staff and publication indicates what publications a staff 

published.  



  Chapter 3. Designing Valid XML Views 
     

  47 

Suppose we design a view that drops the intermediate object class staff. Without the 

Rule Drop_4, we may design an ambiguous view that does not have a new 

relationship type between project and publication (see Figure 3.12). In this view 

schema, the semantic connection between the two object classes will be lost. Thus, 

the meaning of the view is that for a given project, all distinguished publications are 

placed below as its sub-elements, which results in a lot of redundancy, as all 

publications will be repeated in each project. 

 

 

 

 

 

 

 

 

In fact, there is still semantic connection between project and publication based on 

the source schema. The connection between project and publication indicates all 

publications published by those staff participating in a given project. Thus, we need 

to generate a new relationship type jp between the two object classes in the view. In 

particular, jp is generated as follows. 

jp = ∏ npublicatioproject,
(js js.staff=sp.staff sp) 

project

staff
jno

sno

jname

sname
publication

isbn title

js,2,+,+

sp,2,+,+

Figure 3.11. An ORA-SS source 
schema   
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Figure 3.13. A valid 
view schema   
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isbn title

Figure 3.12. An ambiguous 
view schema   
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In this way, the remaining two object classes are connected together through the 

semantics, and the view is still meaningful. The valid view with the new relationship 

type is shown in Figure 3.13.        □ 

3.3.3.   Join Operator 

There may be referencing object classes and referenced object classes in an ORA-SS 

source schema. Two object classes are connected together by a foreign key to key 

reference in the schema. Thus, these two object classes can be joined together with a 

join operator. When a join operator is applied, we remove the referenced object class 

in the view schema and attach all attributes of the referenced object class to the 

referencing object class.  

Example 3.6. Figure 3.14 shows an ORA-SS source schema diagram. The object 

class supplier’ under project refers to an object class supplier with the key attribute of 

supplier denoted by a dotted line. There is a relationship type between retailer and 

supplier called rs, which has an attribute contract under retailer. The meaning of the 

relationship type is that for a given supplier, all the retailers having contracts with the 

supplier will be placed below as its sub-elements. 

supplier'

part

pno
price

project

jno
supplier

sno sname

retailer

rno
contract

js,2,1:n,1:n

sp,2,1:n,1:n

sp

rs,2,1:n,1:n

rs

sno

 

 
Figure 3.14. An ORA-SS schema diagram 
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Figure 3.15 depicts a view, which joins object classes supplier and supplier’ together. 

The join operator attaches the attributes sno and sname of supplier to supplier’ in the 

view. In addition, the object class retailer also moves below supplier’ and its attribute 

contract moves with retailer. As supplier’ refers to supplier with a foreign key to key 

reference in the source schema, supplier’ can play the role of supplier in the view 

schema. Thus, the relationship type rs between supplier and retailer are still kept in 

the view and actually become the relationship type between supplier’ and retailer.□ 
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sname
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sp
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When the join operator is applied, we need to handle the object classes and 

relationship types in the path of the referenced object class. We develop two rules for 

the join operator. The first rule handles the descendants of the referenced object class 

and their relationship types. The second rule handles the ancestors of the referenced 

object class and their relationship types. 

� Rule Join_1: If a referencing object classes Oi is joined with a referenced object 

class Oj in designing a view; then all attributes of Oj are attached to Oi in the 

view, and if there is a relationship type R involving no ancestors of Oj but some 

descendants of Oj; then 

Figure 3.15. An ORA-SS view schema by joining supplier’ and supplier in Figure 3.14 
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Case 1: Keep R and all its participating object classes in the view. 

Case 2: Drop some of the object classes of R in the view to derive a new 

relationship type, and the attributes of R can be dropped, mapped into attributes 

with some aggregate function, or mapped into attributes typed in a bag of values. 

Correctness of Rule Join_1: 

Rule Join_1 first attaches the attributes of Oj to Oi as Oi refers to Oj by a foreign 

key to key reference and Oi plays the role of Oj in the view. Next, it handles the 

relationship types involving descendants of Oj in the view. There are two cases 

for the relationship types. Suppose one of the relationship types is R. In Case 1, R 

is kept in the view. Thus, all participating object classes of R are also kept in the 

view and Oi plays the role of Oj in R. Thus, the semantics of R is still kept in the 

view and the view is valid. In Case 2, a new relationship type is derived from R 

by dropping some of the participating object classes of R. The attributes of R can 

be handled properly based on users’ requirements. According to Rule Drop_3, the 

new relationship type does not violate the semantics of R and the view is valid. □ 

We also need to handle the ancestors of Oj in the source schema and their relationship 

types, especially when the ancestors of Oj participate in relationship type with Oj or 

its descendants. Thus, we have the following Rule Join_2. 

� Rule Join_2: If a referencing object class Oi is joined with a referenced object 

class Oj in designing a view, then all attributes of Oj are attached to Oi in the view, 

and if there is a relationship type R involving ancestors of Oj, then: 

Case 1: Keep R in the view and swap the ancestors of Oj involving R below Oj. 
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Case 2: Drop the ancestors of Oj involving R in the view to derive a new 

relationship type, and the attributes of R can be dropped, mapped into attributes 

with some aggregate function, or mapped into attributes typed in a bag of values. 

Correctness of Rule Join_2: 

Rule Join_2 handles the relationship types involving ancestors of Oj in the view. 

There are also two cases for processing the relationship types. Suppose one of the 

relationship type is R. In Case 1, R and the ancestors of Oj participating in R are 

needed in the view schema. Thus, the ancestors must be swapped first and 

become descendants of Oj so that they can be attached as Oi’s descendants in the 

view schema. In this way, R is kept intact in the view and the view is valid. Notice 

that a new operator, i.e. the swap operator is utilized in this case. More details on 

the swap operator will be given in the next sub section. 

In Case 2, we simply drop all the ancestors of Oj involving R in the view. As Oi 

has its ancestors in the view already, the ancestors of Oj in the source schema 

cannot appear as ancestors of Oi in the view. After the drop of the ancestors, a 

new relationship type can be derived from R and the attributes can be handled 

properly in the view schema. In this way, the view will be kept valid.  □ 

Without the two rules, invalid views may be produced, as we will illustrate: 

Example 3.7. Figure 3.16 depicts an ORA-SS source schema, which has a foreign 

key to key reference between object classes supplier’ and supplier. There is a ternary 

relationship type ysr involving object classes year, supplier and retailer. The attribute 

contract belongs to the relationship type ysr in the source schema. 



  Chapter 3. Designing Valid XML Views 
     

  52 

   

supplier'

part

pno
price

project

jno
supplier

sno sname

retailer

rno
contract

js,2,1:n,1:n

sp,2,1:n,1:n

sp

ysr,3,1:n,1:n

ysr

year

year_value

sno

    

supplier'

sno
part

pno
price

project

jno

sname

js,2,1:n,1:n

sp,2,1:n,1:n

sp

retailer

rno contract

ysr,3,1:n,1:n

ysr

 

 

Suppose we design a view by joining object classes supplier’ and supplier, as shown 

in Figure 3.17. In this view schema, the object class year does not exist and the 

relationship type ysr is still kept unchanged, which violates Rule Join_2. In this case, 

the relationship type is meaningless in the view schema as one of its participating 

object classes year does not exist in the view.  

The meaning of the attribute contract in the source schema is a contract signed by a 

supplier and a retailer in a given year. However, in the view schema, the meaning of 

the attribute contract is changed, which is a contract signed by a supplier and a 

retailer without any year specified. Thus, the attribute contract in the view schema 

has a different meaning from in the view schema. The view is an invalid view.  

By applying Rule Join_2, we can design a valid view that joins the two object classes 

supplier’ and supplier (see Figure 3.18). A new relationship type is derived from 

relationship type ysr, which involves supplier’ and retailer only. The attribute contract 

becomes a multi-valued attribute of the new relationship type, as all contracts signed 

by a given supplier’ and retailer in each years are aggregated into a bag of values. □ 

Figure 3.16. An ORA-SS source schema  Figure 3.17. An invalid view schema by 
joining supplier’ and supplier 
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3.3.4.   Swap Operator 

Swap operator is unique in XML settings as it exchanges the positions of an ancestor 

object class and one of its descendant object classes. They are widely applied in XML 

views design because of the hierarchical nature of XML data. Therefore it is included 

as one of the four main operators. The following example illustrates the case where a 

swap operator is applied to design a view. 
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Example 3.8. Given a source schema in Figure 3.19, we design a view schema shown 

in Figure 3.20 that swaps supplier and part hierarchically in the source schema.  

Figure 3.18. An valid view schema by joining supplier’ and supplier in Figure 3.16 

Figure 3.20. An ORA-SS view schema 
swapping supplier and part in Figure 19 

Figure 3.19. An ORA-SS source schema  

Swap supplier and part 
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After supplier and part are swapped, the attributes attached to them need to be 

relocated properly. Obviously, the attributes pno and sno are also swapped to preserve 

their parent object classes. In addition, we need to keep the correct meaning of the 

attribute price, which actually indicates the price of a part supplied by a given 

supplier. Thus, the attribute price must stay with the new child object class of sp (i.e. 

supplier) in order to preserve the functional dependency: 

{sno, pno} → price 

If it moves with the object class part, then the attribute price will become an attribute 

of part and it will violate the functional dependency in the source schema. Similarly, 

the attribute qty of spj also stays below the lowest participating object class of spj, i.e. 

supplier.          □ 

In general, we develop the following rules when swap operators are applied so that 

the views are valid. We use the following notations in the rules for swap operators. 

� Rule Swap_1: If an object class Oi and its descendant object class Oj in a source 

schema are swapped in designing a view, then the attributes of Oi and Oj are still 

attached to Oi and Oj in the view. 

This rule is straightforward. Without it, the attributes of Oi and Oj will be meaningless 

in the view. In addition, the relationship types involving Oi and/or Oj in the source 

schema are also affected as the positions of Oi and Oj are exchanged. Thus, we can 

classify the affected relationship types after a swap operation into three sets S1, S2 and 

S3 as follows:  
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1. S1(Oi, Oj) is the set of relationship types which do not involve any descendants of 

Oj, but involve the ancestors of Oi or Oj in the ORA-SS source schema. 

2. S2(Oi, Oj) is the set of relationship types which involve at least Oi and Oc, where Oc 

is a child of an object class Oa, which lies in the path between Oi and Oj , and Oc  

does not lie in the path between Oi and Oj in the ORA-SS source schema. Note Oa can 

be Oi itself. In this case, Oc is then a child of Oi. 

3. S3(Oi, Oj) is the set of relationship types which involve at least Oj and Od, where Od 

is a child of Oj. 

Oa

Oj

Oi

Ob

Oc

Ok

S1

Od

          

Oa

Oj

Oi

Ob

Oc

Ok

S2

Od

S3

 

         

For illustration purpose, Figure 3.21 and Figure 3.22 depict the three sets of 

relationship types to be affected in an ORA-SS source schema when Oi and Oj are 

swapped. In general, the relationship types in S1 involve the object classes in the 

straight path of Oi and Oj. The relationship types in S2 involve at least the object 

classes Oi and Oc, and possibly ancestors of Oi. The relationship types in S3 then 

involve at least Oj and Od, and possibly ancestors of Oj.  

Figure 3.21. S1(Oi, Oj)  in an ORA-SS source schema  Figure 3.22. S2(Oi, Oj) & S3(Oi, Oj) in an ORA-SS 
source schema 
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Notice S1 does not contain these relationship types involving Oj’s descendants 

according to the definition, as these relationship types will not be affected when Oi 

and Oj are swapped. That is, all object classes of these relationship types will be in 

the same path and the lowest object class of these relationship types will also not be 

changed. 

When Oi and Oj are swapped, all object classes of a relationship type in S1 are still in 

one same path. However, the lowest object class of these relationship types will be 

changed. Thus, we need to handle the attributes of these relationship types properly. 

Rule Swap_2 processes these relationship types. 

� Rule Swap_2: If an object class Oi and its descendant object class Oj in a source 

schema S are swapped in designing a view, then for each R in S1(Oi, Oj), the 

attributes of R are attached to the lowest participating object class of R in the 

view. 

This rule handles an arbitrary relationship type (say R) in S1 in the view. All object 

classes of R are kept in the same path in the view schema. However, the lowest 

participating object class of R is changed to another object class after the swap 

operator is applied. Thus, the attributes of R need to be attached to the new lowest 

participating object class of R in the view schema. In this way, the view does not 

violate the semantics of source schema and is still valid. 

On the other hand, when Oi and Oj are swapped, all object classes of a relationship 

type (if any) in S2 or S3 may not be in one same path or produce some gap between 

them. Thus, actions need to be done to keep these relationship types semantically 

meaningful in the view. 



  Chapter 3. Designing Valid XML Views 
     

  57 

When handling the relationship types in S2 or S3, we also need to consider reversible 

issue caused by swap operators. In general, the definition of reversible view can be 

depicted as follows. 

Definition 3.2 (Reversible View) A valid view schema V of a source schema S is 

called a reversible view if the source schema is a valid view of V under our view 

operators, i.e. select, drop, join & swap. 

According to the definition, if the original source schema can be produced back by 

applying some operators to a view, then the view is a reversible view. Among our 

view operators, it is obvious a view will not be a reversible view if select or drop 

operator is applied in the view. It is because some data will be lost in the view, and it 

is impossible to produce the data back from the view. The join operator joins two 

object classes together. Based on the rules for the join operator, the source data may 

not be lost in the view in some cases. However, we need to introduce new operator to 

restore the referenced object class back in order to make the view reversible. Thus, 

we will also not consider join operator here. Finally, the swap operator swaps two 

object classes in the view, and the view can be reversible by applying another swap 

operator. Therefore, we only consider the swap operator for a reversible view. In 

particular, the reversible view problem can be depicted as follows. 

The Reversible View Problem. Given an object class Oi and its descendant Oj in an 

ORA-SS source schema S, Let Oi and Oj be swapped to design a view V, develop a 

rule to ensure that the view V is a reversible view. 

As the reversible view problem also involves the relationship types in S2 and S3, we 

develop the following Rule Swap_3 and Rule Swap_4 to handle them respectively. 
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� Rule Swap_3: If an object class Oi and its descendant object class Oj in a source 

schema S are swapped in designing a view, and there exists a relationship type R 

in S2 which involve at least Oi and a child Oc of Oa, where Oa is in between Oi and 

Oj (Oa can be Oi itself) and Oc is not, then the sub schema rooted at Oc is attached 

to Oi in the view to keep R intact. 

This rule handles relationship type R in S2. If there are no relationship types in S2, 

then the rule will not apply. After Oi is swapped below in the view schema, we need 

to keep R intact in the view schema. Thus, the rule first attaches the sub tree rooted at 

Oc to Oi, which is the lowest object class of R in the path of Oi and Oj in the view 

schema. In this way, all object classes of R will still be in one path in the view. Notice 

that the attributes of R are still attached to Oc in the view schema. In addition, R may 

optionally contain ancestors of Oi. In this case, the same rule applies. 
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Oj

Oi

R1(Oi, Ob)

Ob

Oc

R2(Oi, Oa, Oc)

Ok

                                   

Oa

Oi

Oj
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R2(Oi, Oa, Oc)

Ok

 

 

 

Correctness of the Rule Figure 3.23 depicts a simplified ORA-SS source schema, 

which contains two relationship types in S2. In particular, there is one relationship 

type R1 involving Oi and its child Ob, where Ob is not in the path between Oi and Oj. 

Figure 3.23. An ORA-SS source schema for 
Swapping Oi and Oj 

Figure 3.24. An ORA-SS view schema for 
Swapping Oi and Oj 

Swap Oi and Oj 
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Obviously, R1 is one of relationship types in S2. It is depicted as R1(Oi, Ob) for 

simplicity. There is another relationship type R2 involving Oi, Oa and Oc, where Oc is 

a child of Oa. Notice Oa is in the path between Oi, and Oj and Ob is not in the path. R2 

is thus still one of relationship types in S2 and is depicted as R2(Oi, Oa, Ob) for 

simplicity. When Oi and Oj are swapped to design a view as shown in Figure 3.24, 

obviously, sub trees rooted at Ob and Oc need to move with Oi and are attached to Oi 

to keep the semantics of R1 and R2 intact in the view. In addition, if there are any 

attributes of R1 and R2 attached to Ob and Oc, the attributes will also be attached to Ob 

and Oc in the view. In this way, the view is still valid as the two relationship types are 

still kept intact.         □ 

� Rule Swap_4: If an object class Oi and its descendant object class Oj in a source 

schema S are swapped in designing a view, and there exists a relationship type R 

in S3 which involve at least Oj and a child Od of Oj, then the sub schema rooted at 

Od is attached to the lowest participating object class of R in the path of Oi and Oj 

in the view schema to keep R intact. 

This rule handles relationship type R in S3. If there are no relationship types in S3, 

then the rule will not apply. After Oj is swapped above in the view schema, there are 

two cases for the change of R. In the first case, R does not involve any ancestors of 

Oj. The sub schema rooted at Od will still be attached to Oj, which is the lowest 

participating object class of R in the view. In the second case, R involves some 

ancestors of Oj. The sub schema rooted as Od will be attached to the lowest 

participating object class of R, which may not be Oj in the view. In this way, all 

object classes of R will be still in one path in the view. Notice the attributes of R are 
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still attached to Od in the view schema. The correctness of this rule is similar to the 

Rule Swap_3. Thus we do not provide details here. 

The Rule Swap_3 and Rule Swap_4 not only guarantee the view is valid, but also 

produces the reversible view. In case Oi and Oj are swapped again to design another 

view, the same rule can be applied again to produce the original source schema. The 

following example illustrates the reversible view problem. It also shows an invalid 

view may be produced without the Rule Swap_3. 

Example 3.9. Suppose we have the source schema shown in Figure 3.25. There are 

several relationship types involving the object classes in the source schema. Suppose 

we design a view swapping object classes course and student.  

We may design a view shown in Figure 3.26. Based on the Rules Swap_1 and 

Swap_2, we first move the attributes of the two object classes with them, and the 

relationship cs’s attribute grade is attached to course, i.e. the new lowest participating 

object class of cs. Note the specification of the relationship dc is labeled on the 

incoming edge of course as {dc(department, course), 2, 1:n, 1:1}. The two 

participating object classes of the relationship type department and course are 

presented explicitly, as the two object classes are not next to each other in one path in 

the view schema.  
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Notice the relationship type dcl among department, course and lecturer is a 

relationship type in S2. If we do not have Rule Swap_3, then the object class lecturer 

will be attached to student in the view, and the relationship type dcl will be lost in the 

view. Thus, all distinguished lecturers will be repeatedly placed under each student in 

the corresponding XML view documents. In addition, the attribute of dcl, i.e. work 

load below lecturer will also become meaningless. This is because work load 

becomes an attribute of lecturer in the view schema. Thus, it also violates the original 

meaning of the attribute work load and the view is an invalid view.  

To design a valid view as shown in Figure 3.27, the object class lecturer needs to 

move down with course to keep the relationship type dcl intact, as stated in Rule 

Swap_3. In addition, we also need to explicitly indicate the participating object 

classes of dcl, as they are not next to each other in the view. Similarly, the meaning of 

the attribute work load is still the work load of a lecturer under a given pair of course 

and department, as is in the source schema. In this way, we will not lose any 

information for the relationship type and make the view reversible. 

Figure 3.25. An ORA-SS source schema for 
illustrating reversible issue 

Figure 3.26. An invalid ORA-SS view schema 
obtained by swapping course and student in 

Figure 3.25 
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On the other hand, we do not move tutor up with student in the view. Although tutor 

and student also participate in one relationship type cst, tutor is attached to course as 

course is the lowest participating object class of cst, which is applied based on the 

Rule Swap_4. In this way, the designed view is valid, as shown in Figure 3.27. 
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Now suppose we apply another swap operator to design the second view, which 

swaps student and course again based on the current view schema in Figure 3.27. As 

indicated in the reversible problem, the second view schema should be the same as 

the original source schema in Figure 3.25. Similarly, the Rule Swap_1 and Swap_2 

apply accordingly. The attributes of student and course move with their object classes. 

The relationship attribute grade is thus attached to student again. In addition, based 

on Rule Swap_4, the object class lecturer also needs to move up with course as 

course is the lowest participating object class of dcl. In this way, the relationship type 

dcl is kept intact in the second view schema. Otherwise, we cannot produce the 

Figure 3.27. A valid ORA-SS view schema obtained 
by swapping course and student in Figure 3.25 

Figure 3.28. A valid ORA-SS view schema 
obtained by swapping course and student again in 

Figure 3.27 
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original source schema. The resulting view schema is shown in Figure 3.28, which is 

the same as the original source schema in Figure 3.25.   □ 

3.3.5.   Aggregate and Order by Operators 

In addition to the four view operators discussed above, we also use aggregate 

operators to design XML views. We can apply aggregate functions to attributes of 

relationship types to derive new attributes in the view schema. The aggregate 

functions include sum, max/min or avg.  

 

 

 

 

 

 

Example 3.10. Suppose we design a view shown in Figure 3.29 by dropping object 

class supplier in source schema shown in Figure 3.2. The view indicates that for a 

given project, only those parts needed in the project are placed below as its sub-

elements. The attribute qty of relationship type spj can be aggregated to generate a 

new attribute total_qty by applying a sum function. The new attribute indicates the 

total quantity of part supplied by all suppliers for a given project.   □ 

Finally, we also consider the order by operator for designing valid XML views as 

order is significant in the context of XML data. The order by operator can be applied 

on any single-valued attributes in the views. Note that the attributes may belong to 
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Figure 3.29 The ORA-SS view schema by 
applying aggregate operator 
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jp

<

Figure 3.30 An ORA-SS view schema by 
applying order by operator in Figure 3.2 

Figure 3.29 An ORA-SS view schema by 
applying aggregate operator in Figure 3.2 
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object classes or relationship types. We use the following notation to denote the order 

by operator in an ORA-SS schema diagram.  

• Symbol “<” on an edge between an object class and an attribute indicates the 

values of the attribute are in ascending order. 

• Symbol “>” on an edge between an object class and an attribute indicates the 

values of the attribute are in descending order. 

Example 3.11. Let us continue to design a view based on the schema in Figure 3.29. 

We place an ascending order by operator on the attribute jno of project in a new view 

schema in Figure 3.30. Thus, the instances of project will be shown in the ascending 

order of the values of jno in the view document.     □ 

In summary, aggregate and order by operators do not restructure the source schema in 

designing views. Thus, the resulting view schema will be the same as the source 

schema. The views will not violate semantics, such as functional dependencies and 

participation constraints in the source schema. Thus, we do not need to design rules 

for the validity of views when these operators are applied.  

3.3.6.   Design Rules for Participation Constraints in Relationship 

When designing an XML view with the operators above, new relationship types may 

be derived in the view from existing relationship types. In addition, the view may 

change the order of participating object classes of an existing relationship type. In this 

case, we need to recalculate the participation constraints of the relationship type. 

Example 3.12. Consider the source schema in Figure 3.31. There are three object 

classes: course, student and tutor. The meaning of the source schema is: for a given 
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course, only those students taking this course are placed below as its sub-elements as 

indicated by the relationship type cs; and for a given pair of course and student, only 

those tutors teaching the student for the course are placed below as their sub-elements 

as indicated by the relationship type cst.  

 

 
 

Figure 3.31. Change of participation constraint due to a swap operator 

 
Suppose we design a view obtained by swapping Student and Tutor. The view still 

keeps the two relationship types for the three object classes. However in the view 

schema, new participation constraints must be derived for cst because the ordering of 

participating object classes is changed. Observe the functional dependency diagram 

shown in Figure 3.32. The first cardinality for Course, Student and Tutor is (n, n, 1), 

which indicates Course and Student determine Tutor. The second cardinality for 

Course, Student and Tutor is (1, -, n), which indicates Tutor determines Course. Note 

that there is no dependency of Student on Course and Tutor, and vice versa. Therefore 

the new parent and child participation constraints in cst become 0:n and 0:n 

respectively.  
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Another example is shown in Figure 3.33. In this view, Student is dropped from the 

source schema. Thus, for a given course, all distinguished tutors teaching the course 

are placed below as its sub-elements. In this case we derive a new relationship type ct 

by projecting cst. The functional dependency in Figure 3.32 indicates that Tutor 

determines Course, i.e. a tutor can only teach in one course, but a course may have 

more than one tutors. Therefore the participation constraint for Course in ct is 1:n, 

and for Tutor is 1:1.          □ 

In general, the swap, drop and join operators may result in the change of the 

participation constraints in the relationship types due to the following changes in the 

relationship types. Firstly, the order of the participating object classes of a 

relationship type may be changed. Secondly, new relationship types may be derived 

by projecting existing relationship types. Thirdly, new relationship types may be 

derived by joining existing relationship types. We develop respective rules below for 

the different changes. In particular, Rule PC_1 and PC_2 handle the cases where the 

order of participating object classes of binary relationship types and n-ary (n>2) 

relationship types are changed respectively. Rule PC_3 handles the case where new 

Figure 3.32. Functional Dependency Diagram 

 
Figure 3.33. Change of Participation 
Constraint due to a projection operation 
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relationship types are derived by projecting existing relationship types. Finally, Rule 

PC_4 handles the case where new relationship types are derived by joining existing 

relationship types. The notations we are using in the following rules are as follows. 

• p denotes the parent participation constraints of an original relationship type R. 

• c denotes the child participation constraints of an original relationship type R. 

• p’ denotes the parent participation constraints of a derived relationship type R’. 

• c’ denotes the child participation constraints of a derived relationship type R’. 

� Rule PC_1: If R’ is derived in the view by swapping two participating object 

classes of an existing binary relationship type R in the source schema, then p’ = c 

and c’ = p. 

When a swap operator is applied on two participating object classes of a binary 

relationship type, the order of the two participating object classes will then be 

reversed in the view schema. Thus, in the new relationship type in the view, the 

participation constraints will also be reversed. 

� Rule PC_2: If R’ is derived in the view by swapping two participating object 

classes in an existing n-ary (n>2) relationship type R in the source schema, and 

O1, O2, …, On is participating object classes of R’ in the order from ancestor to 

descendant in the view schema, then 

• For p’: If there exists a functional dependency {O1, O2, … On-1} → On in the 

functional dependency diagram, then set p’ to be 1:1, otherwise set p’ to be 

0:n (or *). 
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• For c’: if there exists a functional dependency: On → {O1, O2 … On-1} in the 

functional dependency diagram, then set c’ to be 1:1, otherwise c’ is set 0:n 

(or *). 

This rule handles the case where a swap operator is applied on an n-ary (n>2) 

relationship type. Basically, we use the functional dependency diagram to determine 

the value of p’ and c’. When there are corresponding functional dependency, we 

directly use it to determine p’ and c’. On the other hand, there may be no functional 

dependencies between O1, O2, … On-1 and On  in the functional dependency diagram. 

Without loss of generality, we assign 0:n to p’ or c’ in this case. That is, the minimum 

occurrences of parent or child in R’ is 0 and the maximum occurrences of parent or 

child in R’ is n. Thus, it does not violate the semantics in the functional dependency.  

� Rule PC_3: If R’ is derived in the view by projecting an existing relationship type 

R in the source schema, and O1, O2, …, On is participating object classes of R’ in 

the order from ancestor to descendant in the view schema, then  

• For p’: If there exists a functional dependency {O1, O2, … On-1} → On in the 

functional dependency diagram, then set p’ to be 1:1, otherwise set p’ to be 

0:n (or *). 

• For c’: if there exists a functional dependency: On → {O1, O2 … On-1} in the 

functional dependency diagram, then set c’ to be 1:1, otherwise c’ is set 0:n 

(or *). 

This rule handles a case where a drop operator is applied on a participating object 

class of a relationship type R. In this case, R’ is derived from R as one object class in 
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R is dropped in the view. Similar to the Rule PC_2, we still utilize the information of 

the functional dependency diagram to decide how to generate p’ and c’. We do not 

provide detailed proof here as these two rules are straightforward. 

� Rule PC_4: If R’ is derived in the view by joining one relationship type R1 (O11, 

O12, …, O1n) with another relationship type R2 (O21, O22, …, O2m), where O1n = 

O21 is the common object class they are joined on, then  

• For p’: If there exists a functional dependency {O11, O12, …, O1(n-1), 

O22, …,O2(m-1)} → O2m, or a functional dependency {O22, O23, …, O2(m-1)} → 

O2m, or the two functional dependencies {O11, O12, …, O1(n-1)} → O1n and {O21, 

O22, …, O2(m-1)} → O2m;  then set p’ to be 1:1, otherwise, set p’ to be 0:n. 

• For c’: If there exists a functional dependency O2m → {O11, O12, …, O1(n-1), 

O22, …,O2(m-1)} in the functional dependency diagram, then set c’ to be 1:1, 

otherwise set c’ to be 0:n (or *). 

Correctness of the Rule PC_4: 

For p’, if there exists the functional dependency: 

{O11, O12, …, O1(n-1), O22, …,O2(m-1), O2m} → O2m 

in the functional dependency diagram, it is obvious that  p’ is set to be 1:1. Next, 

if there exists the functional dependency:   

{O22, O23, …, O2(m-1)} → O2m 

in the functional dependency diagram, by the augmentation property of a 

functional dependency, the functional dependency: 
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{O11, O12, …, O1(n-1), O22, …,O2(m-1), O2m} → O2m 

can be deduced. Therefore p’ is set to be 1:1. Finally, if there exist the two 

functional dependencies:  

{O11, O12, …, O1(n-1)} → O1n                        {O21, O22, …, O2(m-1)} → O2m 

by the pseudo-transitivity property of a functional dependency, the functional 

dependency:  

{O11, O12, …, O1(n-1), O22, …,O2(m-1), O2m} → O2m 

can be deduced. Therefore p’ is set to be 1:1. In all the other cases, p’ must be set 

to be 0:n.  

For c’, there is only one case. That is, if the functional dependency  

O2m → {O11, O12, …, O1(n-1), O22, …,O2(m-1)} 

exists in the functional dependency diagram, then c’ is set to be 1:1. Otherwise, c’ 

is set to be 0:n. In this way, the participation constraints are correctly kept and the 

view is still valid.        □ 

3.3.7.   Design Rules for IDentifier Dependency Relationship 

The previous sections present the design rules when selection, drop, join and swap 

operators are applied in designing XML views. However, these rules are not enough 

when the views contain IDD (IDentifier Dependency) relationship types. An IDD 

relationship type is defined as follows:  

Definition 3.3. (IDD Relationship Type) An object class A is said to be ID dependent 

on its parent object class B if A does not have a key attribute, and an A object can 
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only be identified by its parent’s key value (say k1) together with some of its own 

attributes (say k2). That is, the key of A is {k1, k2}. The relationship type between A 

and B is then called IDD relationship type. It is the same as the ID relationship in ER 

diagram. 

When we design a view over the IDD relationship type, additional rules are needed to 

keep the view meaningful. The following example illustrates this. 

Example 3.13. Figure 3.34 shows an IDD relationship type between the object 

classes employee and child. For each employee, all the children of the employee are 

placed below as the sub-elements. The object class child does not have its key 

attribute. That is, it cannot be identified by itself. However, it can be identified by the 

key attribute of employee, (i.e. eno) and its own attribute (i.e. cname). That is, the key 

attribute of the ID dependent object class child is {eno, cname}. The following 

functional dependencies exist. 

{eno, cname} → gender, birthday 

employee

childeno

cname

child

eno cname
employee

eno

child

eno cname

Figure 3.34. An ORA-SS
source schema diagram of an

IDD relationship type

Figure 3.35. An ORA-SS view
schema swapping employee and

child in Figure 3.34

Figure 3.36. An ORA-SS view
schema dropping employee in

Figure 3.34

IDD,2,1:n,1:1

gender birthday

 

Based on the source schema in Figure 3.34, we design a view by swapping the object 

classes employee and child (see Figure 3.35). This view indicates that for a given 

child, his/her parent employee is placed below as a sub-element. Unlike the previous 
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view applying swap operators, this view duplicates the key attribute of employe, i.e. 

eno for the object class child so that eno and cname can combine a key for the object 

class child. This is because the object class child cannot be identified without eno. 

Note that this view needs to be enforced with a constraint, which states the eno under 

the object child must be the same as the eno under the object employee. The straight 

line between the incoming edges of the attributes eno and cname denotes {eno, cname} 

is a composite key for the object class child.  

We can also design a view by applying a drop operator. Figure 3.36 depicts a view 

that drops the object class employee. Thus, the view contains only child object class, 

identified by eno and cname. To make the object class child identifiable, the key 

attribute of employee, eno, is also combined with the attribute cname to construct a 

key for the object class child. A similar situation also exists if a join operator is 

applied in a source schema containing an IDD relationship type.    □ 

The above example shows that when we design a view that destroys an IDD 

relationship type, the key attribute of the parent object class of the IDD relationship 

type should be added to the child object class to construct a key for the child. The 

following additional rules indicate for each operator, how XML views should be 

designed when IDD relationship types are involved.  

� Rule IDD: If an IDD relationship type is destroyed when applying some view 

operator and the child object class of this IDD relationship type is in the view, 

then the identifier of the parent object class must be added to the child object 

class to construct an identifier for the child in the view schema. 
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This rule is straightforward. Having presented all the rules to design valid XML view, 

we summarize with a theorem may that is derived based on the above rules. 

Theorem 3.1 XML views designed based on all the above rules do not violate the 

semantics, i.e. functional dependencies, relationship types, and key and foreign key 

constraints implied in the original XML documents. They are valid views based on the 

definition of valid XML views. 

Outline of Proof As all the rules above are correct and do not violate the semantics in 

the source schema, the view schema designed based on the rules is thus valid in terms 

of semantics. 

3.4. View Validation Algorithm 

In this section, we summarize all the above rules into an algorithm to validate XML 

views. The algorithm will automatically modify parts of the view schema according 

to which operator is applied. Each of the four operators – select, drop, join and swap 

can be repeatedly applied in the view. Once an operator is applied in the view, the 

algorithm first checks if an IDD relationship type is involved. If so, then it applies the 

corresponding IDD rule for the operation. After that, the algorithm applies the 

relevant rules for the operator. The view obtained is guaranteed to be valid. 

Algorithm Algorithm Algorithm Algorithm ValidateViewValidateViewValidateViewValidateView    

Input:Input:Input:Input: ORA ORA ORA ORA----SS source schema diagram, a sequence of view opeSS source schema diagram, a sequence of view opeSS source schema diagram, a sequence of view opeSS source schema diagram, a sequence of view operatorsratorsratorsrators    

Output:Output:Output:Output: A valid ORA A valid ORA A valid ORA A valid ORA----SS view schema diagramSS view schema diagramSS view schema diagramSS view schema diagram    

1. Do 

2.    Fetch an Operator from the sequence of view operators; 

3.    Switch (Operator) { 

4.       CaseCaseCaseCase (select operator):   // No rules for select operator 

5.           break;           

6.       CaseCaseCaseCase (Drop an object class):   //Drop operator 

7.           If (the object class is a parent object class of an IDD relationship type) 

                      Apply Rule IDD_1;               
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8.           Apply Rule Drop_1;  // drop attributes of the object class 

9.           Apply Rule Drop_2; // drop relationship types involving the object class 

10.     Apply Rule Drop_3 & 4; // handle the relationship types 

11.     For (each derived relationship type by projecting the dropped object class) do 

12.               Apply Rule PC_ 3;   //modify the participation constraints 
13.     For (each derived relationship type by joining two relationship types based on the dropped 

object class) do  

14.               Apply Rule PC_ 4   //modify the participation constraints 
15.      Break;           

16. CaseCaseCaseCase (Join two object classes):   //Join operator 

17.     If (the referenced object class is a child object class of an IDD relationship type) 

18.                Apply Rule IDD_2; 

19.     Apply Rule Join_1;  // attach the sub tree  rooted at referenced object class 

20.    Apply Rule Join_2;  // drop the ancestors of referenced object class 

21.    For (each derived relationship type by projecting the dropped object class in 

                        the join operation) do 

22.                 Apply Rule PC_3;   //modify participation constraints 

23.    Break; 

24.  CaseCaseCaseCase (Swap two object classes Oi and Oj):   //Swap operator 

25.     If (the two object classes compose an IDD relationship type) 

26.               Apply Rule IDD_3; 

27.     Apply Rule Swap_1; // move the attributes of each object class with them  

28.     Apply Rule Swap_2; // handle Rel_Set_1(Oi, Oj) 

29.     If it is the second time for Oj to be swapped { 

30.               Apply Rule Swap_5 ; //handle Rel_Set_2(Oi, Oj) 

31.               Apply Rule Swap_6 ; //handle Rel_Set_3(Oi, Oj) 

32.     } else { 

33.               Apply Rule Swap_3 ; //handle Rel_Set_2(Oi, Oj) 

34.               Apply Rule Swap_4;  //handle Rel_Set_3(Oi, Oj)  

35.     }   

36.     For (each binary relationship type involving the two swapped object class) do 

37.                Apply Rule PC_1;  //modify the participation constraints  

38.      For (each n-ary (n>2) relationship type involving the two swapped object 

                         class) do 

39.                   Apply Rule PC_2;  //modify the participation constraints 

40.     Break; 

41. } 

42. While (there are still operators in the sequence of view operators);    

 

3.5. Summary 

In this chapter, we have proposed a systematic approach for valid XML view design. 

The approach is composed of three steps. The first two steps are preparatory stages, 

which produce an enriched ORA-SS source schema from XML data. In the third step, 
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we adopted a set of view operators, such as select, drop, join and swap operators, to 

design XML views based on ORA-SS. In addition, we developed a set of rules to 

guide the design of valid XML views for each operator. We also gave a proof to show 

that the views will be guaranteed to be valid with respect to the rules. Based on the 

developed rules, we presented an algorithm to validate designed XML views.  
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Chapter 4  

Generating XQuery View Definitions 

In the previous chapter, we presented an approach to designing valid XML views 

based on the ORA-SS data model. In the next step, we need to generate query 

expressions for those created views. We consider the two main storage methods of 

XML data in this thesis. The first method is to store XML data as is in XML files or 

in a native XML database. Thus, we need to generate XQuery [40] expressions for the 

views, which can then be executed against the XML files. The second method is to 

store XML data in an object-relational database (ORDB) system, and we need to 

generate SQLX query expressions for the views, as XQuery cannot be executed 

directly against the ORDB. This chapter will examine the first method in detail and 

develop a complete algorithm to generate XQuery view definitions from ORA-SS 

views. The second method will be covered in the next chapter.  

XQuery View Definition Generation Problem Given a designed valid ORA-SS view 

V and its source schema S and the source document D generate an XQuery view 

definition for V, where the XQuery view definition can be evaluated on the source 

data D and the result of the view can be produced. 

The rest of the chapter is organized as follows. Section 4.1 introduces the syntax of 

XQuery. The motivation for generating XQuery view definitions 
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from ORA-SS views will be presented in section 4.2. The detailed method for the 

generation is given in section 4.3. Section 4.4 provides improvements for the method 

by utilizing the semantics of ORA-SS schema and the flexibility of XQuery. A 

complete algorithm based on the method is given in section 4.5. We provide for an 

algorithm analysis in section 4.6. Finally, we summarize the chapter in section 4.7. 

4.1. XQuery Syntax 

XQuery is a proposed standard for an XML query language from W3C [40]. XQuery 

provides flexible query facilities to extract data from real and virtual documents on 

the Web. Some of the main draft documents to describe and define XQuery include: 

• XQuery 1.0: An XML Query Language: The central document to introduce 

the language. 

• XQuery 1.0 and XPath 2.0 Data Model: The description of data items a 

query implementation must understand, and the basis of the formal semantics. 

• XQuery 1.0 and XPath 2.0 Functions and Operators: The basic functions 

and operators on Schema data types and XQuery nodes and node sequences. 

Basically, XQuery is an expression language. That is, a query in XQuery is an 

expression, which reads a sequence of values and returns a sequence of values. The 

values may be XML values or atomic values. XML values are also called node values, 

which include the following types: element, attribute, namespace, text, comment, 

processing-instruction, and document (root) nodes. An atomic value does not contain 

other values. It can be a primitive type value or derived type value. The derived types 
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are variations or restriction of primitive types. The primitive data types include 

Numbers, Boolean, String, etc. 

There are many forms of XQuery expressions. In this work, we adopt the following 

principal forms: path expressions, constructors and FLWOR expressions.  

• Path expression in XQuery is the same as expressions in XPath 2.0. A path 

expression can be used to locate nodes within trees, which consists of one or more 

steps, separated by “/” or “//”.  

 

 

 

 

 

 

 

 

 

Example 4.1. Figure 4.1 depicts a sample document on books. Based on this 

document, a simple path expression can be depicted as follows: 

Document(“book.xml”)//book[@year=”2000”]/title 

<bib> 
      <book year=”1994”> 
          <title>TCP/IP Illustrated</title> 
          <author>Stevens</autor> 
          <publisher>Addison-Wesley</publisher> 
          <price>65.95</price> 
       </book> 
       <book year=”1992”> 
           <title>Advanced Programming in the Unix environment</title> 
           <author>Stevens</author> 
           <publisher>Addison-Wesley</publisher> 
           <price>65.95</price> 
        </book> 
        <book year=”2000”> 
            <title>Data on the Web</title> 
            <author>Abiteboul</author> 
            <author>Buneman</author> 
            <author>Scuiu</author> 
         </book> 
</bib> 

Figure 4.1. A sample XML document named book.xml 
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The initial context for the path expression is given by document (“book.xml”). The 

document function returns the root node of a document. The //book[@year=”2000”] 

expression selects the descendant elements of the root, i.e. books published in year 

2000. The double slash selects all descendants. The /title expression next selects the 

children elements title, which results in a sequence of title nodes in document order 

for which the book was published in year 2000.     □ 

• Constructor can be used to create XML structures within a query, which can 

contain each type of node in XML.  

Example 4.2. The following is a sample constructor based on Figure 4.1: 

               For $b in document(“book.xml”)//book[@year=”2000”], 

                     $t in $b/title, $p in $b/publisher 

             Return   

                     <book title={$t}> 

                          <publisher> {$p} </publisher> 

                          <year>2000</year> 

                     </book> 

The constructor under the Return clause contains three element constructors: <book>, 

<publisher>, and <year>. The <publisher> and <year> elements are the children 

elements of <book>. $p is a variable that is bound to publisher element for the book 

published in year 2000. The braces ({ and }) are used here to disambiguate literal text 

content from the sub expression $p inside the element constructor that require 

evaluation. There is also an attribute constructor for the attribute title of book. 

Similarly, the braces are used for the variable $t to indicate it needs to be evaluated. 

Notice two for clauses are used here to bind the variables. The for clause will be 

presented in detail in the following.       □ 
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• FLWOR expression is widely used in XQuery as well as in this work. It is the 

main engine of XQuery. The name FLWOR, pronounced “flower”, is suggested 

by the keywords for, let, where, order by, and return. It is the analogy of Select-

From -Where-Having from SQL. 

• For clause iterates over and binds a variable to each node of a sequence 

resulting from a path expression. 

• Let clause binds a variable to all nodes of a sequence resulting from a path 

expression. 

• Where clause serves to filter the generated nodes in For/Let clauses by 

retaining desired ones and discarding others. 

• Order by clause imposes an ordering on the selected nodes in the clause. 

• Return clause constructs the result of the FLWOR expression. It is evaluated 

once for each node in the sequence resulting from For/Let clauses. 

In general, a FLWOR expression consists of one or more for and/or let clauses, an 

optional where clause and order by clause, and a return clause. The where clause 

causes the return clause to be evaluated only when the where clause is true. 

Example 4.3. We use the document in Figure 4.1 for illustration. Each book element 

has an attribute year, and sub elements title, author, publisher and price. Note that the 

element price is optional, which does not exist in the third book element. 

Suppose we retrieve all books that have more than one author. The XQuery 

expression for the query is shown in Figure 4.2. We first use an element constructor 

to construct an element results to contain the qualified books. Next, we use a for 
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clause to bind a variable $book to iterate over each book element. Then we use a let 

clause to bind another variable $author to all the author nodes of the book. A where 

clause is used to place a predicate count($authors)>1, indicating the following return 

clause will be evaluated only when there are more than one author for the book. The 

function count returns the number of authors bound by the variable $authors. For 

simplicity, we only list the title and authors of the book in the return clause. 

 

 

 

 

 

 

 

The XQuery will return one book from the document because only this book has 

more than one author. Figure 4.3 displays the result. 

 

 

 

 

                                                                                                                           □ 

<Results> 
{ 

For $book in document(“book.xml”)//book 
Let $authors := $book/author 
Where count($authors) > 1 
Return  
        <book> 
        { 
            $book/title, 
            $book/author 
        } 
        </book> 

} 
</Results> 

Figure 4.2. An XQuery issued on the document book.xml 

<Results> 
   <book> 
      <title> Data on the Web </title> 
      <author> Abiteboul </author> 
      <author> Buneman </author> 
      <author> Suciu </author> 
   </book> 
</Results> 

Figure 4.3. The result of the XQuery in Figure 4.2 
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Functions are frequently used in XQuery, e.g, built-in functions document and count. 

XQuery also support user-defined functions. We will also define functions in the 

generated XQuery from ORA-SS views.  

Finally, XQuery is a strongly-typed language, which has static typing (compile-time 

type check) and dynamic typing (run-time type check). The types in XQuery actually 

match XQuery’s data model and XML Schema. We will use a Boolean operator 

instance of for the type checking. The operator returns true if the value of its first 

operand matches the type in the second operand. 

Example 4.4. Based on the document in Figure 4.1, we issue the following simple 

XQuery expression with the operator instance of:  

                         For $child in document(“book.xml”)//book/node() 

                          If ($child instance of element title) 

                         Then process-title($child) 

                         Else ()   

The XQuery expression above binds the variable $child to each node under a given 

book element. It invokes a user-defined function process-title, which may be defined 

somewhere else, if the value of $child is an element whose tag name is title. 

Otherwise, it does nothing. Notice that XQuery also supports a general conditional 

expression, such as if-then-else in this example.      □ 

4.2. Motivating Example 

Intuitively, users can manually write the XQuery view definitions according to the 

ORA-SS views. Unfortunately, XQuery view definitions can be too complex in 

usage.  
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Example 4.5. Consider the XML source file in Figure 4.4 and its corresponding 

ORA-SS source schema in Figure 4.5.  
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part

supplier

sp, 2, 1:n, 1:n
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sp

Figure 4.4. A source XML file 

<db> 
  <supplier sno=”s001” > 
   <part pno=”p001”> <price>100</price> </part> 
   <part pno=”p002”> <price>120</price> </part> 
  </supplier> 
  <supplier sno=”s002”> 
    <part pno=”p002”> <price>40</price> </part> 

<part pno=”p003”> <price>30</price> </part> 
  </supplier> 
</db> 

Figure 4.5. ORA-SS Source Schema for 
the file in Figure 4.4 

Figure 4.6. ORA-SS View Schema obtained 
by swapping supplier and part in Figure 4.5 
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Figure 4.7. The Instance diagram for the source in Figure 4.2 

Figure 4.8. The Instance diagram for the view in Figure 4.3 
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Figure 4.6 shows a view that has been designed by swapping object classes supplier 

and part. Note that the attribute price does not move up with part, because it is an 

attribute of the relationship type sp. Figures 4.7 and 4.8 show the ORA-SS instance 

diagram for the source and view schema in Figure 4.5 and 4.6 respectively. 

 

 

 

 

 

 

 

 

 

Figure 4.9 shows the XQuery expression for the view in Figure 4.6. We first use an 

element constructor to construct a root element db for the view document (line 1). 

Next, each object class is processed as follows. 

For object class part, a for clause is first used to bind a variable $p_no to iterate over 

each distinct value of the key attribute of part (line 2). For simplicity, we use $in in 

this clause to represent the source XML document. For each of these key values, a let 

clause binds $p_set to those part nodes which have this key value (line 3). This 

variable will be used in the return clause of the object class in case where there are 

1. <db> 
2.   for $p_no in distinct-values($in//part/@pno) 
3.   let $p_set := $in//part[@pno=$p_no] 
4.   let $p := subsequence($p_set, 1, 1) 
5.   return  
6.     <part pno={$p_no}> 
7.    { 
8.     for $s_no in distinct_values($in//supplier/@sno) 
9.    let $s_set :=$in//supplier[@sno=$s_no]      
10.   let $s := subsequence($s_set, 1, 1) 
11.   where some $p1 in $in//part  
12.         satisfies ( exists($p1[@pno=$p_no]) and 
13.         exists($p1[ancestor::supplier/@sno=$s_no])  ) 
14.   return <supplier sno={$s_no}> 
15.                {$s/part[@pno=$p_no]/price} 
16.             </supplier> 
17.   } 
18.   </part> 
19. </db> 

Figure 4.9. A View definition in XQuery expression for view in Figure 4.6 
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aggregate attributes attached to the object class. Another let clause is used to bind 

another variable $p to one of the part nodes in the sequence bound by $p_set. We use 

a built-in function in XQuery subsequence to return 1 node at the position 1 of the 

sequence (line 4). The variable $p will be used to generate rest attributes of part (if 

any) except the key attribute. Here, part has no other attributes except pno. A return 

clause then returns the element part and its attribute pno (line 5-6).  

Next, we generate the child object class supplier of the generated object class part. A 

pair of braces is used here to contain the query expression of supplier, which makes 

the query expression of supplier as a nested query of part. XQuery will generate 

object class supplier a sub element of part in the view document. Similar to part, a 

for clause first binds a variable $s_no to iterate over each distinct value of the key 

attribute of supplier (line 8). For each of these distinct key values, a let clause is then 

used to bind $s_set to those supplier nodes which have this key value (line 9). 

Another let clause is then used to bind $s to one of the supplier nodes in the sequence 

bound by $s_set (line 10). The variable $s will generally be used to generate the rest 

of the attributes of supplier except the key attribute. Here, the variable will also be 

used to generate the relationship attribute price. In addition, we cannot fetch all the 

distinct suppliers under each object class part. Instead, we can only select those 

suppliers that supply the part with the given key value $p_no, because there is such a 

relationship type between supplier and part in the view schema. As shown in Figure 

4.8, the supplier set for the part node whose key value is “p001” should have only 

one node, namely, the node with key value “s001”, because only this supplier 

supplies the part “p001” (see Figure 4.7). Therefore, we need to add a where clause in 
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the XQuery expression for supplier so that only those suppliers that have a 

descendant part whose key value is equal to $p_no are selected (lines 11-13). Next, a 

return clause constructs the element supplier and its key attribute sno. We use $s to 

construct the attribute price as a sub element of supplier, because price is an attribute 

of the relationship type between supplier and part (line 14-16).  

 

 

 

 

 

 

The XQuery in Figure 4.9 can be executed by any XQuery engine to produce the 

results in Figure 4.10 by executing the XQuery view definition in Figure 4.9. The 

view result is exactly the same as the ORA-SS instance diagram in Figure 4.8.  □ 

It is clear that the XQuery expression is much more complex than the swap operator 

that is used to design the view. The view in this example contains two object classes 

only. In general, the complexity and length of XQuery view definitions increase 

dramatically as the number of object classes grows. The probability of making errors 

in the view definitions also increases if users are to manually define such views in 

XQuery. Fortunately, this problem can be addressed using our approach which 

provides a set of simple view operators for users to define views from which XQuery 

expressions can be automatically generated with an algorithm. 

<db> 
  <part pno=”p001” > 
    <supplier sno=”s001”> <price>100</price> </supplier> 
  </part> 
   <part pno=”p002”> 
     <supplier sno=”s001”> <price>120</price> </supplier> 
     <supplier sno=”s002”> <price>40</price> </supplier> 
   </part> 
   <part pno=”p003”> 
       <supplier sno=”s002”> <price>30</price> </supplier> 
   </part>  
</db> 

Figure 4.10. The XML instance for the view in Figure 4.6 
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4.3. Rules for Generating XQuery View Definitions 

4.3.1.   Main Idea 

In this section, we will propose an algorithm to automatically generate XQuery 

definitions from ORA-SS views. The main idea of the algorithm is as follows. We 

scan an ORA-SS view using a depth-first traversal method. For each object class in 

the ORA-SS view, we generate an XQuery expression. Then we combine all the 

query expressions together according to the tree structure of the view. Basically, 

XQuery uses braces ({ and }) to separate query expressions of object classes. In particular, 

a query expression of an object class (say O1) in the ORA-SS view is embraced 

within a pair of braces. When the next object class to be processed (say O2) is a 

sibling of O1 in the view, then the algorithm will use another pair of braces to contain 

the query expression of O2, which is placed next to the pair of braces of O1. In this 

way, the two object classes will be generated as sibling elements in the result 

document. On the other hand, when the next object class to be processed (say O2) is a 

child of O1 in the view, then the algorithm will still use another pair of braces to 

contain the query expression of O2, which is however placed within the pair of braces 

of O1. Thus, the two object classes will be generated as parent-child elements in the 

result document. 

The algorithm composes a query expression for each object class using a FLWOR 

expression. A FLWOR expression consists of for, let, where, order by and return 

clauses. We will compose the XQuery view definitions for an object class by using 

one for clause, two let clauses, one optional where and order by clause, and one 

return clause. 



  Chapter 4. Generating XQuery View Definitions 
     

  88 

• A for clause is first used to bind a variable $o_no to iterate over each distinct 

key value of the object class (say o). The variable $o_no will be used to 

generate the key attribute of o in the view document. 

• A let clause is then used to bind a variable $o_set to a sequence of o nodes 

which has the key value equal to $o_no. The variable $o_set will be used to 

generate another variable bound to one single node in the sequence. It can be 

used to generate aggregate attribute attached to o in the view (if any).  

• Another let clause is used to bind a variable $o to one single node in the 

sequence bound by $o_set. The variable $o will be used to generate the rest 

attributes of o in the view document. 

• An optional where clause is used to enforce the necessary condition predicates 

in the query expression of o. The condition predicates may be selection 

conditions on attributes of o or from the influence of its ancestors in the view.  

• In general, the influence of an ancestor (say vo) on o in the view schema 

denotes the restriction of vo on o in the view schema generated by the 

condition constraints generated for vo in the where clause of o. Those 

ancestors having the influences on o are also called influential object classes 

in the thesis. 

• An optional order by clause is used to enforce order on attributes attached to o 

according to the view schema. The order can be ascending or descending. 

• A return clause is used to construct the element result of o with the attributes 

attached to o. The attributes can be attributes of o or relationship attributes. 
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The XQuery expression of each object class consists of the above five clauses. It is 

straightforward to generate the for, let, order by and return clauses for each object 

class in the view. However, it is not a trivial task to generate the where clause for the 

object class. The where clause may contain selection conditions enforced on attributes 

attached to the object class. The selection conditions can be directly added in the 

where clause. The where clause may also contain condition constraints. They are 

generated because many different object classes may exert influences on the given 

object class in the view, which cannot be directly generated and needs to do analysis 

on the path of the object class in the view. In the following sub sections, we will 

focus on the generation of this part of where clause. 

4.3.2.   Analyzing Vpath 

We use the example in Section 4.2 to illustrate the generation of where clause. When 

we process supplier in the example, we have to consider the influence of its parent, 

the object class part, in the view schema. When the key value of part is “p001”, we 

have only one supplier whose key value is “s001” under the part in the view. Thus, in 

order to generate the correct conditions constraints in the where clause for an object 

class in the view, it is important to know all the influential object classes, and their 

corresponding effects. Intuitively, the data instances for an object class in a view are 

determined by all the object classes in the path from the root to the object class. We 

have the following definition for the path. 

Definition 4.1. (vpath) For an arbitrary object class o in an ORA-SS view, the path 

from the root of the view to o is called the vpath of o. The object classes that occur in 

the vpath of o exert influence on the data instances for o in the view.  
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By analyzing the object classes in the vpath of an object class o in an ORA-SS view, 

we can capture all their influences on o in a series of condition constraints in a where 

clause. In the following subsections, we first identify different types of object classes 

that can appear in a vpath of o in an ORA-SS view. Then we provide a set of generic 

rules to generate condition constraints in the where clause of o.  

There are three types of object classes in the vpath of an object class o in any views 

designed with our operators. The three types are classified based on their origins in 

the source schema as follows. 

Type I: For an arbitrary object class o in an ORA-SS view schema, if an object 

class in its vpath is o’s ancestor or descendant in the source schema then 

the object class is called a Type I object class in the vpath of o. 

Type II: For an arbitrary object class o in an ORA-SS view schema, if an object 

class in its vpath is a descendant of o’s ancestors, which is not in the same 

path with o in the source schema, then the object class is called a Type II 

object class in the vpath of o. In another words, a Type II object class in o’s 

vpath is o’s sibling, descendant of o’s sibling, o’s ancestor’s sibling, or 

descendant of o’s ancestor’s sibling in the source schema. 

Type III: For an arbitrary object class o in an ORA-SS view schema, if an object 

class in its vpath is another object class in another source schema, whose 

ancestor or descendant in the source schema has a foreign key to key 

reference with o’s ancestor or descendant in o’s source schema, then the 

object class is called a Type III object class in the vpath of o. Type III 

object classes are generated in the vpath of o in the view schema by 



  Chapter 4. Generating XQuery View Definitions 
     

  91 

applying at least a join operator, or a join operator and a series of swap 

operators together.  
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Example 4.6. Consider the simplified ORA-SS source schema and view schema in 

Figure 4.11. There is a foreign key to key reference from object class D in source 

schema 2 to object class F in source schema 1 (see Figure 4.11(a)). We may design a 

view schema shown in Figure 4.11(b). Consider the vpath of object class O in the 

view schema. Note that object class O is from source schema 2 in Figure 4.11(a). 

There are four object classes in the vpath of O, namely D, P, J and K. The object 

classes D and P are the ancestor and descendant of O respectively in the source 

schema. Hence, D and P are Type I object classes in the vpath of O in the view 

schema. Next, the object class J is O’s ancestor B’s descendant in the source schema. 

Thus, J is a Type II object class in the vpath of O. Finally, the object class K is in 

source schema 1 in Figure 4.11(a), whose parent F has a foreign key to key reference 

with D, which is the parent of O. Therefore, K is a Type III object class in the vpath 

of O. The object class K is generated in the view schema by first applying a join 

Figure 4.11(a). Two simplified ORA-SS source schema 

Figure 4.11(b). One simplified 
ORA-SS view schema based on 

Figure 4.11(a) 
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operator to D and F so that K can be attached below D as its child, and then applying 

swap operators so that K can become the parent of O in the view schema.   □ 

4.3.3.   Rules for Generating Condition Constraints of an Object Class 

We have identified three types of object classes in the vpath of a given object class in 

an ORA-SS view schema in the previous section. The different types of object classes 

have a different influence on the given object class in the view schema, which results 

in a different condition constraints in the where clause of XQuery expression of the 

object class. In this section, we present a set of rules to generate condition constraints 

for a given object class. We first present rules for generating for and let clauses to 

bind variables for the object class. Next, we develop a set of rules to generate 

different condition constrains in the where clause for each type of object class in the 

vpath of the object class. We also develop a rule to handle selection conditions 

enforced in the attributes attached to the given object class. The following notations 

are used. 

• o refers to an arbitrary object class in an ORA-SS view. 

• vo refers to an arbitrary object class in o’s vpath in the view. 

• o_no and vo_no refer to the key attributes of object class o and vo 

respectively. 

• $in represents the XML source document. 

The following two rules handle two different cases to generate for/let clauses for a 

given object class o. In the first case, o is not a referencing object class in the view. 

We only need to generate the for/let clause to bind variables to the object class. In the 
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second case, o is a referencing object class in the view. We also need to generate the 

for/let clause to bind variables to the referenced object class, as we need to use the 

variables to process the attributes of the referencing object class. 

� Rule For_Let_1: For an arbitrary object class o in an ORA-SS view schema, 

which is not a referencing object class (e.g. object class O in Figure 11(b)), 

generate the following for/let clauses for o: 

For $o_no in distinct-values($in//o/@o_no) 
Let $o_set := $in//o[@o_no=$o_no] 
Let $o := subsequence($o, 1, 1) 
Where clause 

The first for clause binds a variable $o_no to iterate over each distinct key value of 

the object class. The first let clause binds another variable $o_set to a sequence of o 

nodes which has the key value equal to $o_no. The second let clause binds a variable 

$o to one single node in the sequence bound by $o_set. The variable $o will be used 

to generate the rest attributes of o in the view document. Note that we generate an 

empty where clause to contain condition constraints generated in other rules below. 

� Rule For_Let_2: For an arbitrary object class in an ORA-SS view schema o, 

which is a referencing object class generated by a join operator and ref_o is the 

referenced object class, generate the following for/let clauses for o: 

For $o_no in distinct-values($in//o/@o_no) 

Let $o_set := $in//o[@o_no=$o_no] 

Let $o := subsequence($o_set, 1, 1) 

For $ref_o_no in distinct-values($in//ref_o/@ref_o_no) 

Let $ref_o_set := $in//ref_o[@ref_o_no=$ref_o_no] 

Let $ref_o := subsequence($ref_o_set, 1, 1) 

Where $ref_o_no = $o_no 
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In this rule, we generate for/let clauses for both the referencing object class o and the 

referenced object class ref_o. As the attributes of ref_o may be attached to ref_o in 

the view schema, we must use the variable bound to ref_o to generate these attributes 

in the view document. Note that we also generate a condition constraint in the where 

clause, which indicates only the instance of the referenced object class whose key 

value is equal to the current key value of the referencing object class. This is because 

the referencing object class refers to the referenced object class with equal key values. 

These two rules are straightforward. Their main purpose is to bind variables for the 

object class for later use in the where clause and return clause. In the following, we 

will present the rules of generating other condition constraints in the where clause.  

Since vo is an ancestor of o in the view and a pre-order search is employed to 

generate the query expression for the view, the query expression for vo will be 

generated before o. Thus, we can use the current qualified key value of vo when 

generating the condition constraints of o because it is already generated. To 

understand the context of the generated condition constraints, we also show the first 

for clause and return clause of XQuery expression of o in the following rules. The for 

clause binds a variable $o_no to iterate over each distinct key value of o. The 

condition constraints in the following where clause will then retain satisfied key value 

of o bound by $o_no and discard those unsatisfied. Note that the for and return clause 

are generated only once for o, although they will appear in each rule to construct the 

context of the generated condition constraints. As a matter of fact, all the generated 

condition constraints for o will finally be combined together in a single where clause. 
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For illustration purpose, we also use bold font to highlight the generated condition 

constraints in the following rules. 

Firstly, there are 2 rules for type I object classes: Type_I_A and Type_I_B, which 

handles 2 different cases where an object class is a Type I object class in the vpath of 

o in the view schema. In particular, Rule Type_I_A handles the case where vo is an 

ancestor of o in the source schema. On the other hand, Rule Type_I_B handles the 

case where vo is an descendant of o in the source schema. 

 

 

 

 

� Rule Type_I_A: If vo is an ancestor of o in the source schema (see Figure 

4.12(a)), then we generate the condition constraints in the where clause of o as 

shown in Figure 4.12(b). 

Correctness of the Rule: In this case, vo is still an ancestor of o in the source schema. 

However, the object classes between vo and o in the view schema may not be the 

same as the object classes between vo and o in the source schema. For each instance 

of vo in the view document, we need to retrieve those instances of o, which are the 

descendants of the instance of vo in the source document, as the descendants of the 

instance of vo in the view document. The condition constraints generated in Rule 

Type_I_A exactly retain those instances of o. In particular, it indicates if an instance 

of o with key value $o_no is selected as a child of an instance of vo with the current 

for $o_no in distinct-values($in//o/@o_no) 
where some $vo1 in $in//vo satisfies ( 
           exists( $vo1[@vo_no=$vo_no]) and  
exists($vo1[descendant::o/@o_no=$o_no]) ) 
return <o o_no={$o_no}/> 

vo

o

vo

o

$in

view
source

vo_no

o_no

vo_no

o_no

Figure 4.12(b).  Condition constraints 
generated in Rule Type_I_A Figure 4.12(a).  The case for rule Type_I_A 
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qualified key value $vo_no in the view, then it must satisfy such a condition that an 

instance of vo in the source with key value $vo_no has a descendant instance of o 

with key value $o_no. Thus, the condition constraints generated in Rule Type_I_A 

correctly reflect the influence of vo on o in the view schema.   □ 

 

 

 

 

 

� Rule Type_I_B: If vo is a descendant of o in the source schema (see Figure 

4.13(a)), then we generate the condition constraints in the where clause of o as 

shown in Figure 4.13(b). 

Correctness of the Rule: In this case, vo is a descendant of o in the source schema, 

as shown in Figure 4.13(a). It becomes an ancestor of o in the view schema by 

applying some swap operators. The object classes between vo and o in the view 

schema many not the same as the object classes between vo and o in the source 

schema, because some object classes may be dropped in designing the view. For each 

instance of vo appearing in the source document, we find the particular instance of o, 

which is the ancestor of the instance of vo in the source document, as the descendant 

of the instance of vo in the view document. No other instances of o can be retrieved in 

this case. We generate the condition constraints in Rule Type_I_B. It indicates if an 

instance of o with key value $o_no is selected as a child of an instance of vo with the 

current qualified key value $vo_no in the view, then it must satisfy such a condition 

for $o_no in distinct-values($in//o/@o_no) 
where some $vo1 in $in//vo satisfies ( 
exists( $vo1[@vo_no=$vo_no]) and  
exists($vo1[ancestor::o/@o_no=$o_no]) ) 
return <o o_no={$o_no}/> 

Figure 4.13(b).  Condition constraints 
generated in Rule Type_I_B 
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Figure 4.13(a).  The case for Rule Type_I_B 
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that an instance of vo in the source with key value $vo_no has ancestor instance of o 

with key value $o_no. Thus, it exactly retain the instance of o, which is the ancestor 

of vo with key value $vo_no and satisfy our requirement.     □ 

Now we handle Type II object classes in the vpath of o in the view schema. In the 

case where vo is a Type II object class in o’s vpath, vo has no ancestor-descendant 

relationship with o according to the definition in section 4.2.2. That is, there is no 

direct connection between vo and o. However, it still has influence on o through an 

intermediate object class – the Lowest Common Ancestor of vo and o in the view 

schema. We have the following Theorem 4.1 for Type II object classes. 

Theorem 4.1 Given an arbitrary object class o in an ORA-SS view schema, if an 

object class vo is a Type II object class in the vpath of o in the view schema, then vo 

still has influence on o through the influence of the lowest common ancestor object 

class of vo on o in the source schema. In other words, the influence of vo on o is the 

same as the influence of the lowest common object class on o. 

Proof: Suppose object class LCA is the lowest common object class of vo and o in 

the source schema, as shown in the left side of Figure 4.14. Without loss of 

generality, we design a view in which LCA is an ancestor of vo, which is an ancestor 

of o, as shown in the right side of Figure 4.14(a), or LCA is a descendant of vo, which 

is an ancestor of o, as shown in the right side of Figure 4.14(b). Each instance of vo 

(say vo1) appearing in the view document must be under one instance of LCA (say 

lca1) in the source document, which subsequently determines a set of instances of o 

in the source document, say (o1, o2, …on), which will appear as the descendants of 

vo1 in the view document. In other words, because vo1 determines lca1 and lca1 
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determines (o1, o2, …, on), vo1 determines (o1, o2, …, on). Therefore, vo1 

determines the same set of instances of o (o1, o2, …on) as lca1 determines. The 

influence of vo on o is the same as the influence of LCA on o. In addition, we must 

use the lowest common ancestor of vo and o as the intermediate object class, because 

it reflects the minimized restriction of vo on o in the view. If we use an ancestor of vo 

and o in a higher level as the intermediate object class, then we may introduce a wider 

range of instances of o, some of which are not necessarily needed under the instance 

of vo in the view document. Thus, vo has influence on o in the source schema through 

the lowest common ancestor of them as the intermediate object class.   □ 

 

 

 

 

Based on Theorem 4.1, we propose two rules in the following for Type II object 

classes in the vpath of o in the view schema. The first rule – Rule Type_II_A 

considers the case where the lowest common object class of vo and o in the source 

schema is in the vpath of o in the view schema. The second rule – Rule Type_II_B 

then considers the case where the lowest common object class of vo and o in the 

source schema is not in the vpath of o in the view schema. 

� Rule Type_II_A: If vo is a Type II object class in o’s vpath in the view schema 

and the Lowest Common Ancestor of vo and o in the source schema, say LCA, is 
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Figure 4.14(a). The case 1 for Rule Type_II_A 
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Figure 4.14(b). The case 2 for Rule Type_II_A 
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also in the vpath of o in the view schema (see Figure 4.14(a)), then we do not 

need to generate condition constraints for vo in the where clause of o.  

Correctness of the Rule: Since vo is a Type II object class in the vpath of o in the 

view schema, the influence of vo on o is the same as the influence of the lowest 

common object class (say LCA) on o according to the Theorem 4.1 presented above. 

In addition, the lowest common object class LCA is also in the vpath of o in the view 

schema, which can be an ancestor or descendant of vo, as shown in the right side of 

Figure 4.14.  Thus, the influence of LCA on o will be considered when processing 

LCA as another object class in the vpath of o. We do not need to consider the 

influence of vo on o to generate the condition constraints of vo again in the case.  

   □ 

 

 

 

 

� Rule Type_II_B: If vo is a Type II object class in o’s vpath and the Lowest 

Common Ancestor of vo and o, say LCA, is not in the vpath of o in the view 

schema (see Figure 4.15(a)), then we generate the condition constraints of vo in 

the where clause of o as shown in Figure 4.15(b). 

Correctness of the Rule: In this case, the lowest common object class of vo and o 

(say LCA) is not in the vpath of o in the view schema. Based on Theorem 4.1, we 

need to generate the condition constraints of vo to reflect the influence of vo on o. In 
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for $o_no in distinct-values($in//o/@o_no) 
where some $LCA in $in//LCA satisfies ( 
     exists($LCA//o[@o_no=$o_no]) and 
     exists($LCA//vo[@vo_no=$vo_no]) ) 
return <o o_no={$o_no}/> 

Figure 4.15(a).  The Case for Rule 
Type II_B 

Figure 4.15(b).  Condition constrains  
generated in Rule Type II_B 
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particular, the influence of vo on o can be depicted as follows. For a given instance of 

vo, we need to retrieve those instances of o, which are the descendants of an instance 

of LCA in the source document, which is the ancestor of the instance of vo in the 

source document. The condition constraints generated in Rule Type_II_B indicate 

that if an instance of o with key value $o_no is selected in the view under the instance 

of vo with the current qualified key value $vo_no, then there must exist an instance of 

LCA (say $LCA) in the source that has both a descendant instance of o with key 

value $o_no and a descendant instance of vo with key value $vo_no. Thus, the 

condition constraints exactly reflect the influence of vo on o in this case.  □ 

In the case where vo is a Type III object class in the vpath of o, vo and o are linked 

together by a referencing and referenced object classes in the source schema based on 

the definition of a Type III object class. Although vo and o have no ancestor-

descendant relationship, vo still has influence on o through the referencing and 

referenced object classes. We have the following theorem for Type III object classes. 

Theorem 4.2 Given an arbitrary object class o in an ORA-SS view schema, if an 

object class vo is a Type III object class in the vpath of o in the view schema, then vo 

is linked to o through a referencing object class and a referenced object class in the 

source schema, and vo still has influence on o through the influence of the 

referencing object class and referenced object class on o in the source schema. In 

other words, the influence of vo on o is the same as the influence of the referencing 

and referenced object classes on o. 
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Proof: Suppose vo is a Type III object class in the vpath of o in the view, as shown in 

the right side of Figure 4.16. Without loss of generality, one descendant of o (say 

referencing) refers to one ancestor of vo (say referenced) with a foreign key to key 

reference in the source schema, as shown in the left side of Figure 4.16. For a given 

instance of vo in the source document, say vo1, it must have one ancestor instance of 

the referenced object class, say referenced1, which in turn determines a set of 

instances of the referencing object class, say referencing1, … referencingm, because 

there is a foreign key to key reference between the two object classes. Furthermore, 

each instance of the referencing object class referencingi (1 ≤ i ≤ m) also determines 

one instance of o in the source document, say oi, because the referencing object class 

is a descendant of o. Thus, the instance of vo (vo1) determines a set of instances of o, 

which is the same as the instance of the referencing and referenced object classes 

determine. That is, the influence of vo on o in the source schema is the same as the 

influence of the referencing and referenced object class on o in the source schema. □ 

Note that the referencing and referenced object classes play the same role as the 

lowest common ancestor of vo and o in Rule Type_II_A and Rule Type_II_B. Based 

referenced o

referencing

vo

o

$in1 $in2

viewsource

r_no r_no

r_no

vo_no

o_no

vo

vo_no

referencingr_no_Ref

Figure 4.16. The Case for Rule Type III_A 
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on Theorem 4.2, we propose the following rules for Type III object class. There are 4 

different rules according to the different positions of the referencing object class in 

the source schema. Without loss of generality, the referenced object class in the 

following rules is always in the same schema as vo, and the referencing object class is 

always in the same schema as o. In general, the referenced object class is a top object 

class in an ORA-SS schema, because it will result in unnecessary redundancies if it is 

not a top object class. Furthermore, the reference between the referencing and 

referenced object class will be meaningless. Based on the reasons above, we do not 

consider the case where the referenced object class is a descendant of vo in the 

following rules.  

� Rule Type_III_A: If vo is a Type III object class in the vpath of o in the view 

schema and the referencing object class is also in the vpath of o in the view 

schema (see Figure 4.16), then we do not need to generate condition constraints 

of vo in the where clause of o. 

Correctness of the Rule: In this case, since the referencing object class is still in the 

vpath of o in the view schema, the influence of the referencing object class on o in the 

view schema will also be considered to generate condition constraints in the where 

clause of o. Based on Theorem 4.2, the influence of vo on o is the same as the 

influence of the referencing object class on o. Thus, the condition constraints of vo in 

the where clause of o are the same as the condition constraints of the referencing 

object class in the where clause of o. We thus do not need to generate the same 

condition constraints again.          □ 
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� Rule Type_III_B: If vo is a Type III object class in the vpath of o in the view 

schema and the referencing object class is not in the vpath of o, and o is an 

ancestor of the referencing object class in the source schema (see Figure 4.17(a)), 

then we generate the condition constraints for vo in the where clause of o as 

shown in Figure 4.17(b).  

Correctness of the Rule: In this case, the referencing object class is not in the vpath 

of o in the view schema. Based on Theorem 4.2, we need to generate the condition 

constrains of vo in the where clause of o for the influence of vo on o. Note that o is an 

ancestor of the referencing object class in the source schema. The influence of vo on o 

can be depicted as follows. For a given instance of vo, we need to retrieve those 

instances of o, which are the ancestors of an instance of the referencing object class, 

which refers to an instance of the referenced object class, which is the ancestor of the 

instance of vo in the source document. Based on the requirement, we generate the 

condition constraints in Rule Type_III_B, which indicate that if an instance of o with 

for $o_no in distinct-values($in2//o/@o_no) 

where some $referenced in $in1//referenced 
satisfies 
(   exists($referenced[descendant::vo/@vo_no=
$vo_no]) ) 

    and some $referencing in $in2//referencing 
satisfies 
(     exists($referencing[@r_no=$referenced/@r
_no]) and  

exists($referencing[ancestor::o/@o_no=$o_no]
) ) 

return <o o_no={$o_no}/> 

referenced o

referencing

vo

o

$in1 $in2

viewsource

r_no
r_no

r_no

vo_no

o_no

vo

vo_no
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Figure 4.17(b).  Where condition generated in 
Rule Type_III_B 

Figure 4.17(a).  The Case for 
Rule Type_III_B 
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key value $o_no is selected under the instance of vo with the current qualified key 

value $vo_no, then there must exist an instance of the referenced object class in 

source 1 ($in1) that has a descendant instance of vo with key value $vo_no and there 

also must exist an instance of referencing object class in source 2 ($in2) that has a key 

value equal to the instance of the referenced object class’s key value and has an 

ancestor instance of o with key value equal to $o_no. Thus, the condition constraints 

exactly reflect the influence of vo on o.       □ 

� Rule Type_ III_C: If vo is a Type III object class in the vpath of o and o is the 

referencing object class itself in the source schema (see Figure 4.18(a)), then we 

generate the condition constraints in the where clause of o as shown in Figure 

4.18(b). 

 

 

 

 

Correctness of the Rule: In this case, o is the referencing object class in the source 

schema. Based on Theorem 4.2, the influence of vo on o is as follows. For a given 

instance of vo in the view document, we retrieve those instances of o in the source 

document, which refer to the corresponding instances of the referenced object class, 

which are the ancestor of the instance of vo in the source document. Based on the 

requirement, we generate the condition constraints of vo in Rule Type_III_C, which 

indicates that if an instance of o with key value $o_no is selected under the instance 

for $o_no in distinct-values($in2//o/@o_no) 

where some $referenced in $in1//referenced 
satisfies ( 

exists($referenced[@r_no=$o_no]) and  

exists($referenced[descendant::vo/@vo_no=
$vo_no]) ) 

return <o o_no={$o_no}/> 

referenced o(referencing) vo

o(referencing)

$in1 $in2

viewsource

r_no o_no
vo_no

o_no

vo

vo_no

r_no_Ref

Figure 4.18(b). Where condition 
generated in Rule Type_III_C 

Figure 4.18(a). The case for Rule Type_III_C 
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of vo with the current qualified key value $vo_no in the view document, then there 

must exist an instance of the referenced object class in the source document, which 

has a key value equal to $o_no and a descendant instance of vo with key value 

$vo_no. The condition constraints retain the same set of instances of o as the 

influence of vo on o as mentioned above.     □ 

� Rule Type_III_D: If vo is a Type III object class in the vpath of o in the view 

schema and the referencing object class is not in the vpath of o, and o is a 

descendant of the referencing object class in the source schema (see Figure 

4.19(a)), then we generate the condition constraints in the where clause of o as 

shown in Figure 4.19(b). 

 

 

 

 

 

Correctness of the Rule: The case for Rule Type_III_D is similar as the case in Rule 

Type III_B except that o is now a descendant of the referencing object class in the 

source schema in this case. Based on Theorem 4.2, vo has influence on o through the 

influence of the referenced and referencing object class on o. Since the referencing 

object class is not in the vpath of o in the view schema, we need to generate the 

condition constrains for the influence of vo on o in the view schema. The influence of 

vo on o is as follows. For a given instance of vo in the view document, we need to 

vo
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o o

$in1 $in2

viewsource

referenced
vo

r_no

vo_no

r_no

o_no

vo_no

o_no

r_no_Ref

for $o_no in distinct-values($in2//o/@o_no) 

where some $referenced in $in1//referenced 
satisfies 
(   exists($referenced[descendant::vo/@vo_n
o=$vo_no]) ) and some $referencing in 
$in2//referencing satisfies 
(     exists($referencing[@r_no=$referenced/
@r_no]) and      
exists($referencing[descendant::o/@o_no=$o
_no]) ) 

return <o o_no={$o_no}/> 

Figure 4.19(b). Where condition generated 
in Rule Type_III_D 

Figure 4.19(a). The case for Rule Type_III_D 
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retrieve those instances of o in the source document, which are the descendants of 

those instances of the referenced object class in the source document, which refers to 

those instances of the referencing object class in the source document, which are the 

ancestors of the instance of vo in the source document. Based on the requirement, we 

generate the condition constraints in Rule Type_III_D, which indicates that if an 

instance of o with key value $o_no is selected under the instance of vo with the 

current qualified key value $vo_no, then there must exist an instance of the referenced 

object class in source 1 ($in1) that has a descendant instance of vo with key value 

$vo_no and there also must exist an instance of referencing object class in source 2 

($in2) that has a key value equal to the instance of the referenced object class’s key 

value and also has an descendant instance of o with key value equal to $o_no. The 

condition constraints exactly reflect the influence of vo on o.   □ 

The four rules for Type III object class consider the case where vo is from the schema 

of the referenced object class and o is from the schema of the referencing object class. 

In fact, vo can be from the schema of the referencing object class and o can be from 

the schema of the referenced object class. In this case, a similar set of rules can be 

derived to generate the condition constraints of vo on o in the where clause of o. 

All the rules above generate the condition constraints of a given object class, which 

are from the object classes in the vpath of the given object class. Besides the 

condition constraints, there may be select operators, i.e. selection conditions enforced 

on the attributes attached to the given object class. We also need to generate condition 

constrains for those selection condition. The following Rule Selection_Condition 

handles this case. 
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� Rule Selection_Condition: If there is a selection condition enforced on an 

attribute a attached to o (say σ$o/a), then the selection condition σ$o/a is appended 

to the where clause of the XQuery expression of o. 

Rule Selection_Condition is straightforward. For each selection condition, we just 

need to directly append it into the where clause of o. 

4.3.4.   Rules for Generating Attributes Attached to an Object Class 

Next, we can generate a return clause to produce the object class o in the view 

document. In addition, there may also be different attributes attached to o in the view 

schema. They can be single-valued attributes or multivalued attributes of o or 

relationship types, or aggregate attributes of relationship types.  

We propose the following rules for the different attributes. Rule Attribute_1 handles 

single-valued attributes of o. Rule Attribute_2 handles multivalued attributes of o. 

Rule Attribute_3 handles single-valued attributes and multi-valued attributes of 

relationship types attached to o. Rule Attribute_4 handles aggregate attributes of 

relationship types attached to o. Finally, Rule Attribute_5 and Attribute_6 handles 

attributes from the referenced object class in the case where o is a referencing object 

class generated by a join operator.  

We show the for and the two let clauses of the XQuery expression of o because we 

use the variable $o to generate the attribute of o, which is bound in the let clauses. 

The attributes in the following rules will be generated using the attribute constructor 

or the element constructor in the return clause, which is highlighted in bold font. 
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� Rule Attribute_1: If an attribute (say a) is a single-valued attribute of o in the 

view schema, then a is generated as an attribute of o in the view document by 

using an attribute constructor within the start tag of o as shown in Figure 4.20. 

Rule Attribute_1 handles single-valued attributes of object classes. We can generate 

such attributes as attributes of the element o in the view document as shown in Figure 

4.20. An attribute constructor is used to construct the attribute a. The variable $o is 

bound to a single node of object class o with its key value equal to the current 

qualified key value $o_no. 

� Rule Attribute_2: If an attribute (say a) is a multi-valued attribute of o in the 

view schema, then a is generated as a sub element of o in the view document by 

using an XPath expression nested in the element constructor of o as shown in 

Figure 4.21. 

 

 

 

for $o_no in distinct-values($in//o/@o_no) 

let $o_set := $in//o[@o_no=$o_no] 

let $o := subsequence($o_set, 1, 1) 

where clause 

return <o a = {$o/@a}> </o> 

Figure 4.20. The generated clause for Rule Attribute_1 

for $o_no in distinct-values($in//o/@o_no) 

let $o_set := $in//o[@o_no=$o_no] 

let $o := subsequence($o_set, 1, 1) 

where clause 

return <o> {$o/a} </o> 

Figure 4.21. The generated clause for Rule Attribute_2 
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Rule Attribute_2 handles multivalued attributes of o in the view schema. Since an 

attribute in XML documents cannot have multiple values, we must generate the 

multi-valued attributes as sub elements of o as shown in Figure 4.21. 

� Rule Attribute_3: If an attribute (say a) is a single-valued or multi-valued 

attribute of a relationship type R(o1, o2, …, o), where o1, o2, …, o are the 

participating object classes of R from top to bottom in the view schema, then a is 

generated as a sub element of o in the view document by using an XPath 

expression nested in the element constructor of o as shown in Figure 4.22. 

 

 

 

 

Correctness of the Rule: In this case, we handle the single-valued or multi-valued 

attribute of relationship type (say R), which is attached to o in the view schema. That 

is, o is the lowest participating object class of the relationship type. Suppose R has 

participating object class o1, o2, …, o from the top down in the view schema. We 

need to use an XPath expression for a shown in Figure 4.22. The XPath expression 

begins from the variable $o1, which is bound to the first object class o1 of R.  It then 

goes down all the way to o along with the object classes of R. There is one predicate 

for each object class from o2 to o in the XPath expression, which indicates that the 

key value of each object class (from o2 to o) must be equal to the current qualified 

for $o_no in distinct-values($in//o/@o_no) 

let $o_set := $in//o[@o_no=$o_no] 

let $o := subsequence($o_set, 1, 1) 

where clause 

return <o> {$in/o1[@o1_no=$o1_no]/…/o[@o_no=$o_no]/a} </o> 

Figure 4.22. The generated clause for Rule Attribute_3 
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key value of the object class. In this way, we can choose those qualified values of the 

attribute a in the view document.        □ 

� Rule Attribute_4: If an attribute (say a) is an aggregate attribute of a 

relationship type R(o1, o2, …, o) by applying an aggregate function (say AGG) to 

an original attribute a’ of R’, where o1, o2, …, o are the participating object 

class of R from the  top down in the view schema and R is derived from R’, then a 

is generated as a sub element of o in the view document by using an XPath 

expression nested in the element constructor of o as shown in Figure 4.23. 

 

 

 

 

 

Correctness of the Rule: Rule Attribute_4 handles aggregate attributes of 

relationship types attached to o in the view schema. Obviously, it still needs to be 

generated as a sub element of o in the view document. Based on the rules of 

designing valid XML views, when an object class is dropped, which participates in a 

relationship type (say R’) in the source schema, the attribute of R’ (say a’) can be 

aggregated into an aggregate attribute (say a) in the view schema by applying an 

aggregate function (say AGG). A new relationship type R can also be derived by 

projecting R’ based on the dropped object class. Suppose the rest of the object classes 

of R’, that is, the participating object classes of R, are o1, o2, …, o. Then the XPath 

for $o_no in distinct-values($in//o/@o_no) 

let $o_set := $in//o[@o_no=$o_no] 

let $o := subsequence($o_set, 1, 1) 

where clause 

return <o>  

             <a> { AGG( $in//o1[@o1_no=$o1_no]//…//o[@o_no=$o_no]/a’ ) } </a> 

          </o> 

Figure 4.23. The generated clause for Rule Attribute_4 
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expression below collects a sequence of qualified values of a’, which is indicated by 

the predicates in the XPath expression. 

$in//o1[@o1_no=$o1_no]//…//o[@o_no=$o_no]/a’ 

Note double slashes are used in the XPath expression, because there may be other 

dropped object classes between o1, o2, …, o. Next, the aggregate function AGG is 

applied to the sequence of values of a’ and the value of the aggregate attribute a is 

then computed. 

                        AGG( $in//o1[@o1_no=$o1_no]//…//o[@o_no=$o_no]/a’)    

Finally, since the XPath expression returns only a value, it is nested in an element 

constructor for a, which is subsequently nested in the element constructor for o. In 

this way, the entire element constructor in the return clause in Figure 4.23 generates 

the aggregate attribute a as a sub element of o in the view document.   □ 

� Rule Attribute_5: If o is a referencing object class and an attribute of o (say a) 

is a single-valued attribute from the referenced object class ref_o, then generate a 

as an attribute of o using ref_o in the view document as shown in Figure 4.24. 

 

 

 

 

 

for $o_no in distinct-values($in//o/@o_no) 

let $o_set := $in//o[@o_no=$o_no] 

let $o := subsequence($o_set, 1, 1) 

for $ref_o_no in distinct-values($in//ref_o/@ref_o_no) 

let $ref_o_set := $in//ref_o[@ref_o_no=$ref_o_no] 

let $ref_o := subsequence($ref_o_set, 1, 1) 

where $ref_o_no = $o_no 

return <o a = $ref_o/@a > 

Figure 4.24. The generated clause for Rule Attribute_5 
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In this rule, we process the single-valued attributes from the referenced object class 

when o is the referencing object class. Note that we must use the variables bound to 

the referenced object class to generate the attributes. The variables have been 

generated in Rule For_Let_2. 

� Rule Attribute_6: If o is a referencing object class and an attribute of o (say a) 

is a multi-valued attribute from the referenced object class ref_o, then generate a 

as an attribute of o using ref_o in the view document as shown in Figure 4.25. 

 

 

 

 

 

 

In this rule, we handle the multivalued attributes from the referenced object class 

when o is a referencing object class. As in Rule Attribute_2, we must generate these 

attributes as sub elements of o in the view document. The difference is that we need 

to refer to variables bound to the referenced object class in this rule. 

The order by operators can be applied to attributes because order is significant in 

XML. Thus, we use the following rule to handle order by operators applied to 

attributes attached to o. 

for $o_no in distinct-values($in//o/@o_no) 

let $o_set := $in//o[@o_no=$o_no] 

let $o := subsequence($o_set, 1, 1) 

for $ref_o_no in distinct-values($in//ref_o/@ref_o_no) 

let $ref_o_set := $in//ref_o[@ref_o_no=$ref_o_no] 

let $ref_o := subsequence($ref_o_set, 1, 1) 

where $ref_o_no = $o_no 

return <o> {$ref_o/a} </o> 

Figure 4.25. The generated clause for Rule Attribute_6 
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� Rule Order_By: If an order by operator is applied to an attribute a attached to o 

with an ascending or descending order, then an XPath expression with the 

ascending or descending flag is generated in the order by clause of o as follows: 

Order by $o/a ascending | descending 

This rule is straightforward. The XPath expression $o/a in the order by clause denotes 

the results of the return clause of o will be ordered by the value of attribute a attached 

to o with ascending or descending order. 

4.4. Improvements 

Based on the set of rules in the previous section, we can develop a complete 

algorithm to generate XQuery expressions for ORA-SS views. Unfortunately, there 

are several shortcomings in the approach. Firstly, when generating the query 

expression for a given object class in the views, we process each object class in the 

vpath of the object class in the views to generate the condition constraints of the 

object class. However, some of the condition constraints may not be necessary. That 

is, we may produce redundant condition constraints in the algorithm. Secondly, some 

ORA-SS views may not change the structure of the source schema, such as views 

involving only selection operators applied to the root object class. For those views, 

the algorithm will still generate condition constraints for all the object classes in the 

vpath of a given object class in order to produce the XQuery expression for the object 

class. However, it is not the simplest way to generate the XQuery expression in this 

case. We can use another simple form of XQuery to express such views. 
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We propose the following two improvements. Section 4.4.1 discusses how to reduce 

the redundant condition constraints in the algorithm by using the semantics in the 

views. Section 4.4.2 examines how to express views involving only selection 

operators with a simple form of XQuery.  

4.4.1.   Reducing redundant condition constraints 

In the naïve approach, we generate the condition constraints for each object class in 

the vpath of a given object class in the views. These condition constraints are 

sufficient for the XQuery expression of the object class. However, some of them may 

be not necessary. The following example illustrates this. 

member

project

mname

jno

job_title

jname

publication

pno pub_title

jm, 2, 1:n, 1:n

mp, 2, 1:n, 1:n

 

 

Example 4.7. Figure 4.26 depicts an ORA-SS view schema diagram that contains 

three object classes, i.e. project, member and publication. There is one binary 

relationship type jm between project and member, indicating which members 

participate in a given project. The other binary relationship type mp between member 

and publication indicates which publications are published by a member. Suppose 

Figure 4.26. an ORA-SS view schema diagram 
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now we generate the XQuery expression for the view. When processing object class 

member, we generate the condition constraints for the influence of project on member. 

Next, we process object class publication. Since there are two object classes in the 

vpath of publication, we generate the condition constraints for the two object classes 

project and member respectively.  

However, the object class publication has a relationship with only one object class 

member and has no relationship with project in the view schema. That is, no matter 

under which instance of project, for a given instance of member, only those instances 

of publication published by the instance of member can be displayed. In other words, 

a given instance of project determines a set of instances of member that participates in 

this project. Each of those instances of member then determines those instances of 

publication that are published by the instance of member. Thus, object class project 

only has influence on publication through the influence of object class member on 

publication, which is similar to the case in Rule Type II & III object class presented 

in Section 4.3. Since member is also in the vpath of publication in the view schema, 

we do not need to generate the condition constraints for the influence of project on 

publication.           □ 

The example shows that not all object classes in the vpath of a given object class need 

to be processed to generate condition constraints. The following theorem identifies 

which object classes in the vpath of an arbitrary object class can be discarded. 

Theorem 4.3 For an arbitrary object class o1 in the vpath of o in an ORA-SS view 

schema, if o1 and o participate in a relationship type R in the view schema, then o1 

needs to be retained to generate the condition constraints for o. If o1 and o do not 
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participate in any relationship type in the view schema, then o1 can be discarded and 

no condition constraints for the influence of o1 on o need to be generated.  

Proof: In the case where o1 and o participate in a relationship type R in the view 

schema, a given instance of o1 in the view document must determine a set of instances 

of o through R. Thus, o1 has direct influence on o in the view schema. We have to 

generate the condition constraints for the influence of o1 on o. In the case where o1 

and o do not participate in any relationship type in the view schema, that is, o1 has no 

direct influence on o in the view schema. Thus, o1 can be discarded and no condition 

constraints need to be generated for o1.       □ 

In general, o1 is called a determining object class of o and R is called a determining 

relationship type of o in the view schema. Formally, we have the following definition 

for the determining object class and determining relationship types for a given object 

class in an ORA-SS schema. 

Definition 4.2 (DOC & DRT) Given an arbitrary object class o in an ORA-SS view 

schema, if an object class o1 in the vpath of o participates in a relationship type R 

with o in the view schema, then o1 is called a Determining Object Class (DOC) of o in 

the view schema, and the relationship type R is called a Determining Relationship 

Type (DRT) of o in the view schema. 

Based on the definition, a DRT of o involves DOCs of o and a DOC of o participates 

in DRTs of o. A DOC of o is also an ancestor of o in the view schema, because it is in 

the vpath of o. The instances of o in the view document are determined by the 

instances of DOCs of o in the view schema through their corresponding DRTs of o. 
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Based on Theorem 4.3 and the definition above, we propose a pre-process rule to 

generate only the necessary condition constraints for o.  

� Pre-Process Rule: If an object class vo in the vpath of o is a DOC of o in the 

view schema, then condition constraints for the influence of vo on o need to be 

generated in the XQuery expression of o based on Rule Type I, II or III. If vo is 

not a DOC of o in the view schema, then no condition constraints for the influence 

of vo on o need to be generated. 

The pre-process rule is straightforward. It can be easily proved to be correct based on 

theorem 4.3 and the definition of DRT and DOC. When generating condition 

constraints of o, the rule will be applied before the Rule Type I, II and III in section 

4.3. Thus, those object classes in the vpath of o that are not DOCs of o will be 

omitted and unnecessary condition constraints will be avoided. Instead, we only need 

to generate condition constraints for DOCs of o in the view schema.  

4.4.2.   Views involving only selection operators 

When a view is designed by selection operators only, the structure of the view is the 

same as the source schema. In fact, the view document just retains some data and 

discards other data of the source document while keeping the structure of the source 

document intact. Thus, we do not have to use the previous rules such as Rule Type I, 

II or III to generate XQuery expression for the view. Instead, we adopt features of 

XQuery to generate simpler form of XQuery expression for the view.  
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project

mname

jno='j001'

job_title

jname

publication

pno pub_title

jm, 2, 1:n, 1:n

mp, 2, 1:n, 1:n

 

 

Example 4.8. Figure 4.27 depicts a view designed based on the view schema in 

Figure 4.26. The view only applies a selection operator on the attribute jno: “jno = 

j001”. Thus, the view has the same structure as the previous view in Figure 4.26. 

 

 

 

 

 

 

We can use the rules in the section 4.3 to generate an XQuery expression for the view. 

However, the generated expression of the view will be unnecessarily complicated. 

Figure 4.27. an ORA-SS view schema diagram applying a 
selection operator in Figure 4.26 

For $x in doc()/root return convert-children($x) ;  // $x represents the root of the doc 
 
declare convert-children($x) { 
    for $y in $x/node() return convert-node($y) }; 
 
declare function convert-node($x) { 
   if ($x instance of element(project,*) then 
        if ($x[@jno="j001"]) then element {node-name($x)} {$x/@*, convert-children($x)} 
        else (return null) 
   else if ($x instance of element()) then 
        element {node-name($x)} {$x/@*, convert-children($x)}    
}; 

 

Figure 4.28. The XQuery expression for the view in Figure 4.27  
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Actually, we generate another XQuery expression for this view by defining some 

functions, as shown in Figure 4.28.  

In this XQuery expression, we use a recursive tree walk technique with a function 

called convert-node. The purpose of the function is to filter those nodes that do not 

satisfy the selection operator in the view. In particular, if a node bound by $x is an 

element of project and its attribute jno is equal to j001, then the element and its 

attributes will be kept in the resulting view document. Otherwise, if the node $x is an 

element of project and its attribute jno is not equal to j001, then the function will 

return a null value. That is, the project element will be discarded in the resulting view 

document. Next, for the rest elements of the source document, the function will return 

them as is.           □ 

Note that this type of XQuery expression can be applied only when the selection 

operators are applied in the root object class in the view. Obviously, this type of 

XQuery expression will be simpler than the XQuery expression generated using the 

rules in Section 4.3, as these rules will generate many condition constraints in the 

XQuery expression. In this type of XQuery expression generated by using functions, 

there will be no condition constraints for each object class in the view. Note that the 

larger the number of object classes in the view, the simpler this type of XQuery 

expression will be compared to one generated using the rules in section 4.3. Formally, 

we have the following rule to generate this type of XQuery expression. 

� Rule Selection_View: If an ORA-SS view is designed with selection operators σi 

(i=1, …, n) only applied to the root object class; then:  
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• Step 1. Generate the main query expression and the function convert-children 

as follows: 

                                  For $x in doc()/root return convert-children($x) ;  
                                  Declare convert-children($x) { 
                                     for $y in $x/node() return convert-node($y)  
                                  }; 

• Step 2. Generate the function convert-node to process selection operator σi 

on object class oi (i = 1, …, n) in the view: 

                          Declare function convert-node($x) { 
                            if ($x instance of element(o1,*) then 

                                       if (σ1) then element {node-name($x)} {$x/@*, convert-children($x)} 
                                       else (return null) 
                                  …… 

                           else if ($x instance of element(on,*) then 

                                       if (σn) then element {node-name($x)} {$x/@*, convert-children($x)} 
                                       else (return null) 
                                 else if ($x instance of element()) then 
                                       element {node-name($x)} {$x/@*, convert-children($x)}    
                                }; 

 

This rule only applies to the case where a view is designed with selection operators 

applied to the root object class only. In this case, the view definition does not have to 

be generated by processing each object class in the view as mentioned in section 4.3. 

Instead, it can be generated by using a recursive tree walk with XQuery functions. In 

the Rule Selection_View above, we first generate the main view definition that 

contains only one for clause in step 1, which uses a function called convert-children 

to process each child node of the source document. The function convert-children is 

also defined in step 1, in which we use another function called convert-node to check 

if a node satisfies the selection operators in the view schema. In step 2, we define the 

second function convert-node to process each selection operator in the view. For each 

selection operator, we generate an if clause to check if a node satisfies its 
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corresponding selection operators in the view schema. If so, then it will be kept in the 

view document. If not, it will be discarded in the view document. Finally, all the rest 

of the objects are copied in the view document with the last else if clause. 

4.5. Illustrating Example 

We use the following example to illustrate how to generate XQuery view definitions 

from ORA-SS views based on the rules. 

Example 4.9. Suppose we design a view based on the ORA-SS source schema shown 

in Figure 4.29. Notice there is a foreign key to key reference from project’ to project 

(i.e. jno). In this view, we first join object class project’ and project. Next, we drop 

object class supplier. The view is shown in Figure 4.30. Based on the rules above, we 

generate the XQuery view definitions as shown in Figure 4.31. 
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Figure 4.29. An ORA-SS source schema  
Figure 4.30. An ORA-SS view schema based 

on Figure 4.28 
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1. <db> 
2.   for $p_no in distinct-values($in//part/@pno) 
3.   let $p_set := $in//part[@pno=$p_no] 
4.   let $p := subsequence($p_set, 1, 1) 
5.   return  
6.     <part pno={$p_no} pname={$p/@pname}> 
7.    { 
8.      for $f_no in distinct_values($in//factory/@fno) 
9.     let $f_set :=$in//factory[@fno=$f_no]      
10.    let $f := subsequence($f_set, 1, 1) 
11.    where some $p1 in $in//part  
12.         satisfies ( exists($p1[@pno=$p_no]) and 
13.         exists($p1[descendant::factory/@fno=$f_no])  ) 
14.    return <factory fno={$f_no} fname={$f/@fname}/> 
15.   } 
16.  { 
17.    for $j_no’ in distinct_values($in//project’/@jno) 
18.    let $j_set’ := $in//project’[@jno=$j_no’] 
19.    let $j’ := subsequence($j_set’, 1, 1) 
20.    for $j_no in distinct_values($in//project/@jno) 
21.    let $j_set := $in//project[@jno=$j_no] 
22.    let $j := subsequence($j_set, 1, 1) 
23.    where some $p2 in $in//part 
24.         satisfies ( exists($p2[@pno=$p_no]) and  
25.         exists($p2[descendant::project’/@jno=$j_no’]) and $j_no=$j_no’) 
26.    return <project’ jno={$j_no} jname={$j/@jname}> 
27.                  <total_qty>  
28.                    sum($in//part[@pno=$p_no]//project’[@jno=$j_no’]/qty) 
29.                  </total_qty> 
30.                  { 
31.                    for $e_no in distinct-values($in//employee/@eno) 
32.                    let $e_set := $in//employee[@eno=$e_no] 
33.                    let $e := subsequence($e_set, 1, 1) 
34.                    where some $j1 in $in//project 
35.                          satisfies ( exists($j1[@jno=$jno]) and 
36.                          exists($j1[descendant::employee/@eno=$eno]) ) 
37.                   return <employee eno={$e_no} ename={$e/@ename}> 
38.                              {$e/email} 
39.                              {$in//project[@jno=$j_no]//employee[@eno=$e_no]/progress} 
40.                             </employee> 
41.                  } 
42.              </project’> 
43.  } 
44.  </part> 
45. </db> 

Figure 4.31. The XQuery view definition for ORA-SS view schema in Figure 4.30 
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First, we process the root object class part (line 1-6). As it is the root object class, we 

do not need to generate any condition constraints for its expression. We first generate 

one for and two let clauses to bind variables to part and then generate a return clause 

to construct the element for part. Next we process the first child of part – factory 

(line 7-15). Similarly, we first generate for and let clauses to bind variables to object 

class factory. Then we generate condition constraints in its where clause based on 

Rule Type_I_A as part is a DOC of factory in the view schema and an ancestor of 

factory in the source schema. The condition constraints indicate that only those 

instances of factory can be retrieved which are the descendants of the current part 

instance in the source data.  

Next, we process the second child of part – project’ (line 17-29). As project’ is a 

referencing object class, we not only generate variables for project’, but also generate 

variables for its referenced object class project, which will be used to generate the 

attributes of the referencing object class. Similarly, we generate condition constraints 

in its where clause based on Rule Type_I_A as part is a DOC of factory in the view 

schema and an ancestor of factory in the source schema. The condition constraints 

indicate that only those instances of project’ can be retrieved which are the 

descendants of the current part instance in the source data. For the relationship 

attribute total_qty, we generate it as a sub element of project’ (line 27-29) based on 

Rule Attribute_4 as total_qty is an aggregate attribute. 

Finally, we process the child of project’ – employee (line 30-41). We first generate 

for and let clauses to bind variables to employee. Although both part and project’ are 

ancestors of employee in the view schema, only project’ is its DOC because of 
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relationship type je. Thus, we then generate condition constraints in the where clause 

of employee based on Rule Type_I_A for the influence of project’ on employee. The 

condition constraints indicate that only those instances of employee can be retrieved 

which are the descendants of the current project instance in the source data. 

In summary, this example illustrates how we generate XQuery view definitions from 

ORA-SS views based on the rules above. The generated view definition can be 

evaluated on XQuery engines and can produce the result of an XML view. As the 

example shows, our method of automatically generate XQuery view definitions from 

ORA-SS views and alleviates users from manually write complicated XQuery 

expression.           □ 

4.6. XQuery View Definitions Generation Algorithm 

We designed an algorithm to automatically generate XQuery view definitions from 

ORA-SS views. Algorithm Generate_View_Definition takes as inputs a view schema 

v and a source schema s and produces an XQuery view definition for the view.  

Algorithm Generate_View_DefinitionAlgorithm Generate_View_DefinitionAlgorithm Generate_View_DefinitionAlgorithm Generate_View_Definition    

Input: view v; source sInput: view v; source sInput: view v; source sInput: view v; source s    

Output: XQuery view definition of vOutput: XQuery view definition of vOutput: XQuery view definition of vOutput: XQuery view definition of v    

1. If v is designed with selection operators only then 

2.    apply Rule Selection_View; 

3. End if  

4. generate the start tag for root of the view:  “<root>” 

5. For each child o of the root of v do 

6.    generate a start bracket: “{“ 

7.    Generate_Objectclass_Definition(o, v); 

8.    generate a end bracket: “}” 

9. End for 

10. generate the end tag for root of the view:      “</root>” 

The algorithm Generate_View_Definition generates view definitions in XQuery. The 

ORA-SS views that are input in the algorithm are valid. Firstly, it processes those 
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views that are designed with selection operators only by using the Rule 

Selection_View (line 1-3) in section 4.4. Next, it generates a root element for the 

view because each XML document must have a root element, which is above the first 

object class in the ORA-SS view. By default, this root element is not shown as an 

object class in the ORA-SS views. Finally, for each child object class of the root, say 

o, it calls the function Generate_ObjectClass_Definition to generate an XQuery 

definition for o and all its descendants. Each of the definitions is contained in a pair 

of curly brackets, indicating that they are sub elements of the root element. The 

function Generate_ObjectClass_Definition takes as inputs a given object class and the 

view schema and produce an XQuery view definition for the object class.  

FunctionFunctionFunctionFunction Generate_ObjectClass_Definition Generate_ObjectClass_Definition Generate_ObjectClass_Definition Generate_ObjectClass_Definition    

Input: object class o; view vInput: object class o; view vInput: object class o; view vInput: object class o; view v    

Output: view definition of o and its descendantsOutput: view definition of o and its descendantsOutput: view definition of o and its descendantsOutput: view definition of o and its descendants    

1. If o is not a referencing object class then 

2.      apply Rule For_Let_1; 

3. Else  

4.       apply Rule For_Let_2; 

5. End if 

6. For each DOC of o (vo) in the vpath of o do 

7.   If vo belongs to type I then 

8.       ProcessTypeI(vo, o);   //generate condition constraints for Type I object class 

9.   End if   

10.   If vo belongs to type II then 

11.       ProcessTypeII(vo, o); //generate condition constraints for Type II object class 

12.   End if 

13.   If vo belongs to type III then 

14.       ProcessTypeIII(vo, o); //generate condition constraints for Type III object class 

15.   End if 

16.   append the generated condition in the where clause; 

17. End for 

18. For each selection operator applied to attributes of o do 

19.      apply Rule Selection_Condition; 

20. End for 

21. For each order by operator applied to attributes of o do 

22.      apply Rule Order_By; 
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23. End for 

24. generate a return clause with a start tag for o: 

           “return   <o> ” 

25. For each single-valued attribute of o do 

26.      apply Rule Attribute_1; 

27. End for 

28. For each multi-valued attribute of o do 

29.      apply Rule Attribute_2; 

30. End for 

31. For each single-valued or multi-valued attribute of relationship type attached to o do 

32.     apply Rule Attribute_3; 

33. End for 

34. For each aggregate attribute of relationship type attached to o do 

35.     apply Rule Attribute_4; 

36. End for 

37. For each single value attribute of o from referenced object class do 

38.      apply Rule Attribute_5; 

39. End for 

40. For each multi-valued attribute of o from referenced object class do 

41.      apply Rule Attribute_6; 

42. End for 

43. If o has no child then  

44.        generate an end tag for o:  “</o>” 

45.        return the generated XQuery definition for o; 

46. Else  

47.       For each child object class co of o do 

48.             generate a start brace: “{“ 

49.             Generate_View_Definition(co, v); 

50.             generate an end brace: “}” 

51.       End for 

52.       generate an end tag for o: “</o>” 

53.       return the generated definition; 

54. End if 

 

In the function Generate_ObjectClass_Definition, we first generate the for/let clauses 

to bind necessary variables for object class o (line 1-5). Rule For_Let_1 and Rule 

For_Let_2 will apply based on whether o is a referencing object class or not. 

Then the algorithm processes each DOC of o in the vpath of o in the view schema to 

generate condition constraints (line 6-17). This is because only DOCs of o have 
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influences on o, as stated in section 4.4.1. The functions ProcessTypeI, ProcessTypeII 

and ProcessTypeIII integrate rules for Type I, II & III object classes respectively. 

They take vo and o as inputs and generate corresponding condition constraints that 

reflect the influence of vo on o. The generated condition constraints will be combined 

into the where clause. Next, the condition constraints for the selection operators 

applied to o will also be generated and appended into the where clause of o (line 18-

20). An order by clause will also be generated if there is any order by operator 

applied to attributes attached to o (line 21-23). 

Next, the algorithm generates a return clause for o to construct the element result of o 

(line 24). It then process different attributes attached to o based on rules Attribute_1 

to Attribute_6 (line 25-42). At this point, the XQuery view definition for o itself is 

generated. If there is no child for o, then the view definition for o will be returned 

(line 43-45). If there are children for o, then for each child of o, the function 

Generate_ObjectClass_Definition is called recursively untill all the descendants of o 

have been processed (line 47-51). Note that pairs of braces are generated to indicate 

that the children of o are generated as sub-elements of o (line 48, 50). In this way, we 

generate the complete XQuery view definition of the view. 

4.7. Algorithm Analysis 

In this section, we provide an analysis of the proposed method and prove its 

correctness. In the algorithm Generate_View_Definition, XML views involving 

selection operators only are processed first. Next, it generates the root element of the 

view, and the function Generate_ObjectClass_Definition is called to generate the 

definition for each sub tree rooted at a child object class (say o) of the root, which are 
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then combined together to construct the whole XQuery expression of the view. If the 

function Generate_ObjectClass_Definition returns the correct definition for the sub 

tree rooted at o in the view, then the algorithm Generate_View_Definition will return 

the correct XQuery expression for the ORA-SS view. 

The algorithm in the function Generate_ObjectClass_Definition is from the intuition 

that the data instances represented by an object class in an ORA-SS view are 

determined by all the DOCs in its vpath. A pre-condition that is true for the algorithm 

is that o is an object class of an ORA-SS view v and the number of the descendants of 

o in the view is n (n ≥ 0).  After executing the algorithm with o and its view v as 

input, we have result = Generate_Objectclass_Definition(o, v). Then a post-condition 

states what is to be true about the generated result which is given by result = XQuery 

expression of a sub tree rooted at o. The proof of correctness takes us from the pre-

condition to the post-condition.  

(a) n = 0. This is the base case where o has no children. The algorithm generates a 

variable in a for clause to iterate over each key value of o. Next, for each DOC in 

the vpath of o, it generates the condition constraints in a where clause based on 

the rules corresponding to different types of object class, which are proved to be 

correct in section 4.3. The selection operators and order by operators are also 

processed as well as the attributes attached to o based on the rules in section 4.3. 

Finally, a return clause is generated to construct the element result of o. Thus, the 

algorithm generates and returns the correct XQuery expression for o itself. 

(b) n > 0. In this inductive step, o will have children. In this case, we have an 

inductive hypothesis that assumes Generate_Objectclass_Definition(o, v) returns 
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the correct XQuery expression of a sub tree rooted at o for all the object class o 

such that 0 ≤ j ≤ n-1 where j is the number of descendants of o. Having the 

correctness of the base case, the algorithm first generates the correct XQuery 

expression for o itself. Then it processes each child of o, say c. By the inductive 

hypothesis, GenerateViewDefinition(c) will return the correct XQuery expression 

of a sub tree rooted at c since 0 ≤ j ≤ n-1 where j is the number of descendants of 

c. By combining the query expression of o and o’s children, the algorithm returns 

the correct XQuery expression of a sub tree rooted at o.  

4.8. Summary  

Motivated by the complexity of manually defining XML views using XQuery, we 

developed a method to automatically generate XQuery view definitions from views 

defined using the ORA-SS conceptual model. The method removes the need for users 

to manually write XQuery expressions. Visual query languages are proposed for 

XQuery language, such as XML-GL [87]. They can also be used to define XML 

views in convenient way. However, there is a fundamental difference between our 

approach and the thesis. Most of the visual query languages do not have a mechanism 

that guarantees the constructed views are valid. In contrast, our approach can provide 

such a facility based on the ORA-SS data model. To the best of our knowledge, this is 

the first work to employ a semantic data model for the design and query of XML 

views. Using a conceptual model for the design and querying of XML views provides 

a fast and user-friendly approach to retrieve XML data.  
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Chapter 5  

Generating SQLX View Definitions 

In the previous chapter, we generate XQuery view definitions from ORA-SS views in 

the case where XML data are stored in XML files or native XML databases. In this 

chapter, we consider the other case where XML data are stored in an object-relational 

database.  In order to directly produce the result of the XML views from the object-

relational database, we adopt SQLX [75] to express the designed ORA-SS views. 

SQLX queries are SQL queries with XML extensions, which can be directly 

evaluated in the object-relational database and produce XML results. However, it is 

difficult to manually write SQLX view definitions for the ORA-SS views. 

We develop an approach to automatically generating SQLX view definitions from the 

designed ORA-SS views in the case where XML data are stored in an object-

relational database. The approach employs the semantics in the ORA-SS views and 

supports all general XML views designed with our view operators. It removes the 

need for users to manually write complex SQLX view definitions. The reason why we 

adopt the object-relational database in this approach is because it removes a lot of 

redundancies in the XML documents and some joins in relational databases. We also 

develop a method to design the corresponding object-relational storage structure for 

an ORA-SS source schema. The method will be introduced in detail in the next 

subsection. Formally, the problem to be solved in this chapter is depicted as follows. 

Note in the problem definition that T refers to the object-relational database storage 
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for the ORA-SS source schema designed based on our own approach presented in the 

next subsection.  

SQLX View Definition Generation Problem Given a designed valid ORA-SS view 

schema V, its ORA-SS source schema S and its corresponding object-relational 

database storage T, generate a SQLX view definition for V, where the SQLX view 

definition can be evaluated on the storage T and the result of the view can then be 

produced. 

The rest of the chapter is organized as follows. Section 5.1 introduces the object-

relational storage structure for XML data. The syntax of SQLX is given in section 5.2. 

A motivating example is given in Section 5.3. Section 5.4 presents the method to 

generate SQLX query definitions from valid ORA-SS views. Section 5.5 illustrates 

how to use the method to generate SQLX view definitions. A complete algorithm is 

presented in section 5.6, following by an algorithm analysis in section 5.7.. 

5.1. The O-R Database Storage for XML based on ORA-SS 

Based on an ORA-SS source schema, we can design an efficient storage structure for 

XML data in an object-relational database [59]. The main rules of this storage 

structure are as follows. 

• Each object class with all its attributes in the schema forms one relation. The 

identifier of this object class becomes the primary key of the relation. Each 

multi-valued attribute forms a nested relation in the relation. 

• Each relationship type with the object identifiers of its participating object 

classes and all its attributes forms one relation. The key of the relationship 
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type can be determined by the participation constraint of the relationship type. 

Each multi-valued attribute forms a nested relation in the relation. 

Example 5.1. Figure 5.1 shows an ORA-SS schema, and Figure 5.2 shows the 

corresponding object-relational schema for the ORA-SS schema in Figure 5.1. Each 

object class, such as supplier, is stored in a relation with its attributes (sno and 

sname). Each relationship type, such as ps, is stored into another relation with its 

attributes (price). As a multi-valued attribute of employee, email is stored in the 

relation for employee as an embedded nested relation as follows. 

employee (eno, ename, (email)*). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For object class project’ in the schema, we can refer to jno in the relation spj in the 

storage in Figure 5.2. This is because project’ participates in the relationship type spj 

and the following inclusion dependency holds:  

                                                        Πjno project’ = Πjno spj.                   
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  Object relations: 
   supplier (sno, sname);   
   part (pno, pname);     
   factory (fno, fname);  
   project (jno, jname); 
   employee (eno, ename, (email)*);        
 
  Relationship relations: 
   ps (pno, sno, price);     
   sf (sno, fno);                        
   spj (sno, pno, jno, qty);  
   je (jno, eno, progress); 

Figure 5.2. The Object-relational storage 
schema for the ORA-SS schema in Figure 5.1 Figure 5.1. An ORA-SS source schema 
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This approach to map XML data to an object-relational database removes a lot of 

redundancies that typically exist in XML documents. For example, the attribute 

sname of supplier will be stored repeatedly in XML files if it supplies different parts. 

However, in the object-relational storage, it is stored only once in the object relation 

supplier. In addition, the multi-valued attribute email of object class employee is 

stored as an embedded nested relation in the object relation employee. Suppose we 

store employee in relational database systems; then we will have two relations for 

employee. One is to store single-valued attributes of employee with its key attribute. 

The other is to store the multi-valued attribute with its key attribute. Thus, we need to 

join the two relations when we retrieve all attributes of employee in the relational 

database. Fortunately, our storage removes such joins because all attributes of 

employee are stored in one relation. In summary, the storage approach provides for a 

more efficient storage compared to using XML files to store XML data. Other work 

[99] [100] has shown how to remove all redundancy for many common cases.   □ 

5.2. SQLX Syntax 

Having stored XML data in the object-relational database and designed valid views 

based on ORA-SS, we need to define executable query expressions for those views so 

that we can produce XML results for those views from the underlying database. We 

choose SQLX as the query expressions for XML views. SQLX is the standard 

extension to SQL for XML-related specification and is becoming the standard 

technology for publishing XML data in a robust environment, i.e., the environment of 

a traditional database. SQLX has provided several functions to produce XML values. 
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These functions include xmlelement, xmlforest, xmlagg, etc. We adopt xmlagg and 

xmlelement functions to define the ORA-SS views.  

• Xmlelement generates an XML element. 

• Xmlagg produces forest of XML elements from a collection of individual 

elements.  

The syntax of xmlelement is as follows.  

xmlelement operator ::= 

       XMLELEMENT <left parenthesis> 

            NAME <XML element name> 

                 [ <comma> <XML attributes> ] 

                 [ { <comma> <XML element content> }… ] 

            <right parenthesis> 

The first argument to xmlelement provides the name of the element that is being 

constructed. The second argument, if it is specified, provides the attributes for the 

element that is being constructed. It has the form xmlattributes (…). The subsequent 

arguments provide the content for the element that is being constructed.  

Function xmlagg normally contains an xmlelement function as its argument to 

integrate all instances of the element represented by the xmlelement function together 

under one parent element.  

Example 5.2. Based on the storage schema in Figure 5.2, we issue a SQLX query to 

retrieves all suppliers supplying part with pno equal to p01 and their prices for this 

part. The XML result of the query will be retrieved from relation supplier and sp. 

Suppose the Object-Relational database of supplier and sp are shown in Figure 5.3. 

The shadow part of each table indicates it is the key of the table. 
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   supplier                                                                                sp 

sno sname 

s01 supplier01 

s02 supplier02 

                                                                  

 

 

Figure 5.4 depicts the SQLX query, which first produces the root element supplier_list by 

using an xmlelement function. Next, it employs an xmlagg function to collect all supplier 

elements that supplies part with pno equal to p01 under the root element. The attribute sno 

and sname of supplier are also retrieved by using the function xmlattribute, which is used 

within the xmlelement function for supplier. The xmlattribute function will automatically 

extract the name of sno and sname as the attribute name in the XML result. Next, the price 

element is then presented as a sub element of supplier instead of an attribute of supplier, 

because it is an attribute of relationship type ps. Note without the xmlagg function, each 

supplier element will be placed under each different supplier_list element. The XML result of 

the SQLX query is shown in Figure 5.5.        □ 

 

 

 

5.3. Motivating Example 

Although SQLX query definitions for ORA-SS views can be evaluated directly in the 

object-relational database and produce XML results for those views, it is not easy for 

sno pno price 

s01 p01 100 

s02 p01 120 

s01 p02 130 

s02 p02 150 

Select xmlelement (“supplier_list”, 
             xmlagg( 
               xmlelement(“supplier”, 
                 xmlattributes(s.sno, s.sname), 
                 xmlelement(“price”, sp.price)))) 
From supplier s, sp 
Where s.sno=sp.sno and sp.pno=”p001” 

Figure 5.4. A SQLX query to retrieve all suppliers 
of part “p01” and their prices 

<supplier_list> 
  <supplier sno=“s01” sname=“supplier01”> 
       <price> 100 </price> 
  </supplier> 
  <supplier sno=“s02” sname=“supplier02”> 
       <price> 120 </price> 
  </supplier> 
</supplier_list> 
 

Figure 5.5. An instance result for the query in Figure 5.4 

Figure 5.3. An Object-Relational database of relations supplier and sp 
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users to manually write SQLX queries and such SQLX queries are generally difficult 

to understand. The following example illustrates this. 

Example 5.3. We use the same example as in section 4.2. Consider the ORA-SS 

source schema in Figure 5.6. There are two object classes and one relationship type 

between them. Based on the storage method in section 5.2, the ORDB for the source 

schema is as follows. 

                       Object relations:          supplier(sno);       part(pno) 

                      Relationship relation:   sp(sno, pno, price) 

Figure 5.7 shows a view designed by swapping object classes supplier and part. Note 

that the attribute price does not move up with part, as it is an attribute of the 

relationship type sp.  

 

 

 

 

 

 

 

 

 

 

1. Select xmlelement(“root”, 
2.            xmlagg( 
3.               xmlelement(“part”,  
4.                   xmlattributes(part.pno), 
5.                   (Select xmlagg(xmlelement(“supplier”, 
6.                                              xmlattributes(supplier.sno) 
7.                                              xmlelement(“price”, sp.price))) 
8.                    From supplier , sp 
9.                    Where part.pno = ps.pno and ps.sno = supplier.sno 
10.                 ) 
11. From part 
 

Figure 5.8. The SQLX View definition for the view in Figure 5.7 

part

supplier

sp, 2, 1:n, 1:n

pno

sno price

sp

Figure 5.6 An ORA-SS Source Schema Figure 5.7. An ORA-SS View Schema by 
swapping supplier and part in Figure 5.6 

supplier

part

sp, 2, 1:n, 1:n

sno

pno price

sp
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Figure 5.8 shows the SQLX expression for the view in Figure 5.7. First, the SQLX 

view definition generates a root element for the view (line 1) as each XML document 

has a root element. Next, we process the first object class in the view – part and 

generate the query block for it. As it is the first object class of the ORA-SS view 

schema, we retrieve all records in the relation part to construct the instances of part in 

the view. That is, we do not need to generate any condition constraint for part in its 

SQL clauses. Thus, we do not have a Where clause after the From clause of the query 

block for part in line 11. 

Next, we process the only child of part – supplier (line 5-10). We generate a sub 

query nested in the query block for part so that supplier will be shown as a sub 

element of part in the XML view. To retrieve those correct instances of supplier 

under a given part, we need to generate condition constraints in the Where clause of 

the query block of supplier. Note there is a relationship type between part and 

supplier – sp, which indicates for a given instance of part, only those instances of 

suppliers that supply that part are placed under the instance of part. Thus, we must 

consider the constraint in the query block of supplier. We employ the relationship 

relation ps and generate the constraint in the Where clause of the query block of 

supplier. 

It is clear that the SQLX expression is much more complex than the swap operator 

that is used to design the ORA-SS view. Comparing with the single swap operator, 

the SQLX view definition contains nested SQL queries. Like an XQuery expression 

in Chapter 4, the complexity and length of SQLX view definitions increases 

dramatically as the number of object classes grows. The probability of making errors 
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in the view definitions also increases if users are to manually define such views in 

SQLX. Fortunately, this problem can be addressed using our approach which 

provides a set of simple view operators for users to define views from which SQLX 

expressions can be automatically generated with an algorithm.    □ 

5.4. Rules for Generating SQLX View Definitions  

In this section, we present the proposed method of generating SQLX view definitions. 

We first introduce the main idea and then examine the different relationship types in 

ORA-SS views, which are critical to generate SQLX view definitions. Finally, we 

present the complete rules for generating SQLX view definitions. 

5.4.1.   Main Idea 

The main idea behind the method of generating SQLX view definitions is based on 

the intuition: an object in the view is determined by some particular objects in the 

view through relationship types involved. We illustrate this from the SQLX view 

definition in Figure 5.8. 

First, we observe that it is straightforward to generate Select and From clause in the 

query block of a given object class in the ORA-SS view. In general, the Select clause 

contains an xmlagg and an xmlelement function to express an object class and its 

attributes in XML form. The From clause then enables us to retrieve the data from 

those relations related to the object class in the object-relational storage structure.  

In fact, the difficult part of the method is to generate the condition constraints in the 

Where clause of the query block of the object class. The condition constraints of an 

object class are actually determined by those relationship types involving the object 
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class and its ancestors. In other words, they are determined by its DOCs through its 

corresponding DRTs (see the definition in section 4.4.1). For example, the condition 

constraints for supplier (line 9) are generated based on the relationship type sp 

between supplier and its ancestor part in the view schema. The relationship type sp is 

supplier’s DRT and object class part is supplier’s DOC in the view schema. Note that 

this idea is also applicable to the generation of XQuery view definitions (see section 

4.4.1). 

Based on the observation, we summarize by saying that the information of DRT and 

DOC is critical to generate the condition constraints of a given object class in the 

view schema. Obviously, it is easy to identify DOCs of a given object class once its 

DRTs have been identified, as DOCs are the ancestors of the object class participating 

in the DRTs. For the DRTs, as there are different relationship types in an ORA-SS 

view, there are also different DRTs for a given object class.  

5.4.2    DRTs in ORA-SS Views 

There are different sets of DRTs in an ORA-SS view schema. This is because the 

DRTs of an object class in a view are not necessarily the same as those in the source 

schema. They can be new relationship types derived by projecting or joining original 

relationship types in the source schema. We cannot directly use them in generating 

query expressions. Thus, we adopt a 2-step method in generating the query 

expression. First, we generate the query expression of the object class based on the 

DOCs and DRTs in the view schema. Second, for those clauses in the query 

expression involving the derived relationship types, we rewrite them with the original 

relationship types in the source schema. Note that we are assuming that the XML data 
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are stored in an ORDB based on the method presented in section 5.1. The relationship 

types in the source schema are directly mapped to the relations in the ORDB. 

Therefore, the rewritten SQLX query expression can be directly evaluated on the 

ORDB. In general, for an arbitrary object class O in an ORA-SS view schema V, 

there are three sets of DRTs: 

• DRT_Set_1(O) = {R | R  is a DRT of object class O in view schema V and is 

an original relationship type in source schema S} 

• DRT_Set_2(O) = {R | R is a DRT of object class O in view schema V and is 

derived by projecting on an existing relationship type in source schema S} 

• DRT_Set_3(O) = {R | R is a DRT of object class O and is derived by joining 

original relationship types in source schema S} 

 

 

 

 

 

 

 

 

 

 

Example 5.4. Suppose we design a view in Figure 5.10 based on the source schema 

in Figure 5.9 by applying the two operators. The source schema here is the same as 

supplier

project

jname

part

spj,3,1:n,1:nsno

pno

price

spj

ps

employee

eno ename progress

je

ps, 2, 1:n, 1:n

sname

pname

factory

fno fname

sf,2,1:n,1:n

jno qty je,2,1:n,1:n

*

email

part

project

jname

pj,2,1:n,1:npno="p001"

pj

pname

factory

fno fname

pf,2,1:n,1:n

jno total_qty

employee

eno ename progress

je,2,1:n,1:n

je

*

email

Figure 5.9. An ORA-SS source schema Figure 5.10. The ORA-SS view schema based on Figure 5.9 
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the one in Figure 5.1. The two operators drop the object class supplier and place a 

selection condition {pno = “p001”} in the view schema. 

In the view schema in Figure 5.10, relationship type je is a DRT of object class 

employee in the view schema and an original relationship type in the source schema. 

Thus, je belongs to DRT_Set_1(employee). Next, relationship type pj is a DRT of 

object class project in the view schema and is derived by projecting original 

relationship type spj in the source schema as object class supplier is dropped. That is, 

pj belongs to DRT_Set_2(project). Finally, relationship type pf is a DRT of object 

class factory in the view schema and is derived by joining original relationship types 

ps and sf in the source schema shown in Figure 5.9. Thus, pf belongs to 

DRT_Set_3(factory).          □ 

5.4.3    Generation Rules 

Having identified the three types of DRTs in the view schema, we can employ the 

information of DRTs and DOCs of a given object class to generate its query 

expression. Before we propose the rules of the generation, we need to preprocess the 

set of DRTs of the object class. This is because we may remove unnecessary DRTs 

while still losing no influences of the DOCs on the object class through the DRTs.  

� Preprocess Rule: Let R1 and R2 be DRTs of an object class O in an ORA-SS view 

V, let {O11, O12, …, O1i}, {O21, O22, …, O2j} be the DOCs of O participating in R1 

and R2 respectively in V. If {O11, O12, …, O1i} ⊆ {O21, O22, …, O2j}, and the 

following inclusion dependency Π{O11, O12, …, O1i} R2 ⊆ Π{O11, O12, …, O1i} R1 holds in 

the view, then R1 can be removed from the set of DRTs of O.  
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Correctness of the Rule: The given inclusion dependency implies that the instances 

of O11, O12, …, O1i in R2 are a subset of the instances of O11, O12, …, O1i in R1. Thus, 

the influences of O11, O12, …, O1i on O through R1 are contained in the influence of 

O11, O12, …, O1i through R2. In another words, the influence of the DOCs {O11, O12, 

…, O1i} on O through R2 is more restrictive than the influence of the same DOCs on 

O through R1. Note {O11, O12, …, O1i} is the complete set of DOCs from R1, which 

implies the complete influence of the DOCs on O through R1 can be expressed in the 

influence of DOCs on O through R2. Therefore, R1 can be removed from the set of 

DRTs of O without losing any influence of DOCs of O on O in the view.  □ 

supplier

project

sno

jno

sname

jname

part

pno pname

sp, 2, 1:n, 1:n
spj, 3, 1:n, 1:n

price qty

spj
sp

 

Example 5.5. Figure 5.11 depicts an ORA-SS view where two relationship types 

exist: R1 (sp, 2, 1:n, 1:n) involves object classes supplier and part, and R2 (spj, 3, 1:n, 

1:n) involves object classes project, supplier and part. For object class part, R1 and 

R2 are its DRTs and object class project and supplier are its DOCs in the view. 

Suppose the inclusion dependency Π{supplier, part}R2 ⊆ Π{supplier, part}R1 holds in the 

Figure 5.11 An ORA-SS view containing  project, supplier & part 
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view. According to the preprocessing rule, R1 can be removed from the DRTs of part 

in the view.          □ 

The preprocessing rule reduces the size of the set of DRTs for an object class in the 

view. Thus, there will be less relationship types to be processed, and then it will be 

more efficient to generate the query expression for ORA-SS views. Note that the 

preprocess rule is also applicable to the generation of XQuery in the Chapter 4. This 

is because the DRTs are independent of the query language we adopted.  

There are a total of 5 rules for generating SQLX query expression for an ORA-SS 

view. Suppose we process an object class O in an ORA-SS view. The first two rules: 

Rule Gen_1 and Rule Gen_2 aim to process the object class itself in the views. Since 

the single-valued attributes of O are stored together with the object class in one table 

in the ORDB, they are considered together with O in Rule Gen_1 and Gen_2. Next, 

Rule Gen_3 handles the case where there are still derived relationship types in the 

generated condition constraints in Rule Gen_2. Rule Gen_4 then processes attributes 

of relationship types attached to O in the view, and Rule Gen_5 processes multi-

valued attributes of O or multi-valued attributes of relationship types attached to O. 

Finally, if there are any selection conditions enforced on attributes attached to O, 

Rule Gen_6 will append the selection conditions in the where clause. Finally, Rule 

Gen_7 will process the case where the order-by operator is applied in the view. For 

each rule, we will also present an illustrating example, which is based on the view 

schema in Figure 5.10. Its source schema is shown in Figure 5.9 and its ORDB is 

shown in Figure 5.2. In addition, we use the following notations. 

• Rel(O) denotes the relation for an arbitrary object class O in the ORDB.  
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• Rel(O).key denotes the key of the object class O in the relation. 

• Rel(R) denotes the relation for an arbitrary DRT of O (say R) in the ORDB. 

• {O1, O2, … , On} denotes the DOCs of O in R in the view. 

• Rel(R).O, Rel(R).O1, Rel(R).O2, …, Rel(R).On denotes the keys of O, O1, O2, 

…, On in Rel(R). 

Note that R may not be an original relationship type in the source schema. Thus, it 

will have no corresponding relation in the ORDB. In this case, Rel(R) denotes a 

pseudo relation for R in the following rules, which will be rewritten into its 

corresponding original relations in the ORDB in our rules. In addition, we employ a 

pre-order tree traversal algorithm to process the view. Thus, the ancestors of O will be 

processed before O. Since O1, O2, …, On are ancestors of O, when we generate the 

SQLX query expression for O, we can directly employ the current instance of O1, O2, 

… , On to generate the condition constraints of O because the query expression for O1, 

O2, … , On are processed before O.  

� Rule Gen_1: If O has no DRTs in the view, then no condition constraints related 

to DRTs are generated in the Where clause of the query expression of O. 

In this rule, O has no DRTs in the view, in other words, O does not participate in any 

relationship type with its ancestors in the view. Therefore, no object class in the view 

has an influcence on O. We do not need to generate any condition constraints for O in 

this stage. Note we may need to generate other condition constraints when there are 

selection conditions enforced on attributes of O, which will be processed in Rule 

Gen_5. In general, Rule Gen_1 only applies to the root object class in an ORA-SS 
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view. For the other object classes in the view, there is at least one DRT for them. A 

non-root object class without any DRTs in an ORA-SS view will certainly result in 

unnecessary redundancies. This is because all instances of this object class will 

repeatedly occur under each combination of instances of its ancestors. We do not 

consider this type of XML data in this paper. 

Example 5.6. Suppose we generate the SQLX query expression for the view in 

Figure 5.10. The root object class of the view is part. As shown in Figure 5.12, its 

query expression has no condition constraints in the where clause.    □ 

 

 

 

� Rule Gen_2: For an arbitrary DRT of O (say R) in the view, 

Case 1: If R belongs to DRT_Set_1(O) and involves the DOCs of O in the view: 

{O1,…,On}, then generate the following condition constraints in the Where clause 

of the query expression of O: 

keyOlORlkeyOlORlORlkeyOl nn ).(Re).(Re...).(Re).(Re).(Re).(Re 11 =∧∧=∧=  

Case 2: If R belongs to DRT_Set_2(O) and is generated by projecting an 

relationship type R’, and R involves the DOCs of O in the view: {O1,…,On}, then   

Step 1: Generate the following condition constraints in the Where clause of 

the query expression of O:: 

keyOlORlkeyOlORlORlkeyOl nn ).(Re).(Re...).(Re).(Re).(Re).(Re 11 =∧∧=∧=  

Select xmlagg( 
            xmlelement(“part”, 
              xmlattributes(p.pno, p.pname) ) 
From part  

Figure 5.12. The query expression for part 
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Step 2: Replace Rel(R) with Rel(R’) in the condition constraints generated in 

Step 1: 

keyOlORlkeyOlORlORlkeyOl nn ).(Re).'(Re...).(Re).'(Re).'(Re).(Re 11 =∧∧=∧=

Case 3: If R belongs to DRT_Set_3(O) and is generated by joining two 

relationship types R1 and R2 based on a common object class Oc, and R involves 

the DOCs of O in the view: {O1,…,On}; then 

Step 1: Generate the following condition constraints in the Where clause of 

the query expression of O: 

keyOlORlkeyOlORlORlkeyOl nn ).(Re).(Re...).(Re).(Re).(Re).(Re 11 =∧∧=∧=

Step 2: For O participating in the relationship type Rp (p=1 or 2), replace the 

generated condition constraint Rel(O).key=Rel(R).O in step 1 with:  

Rel(O).key = Rel(Rp).O 

Step 3: For Oi (i=1, …, n) participating in the relationship type Rp (p=1 or 

2), replace the generated condition constraint Rel(R).Oi = Rel(Oi).key in step 

1 with: 

Rel(Rp).Oi = Rel(Oi).key 

Step 4: For the common object class Oc of R1 and R2, append the following 

condition constraint in the Where clause of the query expression of O:  

Rel(R1).Oc = Rel(R2).Oc 

Correctness of the Rule: The three cases in Rule Gen_2 process the three sets of 

DRTs of O in the view.  



  Chapter 5. Generating SQLX View Definitions 
     

  147 

Case 1. Object class O participates in an original relationship type R with its DOCs 

(O1, …, On). Thus, the values of O in the view are determined by the values of O1, …, 

On through R. We then need to find those values of O that participates in Rel(R) with 

O1, …, On whose key values are equal to Rel(O1).key, …, Rel(On).key respectively. 

Note that the values of Rel(O1).key, …, Rel(On).key have already been fixed because 

O1, …, On are O’s ancestors and are processed before O. The algebra expression for 

the values of O with the generated condition constraints is as follows, which 

corresponds to the generated query expression of O in case 1 above. 

∏O
((σo1=Rel(o1).key ∧  … ∧  on=Rel(on).key Rel(R))    Rel(O)) 

Case 2. Object class O participates in a derived relationship type R with its DOCs 

(O1, …, On) in the view. Similarly, we first find those values of O that participate in 

Rel(R) with O1, …, On whose key values are equal to Rel(O1).key, …, Rel(On).key 

respectively. The algebra expression for O is as follows:  

∏O
((σo1=Rel(o1).key ∧  … ∧  on=Rel(on).key Rel(R))    Rel(O)) 

This is actually the generated query expression in the step 1 in case 2. However, R is 

a derived relationship type by projecting R’. R does not exist in the ORDB. Thus, we 

have to replace R with R’ in the condition constraints, which is thus step 2 in case 2. 

Without such a replacement, the condition constraints will be meaningless because R 

is only shown in the view. The algebra expression for O after the replacement is as 

follows.  

∏O
((σo1=Rel(o1).key ∧  … ∧  on=Rel(on).key Rel(R’))    Rel(O)) 



  Chapter 5. Generating SQLX View Definitions 
     

  148 

The generated condition constraints after replacement express the influence of the 

DOCs (O1, …, On) on O through R in the view by using R’.  

Case 3. Object class O participates in a derived relationship type R with its DOCs 

(O1, …, On) in the view. First, the algebra expression for O is expressed by using R as 

follows, which corresponds to the step 1 in case 3: 

∏O
((σo1=Rel(o1).key ∧  … ∧  on=Rel(on).key Rel(R))    Rel(O)) 

However, R is derived by joining R1 and R2 based on their common object class Oc. 

We need to replace R with R1 and R2 in the generated condition constraints. Thus, the 

algebra expression for O will be as follows: 

∏O
((σo1=Rel(o1).key ∧  … ∧  on=Rel(on).key (Rel(R1)  Rel(R2)))    Rel(O)) 

The rewritten algebra expression actually contains the step 2, 3 and 4 in case 3. It will 

rewrite the condition constraints involving object class O and all DOCs of O (O1, …, 

Oi) in R , and then append a condition constraint involving the common object classes 

Oc to connect the condition constraints rewritten in steps 2 and 3.   □ 

Note that R’, R1 or R2 in cases 2 and 3 may still be derived relationship types. In this 

case, case 2 or case 3 can be repeatedly applied until all the relationship types in the 

where clauses are original relationship types in the source schema. The generated 

condition constraints for all the DRTs of O in the view are finally combined together 

into one where clause of the query expression of O, which then correctly expresses 

the influence of the DOCs on O in the XML view.  
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We use the following examples to illustrate the three different cases. The generated 

condition constraints in the Where clause in the example are highlighted in italic font. 

Example 5.7. Suppose we process the object class employee in the view schema in 

Figure 5.10. The object class employee has one DRT in the view schema – je, which 

is an original relationship type. Thus, according to case 1 in Rule Gen_2 above, we 

directly use je to generate the condition constraints in the where clause of the query 

block of employee, as shown in the condition constraints of the where clause in 

Figure 5.13.           □ 

 

 

 

Example 5.8. Suppose we process the object class project in the view schema in 

Figure 5.10. The object class project has one DRT in the view schema – pj, which is a 

derived relationship type obtained by projecting on the original relationship type spj 

in the source schema:  pj = ∏ jnopno,
spj. Thus, according to case 2 in Rule Gen_2 

above, we first use pj to generate the condition constraints in the Where clause of the 

query expression of project, as shown in Figure 5.14. Next, we replace pj in the 

condition constraints with the original relationship type spj. The new condition 

constraints are shown in Figure 5.15.       □ 

 

 

 

Select xmlagg( 
            xmlelement(“employee”, 
              xmlattributes(e.eno e.ename)) 
From employee e, je 
Where e.eno=je.eno and je.jno=j.jno 

Figure 5.13 The query expression for employee 



  Chapter 5. Generating SQLX View Definitions 
     

  150 

 

 

  

 

 

 

 

 

 

 

Example 5.9. Suppose we process the object class factory in the view schema in 

Figure 5.10. The object class factory has one DRT in the view schema – pf, which is 

derived by joining original relations ps and sf in the ORDB. Thus, we first generate 

condition constraints with the DRT pf as shown in Figure 5.16. Next, we rewrite the 

condition constraints with the original relations ps and sf as shown in Figure 5.17. □ 

 

 

 

 

Rules Gen_2 above generates the condition constraints for each DRT of an object 

class O in an ORA-SS view. After we have processed all the DRTs of O based on the 

three cases, we still need to process the generated condition constraints further. This 

is because there may still be derived relationship types in the generated condition 

Figure 5.14. The query expression for project with view relationship type pj 

Select xmlagg( 
            xmlelement(“project”, 
              xmlattributes(project.jno, project.jname))) 
From project, spj 
Where spj.jno = project.jno and spj.pno = part.pno 

 
Figure 5.15. The query expression for project by replacing view 

relationship type pj with source relationship type spj 

Select xmlagg( 
            xmlelement(“project”, 
              xmlattributes(project.jno, project.jname))) 
From project, pj 
Where pj.jno = project.jno and pj.pno = part.pno 

 

Select xmlagg( 
            xmlelement(“factory”,              
xmlattributes(f.fno, f.fname))) 
From factory f, pf 
Where f.fno=pf.fno and pf.pno=p.pno 

 

Figure 5.16. The query expression for factory 
with view relationship type pf 

Select xmlagg( 
            xmlelement(“factory”,              
xmlattributes(f.fno, f.fname))) 
From factory f, ps, sf 
Where f.fno=sf.fno and sf.sno=ps.sno and  
            ps.pno=p.pno 
 

Figure 5.17. The query expression for factory 
by replacing view relationship type pf with 

source relationship type ps and sf 
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constraints. For example, a derived relationship type may be produced in the view by 

joining two relationship types and then projecting the joined one. To meet the 

requirements of such cases, we have the following Rule Gen_3. 

� Rule Gen_3: If there are still derived relationship types in the generated 

condition constraints in Rule Gen_2, then repeat the process in case 2 and 3 in 

Rule Gen_2 until all the relationship types in the condition constraints are 

original relationship types in the source schema. 

Next, we process attributes attached to O in the view schema. In particular, Rule Gen 

4 considers single-valued attributes of a relationship type attached to O. There are two 

cases. In the first case, the attributes belong to an original relationship type in the 

source schema. In the second case, the attributes belong to a derived relationship type 

in the view. The derived relationship type must be generated by projecting out an 

original relationship type in the source schema. This is because there are no attributes 

for the derived relationship type by joining two relationship types. The attributes may 

be derived by applying aggregate functions to original attributes of the relationship 

type in the source schema. Next, Rule Gen 5 processes multi-valued attributes, which 

may belong to object class or relationship type.  

� Rule Gen_4: For an arbitrary single-valued attribute A of R attached to O, 

Case 1: If R is an original relationship type, then generate an xmlelement 

function for A as a sub-element of O: 

xmlelement(“A”, R.A) 
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Case 2: If R is derived from Ro, A is derived by applying aggregate function on Ao 

of Ro (say agg(Ao)), and the DOCs of O is O1, …, On; then generate a sub query 

for A as a sub element of O: 

    Select xmlelement(“A”, agg(Rel(Ro).Ao)) 

   From Ro 

Where Rel(Ro).O=Rel(O).key ∧  Rel(Ro).O1=Rel(O1).key ∧  … ∧  Rel(Ro).On=Rel(On).key 

In case 1, we handle an original single-valued attribute A of a relationship type R 

attached to O in source schema. Since A is a relationship attribute, we must generate 

it as a sub element of O instead of an attribute of O. In case 2, we handle an attribute 

A, which is an aggregate attribute by applying aggregate function such as sum, avg, or 

max/min on the original attribute Ao. Thus, the algebra expression of A is as follows:  

AGG (∏A
(σo=Rel(o).key ∧  o1=Rel(o1).key ∧  … ∧  on=Rel(on).key Rel(Ro))), 

which corresponds to the sub query generated in case 2 above. The following two 

examples illustrate the two different cases above. 

 

 

 

 

Example 5.10. Suppose we process the attribute progress of relationship type je in 

the view schema in Figure 5.10. As it is a relationship attribute below object class 

employee, we generate it as a sub element of employee as shown in Figure 5.18. Note 

Select 
   xmlagg( 
      xmlelement(“employee”, 
        xmlattributes(e.eno, e.ename), 
        xmlelement(“progress”, je.progress))) 
From employee e, je 
Where e.eno = je.jno and je.jno = j.jno 

Figure 5.18. The query expression for employee 
with relationship attribute progress 
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the condition constraints in the where clause restricts both the object employee and 

the attribute je.          □ 

Example 5.11. Suppose we process the attribute total_qty of relationship type pj in 

the view schema in Figure 5.10. This is an aggregate attribute by applying the sum 

function to the original attribute qty of the relation spj in the ORDB. Since the 

attribute is attached to object class project, we generate it as a sub element of project 

as shown in Figure 5.19.         □ 

 

 

 

 

 

The following Rule Gen_5 handles multi-valued attributes attached to O in the view 

schema. There are three cases in this rule. Since a multi-valued attribute is stored as a 

nested table within the relation for O in the ORDB, we will refer to the nested table 

for the multi-valued attribute by using a table function. 

� Rule Gen_5: For an arbitrary multi-valued attribute A attached to O, 

Case 1: If A is an original attribute of O, then generate the following sub query 

for A as a sub element of O: 

                                           Select xmlagg(xmlelement(“A”, A)) 

                                           From table(Rel(O).A) 

Select  
   xmlagg( 
      xmlelement(“project”, 
      xmlattributes(j.jno, j.jname), 
      (Select xmlelement(“total_qty”, sum(spj.qty)) 
                                        From spj 
                                        Where spj.jno = j.jno and spj.pno = p.pno 
      ))) 
From project j, spj 
Where spj.jno = j.jno and spj.pno = p.pno 

 

Figure 5.19. The query expression for project with relationship attribute total_qty 
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Case 2: If A is an original attribute of R, then generate the following sub query 

for A as a sub element of O: 

                                           Select xmlagg(xmlelement(“A”, A)) 

                                           From table(Rel(R).A) 

Case 3: If A is an attribute of R derived by mapping Ao of Ro into a bag of values, 

and the DOCs of O are O1, …, On, then generate the following sub query for A as 

a sub element of O: 

   Select xmlagg(xmlelement(“A”, Ao)) 

   From Rel(Ro) 

Where Rel(Ro).O=Rel(O).key ∧  Rel(Ro).O 1=Rel(O1).key ∧  … ∧  Rel(Ro).On=Rel(On).key 

In case 1, we handle a multi-valued attribute A of an object class O. Case 2 is similar 

to case 1 except that A belongs to a relationship type now. We simply generate a sub 

query to use the nested table for A to retrieve all the values of A. In case 3, we handle 

a multi-valued attribute A derived from an original attribute Ao by projecting a 

relationship type Ro in the source schema. A can be denoted as bag(Ao) as A is 

mapped into a bag of values of Ao. Thus, the following multi-valued dependency will 

hold in Ro: 

{O1, …, On, O}              bag(Ao) 

The algebra expression of A is as follows:  

Bag (∏A
(σo=Rel(o).key ∧  o1=Rel(o1).key ∧  … ∧  on=Rel(on).key Rel(Ro))), 

which corresponds to the sub query generated in case 3 above.  
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Example 5.12. Suppose we process the multi-valued attribute email of object class 

employee in the view schema in Figure 5.10. Based on case 1 in Rule Gen_4, we 

generate a sub query for it within the query clause for employee (see Figure 5.20). □ 

 

 

 

 

 

 

Having processed the object class and all the attributes attached to it, we still need to 

process selection conditions on the attributes. We have the following Rule Gen_6. 

� Rule Gen_6: If a selection predicate P is enforced on an attribute A attached to 

O, then append P to the Where clause of the query expression of O. 

In summary, the above rules consider all the different cases for object classes, 

relationship types and attributes in ORA-SS views. Based on the rules, we can 

develop an algorithm to generate the SQLX query definition for an ORA-SS view 

schema. As a complete example, Figure 5.21 depicts the SQLX query expression for 

the view schema in Figure 5.10 generated by the algorithm. 

As mentioned in the previous chapter for designing valid XML views, order by 

operators can be applied to attributes because order is significant in XML. Thus, we 

use the following rule to handle order by operators applied to attributes attached to O. 

� Rule Gen_7: If an order by operator is applied to an attribute A attached to O 

with an ascending or descending order, then an order by clause with its 

Select xmlagg( 
             xmlelement(“employee”, 
                xmlattributes(employee.eno, employee.ename) 
                (select xmlagg(xmlelement(“email”, email)) 
                  from table(employee.email) 
                )) 
From employee, je 
Where employee.eno = je.eno and je.jno = project.jno 

 
Figure 5.20. The query expression for employee with multi-valued attribute email 
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corresponding ascending or descending flag is generated following the where 

clause of O as follows: 

Order by A ascending | descending 

This rule is straightforward. If there are more than one order by operators applied to 

the attributes attached to O, then we still generate one order by clause to contain all 

the operators. 

5.5. Illustrating Example 

Based on the rules above, we generate SQLX view definition for the ORA-SS view in 

Figure 5.10.  

Example 5.13. The SQLX view definition is shown in Figure 5.21. Note that we use 

a pre-order method to generate the view definition. First, we generate a root element 

for the view (line 1) as each XML document has a root element. Next, we process the 

first object class in the view – part. As it is the root object class in the view, based on 

Rule Gen_1, we can retrieve all records in the relation part to construct the instances 

of part in the view. That is, we do not need to generate any condition constraint for 

part. Thus, we do not have a Where clause after the From clause of the query block 

for part in line 30. 

 

 

 

 



  Chapter 5. Generating SQLX View Definitions 
     

  157 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, we process the first child of part – factory (line 5-9). We generate a sub query 

contained in the query block for part so that factory will be shown as a sub element of 

part in the view. The DRT of factory is pf which is derived by joining the original 

relationship types ps and sf. Based on case 3 in Rule Gen_2, we employ ps and sf to 

generate the condition constraints in the where clause of the query block of factory.  

The second child of part – project is processed next (line 10-25). Similarly, we 

generate a sub query for the object class that is contained in the query block for part. 

Figure 5.21 The SQLX view definition for the view in Figure 5.10 

1. Select xmlelement(“root”, 
2.            xmlagg( 
3.               xmlelement(“part”,  
4.                   xmlattributes(p.pno, p.pname), 
5.                   (Select xmlagg(xmlelement(“factory”, 
6.                                              xmlattributes(f.fno, f.fname))) 
7.                    From factory f, ps, sf 
8.                    Where f.fno = sf.fno and sf.sno = ps.sno and ps.pno = p.pno 
9.                 ) 
10.          (Select xmlagg(xmlelement(“project”, 
11.                                        xmlattributes(j.jno, j.jname), 
12.                                       (Select xmlelement(“total_qty”, sum(spj.qty)) 
13.                                         From spj 
14.                                         Where spj.jno = j.jno and spj.pno = p.pno 
15.                                       ) 
16.                                       (Select xmlagg( 
17.                                                      xmlelement(“employee”, 
18.                                                       xmlattributes(e.eno, e.ename), 
19.                                                       (select xmlagg(xmlelement(“email”, email)) 
20.                                                         from table(e.email) 
21.                                                        ) 
22.                                                       xmlelement(“progress”, je.progress))) 
23.                                         From employee e, je 
24.                                         Where e.eno = je.jno and je.jno = j.jno 
25.                                       ))) 
26.           From project’ j, spj 
27.           Where j.jno = spj.jno and spj.pno = p.pno 
28.          ) 
29.      ))) 
30. From part p 
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We also need to generate the correct condition constraints for project, as there is a 

DRT of project in the view schema, which is the relationship type pj between part 

and project. It is derived by projecting the original relationship type spj.  Thus, based 

on case 2 of Rule Gen_3, we need to use spj to generate the appropriate constraint for 

the sub query. The generated condition constraints in the Where clause is shown in 

line 24, which indicate only those instance of projects under which there is the 

current instance of part (indicated by p.pno) are chosen. This sub query follows the 

previous query block for factory as its sibling. There is also an aggregate attribute 

total_qty in the sub query, which belongs to the derived relationship type pj. Based on 

case 2 of Rule Gen_4, we use another nested query to generate the aggregate attribute 

(lines 12-15). The nested query computes the total quantity of each instance of part 

(indicated by p.pno) under a given instance project (indicated by j.jno).  

Finally, we process the child of project – employee (line 16-25). The sub query for 

the object class is contained in the query block for project so that employee will 

appear as a sub element of project in the XML view. The condition constraints for 

employee are shown in line 23, which indicates only those instances of employees that 

participate in the current instance of project (indicated by j.jno) are chosen. The 

constraints are generated based on the relationship type je between project and 

employee, as je is the DRT of employee in the view schema. Note that there is a 

multi-valued attribute of employee – email. Based on case 1 of Rule Gen_5, it is 

generated as a sub query in the query block of employee (line 19-21) because there 

may be more than one value for email. In addition, there is a relationship type 



  Chapter 5. Generating SQLX View Definitions 
     

  159 

attribute called progress under employee. It is generated as a sub element of employee 

shown in line 22 based on case 1 of Rule Gen_4. 

The example above demonstrates how we use the rules in this section to generate 

SQLX view definition for an ORA-SS view. It also shows the complexity of SQLX 

view definitions. As indicated above, the length of the SQLX query is 30 lines. 

However, we only need to use two view operators to design the view. By using the 

method to automatically generate the SQLX view definitions from ORA-SS views 

based on the rules, we alleviate users from manually writing the complicated SQLX 

view definitions.          □ 

5.6. SQLX View Definitions Generation Algorithm 

The above rules consider all the different cases for object classes, relationship types 

and attributes in ORA-SS views. Based on the rules, we develop an algorithm to 

generate the SQLX query definition for an ORA-SS view schema. The algorithm 

takes as inputs an ORA-SS view rooted at object class O, its ORA-SS source schema 

and the corresponding storage schema in the object-relational database. Its output is 

the SQLX query definition for the view.  

Algorithm Algorithm Algorithm Algorithm GenerateViewDefinitionGenerateViewDefinitionGenerateViewDefinitionGenerateViewDefinition    

Input:Input:Input:Input: ORA ORA ORA ORA----SS view schema, ORASS view schema, ORASS view schema, ORASS view schema, ORA----SS source schema, OR storage schemaSS source schema, OR storage schemaSS source schema, OR storage schemaSS source schema, OR storage schema    

Output:Output:Output:Output: SQLX query definition for the view SQLX query definition for the view SQLX query definition for the view SQLX query definition for the view 

1. Generate an Select clause for O  

2. Generate a From clause for O 

3. If the DRTs of O is null then 

4.       apply Rule Gen_1 

5. Else 

6.     Generate a empty Where clause for O; 

7.     For each relationship R in the DRTs of O do 

8.         If R belongs to DRT_Set_1(O) then    

9.              append R in the From clause; 
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10.       apply Case 1 of Rule Gen_2; 

11.  Else if R belongs to DRT_Set_2(O) and derived from R’then 

12.       append R’into the From clause; 

13.             apply Case 2 of Rule Gen_ 2; 

14.         Else if R belongs to DRT_Set_3(O) and derived from R1 & R2 then  

15.        append R1, R2 into the From clause; 

16.        apply Case 3 of Rule Gen_2; 

17.         End if 

18.    End for 

19. End if 

20. Apply Rule Gen_3; 

21. For each single-valued attribute A of relationship type R attached to O do   

22.       If R is an original relationship type in source schema then 

23.           apply Case 1 of Rule Gen_4 

24. Else if R is derived by projecting existing relation then 

25.           apply Case 2 of Rule Gen_4 

26. End if 

27. End for 

28. For each multi-valued attribute A attached to O do 

29.       If A is an original attribute of O then 

30.                 apply Case 1 of Rule Gen_5 

31.       Else if A is an original attribute of relationship type R then 

32.                 apply Case 2 of Rule Gen_5 

33.       Else if A is a derived attribute of relationship type R then 

34.                 apply Case 3 of Rule Gen_5 

35.       End if 

36. End for 

37. For each selection condition applied on attributes attached to O do 

38.        apply Rule Gen_6 

39. End for 

40. For each order by operator enforced on attributes attached to O do 

41.        apply Rule Gen_7 

42. End for 

43. For each child object class CO of O do 

44.       Generate a start parenthesis “(“  

45.       GenerateViewDefinition(CO) 

46.       Generate an end parenthesis “)” 

47.  End for 

48. Generate an end part for O: “) )”//end part for xmlagg and xmlelement 

49. Return the generated query expression  
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The algorithm uses a pre-order method to process each object class in the view. For 

an arbitrary object class O, the algorithm first generates an xmlagg and an xmlelement 

function within a Select clause for O and its attributes (line 1). Next, the algorithm 

generates a From clause to contain all relations to be used in generating the query 

expression of O (line 2). The From clause will contain the object relation for O and 

all its DRTs’ relations. After that, we check whether the DRTs of O are null, if no, 

Rule Gen_1 is applied (line 4). Otherwise, it generates an empty Where clause to 

contain all condition constraints to be generated for O (line 6). Next, the condition 

constraints for each DRT of O are generated and combined in the Where clause, as 

shown in the first for loop in the algorithm (line 7 -19). Next we apply Rule Gen_3 to 

repeat the scanning and rewriting process until all the relationship types in the 

generated condition constraints are original relationship types in the source schema 

(line 20). Next, the algorithm processes single-valued relationship attributes below O 

based on Rule Gen 4, which is implemented in the second loop in the algorithm (line 

21 – 27). Then the algorithm processes multi-valued attributes attached to O based on 

Rule Gen 5, which is implemented in the third loop in the algorithm (line 28 – 36). 

Next, it processes the select operator and the order-by operator applied on attributes 

attached to O (line 37-42). Finally the algorithm is recursively called to process the 

children of O, and the complete generated query expression is returned. 

5.7. Algorithm Analysis 

In this section, we provide an analysis of the proposed method and demonstrate its 

correctness. The intuition behind the algorithm Generate_View_Definition is that the 

data instances represented by an object class in an ORA-SS view are determined by 
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its DOCs through their corresponding DRT in the view. A pre-condition that is true 

for the algorithm is that O is an object class of an ORA-SS view and the number of 

the descendants of O in the view is n (n ≥ 0).  After executing the algorithm with 

object class O, its view schema V and source schema S as input, we have result = 

Generate_View_Definition(O, V, S). Then a post-condition states what is to be true 

about the generated result which is given by result = SQLX expression of the view 

rooted at O. The proof of correctness takes us from the pre-condition to the post-

condition.  

(c) n = 0. This is the base case where O has no descendants. The algorithm first 

generates a Select clause to express O and its attributes in XML format by using 

xmlelement and xmlagg functions. A From clause is also generated to contain 

relations for O and the DRTs of O. For each DRT of O, we generate appropriate 

condition constraints for O in one Where clause based on Rule Gen_2. In 

addition, the selection conditions applied on attributes attached to O (if any) are 

also appended in the Where clause. All the condition constraints in the Where 

clause correctly restrict what instances O represents in the view. Next, for each 

attribute attached to O, we generate an appropriate query block for it according to 

Rule Gen_4 and Rule Gen_5. Finally, the algorithm generates and returns the 

correct SQLX expression for O itself. 

(d) n > 0. In this inductive step, O has descendants. We have an inductive hypothesis 

that assumes Generate_View_Definition(O, V, S) returns the correct SQLX 

expression of a sub tree rooted at O for all the object class O such that 0 ≤ j ≤ n-1 

where j is the number of descendants of O. Having the correctness of the base 
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case, where j = 0, the algorithm first generates the correct SQLX expression for O 

itself. When it processes each child of O (say C), by the inductive hypothesis, 

Generate_View_Definition(C, V, S) will return the correct SQLX expression of a 

sub tree rooted at C since 0 ≤ j ≤ n-1 holds now where j is the number of 

descendants of C. By combining the query expression of O and O’s children, the 

algorithm returns the correct SQLX expression of the view rooted at O.  

5.8. Summary 

In this chapter, we have developed an approach to automatically generate SQLX 

query expressions for XML views designed based on ORA-SS data model. The XML 

data are stored in an object-relational database by employing semantics in the ORA-

SS schema. This approach removes the need for users to manually write query 

expressions on views and provides a user-friendly interface to retrieve XML data via 

views. SQLX query expressions are becoming the standard of retrieving XML data 

from traditional databases. They can be directly executed against the object-relational 

database and produce the XML view documents, while other query language such as 

SQL can only generate intermediate tables, which have to be tagged to generate the 

final XML documents.  
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Chapter 6  

CASE Tool  

We have presented our approach to designing valid XML views by applying our view 

operators in chapter 3 and algorithms to automatically generate XQuery and SQLX 

query definitions from designed valid ORA-SS views in chapter 4 and 5 respectively. 

To further facilitate the design and generation of XML views, we developed a CASE 

tool based on the approaches, which provides a graphical user interface (GUI) so that 

a view designer can easily design a valid XML view by a few button clicks. In this 

chapter we will introduce the functions of the CASE tool. Our implementation of the 

CASE tool is in Java and uses JDK 1.3. We use JDBC as the API to connect to the 

commercial object-relational database system Oracle 9i, which is run on Red Hat 

Linux 8.0.  

We have implemented the following three main functions in our CASE tool, which 

include the approach to designing valid XML views and automatically generating 
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SQLX query expressions for ORA-SS views. The architecture of the CASE tool is 

shown in Figure 6.1. 

 

 

 

 

 

 

Figure 6.1.  The Architecture of the CASE Tool 

As shown in the architecture, before we begin to design XML views, XML source 

data have been stored in an object-relational database by using the storage method in 

Chapter 5. In addition, the ORA-SS source schema has also been stored in XML 

documents. Next, users can design valid XML views based on the ORA-SS source 

schema, which will be introduced in section 6.1. Secondly, users can generate the 

SQLX query definition for a designed view schema, which will be presented in 

section 6.2. Thirdly, users execute the SQLX query on Oracle 9i and generate an 

XML view document, which will be shown in section 6.3.  

6.1. Function 1 – Designing valid XML views  

6.1.1.   Load ORA-SS source schema 

To start designing an XML view, users need to load an ORA-SS source schema into 

the GUI first. The ORA-SS source schema is stored in an XML file, which describes 

the complete information of object classes, relationship types and attributes in the 

Valid ORA-SS view schema

Graphical ORA-SS
source schema

XML data

Designing

Transforming

Generating

An Object-relational
database

SQLX view
definitions

Executing

ORA-SS source schema
in XML documents
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ORA-SS source schema. One sample XML file for an ORA-SS source schema is 

shown in Figure 6.2.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.  A sample XML document storing an ORA-SS source schema 

Firstly, this document depicts two object classes part and supplier, each of which is 

expressed as an entity element, which has the following sub-elements: name, parent, 

level, attribute and pKey. In particular, these sub-elements describe the name of the 

object class, the parent of the object class, the level of the object class in the schema, 

the attributes attached to the object class and the primary key of the object class. Next, 

the document depicts one relationship type ps involving the two object classes, which 

<ORASS> 
 <entity> 
  <name>Part</name> 
  <parent>Root</parent> 
  <level>1</level> 
  <attribute> 
   <name>pno</name> 
  </attribute> 
  <attribute> 
   <name>pname</name> 
  </attribute> 
  <pKey>pno</pKey> 
 </entity> 
 <entity> 
  <name>Supplier</name> 
  <parent>Part</parent> 
  <level>2</level> 
  <attribute> 
   <name>sno</name> 
  </attribute> 
  <attribute> 
   <name>sname</name> 
  </attribute> 
  <attribute> 
   <name>price</name> 
   <belongs>ps</belongs> 
  </attribute> 
  <pKey>sno</pKey> 
 </entity> 
       <relation> 
  <name>ps</name> 
  <participant>Part</participant> 
  <participant>Supplier</participant> 
  <parentCard>*</parentCard> 
  <childCard>+</childCard> 
 </relation> 
</ORASS> 
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is expressed as a relation element. The relationship type information, i.e. the name of 

the relationship type, the participating object classes and the participation constraints 

are contained as sub-elements in the relation element. 

The CASE tool parses the XML file and displays the ORA-SS schema diagram on the 

GUI. Figure 6.3 shows a screen shot of loading the source schema. 

 

Figure 6.3. Load a source schema in the GUI interface 

6.1.2.   Design views based on source schema 

After loading the ORA-SS source schema, users are able to design views by applying 

view operators. Right clicking on the entity on which users want to apply an operator 

displays a list of operators. 

The target entity selected in the GUI can be an object class or an attribute. If the 
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target entity is an object class, there will be 4 operators available, namely Select, 

Drop, Join and Swap. Figure 6.4 shows a screenshot in the case where an object class 

is selected. 

 

Figure 6.4. Operate an object class in the GUI interface 

(1) Select. When a Select operator is selected, a dialog box will pop up and allow 

users to input selection conditions enforced on the attributes below the object classes 

selected. As mentioned in chapter 3, there will be no rules for the Select operator. 

(2) Drop. When a Drop operator is selected, the CASE tool starts to apply the Rules 

for the Drop operator. During this process, users may be required to answer a few 

questions such as how to name a derived relationship type, how to handle a 

relationship attribute, what aggregate function to apply etc. Bases on a user’s answers, 
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the CASE tool produces a view schema that caters to the user’s requirement. 

(3) Swap. When a Swap operator is selected, the CASE tool shows a list of object 

classes that can be swapped with it. These object classes are ancestors and 

descendants of the selected object class. Users can choose a particular object class 

among the list, and the CASE tool applys the Rules for Swap operator to produce a 

valid view. 

(4) Join. When a Join operator is selected, the CASE tool checks whether there is any 

object class that can be joined with the selected object class in the schema. If there is, 

it proceeds to ask the user how to handle the object classes above and below the 

referenced object class. The CASE tool will then transform the schema accordingly. 

If the target entity is an attribute, there will be 2 operators available, namely Add 

selection condition and Drop. Figure 6.5 shows a screenshot in the case where an 

attribute is selected. When the first operator is selected, users are allowed to input a 

selection condition on the selected attribute. The CASE tool will then store the 

condition as a property of the attribute. When a Drop operator is selected, the CASE 

tool detaches the attribute from the object class it belongs to and removes the attribute 

from the schema diagram. 
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Figure 6.5. Operate an attribute in the GUI interface 

6.2. Function 2 – Generating SQLX View Definitions 

After users apply all the view operators on the schema, a valid XML view will be 

produced and displayed. By clicking the Translate button on the GUI, the CASE tool 

starts traversing the view schema diagram from the root object class and generates a 

SQLX expression for the view. Then a complete SQLX view definition will be shown 

immediately under the tab View Definition in the GUI, which can be executed directly 

on the database or saved for later use. Figure 6.6 shows a sample a SQLX view 

definition. 
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Figure 6.6. Generate a SQLX view definition in the GUI interface 

6.3. Function 3 – Producing an XML View Document 

Users can execute the generated SQLX view definition on a remote Oracle 9i 

database system to produce an XML view document as Oracle 9i supports the OR 

model. Notice that XML source data are stored in the object-relational database as 

presented in Chapter 5. When users click the Run button on the GUI, the CASE tool 

connects to the underlying Oracle 9i database and sends the SQLX query over for 

execution. It then receives the result from database and displays it on the GUI. Figure 

6.7 shows a sample output view. 
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Figure 6.7. Produce output view document in the GUI interface 

The developed CASE tool provides a user-friendly environment for view designers. It 

facilitates the design process and alleviates users from sophisticated manual work. 

Apart from the three main functions presented in the previous sections, The CASE 

tool also offers other desirable features. For example, the graphical interface for 

displaying an ORA-SS schema diagram allows users to move the components in the 

diagram as they want. It can also layout the components in an arranged way when the 

user clicks the Layout Button. Moreover, the CASE tool allows users to modify the 

generated SQLX query or paste another query on the panel which appears as another 

view definition, and run the query to produce a view document. In summary, our 

CASE tool simplifies the process of designing a valid XML view and provides a 

flexible and friendly design environment for users.  
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Chapter 7 

Related Work 

In this chapter, we describe the work that is related to the content of this thesis. We 

begin from the emergence of XML data management, followed by a discussion of 

view mechanisms in context, such as relational databases and object-oriented 

databases. Next, we discuss the related work on XML views. The XML views may be 

presented on top of relational databases or XML data. 

7.1. Emergence of XML Data Management 

As the large volume of data increases on the Web, there has been a significant body 

of recent research from database community on managing and querying these data. A 

survey on database techniques for the World-Wide Web [32] has identified different 

classes of tasks of data management on the Web, which include modeling and 

querying the web, information extraction and integration, and web site construction 

and restructuring.  

Before XML became the standard of data exchange, semi-structured data on the web 

had been examined in a significant body of research [1] [17] [78]. Firstly, many semi-

structured data models, query and view definition languages have been proposed [34] 

[15] [56] [10] [55] [29]. They are used for querying and managing Web data [29] [10] 

[55] and integration of heterogeneous data [34] [48], etc. Research prototypes on 

managing semi-structured data have also been proposed, such
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 as Lore [56] [65], which is a DBMS designed specifically for managing semi-

structured data. Furthermore, more sophisticated issues, such as query rewriting using 

semi-structured views [62] [33] and incremental view maintenance for semi-

structured data [77] [86] [9] have been discussed as these issues are also important for 

semi-structured database or mediators.  

As XML emerges on the Web as the standard of data exchange, it becomes more 

necessary to manage XML data than semi-structured data [5]. Thus, the systems for 

semi-structured data, such as Lore [35] mentioned before, are migrating to support 

storing and querying XML data. Database research opportunities on XML data 

management have also been examined in [85], which proposes issues of storage, 

indexing and information retrieval on XML. XML data management has also posed 

new challenges in database theory. [79] proposed two roles of database theory for 

XML data management. One is conceptualization of XML, such as the recent work 

on keys for XML [16] and the ORA-SS data model for XML [49]. The other is to 

answer some particular technical questions about XML storage or XML type 

checking. The developments in database theory related to XML have also been 

examined in [84], which discussed various issues on schemas, constraints and queries. 

As one of the main topics related to XML data management, a lot of XML query 

languages have been proposed along with XML data management, such as XML-QL 

[22], a declarative XML query language [50], and XQuery from W3C [40], etc. 

Furthermore, other existing languages, such as ODMG OQL language, have also been 

extended to support a full-fledged XML query language [28]. Obviously, these XML 

query languages can be used to query XML data and define XML views.  
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7.2. View Mechanism in RDB & OODB 

The notion of views is essential in relational databases [81] [82] [83], which has been 

extensively explored in the context of relational database systems [81] [82] [45]. 

They increase the flexibility of a database system by allowing users or applications to 

see data from different viewpoints [8] [26] [66]. The view mechanism in relational 

databases can be implemented by using a straightforward modification technique 

[76]. Similarly, the topic of views has also been examined in the object-oriented 

database context [4] [13] [36] [68] [71] [74] [80]. A view mechanism in the OODB 

context is more complicated then its analogue in the relational databases, as the view 

mechanism in the OODB not only restructures data but also integrates operations on 

data [70] [69]. As semi-structured data emerges on the Web, a view mechanism for 

semi-structured databases has also been proposed in [7], which introduces many new 

problems because of the nature of semi-structured data. Furthermore, the issues 

related to views for semi-structured data, such as materialized view maintenance, 

have also been discussed in [77] [86].  

As increased XML data has appeared on the Web and development of XML data 

management systems has growed, the view mechanism for XML data has also been 

examined. The view mechanism for XML data management is even more crucial than 

the analogue in relational databases, as it can be used to integrate heterogeneous 

sources and add a structured interface on top of some otherwise semi-structured data 

[2]. Currently, there has been a lot of work on XML views of relational data or XML 

data. We discuss the work on XML views of relational data in section 7.3. In section 

7.4, we then discuss XML views on top of XML data.  
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7.3. XML Views on Relational Data  

As XML becomes the standard for data exchange on the web, existing relational data 

are published as XML views to exploit the potential of XML. There has been a lot of 

work on this scenario. [89] has described the details of most of the recent works on 

this scenario.  

SilkRoute [30] [31] adopts two declarative languages RXL and XML-QL to define 

and query views over relational data respectively. XPERANTO [18] [19] [72] [73] 

uses a canonical mapping to create a default XML view from relational data, and 

other views can be defined on top of the default view. XQuery views [40] are also 

supported over the XML views in XPERANTO. Instead of adopting XQuery, 

ROLEX [14] [47] composes XSLT stylesheet with defined XML views to produce a 

new XML view definition. On the other hand, [43] presents an algorithm to translate 

XSLT scripts over XML views into efficient SQL queries. Having all these work on 

translating XML query into SQL query, [90] then focuses on the efficiency of the 

SQL queries generated by the translation process. It concludes that the quality of the 

resulting SQL should be a concern of the translation algorithm itself, rather being left 

in the hands of a traditional relational optimizer. However, it only supports path 

queries. Further, [98] introduces a new operator to support relation-valued variables 

in relational engines so that it can be enhanced for efficient XML publishing. Next, in 

[97], an efficient XQuery complier is proposed in the purely relational context, which 

translates not only path queries, but also a core set of XQuery queries into SQL. 

All the research work above has considered the issue of query translation for XML 

views. On the other hand, there has also been some research work focusing only on 
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the mapping process of relational data to XML views. [88] provides a language for 

defining XML views that are guaranteed to be DTD-conformant, as well as a 

middleware for evaluating these views. As a part of MIX project [12] [63], [11] 

proposes a method to translate a relational schema to a view graph guided by a user. 

[25] directly translates a relational schema to an XML tree structure with the help of 

the semantically rich data model – ORA-SS [24].  

In addition, major commercial database systems have provided the ability to export 

relational data to materialized XML views. In Oracle XML DB [60], XML views are 

defined by using the forthcoming SQL/XML standard, which is an extension to SQL 

[75]. Oracle XML DB can only support XPath queries on XML views, which will be 

translated into an equivalent SQL query. Microsoft SQL Server 2000 [58] defines an 

XML view with an annotated XSD XML schema and supports XPath queries over the 

annotated XML Schema. IBM DB2 XML Extender [42] uses a Document Access 

Definition (DAD) file to define an XML view. However, it does not support any 

XML query languages over the XML view. In addition, IBM XML for Tables [27] 

provides an XML view of relational tables and a query of those views as if they were 

XML documents based on the XPERANTO project [18] [19] [72] [73].  

Unlike the related work in this scenario, which publish relational data into XML 

views, our work in this thesis focuses on presenting XML views on top of XML data.  

7.4. XML Views on XML Data 

In this scenario, XML views are presented on top of XML data. In particular, XML 

data can be stored in two main ways. One is to store XML data into traditional 
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databases. The other is to store XML data as text files or in native XML databases. 

Our work in this thesis considers both cases. 

Firstly, for the case where XML data are stored in traditional databases, most of the 

related work assumes XML data is stored in relational databases. STORED [91] 

stores XML data into relational databases by using data mining techniques. It also 

proposes an algorithm to translate an input STORED query into SQL. In [92], an edge 

approach and an attribute approach are proposed for storing XML data in relational 

databases. This technology also translates basic operations in a path expression to 

SQL. XRel [93] uses a path-based approach to store XML data, and a core part of 

XPath is identified for translating into SQL. In [94], ordered XML data are 

considered to be supported by the unordered relational data model. This work 

proposes algorithms for translating ordered XPath expressions into SQL. [95] stores 

all XML data in a single table containing a tuple for each element, attribute and text 

node. This approach in [95] can also support XQuery with arbitrarily nested FLWR 

expressions. Finally, [46] presents a generic algorithm to translate path expression 

queries into SQL in the presence of recursion in the schema and queries.  

Unlike the related work above, our corresponding work in this thesis (chapter 5) 

stores XML data into an object-relational database based on an ORA-SS data model. 

This storage technique keeps semantics implied in the XML data and removes 

unnecessary redundancies, which may exist in the other technologies. Further, we 

propose an algorithm to generate SQLX view definitions from ORA-SS views, which 

can then be executed to produce materialized XML views. This alleviates users from 

manually writing complicated SQLX view definitions. 
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Secondly, there have also been several new technologies proposed for the case where 

XML data are stored as text files or in native XML storage. Xyleme [21] [51] defines 

an XML view by connecting one abstract DTD to a large collection of concrete DTDs 

with an extension of OQL as the query language. ActiveView [3] [6] defines views 

with active features, such as method calls and triggers, on ArdentSoftware’s XML 

repository using a view specification language. Other technologies in this case discuss 

several sub issues of XML views on top of XML data. The issue of DTD inference 

for views of XML data is examined in [64]. It extends the descriptive ability of DTD 

and shows that the extended DTD can be always inferred for a selection view. [44] 

proposes another view inference approach to automatically derive an integrated XML 

view on heterogeneous XML DTDs. Instead of using a query language to define 

views, [52] defines views through source schema and view schema mappings. In [67], 

the focus is then on view definition of XML data at the conceptual level and the 

semantics required in accommodating such view mechanisms at this higher level of 

abstraction. 

Unlike the related work in this case, our corresponding work in this thesis (chapter 4) 

automatically generates XQuery view definitions from ORA-SS views. The generated 

XQuery view definitions can then be evaluated on native XML databases or XQuery 

engines to produce materialized XML views. This alleviates users from manually 

writing complicated XQuery view definitions. 

Further, unlike the related work in the two cases above, our work does not consider 

the issue of translating XML queries on XML views into SQLX queries on the object-

relational database or XQuery on the native XML database. However, the view 
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operators proposed in our work can be treated as query operators to issue queries on 

ORA-SS views, which can then be translated into new ORA-SS view schemas. Thus, 

we can generate the SQLX or XQuery view definitions from the new view schema by 

employing the algorithm in our work. In this way, our work can be extended to 

support translating query operators on ORA-SS views into SQLX queries on the 

object-relational database. 

7.5. XML Views on Integration Systems 

Since XML views can be presented on top of relational data and XML data, it will be 

natural for XML views to be presented as a middleware in integration systems. Thus, 

there has also been work on this scenario. The MIX system [11] [12] [63] adopts a 

DTD as a mediator to assist users in query formulation and query processors and its 

query language is a subset of XML-QL. The XML version of YAT [20] then 

proposes a generic algebra for XML query evaluation. It also discusses optimization 

techniques for XML-based integration system. Agora [53] [54] uses a LAV (local-as-

view) approach and provides an algorithm for translating XQuery FLWR expression 

into SQL in the context of heterogeneous data sources. It first translates the XML 

query into a SQL query on a generic, virtual relational schema, and then rewrites this 

SQL query into a SQL query over the real relational schema. The MARS system [23] 

[96] supports both GAV (global-as-view) and LAV views. It exploits integrity 

constraints on both the relational and XML data and compiles the queries, views and 

constraints from XML into the relational framework. 
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7.6. Summary  

All the related work on XML views in this chapter exploit the potential of XML by 

exporting their data into XML views. As mentioned before, our work in this thesis 

belongs to the scenario in which XML views are presented on top of XML data. 

Unlike the related works in this scenario, our work in this thesis considers semantic 

information when designing XML views (chapter 3). In particular, we design XML 

views based on a semantically-rich data model (ORA-SS). By developing a set of 

design rules, our work guarantees the validity of XML views, while the related work 

cannot. In addition, most related work used query languages to define XML views, 

which may be complicated in expressing the views. By contrast, our work proposes 

several simple view operators to design XML views, which are easy to use and can 

still be used to design flexible yet valid XML views. Finally, our work automatically 

generates XQuery/SQLX query expressions for the designed views, which thus 

alleviate users from manually writing complicated query expressions for the views. 
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Chapter 8 

Conclusions 

8.1. Summary of Thesis Work 

XML views exploit the potential of XML as the standard for exchanging data on the 

Internet. As views, they also secure underlying source data and provide an 

application-specific view. In this thesis, we examined how to design valid XML 

views and generate query expressions of XML views based on source XML data. 

Before we presented the main work, we introduced a novel data model for semi-

structured/XML data, i.e. ORA-SS. The ORA-SS data model is a semantically rich 

data model. It not only reflects the nested structure of XML data, but also 

distinguishes between object classes, relationship types and attributes. It is also 

possible to specify the degree of n-ary relationships and indicate if an attribute is an 

attribute of a relationship or an attribute of an object class. These semantics are 

lacking in other existing semi-structured/XML data models including OEM, XML 

DTD and XML Schema. In designing XML views, these semantics are critical in 

ensuring that the designed views are valid. That is, they are consistent with the source 

schema in terms of semantics. We also use the semantics expressed in an ORA-SS 

data model to generate query expressions of XML views. 

Based on the ORA-SS data model, we first presented a method of designing valid 

XML views. In this method, an ORA-SS source schema is first extracted from the 

XML source data. Then the source schema is enriched with necessary semantics with 
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the help of user inputs. Finally, based on the enriched ORA-SS source schema, we are 

able to design valid XML views. We adopted four main view operators to design the 

views. They are the selection, drop, join and swap operators. For each operator, we 

presented a set of rules to guide the design of valid XML views with the operator. All 

the rules guarantee that the designed views are valid in terms of semantics in the 

source schema. 

Having the designed ORA-SS views, we provided a way to generate query 

expressions for the views. Since the two main storage structures for XML data are 

native storage (XML documents) and object-relational storage, we proposed two 

algorithms to generate different query expressions for XML views based on the two 

different storage structures.  

In the first case, XML data are stored in XML documents. We generate XQuery view 

definitions for the XML views. XQuery is the standard XML query language from 

W3C. However, it is difficult for users to write manually the XQuery view definition 

for XML views. Thus, we proposed an algorithm to automatically generate XQuery 

view definitions for the designed XML views, which removes the need for users to 

manually write the view definitions. Furthermore, we developed an improvement 

version of the algorithm by utilizing the semantics of ORA-SS views, such as 

relationship types in the views. The improved version also separately handles the 

views involving selection operators only and the rest of the views.  

In the second case, XML data are stored in an object-relational database, which 

removes a lot of redundancies existing in the first case. We developed an algorithm to 

automatically generate SQLX view definitions from the XML views. SQLX is the 
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standard extension of SQL to process XML. By executing SQLX queries against an 

object-relational database, we can directly produce XML result from the object-

relational database. This algorithm also utilized the semantics expressed in the ORA-

SS views to generate the view definitions for the views.  

To the best of our knowledge, our work is the first one to employ a semantic data 

model for the design and query of XML views. Compared to other related work, our 

work enables us to design flexible yet valid XML views. In addition, our work 

automatically generates query expressions for the views, while others require users to 

manually write the query expressions. Our work also provides a graphical CASE tool 

to facilitate the design and querying of XML views. In summary, using a conceptual 

model for the design and querying of XML views not only validates XML views, but 

also provides a fast and user friendly approach to retrieve XML data.  

8.2. Future Research Directions 

Firstly, the thesis work can be easily extended to support querying on ORA-SS views 

by using our view operators. That is, the view operators can be used as query 

operators. We can use the query operators to compose queries on views. In particular, 

a query on a view involves only selection operators in most cases. Thus, we only need 

to compose the view definition generated by the algorithms in the thesis with these 

selection operators by directly inserting these operators into the corresponding where 

clauses in the view definition. In the rest of the cases, a query on a view may involve 

more complex operators, such as drop, swap or join operators. Then we directly apply 

these operators to the view and generate an intermediate view tree that is the result of 

the query. Next we use the algorithms proposed in the thesis here to generate the 
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query definition for the intermediate ORA-SS view tree. In this way, we are able to 

map any query on ORA-SS views into an equivalent query on the underlying source 

XML data.  

Secondly, XML view update is a natural extension to the thesis work. It has two 

issues to be explored. The first issue is the updatability of XML views. In other 

words, we need to examine if an XML view is able to be updated. The second issue is 

how to update those updatable XML views. On the other hand, materialized XML 

view maintenance should also not be neglected in the future work. 

Thirdly, the following areas can also be considered as the continuing work: XML 

views on top of views with a number of constraint enforcement strategies may be 

used without problems. The transformation mechanism in the thesis can be more 

powerful with the help of advanced ER models. The treatment of cardinality 

constraints, functional dependencies and their derivation discussed in Chapter 4 and 

Chapter can also be handled in a more advanced form. Moreover, the object relational 

storage of XML can be seen as database transformation (from XML data to OR data).  

It deserves further research from this direction in the future work. The achievements 

made by other ER researchers can also be taken into consideration for the extension 

of the work. For instance, the higher order entity-relationship has a sound foundation 

and deserves to be explorer further. Moreover, the main proofs in the thesis based 

their argumentation on set semantics. We can also extend them to support list 

semantics. Finally, optimizing the XQuery/SQLX queries generated in this work is 

another future work. 
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