

DESIGNING AND QUERYING XML VIEWS

BASED ON THE ORA-SS DATA MODEL

CHEN YA BING

(Master of Engineering, Tianjin University, China)

A DISSERTATION SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48628030?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 i

Acknowledgements

The research presented in this thesis was carried out at the Department of Computer

Science, National University of Singapore. Many, Many people have helped me not

to get lost during the development of this thesis.

Prof. Ling Tok Wang, my main supervisor, has provided a motivating, enthusiastic

and critical atmosphere during the many discussions we had. He has patiently guided

and advised me throughout the various phases of the research. He has also impressed

upon me the importance of critical thinking as a researcher. It was a great pleasure to

me to conduct the research under his supervision. Dr. Lee Mong Li, as my second

supervisor has provided constructive and inspiring discussions which have many

times clarified my ideas. She has also improved both my technical writing and

presentation skills. I am very grateful to both of them for their encouragement and

support.

I also wish to express my gratitude to Ms. Cheng Qiong for many valuable

discussions for the research in the thesis. Finally, I would like to thank Mr. He Qi and

Mr. Fa Yuan for their useful comments during the course of my work.

 ii

Summary

XML is emerging as the standard format for data exchange over the Internet. As the

amount of XML data increases dramatically, XML views are generally presented on

top of source data to enable data exchange. In this thesis, we develop a systematic

approach to design valid XML views, and devise two methods to automatically

generate query expressions for XML views. These techniques are introduced below:

• Design valid XML views: Existing systems for XML views only support select

operation applied in the views and do not guarantee that the designed views are

valid in terms of semantics. We propose a novel method to design valid yet

flexible XML views based on the semantically rich Object-Relationship-Attribute

model designed for SemiStructured data (ORA-SS), which can express semantics

that cannot be expressed in other data models such as XML, DTD or XML

Schema, etc. We identify four main view operators for creating XML views,

namely, select, drop, join and swap operators. For each operator, we develop a set

of rules to guide the design of valid XML views. These rules guarantee the

designed views are valid once a view operator is applied.

• Generate XQuery view definitions: After designing valid XML views based on

the ORA-SS data model with our view operators, we need to generate query

expressions for the valid XML views. If the XML data are stored in a native XML

database or as XML documents, we develop an algorithm to automatically

generate XQuery expressions for the views so that XQuery can be directly

executed against XML documents. Further, in cases where a view only involves

 iii

the select operator and does not change the structure of the source schema, the

algorithm generates the XQuery expression for the views in a more efficient way.

• Generate SQLX view definitions: XML source data are not only stored in native

form, but are also increasingly being stored in object-relational databases. Thus,

we also develop a method to automatically generate SQLX query expressions for

the views. SQLX is the standard extension to SQL for supporting retrieving XML

data from traditional databases. By executing SQLX view definitions against the

databases, we can directly produce XML view results. The algorithm can

efficiently generate the SQLX view definition for an arbitrary ORA-SS view

designed with our view operators.

Based on the proposed approach, we develop a CASE tool for users to design valid

XML views, generate query expressions for the views and execute the query

expressions to produce the view documents. To the best of our knowledge, our work

is the first to employ a semantic data model for the design and query of XML views.

In summary, using a conceptual model for designing and querying XML views not

only validates XML views, but also provides a fast and user friendly approach to

retrieve XML data.

 iv

Table of Contents

Acknowledgements i

Summary ii

Table of Contents iv

Table of Figures vii

1. Introduction 1

1.1. Background 1

1.1.1. eXtensible Markup Language (XML) 1
1.1.2. XML Technologies 4
1.1.3. XML Data Management 5

1.2. Problem Statement & Motivation 6

1.3. Research Contributions 10

1.4. Thesis Overview 11

2. Data Models for XML Data 13

2.1. XML DTD 14

2.2. XML Schema 18

2.2.1. Simple types in XML Schema 18
2.2.2. Complex types in XML Schema 19

2.3. OEM Data Model 23

2.4. ORA-SS Data Model 26

2.5. Summary 30

3. Designing Valid XML Views 32

3.1. Motivation 33

3.2. Pre-Processing Steps 37

3.2.1. Extract ORA-SS Source Schema from XML Documents 37
3.2.2. Enrich ORA-SS Source Schema with Semantics 38

3.3. View Design Rules 38

3.3.1 Select Operator 39
3.3.2. Drop Operator 40
3.3.3. Join Operator 48

 v

3.3.4. Swap Operator 53
3.3.5. Aggregate and Order by Operators 63
3.3.6. Design Rules for Participation Constraints in Relationship 64
3.3.7. Design Rules for IDentifier Dependency Relationship 70

3.4. View Validation Algorithm 73

3.5. Summary 74

4. Generating XQuery View Definitions 76

4.1. XQuery Syntax 77

4.2. Motivating Example 82

4.3. Rules for Generating XQuery View Definitions 87

4.3.1. Main Idea 87
4.3.2. Analyzing Vpath 89
4.3.3. Rules for Generating Condition Constraints of an Object Class 92
4.3.4. Rules for Generating Attributes Attached to an Object Class 107

4.4. Improvements 113

4.4.1. Reducing redundant condition constraints 114
4.4.2. Views involving only selection operators 117

4.5. Illustrating Example 121

4.6. XQuery View Definitions Generation Algorithm 124

4.7. Algorithm Analysis 127

4.8. Summary 129

5. Generating SQLX View Definitions 130

5.1. The O-R Database Storage for XML based on ORA-SS 131

5.2. SQLX Syntax 133

5.3. Motivating Example 135

5.4. Rules for Generating SQLX View Definitions 138

5.4.1. Main Idea 138
5.4.2 DRTs in ORA-SS Views 139
5.4.3 Generation Rules 141

5.5. Illustrating Example 156

5.6. SQLX View Definitions Generation Algorithm 159

5.7. Algorithm Analysis 161

5.8. Summary 163

6. CASE Tool 164

 vi

6.1. Function 1 – Designing valid XML views 165

6.1.1. Load ORA-SS source schema 165
6.1.2. Design views based on source schema 167

6.2. Function 2 – Generating SQLX View Definitions 170

6.3. Function 3 – Producing an XML View Document 171

7. Related Work 173

7.1. Emergence of XML Data Management 173

7.2. View Mechanism in RDB & OODB 175

7.3. XML Views on Relational Data 176

7.4. XML Views on XML Data 177

7.5. XML Views on Integration Systems 180

7.6. Summary 181

8. Conclusions 182

8.1. Summary of Thesis Work 182

8.2. Future Research Directions 184

Bibliography 186

 vii

Table of Figures

Figure 1.1 An XML document on courses and students…………………………….2

Figure 1.2 Architecture of designing and querying XML views based on ORA-SS...11

Figure 2.1 An XML document on students and courses……………………………13

Figure 2.2 The XML DTD for the XML document in Figure 2.1…………………...16

Figure 2.3 The simple type definition for age with restriction………………………19

Figure 2.4 The complex type definition for employee………………………………20

Figure 2.5 An XML schema for the XML document in Figure 2.1………………….22

Figure 2.6(a) The OEM model for the XML document in Figure 2.1……………….24

Figure 2.6(b) The Dataguide for the XML document in Figure 2.1……………….25

Figure 2.7 The ORA-SS schema for the XML document in Figure 2.1…………….29

Table 2.1 Comparison of XML DTD, XML Schema, OEM/Dataguide

 & ORA-SS………………………………………………………………..30

Figure 3.1 An XML document on project, supplier and part………………………..34

Figure 3.2 The ORA-SS source schema of the XML document in Figure 3.1………34

Figure 3.3 The XML DTD of the XML document on Figure 3.1………………….35

Figure 3.4 Invalid XML view ……………………………………………………...36

Figure 3.5 Valid XML view……………………………………………….…………36

Figure 3.6 The XML view applied with a selection operator on Figure 3.2………..39

Figure 3.7 The XML view dropping supplier in Figure 3.2……………………….40

Figure 3.8 An ORA-SS source schema ………….…………………………………..43

Figure 3.9 The invalid view schema by dropping supplier ...……………………….43

Figure 3.10 The valid view schema by dropping supplier …………………………43

Figure.3.11 An ORA-SS source schema ………………. ………………………...46

Figure 3.12 The invalid view schema ……………...…………………………… ….46

Figure 3.13 The valid view schema……………………….. …………………..……46

Figure 3.14 An ORA-SS schema diagram………………………………………….47

Figure 3.15 The ORA-SS view schema by joining supplier’ and supplier……...48

Figure 3.16 An ORA-SS source schema…………………………………………...51

Figure 3.17 The invalid view schema by joining supplier’ and supplier ………..51

 viii

Figure 3.18 The valid view schema by joining supplier’ and supplier ….………...52

Figure.3.19 An ORA-SS source schema ………………………………………….....52

Figure 3.20 The ORA-SS view schema swapping supplier and part in Figure 19…52

Figure 3.21 Rel_Set_1(Oi, Oj, S) in an ORA-SS source schema S ……………….54

Figure 3.22 Rel_Set_2(Oi, Oj, S) & Rel_Set_4(Oi, Oj, S) in an ORA-SS source

 Schema S………………………………………………………………54

Figure 3.23 The ORA-SS source schema for Swapping Oi and Oj ………...……….57

Figure 3.24 The ORA-SS view schema for Swapping Oi and Oj …………………...57

Figure 3.25 An ORA-SS source schema for illustrating reversible issue…………....60

Figure 3.26 The invalid ORA-SS view schema swapping course and student in

 Figure 3.27……………………………………………………………..60

Figure 3.27 The valid ORA-SS view schema swapping course and student in

 Figure 3.27……………………………………………………………...61

Figure 3.28 The valid ORA-SS view schema swapping course and student again in

 Figure 3.29……………………………………………………………...61

Figure 3.29 The ORA-SS view schema by applying aggregate operator……………62

Figure 3.30 The ORA-SS view schema by applying order by operator……………62

Figure 3.31 Change of participation constraint due to a swap operator…………….64

Figure 3.32 Functional Dependency Diagram……………………………………….65

Figure 3.33 Change of Participation Constraint due to a projection operation……65

Figure 3.34 An ORA-SS source schema of an IDD relationship type……………….70

Figure 3.35 An ORA-SS view schema of swapping employee and child…………...70

Figure 3.36 An ORA-SS view schema of dropping employee………………………70

Figure 4.1 A sample XML document named book.xml……………………………..77

Figure 4.2 An XQuery issued on the document book.xml…………………………..80

Figure 4.3 The result of the XQuery in Figure 4.2…………………………………..80

Figure 4.4 A source XML file………………………………………………………..82

Figure 4.5 The ORA-SS source schema……………………………………………..82

Figure 4.6 The ORA-SS view schema……………………………………………….82

Figure 4.7 The instance diagram for the source in Figure 4.2……………………….82

Figure 4.8 The instance diagram for the view in Figure 4.3…………………………82

 ix

Figure 4.9 The view definition in XQuery expression for view in Figure 4.6………83

Figure 4.10 The XML instance for the view in Figure 4.6…..………………………85

Figure 4.11(a) Two simplified ORA-SS source schema…………………………...90

Figure 4.11(b) One simplified ORA-SS view schema…………………………...90

Figure 4.12(a) The case for rule Type I_A…………………………………………94

Figure 4.12(b) Condition constraints generated in Rule Type I_A………………….94

Figure 4.13(a) The case for Rule Type I_B………………………………………...95

Figure 4.13(b) Condition constraints generated in Rule Type I_B………………..95

Figure 4.14(a) The case 1 for Rule Type II_A…………………………………….97

Figure 4.14(b) The case 2 for Rule Type II_A……………………………………97

Figure 4.15(a) The Case for Rule Type II_B……………………………………….98

Figure 4.15(b) Condition constraints generated in Rule Type II_B………………..98

Figure 4.16 The Case for Rule Type III_A…………………………………………100

Figure 4.17(a) The Case for Rule Type III_B………………………………………102

Figure 4.17(b) Where condition generated in Rule Type III_B…………………….102

Figure 4.18(a) The case for Rule Type III_C………………………………………103

Figure 4.18(b) Where condition generated in Rule Type III_C……………………103

Figure 4.19(a) The case for Rule Type III_D………………………………………104

Figure 4.19(b) Where condition generated in Rule Type III_D……………………104

Figure 4.20 The generated clause for Rule Attribute_1…………………………….107

Figure 4.21 The generated clause for Rule Attribute_2…………………………….107

Figure 4.22 The generated clause for Rule Attribute_3…………………………….108

Figure 4.23 The generated clause for Rule Attribute_4……………………………109

Figure 4.24 The generated clause for Rule Attribute_5…………………………….110

Figure 4.25 The generated clause for Rule Attribute_6……………………………111

Figure 4.26 An ORA-SS view schema diagram……………………………………113

Figure 4.27 an ORA-SS view schema diagram applying a selection operator in

 Figure 4.26……………………………………………………………117

Figure 4.28 The XQuery expression for the view in Figure 4.27…………………..117

Figure 4.29 An ORA-SS source schema……………………………………………120

Figure 4.30 The ORA-SS view schema based on Figure 4.28…………………….120

 x

Figure 4.31. The XQuery view definition for ORA-SS view schema in

 Figure 4.30……………………………………………………………121

Figure 5.1 An ORA-SS source schema……………………………………………131

Figure 5.2 OR storage schema for the ORA-SS schema in Figure 5.1……………..131

Figure 5.3 Object-Relational database of relations supplier and sp………………..133

Figure 5.4 An SQLX query to retrieve all suppliers of part “p01” and prices…..…134

Figure 5.5 An instance result for the query in Figure 5.4…………………………..134

Figure 5.6 The ORA-SS Source Schema………………………………………..…135

Figure 5.7. The ORA-SS View Schema by swapping supplier and part on

 Figure 5.6………………………………………………………………135

Figure 5.8. The SQLX View definition for the view in Figure 5.7………………...135

Figure 5.9 An ORA-SS source schema……………………………………………..139

Figure 5.10 The ORA-SS view schema based on Figure 5.9………………………139

Figure 5.11 An ORA-SS view containing project, supplier & part………………141

Figure 5.12 The query expression for part………………………………………..143

Figure 5.13 The query expression for employee…………………………………..147

Figure 5.14 The query expression for project with relationship type pj……………148

Figure 5.15 The query expression for project with relation spj…………………….148

Figure 5.16 The query expression for factory with relationship type pf……………149

Figure 5.17 The query expression for factory with relation ps and sf……………...149

Figure 5.18 The query expression for employee with attribute progress…………..151

Figure 5.19 The query expression for project with attribute total_qty……………..151

Figure 5.20 The query expression for employee with attribute email………………153

Figure 5.21 The SQLX view definition for the view schema in Figure 5.1………..155

Figure 6.1 The Architecture of the CASE Tool……….……………………………162

Figure 6.2 An sample XML document for an ORA-SS source schema………164

Figure 6.3 Load a source schema in the GUI interface……………………………165

Figure 6.4 Operate an object class in the GUI interface……………………………166

Figure 6.5 Operate an attribute in the GUI interface……………………………….167

Figure 6.6 Generate SQLX view definition in the GUI interface…………………..168

Figure 6.7 Produce output view document in the GUI interface…………………169

 1

Chapter 1

Introduction

In this chapter, we introduce the background of XML, which includes the concept of

XML, the related technologies of XML and some issues in XML data management.

Next, we present the research problems that we have addressed in the thesis, followed

by our research contribution.

1.1. Background

1.1.1. XML

The eXtensible Markup Language (XML) [39] was originally designed as a new

document format for large-scale electronic publishing, which is derived from the

Standard Generalized Markup Language (SGML). As a markup language, however,

XML is playing an increasingly important role in the exchange of a wide variety of

data on the Web. It is because XML is able to describe both structured and semi-

structured data. In addition, XML is extensible, platform-independent, and fully

Unicode compliant.

XML identifies data using tags, which are identifiers enclosed in angle brackets.

Collectively, the tags are known as “markup”. An XML document always starts with

a prolog markup. The minimal prolog contains a declaration that identifies the

document as an XML document. In general, there are five main markups in XML:

element, entity, comment, processing instruction and marked section.

 Chapter 1. Introduction

 2

The most commonly used markup in XML data is element. Element identifies the

content it surrounds. Element can also contain attributes that are name-value pairs as

additional information of the element. The markup entity is used to represent some

special characters that have been reserved in XML. The markup comments in XML

are the same as HTML comments. They can be placed between markups anywhere in

XML data. The markup processing instructions gives information or commands to an

application that is processing the XML data. Finally, the markup marked section is

also called CDATA section. It instructs the XML parser to ignore markup characters

in this section. In the case where a piece of source code including characters that the

XML parser would ordinarily recognize as markup is listed in XML data, a CDATA

section can be used.

Figure 1.1. An XML document on courses and students

Example 1.1. Figure 1.1 depicts a simple XML document. It starts with a prolog

markup that identifies the document as an XML document that conforms to version

<?xml version=”1.0” encoding=”UTF-8” ?>
<!-- An XML file on courses and students - ->
<!-- Processing Instruction - ->
<?my.presentation.program Query=”which course”?>
<doc>
 <faculty name=“School of Computing”>
 <course cno=“cs321”>
 <title>software engineering</title>
 <student sno=“s001”>
 <name>paul</name>
 <information> grade < expected </information>
 <information><![CDATA[<<<<<a test cdata>>>>>]]></information>
 <grade>C</grade>
 </student>
 <student sno=“s002”>
 <name>mike</name>
 <information> grade > expected </information>
 <grade>A+</grade>
 </student>
 </course>
 </faculty>
</doc>

 Chapter 1. Introduction

 3

1.0 of the XML specification and uses the 8-bit Unicode character encoding scheme.

Next, there are two lines of comments, which will be ignored by XML parsers. After

that, a processing instruction is presented for a program called

“my.presentation.program” that will query the user to find out which course to

display. The root element of the document follows the processing instruction, which

is named doc element. Generally, each XML document has a single root element.

Next, there is an element faculty along with an attribute name, whose value is School

of Computing to identify the name of the faculty. Under the faculty, there is a sub

element course with attribute code = “cs321”, whose title is “software engineering”.

Under this course, there are sub elements students that identify the students taking

this course. Each student element contains information about the student, which

includes the key attribute of the student, i.e., sno, the name of the student and the

grade of the student for the course.

For illustration purpose, each student has an information sub element to indicate

whether the grade is greater than expected or not. The entity references such as

“>” or “<” are used in the elements to represent the symbol “>” or “<”. A

CDATA section is also added in the second information element of the first student

element. The CDATA section starts with <![CDATA[and ends with]]>. It can be

used in the case where large blocks of XML include many of the special characters.

The text in the CDATA section will have arrived as it was written because XML

parsers do not treat it as XML. □

There are a number of reasons for XML’s surging acceptance. First of all, XML is in

plain text instead of binary format. An XML document can be easily created and

 Chapter 1. Introduction

 4

edited with anything from a standard text editor to a visual development environment.

One advantage of plain text is that it allows people, if necessary, to read the data

without the program that produced it. That also makes it easy to debug applications.

Secondly, the nature of XML is extensible. Unlike HTML, XML does not have a

fixed vocabulary. Instead, one can define vocabularies specific to particular

applications or industries using XML. The extensibility of XML allows it to identify

not only structured data, but also semi-structured data. Thirdly, XML is platform

independent. It is not tied to any programming language or operating systems.

Currently, XML data can be produced, exchanged and consumed with a variety of

programming languages on the Internet. Platform independence makes XML very

useful as a means for achieving interoperability between different programming

platforms and operating systems.

1.1.2. XML Technologies

A number of XML related technologies have emerged for manipulating, structuring,

transforming and querying data. These include:

• XML schema languages. An XML schema language is used to describe the

structure and content of an XML document. There are several schema

languages existing for XML. Currently, XML DTD and XML Schema

Definition Language [41] (XSD) from W3C are widely accepted.

• Tree model-based APIs. An XML document is represented as a tree of nodes

with a tree model API. Typically, it loads an XML document in memory all at

once. The dominant tree model API is the W3C Document Object Model

 Chapter 1. Introduction

 5

(DOM) [37]. Developers can use the DOM for programmatic reading,

manipulation and modification of an XML document.

• Event-driven APIs. An event-driven API processes an XML document

without storing much more than the context of the current node being

processed in memory. The most popular event-driven API is the Simple API

for XML (SAX).

• XML Transformation. Developers often need to transform XML documents

from one vocabulary to another. The structure of XML documents also need

to be transformed so that they can be exchanged on the Internet. XSLT [38] is

the premiere XML transformation language. A transformation expressed in

XSLT describes rules for transforming a source tree into a result tree.

• XML Query. An XML query language provides an alternative way to retrieve

information from XML data other than the APIs for processing XML. The

W3C XQuery [40] is the standard for querying XML data. It provides flexible

query facilities to extract data from real and virtual documents on the Web.

Ultimately, collections of XML files will be accessed like databases.

1.1.3. XML Data Management

As XML becomes the standard for exchanging data on the Internet, more and more

data are stored and retrieved in XML format. Thus, there is a need to efficiently and

effectively manage XML data. There are many interesting topics on XML data

management [79] [84] [85]. Some of the main topics are listed below:

• Publishing relational data into XML. As most of commercial data are stored

in traditional databases such as relational or object-relational databases, there

 Chapter 1. Introduction

 6

is a need to export those data into XML form in order to exchange them on the

Internet. It will also be useful for web publishing and data integration.

Publishing languages are frequently adopted to define the mapping between

relational data and XML data. Alternatively, intermediate schema can also be

extracted from relational data before they are mapped into XML data. In this

case, XML views are always presented to users so that users can retrieve the

underlying data through the XML views.

• Storing XML data. The basic way to store XML data is to store them as text

files, which offers a fast solution for storing and retrieving whole documents.

There are also two other ways for storage. One is to design native XML

databases, which stores XML documents as it is and offers database

functionalities, such as index, query facility, etc. The other is to employ

relational or object-relational databases to map XML data into a set of tables.

• XML data integration. As a standard for exchanging data, XML plays a

critical role in data integration because of the large amounts of heterogeneous

distributed web data. XML schema can be extracted from these data and

integrated as one global XML schema. Users can issue XML queries on the

integrated schema, which are then decomposed into local queries against

source data. Finally, results of local queries are integrated into the result of the

original XML query.

1.2. Problem Statement & Motivation

In this thesis, we focus on one particular issue in XML data management – presenting

XML views on XML data. There are several advantages for XML views. Firstly,

 Chapter 1. Introduction

 7

XML views provide application specific views of source data. Secondly, XML views

secure the source data by hiding the part users are not allowed to see. Thirdly, XML

views provide for a basis for further data integration. Finally, XML views enable us

to exploit the potential of XML as the standard of data exchange.

Most of current systems [11] [14] [18] [43] [31] [73] for XML views focus on

presenting XML views on relational data. Some of others also present XML views on

XML data [21] [64] [44] [52] [67]. Unfortunately, there are several shortcomings in

those systems.

Firstly, they do not guarantee the designed views are valid in terms of semantics. In

another words, the designed XML views may violate the semantics implied in XML

source data. In general, these systems uses query languages to define XML views on

source data. Users can define any views they want if the language can express it.

Thus, it is easy for such views to violate the semantics in source data especially in the

case where the semantics in source data are not explicitly expressed. The semantics to

be violated may include functional dependencies, key and foreign key constraints,

and relationship types, which exist in XML source data. To the best of our

knowledge, the related work does not consider such semantics in designing XML

views, which may results in invalid XML views.

Secondly, query expressions for XML views are generally complex and hard to

understand because of the tree structure of XML. As a simple example, an XML view

involving supplier, part and the price of a part supplied by one supplier may need 20

lines of XQuery expression. When an XML view has more elements and relationship

types, the query expression for the view will be explosively longer. Thus, the

 Chapter 1. Introduction

 8

probability of making errors in writing query expression is high if users manually

define XML views. It will not be user-friendly for users to manually write such query

expression for XML views. As a matter of fact, one solution for this issue is to

develop a CASE tool to enable users to design XML views graphically.

Finally, most current related work considers XML views on top of relational

database. That is, the source data for XML views are relational data. Some other work

considers XML views on top of XML data. That is, the source data are XML data.

However, currently no work considers designing flexible XML views for the case

where XML data are stored in traditional database. Thus, there is a gap to be filled.

We propose a systematic approach to allow XML views to be presented on XML

source data. The source data can be stored in native form or in an object-relational

database. In this way, we not only fill the gap mentioned before, but also cover more

generic cases where XML data are stored by using two different storage methods.

We also examine the design of valid XML views. We adopt a semantically rich data

model – Object-Relationship-Attribute model for Semi Structured data (ORA-SS)

[24] to express the schema of XML source data and XML views. We define a set of

view operators to design XML views based on ORA-SS data model. By employing

the semantics enriched in ORA-SS, we also develop a set of rules to guarantee that

the designed XML views are valid. As the schema of XML views are expressed in

ORA-SS, the schema for the XML views are thus called ORA-SS views. The

difference between XML views and ORA-SS views are as follows:

• XML views denote the XML documents for designed views.

 Chapter 1. Introduction

 9

• ORA-SS views denote the ORA-SS schema diagram of designed XML views.

In another words, an arbitrary XML view document can be called an XML view for

short. Its corresponding ORA-SS schema diagram can then be called an ORA-SS

view. Note that we assume that the ORA-SS schema must always be conformed to its

corresponding XML view in terms of semantics. We say an XML view is valid if it

does not violate the semantics implied in source data. Similarly, we say an ORA-SS

view is valid if it does not violate the semantics in its corresponding ORA-SS source

schema. Thus, as we show in this thesis, if an ORA-SS view is valid, then an XML

view conforming to the ORA-SS view is also valid. That is, the issue of the validity

of XML views is the same as the issue of the validity of ORA-SS views.

After we develop the set of rules for the validity of XML views or ORA-SS views,

we develop algorithms to automatically generate query definitions from the ORA-SS

views, as the ORA-SS views are graphical schema diagrams. When XML data are

stored in native form, XQuery [40] view definitions are generated from the ORA-SS

views. On the other hand, when XML data are stored in the object-relational database

system, SQLX [75] view definitions are generated from the ORA-SS views.

We formalize the issues addressed in this thesis above as follows:

Valid XML Views Problem. Given an ORA-SS source schema S of XML data D, and

a set of view operators, i.e. select, drop, join and swap, to design an ORA-SS view V,

develop a set of rules to guarantee V is valid once a view operator is applied in V.

XQuery View Definition Generation Problem. Given a designed valid ORA-SS view

schema V and its ORA-SS source schema S, as well as its source document D

 Chapter 1. Introduction

 10

generate an XQuery view definition for V, which can be directly evaluated on the

source data D with XQuery engines.

SQLX View Definition Generation Problem. Given a designed valid ORA-SS view

schema V and its ORA-SS source schema S, as well as its ORDB storage T generate a

SQLX view definition for V, which can be directly evaluated on the storage T.

1.3. Research Contributions

To solve the three problems discussed, we employ a semantically rich data model –

Object-Relationship-Attribute model for Semi Structured data (ORA-SS) [24] to

express the schema of XML data. Based on the ORA-SS data model, we propose a

novel approach to designing and querying XML views on XML source data. The

architecture of our approach is shown in Figure 1.2.

Firstly, an ORA-SS schema is extracted from XML data, XML DTD or XML

Schema as a pre-process task. The XML data are stored as XML files or in an object-

relational database. Based on the extracted ORA-SS schema, we employee a set of

view operators to design XML views. A set of rules have been developed to

guarantee the views are valid. After that, the designed XML views are processed, and

the corresponding view definitions are automatically generated. Two types of view

definitions are generated depending on which storage we adopt. One is XQuery view

definitions, which are executable against XML files. The other is SQLX view

definitions, which are executable against the object-relational database. By executing

those view definitions, the XML view documents can be directly produced.

 Chapter 1. Introduction

 11

Figure 1.2. The Architecture of designing and querying XML views based on ORA-SS

In summary, the several research contributions in this thesis are as follows.

1. Propose a set of view operators based on ORA-SS schema to design flexible yet

valid XML views.

2. Develop a set of rules to validate designed XML views for each operator applied

on ORA-SS source schemas.

3. Develop an algorithm to automatically generate XQuery view definitions for the

designed valid XML views in the case where XML data are stored in native form.

4. Develop an algorithm to automatically generate SQLX view definitions for the

designed valid XML views in the case where XML data are stored in an object-

relational database.

1.4. Thesis Overview

The rest of the thesis is organized as follows. Chapter 2 introduces some of the main

data models for XML data as well as the semantically rich ORA-SS data model. The

advantages of ORA-SS over other data models are also presented. Chapter 3 presents

the view operators based on ORA-SS schema as well as the set of rules for designing

Valid ORA-SS view schema

ORA-SS source schema

XML data

Designing

XQuery view
definitions

XML files

Extracting

Generating

Executing

An Object-relational
database

SQLX view
definitions

Executing

 Chapter 1. Introduction

 12

valid XML views for each of these view operators. Chapter 4 describes the algorithm

for automatically generating XQuery view definitions for XML views when the XML

data are stored in native form (XML files or native XML databases). Chapter 5 gives

the algorithm to automatically generate SQLX expressions for XML views for the

case where XML data are stored in an object-relational database. Section 6 presents

the CASE tool that we have implemented for the proposed approach. The related

work is given in chapter 7, and we conclude the thesis in chapter 8.

 13

Chapter 2

Data Models for XML Data

XML can represent the structure of data instance. However, we still need a data

model to represent the schema of XML data. Since XML 1.0 was proposed, several

data models were proposed for XML with different features. In this chapter, some of

main data models for XML will be introduced, which include XML DTD, XML

Schema and OEM. Finally, ORA-SS data model, which has been adopted in the work

of this thesis, is presented.

Figure 2.1. An XML Document on students and courses

We use the XML document shown in Figure 2.1 to illustrate how these data models

express XML data. Figure 2.1 depicts an XML document on students,

<root>
 <student sno=”s001”>
 <sname>B. Cali</sname>
 <course code=”cs1001” title=”Java programming”>
 <grade>A</grade>
 <faculty fno=”f001” fname=”T. Bray”/>
 <tutor sno=”s401” sname=”B.McHugh”>
 <payrate>20</payrate>
 <feedback>good</feedback>
 </tutor>
 </course>
 <course code=”cs1002’ title=”Introduction to Database”>
 <grade>A+</grade>
 <faculty fno=”f002” fname=”A. Milo”/>
 <tutor sno=”s402” sname=”SY. Liu”/>
 <payrate>25</payrate>
 <feedback>excellent</feedback>
 </tutor>
 </course>
 </student>
</root>

 Chapter 2. Data Models for XML Data

 14

their courses taken and faculty and tutor teaching the courses. The document only

shows one student with sno equal to s001, who takes two courses, which are cs1001

and cs1002. Each course’s grade of the student is also shown respectively. In addition,

for each course taken by the student, there is one faculty and one tutor teaching it,

which are presented as sub elements of course. Finally, the payrate of each tutor for

the course is also presented as a sub-element of tutor in the document. The value of

payrate depends on both course and tutor.

2.1. XML DTD

XML DTD [41] is the grammar along with XML 1.0 recommendation, which is

known as Document Type Definition. It defines XML document structure with a list

of markup declarations. It can be declared inline in an XML document, or as an

external reference. An XML document can be checked against its DTD to ensure the

document is valid. XML DTD may consist of three declarations: element declarations,

attribute declarations and entity declarations.

(1) Element declarations are used to declare the elements in an XML document. The

syntax of element declarations in DTD is as follows.

<!ELEMENT elementName elementContents>

The elementName in the element declarations denotes the name of the element. The

elementContents in the element declarations can be nested elements, #PCDATA,

EMPTY or ANY. In the case where the elementContents contain nested elements, there

are two symbols to separate the sub elements. One is “,”, which indicates each

subsequent element follows the preceding element. The other is “|”, which indicates

 Chapter 2. Data Models for XML Data

 15

one or the other element is used. In addition, there are also ways to indicate the

occurrence of an element that can appear in a document by using ?, + or *. In

particular, the ? sign declares that the element can occur zero or one time. The + sign

declares that the element must occur one or more times. The * sign then declares that

the element can occur zero or more times. #PCDATA indicates that the element

contains data that will be parsed by a parser. The keyword EMPTY indicates that an

empty element is declared. Finally, the keyword ANY declares an element with any

content.

(2) Attribute declarations are used to declare each attribute to appear in an XML

document. The syntax of attribute declarations is as follows.

 <!ATTLIST elementName attributeName attributeType defaultValue
 …>
Notice there can be a list of attributes for one element declared in one attribute

declaration, as indicated by the ellipsis symbol in the syntax above. The elementName

and attributeName in the attribute declarations denote the name of the element and

attribute attached to the element. The attributeType in attribute declarations denotes

the type of the attribute, which can have many different values. Three frequently used

common types are as follows. The first type is CDATA, which indicates the value of

the attribute is character data. The second type is ID, which indicates the value of the

attribute is a unique identifier for the element. The third type is IDREF, which

indicates the value of the attribute is the id of another element. The defaultValue is

either the default value of the attribute or a keyword for the value. The keyword can

be #required, #implied or #fixed. In particular, the keyword #required indicates the

attribute value must be included in the element. On the other hand, the keyword

 Chapter 2. Data Models for XML Data

 16

#implied indicates the attribute does not have to be included. Finally, the keyword

#fixed indicates the attribute value is fixed.

(3) Entity declarations are use to declare entity variables in an XML document,

which are shortcuts to common text. The syntax of entity declarations is as

follows.

<!ENTITY entityName entityValue>

The entityName in the entity declaration denotes the name of the entity. The

entityValue in the entity declaration denotes the value of the entity, which can be any

text string. As a simple example, the following entity declaration declares an entity

named Copyright as the content of an XML element named Comment.

DTD:

<!ENTITY Copyright “Copyright XML 1.0”>

XML:

<Comment>©right;</Comment>

Example 2.1. Figure 2.2 depicts the DTD of the XML document in Figure 2.1.

Figure 2.2. The XML DTD for the XML Document in Figure 2.1

<!ELEMENT root (student+)>
<!ELEMENT student (sname, course+)>
<!ATTLIST student sno ID #REQUIRED>
<!ELEMENT sname (#PCDATA)>
<!ELEMENT course (grade, faculty+, tutor+)>
<!ATTLIST course code CDATA #REQUIRED
 title CDATA #REQUIRED>
<!ELEMENT grade (#PCDATA)>
<!ELEMENT faculty EMPTY>
<!ATTLIST faculty fno CDATA #REQUIRED
 fname CDATA #REQUIRED>
<!ELEMENT tutor (payrate, feedback)>
<!ATTLIST tutor sno CDATA #REQUIRED
 sname CDATA #REQUIRED>
<!ELEMENT payrate (#PCDATA)>
<!ELEMENT feedback (#PCDATA)>

 Chapter 2. Data Models for XML Data

 17

Firstly, a root element is declared in the DTD, which may contain one or more

student sub elements (indicated by the “+” sign following the student element). Next,

a student element is declared with an attribute sno. Two sub-elements are also

declared under student, which are sname and course. There must be one sname

element and one or more course elements under each student element according to

the DTD. Similarly, three sub elements are declared in the element course. They are

grade, faculty and tutor. Under each course element, there must be one grade, one or

more faculty and one or more tutor according to the DTD. Note the element content

of faculty is EMPTY because faculty has no content or sub-elements in the XML

document. □

As Figure 2.2 shows, the XML DTD is able to define available elements and

attributes in an XML document. It also expresses the sequence and the nesting

structure of the elements, and the degree of occurrence of the elements. However, a

lot of semantic information implied in XML documents cannot be expressed in their

corresponding XML DTDs. For example, XML DTD cannot indicate the data type of

an element to be integer, char, or some other types. In addition, XML DTD cannot

support multi-attribute IDs. There is also no way to define relationships among

elements in XML documents by using a DTD. As a result, a DTD cannot distinguish

between attributes of elements and relationships. For example in the DTD in Figure

2.2, the element sname is determined by the element student. Thus, it is actually an

attribute of student. On the other hand, the element grade is determined by both

student and course. Thus, it is not an attribute of course, but an attribute of a the

 Chapter 2. Data Models for XML Data

 18

relationship type between student and course. Unfortunately, a DTD cannot express

such semantics and the expressiveness of a DTD is limited.

2.2. XML Schema

The W3C XML Schema definition language [41] is an XML language for describing

and constraining the content of XML documents. W3C XML Schema is a W3C

Recommendation and an XML based alternative to DTD. Unlike XML DTD, an

XML Schema document is also an XML document. Thus, it is more convenient to

exchange XML Schemas than DTDs on the Internet.

In general, there are two basic mechanisms of XML Schema to declare elements and

attributes in an XML document. One is called simple type. The other is called

complex type. In an XML document, if an element contains sub elements or carries

attributes, then the element has complex type in XML Schema. If an element contains

only text, such as strings, dates, etc., then the element has simple type in XML

Schema. Attributes in XML documents always have simple types in XML Schema.

We introduce the two main constructs in the following sub sections.

2.2.1. Simple types in XML Schema

In XML Schema, the syntax for defining an XML element having simple type is

follows:

<xsd:element name = name value type = simple type>

Each element has a prefix xsd: which is associated with the XML Schema namespace.

The simple type can be built-in simple types, such as strings, integer, etc. The syntax

for defining an XML attribute in XML Schema is similar:

 Chapter 2. Data Models for XML Data

 19

<xsd:attribute name = name value type = simple type>

In addition to the built-in simple types, other simple types can be derived from the

built-in’s. Both built-in simple types and their derivations can be used in element and

attribute declarations. In general, a new simple type can be derived by restricting an

existing simple type. To define a derived simple type, a simpleType element is first

used to name the new simple type. Then a restriction element is employed to

constrain the range of values of the existing simple type.

Example 2.2. Figure 2.3 defines a simpletype called agetype with a restriction

element. Suppose the value of age is greater than 0 and lower than 120. Thus, we use

two sub elements minInculsive and maxInclusive respectively within the restriction

element to express the range of age. After defining the new simple type, we can define an

element called age with this new type.

 <xsd: element name = “age” type = agetype> □

Figure 2.3. A simple type definition for age with restriction

2.2.2. Complex types in XML Schema

XML schema also supports complex types [41] such as:

• Elements having sub elements

 <xsd: simpleType name=”agetype”>

 <xsd: restriction base=”xsd: integer”>

 <xsd: minInclusive value=”0”/>

 <xsd: maxInclusive value=”120”/>

 </xsd: restriction>

 </xsd: simpleType>

 Chapter 2. Data Models for XML Data

 20

• Elements having attributes

• Elements having no content

• Elements having sub elements mixed with character content

Note elements having attributes but containing only a simple type of value are also

said to have complex types. The syntax to define complex type is similar to simple

type in XML Schema. The following example illustrates this.

Example 2.3. Suppose we define a complex type for an element employee, which has

an attribute eno as its key attribute and other attributes name and address as its sub

elements. The XML Schema definition is shown in Figure 2.4. Firstly, a complexType

element is used to declare this is a complex type definition. Next, a sequence sub

element is used to contain a sequence of element definitions for this complex type.

Finally, an attribute sub element is used to declare an attribute eno for this complex

type. After defining the complex type, we can define an element called employee

using this complex type.

 <xsd: element name = “employee” type = employeeType> □

Figure 2.4. A complex type definition for employee

 <xsd: complexType name=”employeeType”>

 <xsd: sequence>

 <xsd: element name=”name” type=”xsd:string”/>

 <xsd: element name=”address type=”xsd:string”/>

 </xsd: sequence>

 <xsd: attribute name=”eno” type=”xsd: string”/>

 </xsd: complexType>

 Chapter 2. Data Models for XML Data

 21

In general, there are different ways to present XML Schema based on one XML

document. The following is a complete example that uses XML Schema to express

the XML document in Figure 2.1.

Example 2.4. The schema in Figure 2.5 first defines complex types for elements in

the document that will be used. Then it uses these types to define the elements and

attributes. This approach will make the XML Schema easy to understand when

documents are complex. We first define two complex types for tutor and faculty

elements. Then we define a complex type for course element, in which we use the

two previous complex types for tutor and faculty when defining the sub elements

tutor and faculty. Finally, we directly define the element student, in which we use the

previous complex type for course. Notice that course has occurrence constraints,

which indicates one student must attend at least 1 course and at most 6 courses. Note

that the student element is contained in the declaration of root element. □

XML Schema has the following advantages over DTD. First, XML Schema supports

both simple and complex data types. Second, XML Schema is written in XML. Thus,

it is easy for XML Schema to be parsed and transmitted on the Internet. Third, XML

Schema provides a namespace mechanism. This is important for schema validation,

since it enables us to distinguish between definitions and declarations from different

vocabularies. In addition, XML Schema introduces some semantics, such as key

attribute, reference, etc. However, relationship types still cannot be identified in XML

Schema. Hence, attributes of relationship types cannot be distinguished from

attributes of elements.

 Chapter 2. Data Models for XML Data

 22

Figure 2.5. A XML Schema for the XML document in Figure 2.1

<xsd:complexType name=”tutorType”>
 <xsd:sequence>
 <xsd:element name=”payrate” type=”xsd:string”/>
 <xsd:element name=”feedback” type=”xsd:string”/>
 </xsd:sequence>
 <xsd:attribute name=”sno” type=”xsd:string”/>
 <xsd:attribute name=”sname” type=”xsd:string”/>
</xsd:complexType>
<xsd:complexType name=”facultyType”>
 <xsd:attribute name=”fno” type=”xsd:string”/>
 <xsd:attribute name=”fname” type=”xsd:string”/>
</xsd:complexType>

<xsd:complexType name=”courseType”>
 <xsd:sequence>
 <xsd:element name=”grade” type=”xsd:string”/>
 <xsd:element name=”faculty” type=”facultyType”/>
 <xsd:element name=”tutor” type=”tutorType”/>
 </xsd:sequence>
 <xsd:attribute name=”code” type=”xsd:string”/>
 <xsd:attribute name=”title” type=”xsd:string”/>
</xsd:complexType>

<xsd:element name=”root”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”student”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”sname” type=”xsd:string”/>
 <xsd:element name=”course” type=”courseType”
 minOccurs=”1” maxOccurs=”6”/>
 </xsd:sequence>
 <xsd:attribute name=”sno” type=”xsd:string”/>
 </xsd:compexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:compexType>
</xsd:element>

 Chapter 2. Data Models for XML Data

 23

2.3. OEM Data Model

The Object Exchange Model (OEM) [61] is a schema-less, self-describing labeled

directed graph that is used to model semi-structured data [57]. The OEM model

consists of nodes as its key component. They are treated as objects, each of which has

a unique Object Identifier (OID). There are two types of objects in OEM model. The

first type is called atomic object, which are vertices with data and have no outgoing

edge. Their values may be integer, string and image, etc. The second type is called

complex object, which are vertices with outgoing edges. Their values are a collection

of sub-objects. Formally, atomic object has the following structure in OEM model:

(Label, Type, Value, Object-ID)

The first field in the object structure is label, in which a variable-length character

string describes what the object represents. The second field type indicates the data

type of the object’s value. The third field value contains a variable-length value for

the object. The final field Object-ID (OID) is a unique variable-length identifier for

the object. Complex object has the following structure:

(Label, Object-ID)

In general, OEM is used to express the data instance diagram. The associated schema

diagram for the data instance is named dataguides. Dataguides are derived from

instance data. A dataguide can only describe the nested structure of the data. The

other semantic information cannot be modeled using a dataguide.

Example 2.5. Figure 2.6(a) depicts the OEM graph for the XML document in Figure

2.1. To keep the example small, we show the details of only one course object under

 Chapter 2. Data Models for XML Data

 24

the student s001. Each object is denoted as a circle, in which a number preceded by

the symbol “&” is its OID, which determines the existence of the object in the OEM,

such as &1 in the object root. The label of an object is attached to the incoming edge

of an object. For example, root is the label on the incoming edge of the object &1. A

complex object may contain other objects, such as the object student with OID &2

which contains four other objects in the OEM graph. A simple object cannot contain

other objects but the value of the object, such as the value s001 of the object sno with

Object ID &3. The associated dataguide for the XML document in Figure 2.1 is

shown in Figure 2.6(b). Obviously, the dataguide expresses the nested structure of

XML document. □

&1

&2

root

student

&3 &4 &6&5

sno
sname course course

"s001" "B. Cali"

&7 &8 &9 &10 &11

code title grade faculty tutor

"cs1001"
"Java

Probraming"
"A"

&12 &13 &14 &15

fno fname

&16

sno sname payrate

"f001" "T. Bray" "s401" "20""B. McHugh"

&17

feedback

"good"

Figure 2.6(a). The OEM model for the XML document in Figure 2.1

 Chapter 2. Data Models for XML Data

 25

Figure 2.6(b). The Dataguide for the XML document in Figure 2.1

In summary, OEM is a simple model for heterogeneous information exchange. It can

represent data with irregular structure. OEM allows missing attributes or multiple

occurrence of the same attribute. As a result, it can express semi-structured or XML

data. However, weaknesses exist in OEM. Firstly, there are undesirable properties

related to the use of an OID. For example, when using a logical OID in OEM, we

have to do one more table lookups to access an object. Secondly, the semantic

information expressed in OEM is not enough. For example, the attributes of objects

and attributes of relationship types are represented in the same way in OEM. As

shown in Figure 2.6, objects sname and payrate are expressed the same under the

object tutor. There is no way to differentiate them in OEM. A similar limitation exists

in the dataguide. While it can express the nested structure of the XML document, the

dataguide cannot express the other semantics, i.e. distinguishing between attributes of

objects and attributes of relationship types, and the degree of n-ary relationship types,

etc.

root
student

 sno
 sname
 course
 code
 title
 grade
 faculty
 fno
 fname
 tutor
 sno
 sname
 payrate
 feedback

 Chapter 2. Data Models for XML Data

 26

2.4. ORA-SS Data Model

The ORA-SS data model expresses the hierarchical structure of XML data with three

basic concepts: object classes, relationship types and attributes. An object class is

similar to an entity type in an Entity-Relationship diagram or an element in XML

documents. It is represented as a rectangle in ORA-SS. A relationship type describes

a relationship among object classes in a hierarchical path with a label on the incoming

edge of the lowest participating object class of the relationship type. The general form

of the label is depicted as follows:

name (list of object classes), n, p, c

In particular, name indicates the name of the relationship type followed by the list of

participating object classes. In the case where all the object classes are in a continual

path, the list of object class is omitted. Next, an integer n indicating the degree of the

relationship (n=2 indicates binary, n=3 indicates ternary, etc), the participation

constraint p on the parent of the relationship, and the participation constraint c on the

child. Note the participating object classes of a relationship type may not be next to

each other in one path. In this case, the names of the participating object classes will

be explicitly presented on the label.

An attribute is a property that belongs to an object class or a relationship type. It is

represented as a circle attached to the object class or the lowest participating object

class of the relationship type. There can be many different types of attributes in ORA-

SS schema, such as key attributes, single-valued attributes and multi-valued attributes,

etc. In addition, there are four diagrams in ORA-SS to describe XML data: schema

 Chapter 2. Data Models for XML Data

 27

diagram, instance diagram, functional dependency diagram and inheritance diagram.

In this thesis, we will focus on schema diagram and instance diagram. More details on

other diagrams can be found in [24].

As a semantically rich data model, ORA-SS is able to express the following

semantics implied in XML data:

• Object class

� Attributes of object class

� Ordering on object class

• Relationship type

� Attributes of relationship type

� Degree of n-ary relationship type

� Participating object classes in relationship type

� Participation of object classes in relationship type

� Disjunctive relationship type

� Recursive relationship type

• Attribute

� Key attribute

� Single-valued attribute

� Multi-valued attribute

� Derived attribute

 Chapter 2. Data Models for XML Data

 28

� Cardinality of attribute

� Composite attribute

� Disjunctive attribute

� Attributes with unknown structure

� Ordering on attribute

� Fixed and default values of attribute

The following example illustrates the basic concept of ORA-SS.

Example 2.6. Figure 2.7 depicts the ORA-SS schema diagram of the XML data in

Figure 2.1. There are four object classes in the ORA-SS schema shown in Figure 2.7,

each of which is denoted as a rectangle with its name in it. The element student in the

document in Figure 2.1 is expressed as the first object class from top to bottom in the

ORA-SS schema in Figure 2.7. It has two attributes attached below it. They are sno

and sname, which are expressed as circles in the schema diagram. As an identifier of

student, the attribute sno is denoted as a filled circle. Note the attribute sname is

presented as a sub element of student in the XML document. But it is shown in the

ORA-SS schema diagram as an attribute of student because it is a property of student.

The child object class of student in the schema diagram is course, which express the

sub element of student, (i.e. course) in the XML document in Figure 2.1. It also has

two attributes code and title, with code as a key attribute of course and title is a

single-valued attribute of course.

There is a relationship type called sc between object classes student and course,

which indicates what courses are taken by a given student. The relationship type is

 Chapter 2. Data Models for XML Data

 29

labeled as (sc, 2, 1:6, 1:n) on the incoming edge of object class course where sc is the

name of the relationship type, 2 indicates the degree of the relationship type, 1:6

indicates the participation constraints of the parent object class in the relationship

type (one student must take at least 1 course and at most 6 courses), 1:n indicates the

participation constraint of the child object class in the relationship type (one course

can have one to many students). Note the sub element grade in the document is an

attribute below object class course. Because grade is determined by both course and

student, it is an attribute of relationship type sc. There is a label sc on the incoming

edge of the attribute grade to indicate it is a relationship attribute.

Figure 2.7. The ORA-SS schema for the XML document in Figure 2.1

There are two child object classes for course in the schema diagram, which are

faculty and tutor. They correspond to the sub elements of course, i.e. faculty and tutor

respectively in the XML document in Figure 2.1 Object class faculty has two

attributes fno and fname. There is also a binary relationship type (cf, 2, 1:n, 1:n)

between course and faculty, which indicates which faculty member teaches a given

courses. Object class tutor is a sibling of object class faculty. Tutor has two attributes

course

tutor

sname

student

ct,2,1:n,1:n
sct,3,1:n,1:n

code

sno

grade

sc

sc, 2, 1:6, 1:n

title

sname

faculty

fno fname

cf,2,1:n,1:n

sno payrate

ct

feedback

sct

 Chapter 2. Data Models for XML Data

 30

sno and sname. The binary relationship type (ct, 2, 1:n, 1:n) between course and tutor

indicates which tutor teaches a given course. The attribute payrate belongs to the

relationship type ct, and is attached to ct’s lowest participating object class – tutor

with a label ct on its incoming edge in the schema diagram. Finally, there is a ternary

relationship type named cst involving the object class course, student and tutor. The

attribute feedback belongs to the relationship type, which indicates the feedback of

one student for a tutor in a given course. It is clear that the ORA-SS schema diagram

in Figure 2.7 not only expresses the hierarchical structure of the XML document in

Figure 2.1, but also distinguishes object classes, attributes and relationship types

implied in the document. □

2.5. Summary

The ORA-SS data model is a semantically rich data model compared to other models

such as XML DTD, XML Schema or OEM. Table 2.1 lists the main features.

Table 2.1. Comparison of XML DTD, XML Schema, OEM/Dataguide & ORA-SS

 XML DTD XML Schema OEM/Dataguide ORA-SS

Nested structure Yes Yes Yes Yes

ID/key attribute Yes Yes Yes Yes

Degree of
occurrence

Yes Yes No Yes

Data type No Yes No No

Distinguishing
object class,

relationship &
attribute

No No No Yes

Degree of
relationship

No No No Yes

Distinguishing
attributes of

object class and
attributes of
relationships

No No No Yes

 Chapter 2. Data Models for XML Data

 31

We observe that ORA-SS supports all the main features except for data type. In

particular, it not only reflects the nested structure of XML data, but it also

distinguishes between object classes, relationship types and attributes. In addition, a

lot of semantics are explicitly represented in an ORA-SS schema diagram. For

example, it specifies the degree of n-ary relationship types and indicates if an attribute

is an attribute of a relationship type or an attribute of an object class.

While XML DTD, XML Schema and OEM have their own advantages in modeling

XML data, they are unable to express many semantics, e.g., they cannot identify

relationship types implied in the XML data, and do not distinguish between objects

and attributes. Subsequently, the attributes of objects and attributes of relationship

types cannot be distinguished too. These semantics are essential in designing valid

XML views and generating query definition from XML views. For this reason, we

adopt ORA-SS as our data model to express the schema of XML data in this thesis.

We will illustrate why the semantics in ORA-SS are important for designing XML

views and generating query definitions from XML views in later chapters.

 32

Chapter 3

Designing Valid XML Views

In this chapter, we describe the problem of designing valid XML views and our

approach to handle it. As mentioned in the previous chapter, an XML view document

or an XML view conforms to an ORA-SS view schema. Thus, an XML view is valid

if and only if its corresponding ORA-SS view is valid. In another words, an XML

view is valid if and only if it conforms to a valid ORA-SS view.

Definition 3.1. (Valid XML Views) Given an XML source data D, let S be the ORA-

SS source schema extracted from D, V be an ORA-SS view based on S, and XV be an

XML view conforming to V, XV is said to be valid iff its corresponding ORA-SS view

V is valid. That is, V does not violate the semantics in S, i.e., functional dependencies,

relationship types and their degrees (binary, ternary & n-ary) and key & foreign key

constraints implied in D.

Based on the definition for valid XML views, we must ensure the ORA-SS views are

valid first before guaranteeing the validity of XML views conforming to the ORA-SS

views. Thus, the problem of valid XML views is transformed into the problem of

valid ORA-SS views. Once we have a valid ORA-SS view, we can produce a query

expression for the view schema and then produce a valid XML view document. We

define the valid XML views problem by using ORA-SS views as defined below.

 Chapter 3. Designing Valid XML Views

 33

Valid XML Views Problem. Given an ORA-SS source schema S of XML data D, and

a set of view operators, i.e. select, drop, join and swap, to design an ORA-SS view V,

develop a set of rules to guarantee V is valid once a view operator is applied in V.

We employ a set of view operators, which are select, drop, join and swap operators,

and develop a set of rules for each view operator to guarantee valid XML views based

on the ORA-SS data model. Under these rules, the designed views will be guaranteed

to be valid as they preserve the semantics in the underlying source data.

The rest of this chapter is organized as follows. Section 3.1 first illustrates the

importance of semantics for designing valid XML views. Section 3.2 provides an

overview of our method to design valid XML views based on ORA-SS. We present

the rules to design valid XML views based on ORA-SS in section 3.3. Section 3.4

gives the complete view validation algorithm.

3.1. Motivation

Invalid views may be produced in the case where important semantics are not

expressed in the underlying data model, such as XML DTD or Schema.

Example 3.1. Figure 3.1 depicts an XML source document. We assume it satisfies

the following functional dependencies:

 sno → sname jno → jname pno → pname

 {sno, pno} → price {sno, pno, jno}→ qty

The sub element price denotes the price of its parent element part supplied by its

ancestor element supplier. The sub element qty denotes the quantity of its parent

element part supplied by its ancestor element supplier in its ancestor element project.

 Chapter 3. Designing Valid XML Views

 34

The ORA-SS source schema of the XML document is shown in Figure 3.2. There are

three object classes – supplier, project and part. Based on the functional

dependencies satisfied in the XML document, sno, jno and pno are the key attributes

of supplier, project and part respectively.

There are two relationship types in the schema. The first one is a binary relationship

type between supplier and part labeled sp(supplier, part) on the incoming edge of

part. Since the two participating object classes of the relationship type are not next to

each other in the path, their names are explicitly presented in the label. The attribute

price is an attribute of the relationship type sp because of the functional dependency:

{sno, pno} → price

The second relationship type is a ternary relationship type spj, which involves all the

three object classes. It has an attribute qty based on the functional dependency: sno,

pno, jno→ qty.

<supplier sno=”s001” sname=”supplier01”>
 <project jno=“j001” jname=”project01”>
 <part pno=“p001” pname=”part01”>
 <price>100</price>
 <qty>200</qty>
 </part>
 </project>
 <project jno=“j002” jname=”project02”>
 <part pno=“p002” pname=”part02”>
 <price>150</price>
 <qty>300</qty>
 </part>
 </project>
</supplier>

Figure 3.1. An XML document on supplier,
project & part

project

part

supplier

sp(supplier, part),2,1:n,1:n
spj,3,1:n,1:njno

sno

pno price

sp

sname

jname

pname qty

spj

Figure 3.2. The ORA-SS source schema of the
XML document in Figure 3.1

 Chapter 3. Designing Valid XML Views

 35

To compare ORA-SS with other data models, we show the DTD of the XML

document in Figure 3.3. In the DTD, the element price and qty are represented the

same as the element supplier and part, and cannot express the functional

dependencies:

{sno, pno} → price {sno, pno, jno} → price.

It also cannot differentiate object class, attribute and relationship type.

Suppose we design a view based on the DTD that swaps the locations of the elements

project and part. That is, project becomes a child of part and part becomes the parent

of project. The attributes pno and pname of object class part will move up with part

as they are attributes of part. Similarly, the attributes jno and jname of object class

project will move down with project. However, the DTD in Figure 3.3 does not

explicitly express the two functional dependencies:

{sno, pno} → price {sno, pno, jno} → price.

<!ELEMENT supplier (project+)>
<!ELEMENT project (part+)>
<!ELEMENT part (qty, price)>
<!ELEMENT qty (#PCDATA)>
<!ELEMENT price (#PCDATA)>

<!ATTLIST supplier sno ID #REQUIRED
 sname CDATA #REQUIRED>
<!ATTLIST project jno CDATA #REQUIRED
 jname CDATA #REQUIRED>
<!ATTLIST part pno CDATA #REQUIRED
 pname CDATA #REQUIRED>

Figure 3.3. The XML DTD of the XML doucment in Figure 3.1

 Chapter 3. Designing Valid XML Views

 36

Thus, an invalid view may be created based on the DTD, in which the elements price

and qty also move up with part (see Figure 3.4). This view violates the original

functional dependencies in the source document.

{sno, pno, jno}→ qty

However, based on the ORA-SS source schema in Figure 3.2, we can design the valid

view that swaps project and part as shown in Figure 3.5. As the ORA-SS source

schema explicitly expresses the two functional dependencies above, price must still

be placed under part and qty must stay below project so that the original functional

dependencies are preserved in the view. Thus, the view shown in Figure 3.5 does not

violate the semantics in the source schema and is a valid view. □

The above example shows that invalid views may be produced if we use XML DTD

as the underlying data model, as it does not explicitly express the necessary semantics

to design valid XML views, which are functional dependencies, relationship types

and their degrees (i.e. binary, ternary or n-ary), and key & foreign key constraints.

XML Schema and OEM also cannot express such semantics. We cannot determine an

Figure 3.5. A valid XML view

part

project

supplier

spj,3,1:n,1:n

pno

sno

jno

price

sp

sname

pname

jname qty

spj

sp,2,1:n,1:n

part

project

supplier

spj,3,1:n,1:n

pno

sno

jno

price

sname

pname

jname

qty

sp,2,1:n,1:n

sp

Figure 3.4. An invalid XML view

 Chapter 3. Designing Valid XML Views

 37

XML view is valid or not based on those data models. By contrast, ORA-SS can

explicitly express the necessary semantics for designing valid XML views. The

semantics are the differentiation of object classes and attributes, and the

differentiation of relationship type attributes and object class attributes, etc. Based on

ORA-SS source schema, we can determine if an XML view is valid or not. In the next

section, we will give more details on how to design valid XML views based on ORA-

SS.

3.2. Pre-Processing Steps

We propose a novel method to design valid XML views based on ORA-SS model.

There are three main steps. The first two steps are preparatory stages for valid XML

view design. We first extract an ORA-SS source schema from XML data, and then

enrich the source schema with necessary semantics implied in the XML data. The

third step utilizes a set of rules for designing valid XML views. We will discuss the

first two steps in the following subsections.

3.2.1. Extract ORA-SS Source Schema from XML Documents

An ORA-SS source schema can be extracted from XML documents as follows:

1. Map each element that has attributes or sub-elements into an object class in

the ORA-SS schema diagram.

2. Map each attribute of an element into an attribute of the object class

corresponding to the element.

3. Map each element that does not have attributes or sub-elements, into an

attribute attached to the object class corresponding to the parent element of the

 Chapter 3. Designing Valid XML Views

 38

element. The attribute will be identified as an attribute of an object class or a

relationship type in the next step.

Note that we assume the XML documents are well-formed and conform to a DTD or

XML Schema. In the extraction, we concentrate on the data of the XML documents

and ignore the other aspects of the XML documents, such as comments and

processing instructions, etc. Moreover, ORA-SS can also express the ordering,

disjunction and recursive relationships in the XML documents. More details can be

found in [34]. Note that the algorithms in Chapter 4 & 5 in this thesis have not

included the cases for disjunction and recursive relationships yet. However, the

algorithms can be easily extended to support these cases.

3.2.2. Enrich ORA-SS Source Schema with Semantics

The ORA-SS schema diagram produced in the previous step reflects the basic tree

structure of the XML document. It also distinguishes between object classes and

attributes. Next, we enrich the ORA-SS schema with semantics such as:

1. Identify key attributes of each object class.

2. Identify other attributes of each object class, such as single-valued, multi-

valued attributes, etc.

3. Identify relationship types among object classes.

4. Identify attributes of relationship types.

3.3. View Design Rules

We propose four view operators to design XML views: select, drop, join and swap

operators. The first three operators are analogous to the selection, projection and join

 Chapter 3. Designing Valid XML Views

 39

operators in relational databases. The swap operator is unique in designing XML

views, because it exchanges the positions of ancestor and descendant object classes.

We also have aggregate operators and an order by operator. The aggregate operators

apply aggregate functions, such as sum, max/min or avg to attributes of relationship

types to derive new attributes. The order by operator enforces order on attributes.

3.3.1 Select Operator

Select operators filter data by using predicates. They are similar to selection operators

in relational databases. A select operator corresponds to a predicate on an attribute of

an ORA-SS view schema. In particular, if a selection operator is applied to an

attribute, those objects are retrieved if they have descendants or ascendants that

satisfied the selection operator. If there are no objects with descendants or ascendants

satisfying the selection operator, then no data will be retrieved.

Example 3.2. Suppose we design a view that applies a select operator (qty > 500) on

the source schema in Figure 3.2. The view schema is shown in Figure 3.6. The

project

part

supplier

spj,3,1:n,1:n

pno

sno

pno

price

sp

sname

pname

jname qty > 500

spj

sp,2,1:n,1:n

Figure 3.6. An XML view applied with a selection operator in Figure 3.2

 Chapter 3. Designing Valid XML Views

 40

meaning of the view is that we retrieve those suppliers, each of which supplies some

part in those projects, each of which need a part with quantity larger than 500. In

other words, for each qualified supplier in the view document, it supplies in a certain

project a certain part whose quantity is larger than 500. □

In general, select operators place predicates on the view schema to retain some data

and discard others. They do not restructure the view schema. Thus, the view schema

will be the same as the source schema and will not violate semantics in the source

schema. We do not need to set up rules for the validity of views when selection

operators are applied.

3.3.2. Drop Operator

Drop operators drop object classes or attributes in the source schema. They are

similar to projection operators in relational databases. When an object class is

dropped, it is because the object class itself is dropped, or because the key attribute of

the object class is dropped. In addition, the drop operation will affect relationship

types that involve the dropped object class. The following example illustrates the case

where a drop operator is applied.

project

part

jno

pno

jname

pname total_qty

pj

pj, 2, 1:n, 1:n

Figure 3.7. An XML view dropping supplier in Figure 3.2

 Chapter 3. Designing Valid XML Views

 41

Example 3.3. Suppose we design a view in Figure 3.7 that drops the object class

supplier based on the ORA-SS source schema in Figure 3.2. This view indicates that

for a given project, all those parts needed in this project are placed below as its sub-

elements. Obviously, the attributes of supplier, i.e. sno and sname have to be dropped

too in the view schema as attributes cannot exist without its owner object class.

We also have to remove the relationship type sp and spj. As both of them involve the

dropped object class supplier, the two relationship types will not exist in the view

schema. In addition, the attribute of the relationship type sp (i.e. price) is dropped too

in the view schema in Figure 3.7. Further, the attribute of the relationship type spj (i.e.

qty) is mapped to an aggregate attribute (i.e. total_qty), which represents the total

quantity of one part in a given project. It is actually an attribute of a new relationship

type involving project and part, which is derived from spj. □

This example shows that flexible views can be designed based on ORA-SS with its

additional semantics. However, we have to handle the semantics properly so that

valid views are guaranteed. The following four rules guarantee the validity of XML

views when drop operators are applied. The first rule will handle the attributes of the

dropped object class. The second rule will handle the relationship types affected by

the drop operator. The last two rules will handle the relationship types derived by the

drop operator.

� Rule Drop_1: If an object class O in a source schema is dropped in designing a

view, then the attributes of O are dropped too in the view.

 Chapter 3. Designing Valid XML Views

 42

Intuitively, we cannot leave an attribute in the view if its object class has been

dropped. Without their object class, the attributes will lose their meaning in the view

schema.

� Rule Drop_2: If an object class O in a source schema is dropped in designing a

view, then each relationship type involving O is dropped too in the view.

As one participating object class of a relationship type is dropped in the view, the

relationship type will be broken up. Although the relationship type will not be shown

in XML document or XML schema, it needs to be dropped to keep the semantics in

the ORA-SS view schema consistent.

After a relationship type is dropped, the rest of the object classes of the relationship

type still have semantic connection in the view. We can derive a new relationship

type from the dropped relationship type as follows:

� Rule Drop_3: If an object class O in a source schema is dropped in designing a

view, then for each n-ary (n≥2) relationship type R involving O, a new

relationship type is generated by projecting the dropped object class O out of R:

∏ +−
=

onoioio
RR

,...,1,1,...1
' , where O1, … On are the participating object classes in R.

And the attributes of R can be dropped, or mapped into attributes with an

aggregate function, or mapped into attributes typed in a bag of values.

Correctness of Rule Drop_3: Suppose object classes O1, O2, … , On participate in a

relationship type R in a source schema. We assume one of the object classes (say Oi,

1 ≤ i ≤ n) is dropped in designing a view. According to Rule Drop_3, a new

relationship type R’ is derived by projecting out Oi and all R’s attributes from R:

 Chapter 3. Designing Valid XML Views

 43

∏ +−
=

onoioio
RR

,...,1,1,...1
'

All the rest of the participating object classes of R except Oi are kept in the new

relationship type. Obviously, R’ does not violate the semantics implied in R according

to the theory of relational database. It is because the new relationship type keeps the

semantic connection among the remaining object classes participating in R’ in the

view. The attributes of R are dropped because they can not exist in the new

relationship type R’. However, new meaningful attributes can be still derived from the

attributes of R with aggregate functions. The new attributes will belong to the new

relationship type. In this way, the semantics among the remaining object classes of R

is correctly kept in the view and the view is still valid. □

The following example illustrates Rule Swap_3 and shows an invalid view may be

produced without this rule.

Example 3.4. Consider the ORA-SS source schema in Figure 3.8. It contains three

object classes: part, supplier and project. There is one binary relationship type called

ps involving part and supplier and another ternary relationship type called spj

involving all the three object classes. Suppose we design a view by dropping object

class supplier. According to Rule Drop_1 and Drop_2, the attributes of supplier and

relationship types involving supplier are dropped too. Without Rule Drop_3, we will

produce a view shown in Figure 3.9, which has no relationship type between part and

project. Thus, the view loses the semantic connection between the two object classes

as implied in the relationship type spj in the source schema. That is, for a given part

value, only those project values having the part value appear as its children in the

view document. Obviously, the view in Figure 3.9 does not have such a meaning. It is

 Chapter 3. Designing Valid XML Views

 44

thus an invalid view. In order to keep the semantic connection between the two object

classes, we design another view shown in Figure 3.10. In this view, we derive a new

relationship type called pj from spj based on Rule Drop_3. A new attribute of pj

called total_qty is also derived by applying a sum function to the attribute qty in the

source schema. Thus, this view keeps the semantic connection between part and

project and is a valid view. □

In more complicated cases, the dropped object class may involve more than one

relationship type in the source schema. Thus, we need to join those relationship types

to keep the semantic connection among them. We have the fourth rule for drop

operator.

� Rule Drop_4: If an object class O in a source schema is dropped in designing a

view, and O is the only common participating object class of two relationship

types R1 and R2, and all participating object classes of R1 and R2 are in a

continual path, and the participating object classes of R1 are not a subset of the

part

supplier
pno

sno

pname

sname
project

jno jname

ps,2,1:n,1:n

spj,3,1:n,1:n

qty

spj

ps

price

part

pno pname
project

jno jname

part

pno pname
project

jno jname

pj, 2, 1:n, 1:n

total_qty

pj

Figure 3.8. An ORA-SS source
schema

Figure 3.10. A valid
view schema by dropping

supplier

Figure 3.9. An invalid view
schema by dropping

supplier

 Chapter 3. Designing Valid XML Views

 45

participating object classes of R2 and vice versa, then a new relationship type R’

is generated by joining R1 and R2 as below, where O1, O2, …, Om are the rest

object classes participating R1 and R2.

R’ = ∏ omoo ,...,2,1
(R1 R1.o=R2.o R2)

Correctness of Rule Drop_4:

1. We will first show why the conditions in Rule Drop_4 are necessary.

Suppose the first condition is false. That is, there are other common object

classes for R1 and R2. Obviously, we do not have to join R1 and R2 in this case as

the semantic connection between R1 and R2 is still explicitly expressed through

the other common object classes.

Now suppose the second condition is false. That is, all participating object

classes of R1 and R2 are not in the same path. In this case, we cannot join R1 and

R2 as the object classes of the new relationship type will not be in the same path

and the new relationship type will be meaningless.

Finally, suppose the third condition is false. Then either all participating object

classes of R1 participate in R2 or vice versa. In this case, if the only common

object class of R1 and R2 is dropped, all object classes of R1 must have been

removed in the view schema. Thus, we do not need to join R1 and R2 in the view

schema.

2. Next, we examine the validity of view obtained.

 Chapter 3. Designing Valid XML Views

 46

Suppose O11, O12, …, O1n participate in the relationship type R1 in the order

from ancestor to descendant and O21, O22, …, O2m participate in the relationship

type R2 in the same order in the source schema. R1 and R2 are in the same path in

the schema and they do not contain each other. We assume O1n = O21 is the only

common object class of R1 and R2, which is dropped in designing a view.

Satisfying all conditions of the Rule Drop_4, we derive a new relationship type

R’ in the view schema by joining R1 and R2 as follows:

R’ = ∏ moooo 2,...21,...,12,11
(R1 o1i=o2j R2)

Notice the join operator is actually an equijoin for R1 and R2 based on the

identifiers’ values of O1i and O2j. The derived relationship type R’ does not

violate the semantics of R1 and R2 according to the theory of relational database.

Instead, it keeps semantic connection among the two relationship types. Thus,

the semantics among the rest object classes participating in R1 and R2 in the

view is correctly kept and the view is still valid. □

The following example illustrates the Rule Drop_4. It also shows that an invalid view

may be produced if the rule is not applied.

Example 3.5. Consider the ORA-SS source schema in Figure 3.11. There are three

object classes project, staff and publication. The binary relationship type js between

project and staff indicates that which staff participates in a project. The binary

relationship type sp between staff and publication indicates what publications a staff

published.

 Chapter 3. Designing Valid XML Views

 47

Suppose we design a view that drops the intermediate object class staff. Without the

Rule Drop_4, we may design an ambiguous view that does not have a new

relationship type between project and publication (see Figure 3.12). In this view

schema, the semantic connection between the two object classes will be lost. Thus,

the meaning of the view is that for a given project, all distinguished publications are

placed below as its sub-elements, which results in a lot of redundancy, as all

publications will be repeated in each project.

In fact, there is still semantic connection between project and publication based on

the source schema. The connection between project and publication indicates all

publications published by those staff participating in a given project. Thus, we need

to generate a new relationship type jp between the two object classes in the view. In

particular, jp is generated as follows.

jp = ∏ npublicatioproject,
(js js.staff=sp.staff sp)

project

staff
jno

sno

jname

sname
publication

isbn title

js,2,+,+

sp,2,+,+

Figure 3.11. An ORA-SS source
schema

project

jno jname
publication

isbn title

jp,2,+,+

Figure 3.13. A valid
view schema

project

jno jname
publication

isbn title

Figure 3.12. An ambiguous
view schema

 Chapter 3. Designing Valid XML Views

 48

In this way, the remaining two object classes are connected together through the

semantics, and the view is still meaningful. The valid view with the new relationship

type is shown in Figure 3.13. □

3.3.3. Join Operator

There may be referencing object classes and referenced object classes in an ORA-SS

source schema. Two object classes are connected together by a foreign key to key

reference in the schema. Thus, these two object classes can be joined together with a

join operator. When a join operator is applied, we remove the referenced object class

in the view schema and attach all attributes of the referenced object class to the

referencing object class.

Example 3.6. Figure 3.14 shows an ORA-SS source schema diagram. The object

class supplier’ under project refers to an object class supplier with the key attribute of

supplier denoted by a dotted line. There is a relationship type between retailer and

supplier called rs, which has an attribute contract under retailer. The meaning of the

relationship type is that for a given supplier, all the retailers having contracts with the

supplier will be placed below as its sub-elements.

supplier'

part

pno
price

project

jno
supplier

sno sname

retailer

rno
contract

js,2,1:n,1:n

sp,2,1:n,1:n

sp

rs,2,1:n,1:n

rs

sno

Figure 3.14. An ORA-SS schema diagram

 Chapter 3. Designing Valid XML Views

 49

Figure 3.15 depicts a view, which joins object classes supplier and supplier’ together.

The join operator attaches the attributes sno and sname of supplier to supplier’ in the

view. In addition, the object class retailer also moves below supplier’ and its attribute

contract moves with retailer. As supplier’ refers to supplier with a foreign key to key

reference in the source schema, supplier’ can play the role of supplier in the view

schema. Thus, the relationship type rs between supplier and retailer are still kept in

the view and actually become the relationship type between supplier’ and retailer.□

supplier'

sno
part

pno
price

project

jno

sname

js,2,1:n,1:n

sp,2,1:n,1:n

sp

retailer

rno contract

rs,2,1:n,1:n

rs

When the join operator is applied, we need to handle the object classes and

relationship types in the path of the referenced object class. We develop two rules for

the join operator. The first rule handles the descendants of the referenced object class

and their relationship types. The second rule handles the ancestors of the referenced

object class and their relationship types.

� Rule Join_1: If a referencing object classes Oi is joined with a referenced object

class Oj in designing a view; then all attributes of Oj are attached to Oi in the

view, and if there is a relationship type R involving no ancestors of Oj but some

descendants of Oj; then

Figure 3.15. An ORA-SS view schema by joining supplier’ and supplier in Figure 3.14

 Chapter 3. Designing Valid XML Views

 50

Case 1: Keep R and all its participating object classes in the view.

Case 2: Drop some of the object classes of R in the view to derive a new

relationship type, and the attributes of R can be dropped, mapped into attributes

with some aggregate function, or mapped into attributes typed in a bag of values.

Correctness of Rule Join_1:

Rule Join_1 first attaches the attributes of Oj to Oi as Oi refers to Oj by a foreign

key to key reference and Oi plays the role of Oj in the view. Next, it handles the

relationship types involving descendants of Oj in the view. There are two cases

for the relationship types. Suppose one of the relationship types is R. In Case 1, R

is kept in the view. Thus, all participating object classes of R are also kept in the

view and Oi plays the role of Oj in R. Thus, the semantics of R is still kept in the

view and the view is valid. In Case 2, a new relationship type is derived from R

by dropping some of the participating object classes of R. The attributes of R can

be handled properly based on users’ requirements. According to Rule Drop_3, the

new relationship type does not violate the semantics of R and the view is valid. □

We also need to handle the ancestors of Oj in the source schema and their relationship

types, especially when the ancestors of Oj participate in relationship type with Oj or

its descendants. Thus, we have the following Rule Join_2.

� Rule Join_2: If a referencing object class Oi is joined with a referenced object

class Oj in designing a view, then all attributes of Oj are attached to Oi in the view,

and if there is a relationship type R involving ancestors of Oj, then:

Case 1: Keep R in the view and swap the ancestors of Oj involving R below Oj.

 Chapter 3. Designing Valid XML Views

 51

Case 2: Drop the ancestors of Oj involving R in the view to derive a new

relationship type, and the attributes of R can be dropped, mapped into attributes

with some aggregate function, or mapped into attributes typed in a bag of values.

Correctness of Rule Join_2:

Rule Join_2 handles the relationship types involving ancestors of Oj in the view.

There are also two cases for processing the relationship types. Suppose one of the

relationship type is R. In Case 1, R and the ancestors of Oj participating in R are

needed in the view schema. Thus, the ancestors must be swapped first and

become descendants of Oj so that they can be attached as Oi’s descendants in the

view schema. In this way, R is kept intact in the view and the view is valid. Notice

that a new operator, i.e. the swap operator is utilized in this case. More details on

the swap operator will be given in the next sub section.

In Case 2, we simply drop all the ancestors of Oj involving R in the view. As Oi

has its ancestors in the view already, the ancestors of Oj in the source schema

cannot appear as ancestors of Oi in the view. After the drop of the ancestors, a

new relationship type can be derived from R and the attributes can be handled

properly in the view schema. In this way, the view will be kept valid. □

Without the two rules, invalid views may be produced, as we will illustrate:

Example 3.7. Figure 3.16 depicts an ORA-SS source schema, which has a foreign

key to key reference between object classes supplier’ and supplier. There is a ternary

relationship type ysr involving object classes year, supplier and retailer. The attribute

contract belongs to the relationship type ysr in the source schema.

 Chapter 3. Designing Valid XML Views

 52

supplier'

part

pno
price

project

jno
supplier

sno sname

retailer

rno
contract

js,2,1:n,1:n

sp,2,1:n,1:n

sp

ysr,3,1:n,1:n

ysr

year

year_value

sno

supplier'

sno
part

pno
price

project

jno

sname

js,2,1:n,1:n

sp,2,1:n,1:n

sp

retailer

rno contract

ysr,3,1:n,1:n

ysr

Suppose we design a view by joining object classes supplier’ and supplier, as shown

in Figure 3.17. In this view schema, the object class year does not exist and the

relationship type ysr is still kept unchanged, which violates Rule Join_2. In this case,

the relationship type is meaningless in the view schema as one of its participating

object classes year does not exist in the view.

The meaning of the attribute contract in the source schema is a contract signed by a

supplier and a retailer in a given year. However, in the view schema, the meaning of

the attribute contract is changed, which is a contract signed by a supplier and a

retailer without any year specified. Thus, the attribute contract in the view schema

has a different meaning from in the view schema. The view is an invalid view.

By applying Rule Join_2, we can design a valid view that joins the two object classes

supplier’ and supplier (see Figure 3.18). A new relationship type is derived from

relationship type ysr, which involves supplier’ and retailer only. The attribute contract

becomes a multi-valued attribute of the new relationship type, as all contracts signed

by a given supplier’ and retailer in each years are aggregated into a bag of values. □

Figure 3.16. An ORA-SS source schema Figure 3.17. An invalid view schema by
joining supplier’ and supplier

 Chapter 3. Designing Valid XML Views

 53

supplier'

sno
part

pno
price

project

jno

sname

js,2,1:n,1:n

sp,2,1:n,1:n

sp

retailer

rno
*

contract

sr,2,1:n,1:n

ysr

3.3.4. Swap Operator

Swap operator is unique in XML settings as it exchanges the positions of an ancestor

object class and one of its descendant object classes. They are widely applied in XML

views design because of the hierarchical nature of XML data. Therefore it is included

as one of the four main operators. The following example illustrates the case where a

swap operator is applied to design a view.

supplier

sno part

pno
price

project

jno

ps,2,1:n,1:n

sp,2,1:n,1:n
spj,3,1:n,1:n

sp

qty

spj

part

pno supplier

sno
price

project

jno

ps,2,1:n,1:n
spj,3,1:n,1:n

ps

qty

Example 3.8. Given a source schema in Figure 3.19, we design a view schema shown

in Figure 3.20 that swaps supplier and part hierarchically in the source schema.

Figure 3.18. An valid view schema by joining supplier’ and supplier in Figure 3.16

Figure 3.20. An ORA-SS view schema
swapping supplier and part in Figure 19

Figure 3.19. An ORA-SS source schema

Swap supplier and part

 Chapter 3. Designing Valid XML Views

 54

After supplier and part are swapped, the attributes attached to them need to be

relocated properly. Obviously, the attributes pno and sno are also swapped to preserve

their parent object classes. In addition, we need to keep the correct meaning of the

attribute price, which actually indicates the price of a part supplied by a given

supplier. Thus, the attribute price must stay with the new child object class of sp (i.e.

supplier) in order to preserve the functional dependency:

{sno, pno} → price

If it moves with the object class part, then the attribute price will become an attribute

of part and it will violate the functional dependency in the source schema. Similarly,

the attribute qty of spj also stays below the lowest participating object class of spj, i.e.

supplier. □

In general, we develop the following rules when swap operators are applied so that

the views are valid. We use the following notations in the rules for swap operators.

� Rule Swap_1: If an object class Oi and its descendant object class Oj in a source

schema are swapped in designing a view, then the attributes of Oi and Oj are still

attached to Oi and Oj in the view.

This rule is straightforward. Without it, the attributes of Oi and Oj will be meaningless

in the view. In addition, the relationship types involving Oi and/or Oj in the source

schema are also affected as the positions of Oi and Oj are exchanged. Thus, we can

classify the affected relationship types after a swap operation into three sets S1, S2 and

S3 as follows:

 Chapter 3. Designing Valid XML Views

 55

1. S1(Oi, Oj) is the set of relationship types which do not involve any descendants of

Oj, but involve the ancestors of Oi or Oj in the ORA-SS source schema.

2. S2(Oi, Oj) is the set of relationship types which involve at least Oi and Oc, where Oc

is a child of an object class Oa, which lies in the path between Oi and Oj , and Oc

does not lie in the path between Oi and Oj in the ORA-SS source schema. Note Oa can

be Oi itself. In this case, Oc is then a child of Oi.

3. S3(Oi, Oj) is the set of relationship types which involve at least Oj and Od, where Od

is a child of Oj.

Oa

Oj

Oi

Ob

Oc

Ok

S1

Od

Oa

Oj

Oi

Ob

Oc

Ok

S2

Od

S3

For illustration purpose, Figure 3.21 and Figure 3.22 depict the three sets of

relationship types to be affected in an ORA-SS source schema when Oi and Oj are

swapped. In general, the relationship types in S1 involve the object classes in the

straight path of Oi and Oj. The relationship types in S2 involve at least the object

classes Oi and Oc, and possibly ancestors of Oi. The relationship types in S3 then

involve at least Oj and Od, and possibly ancestors of Oj.

Figure 3.21. S1(Oi, Oj) in an ORA-SS source schema Figure 3.22. S2(Oi, Oj) & S3(Oi, Oj) in an ORA-SS
source schema

 Chapter 3. Designing Valid XML Views

 56

Notice S1 does not contain these relationship types involving Oj’s descendants

according to the definition, as these relationship types will not be affected when Oi

and Oj are swapped. That is, all object classes of these relationship types will be in

the same path and the lowest object class of these relationship types will also not be

changed.

When Oi and Oj are swapped, all object classes of a relationship type in S1 are still in

one same path. However, the lowest object class of these relationship types will be

changed. Thus, we need to handle the attributes of these relationship types properly.

Rule Swap_2 processes these relationship types.

� Rule Swap_2: If an object class Oi and its descendant object class Oj in a source

schema S are swapped in designing a view, then for each R in S1(Oi, Oj), the

attributes of R are attached to the lowest participating object class of R in the

view.

This rule handles an arbitrary relationship type (say R) in S1 in the view. All object

classes of R are kept in the same path in the view schema. However, the lowest

participating object class of R is changed to another object class after the swap

operator is applied. Thus, the attributes of R need to be attached to the new lowest

participating object class of R in the view schema. In this way, the view does not

violate the semantics of source schema and is still valid.

On the other hand, when Oi and Oj are swapped, all object classes of a relationship

type (if any) in S2 or S3 may not be in one same path or produce some gap between

them. Thus, actions need to be done to keep these relationship types semantically

meaningful in the view.

 Chapter 3. Designing Valid XML Views

 57

When handling the relationship types in S2 or S3, we also need to consider reversible

issue caused by swap operators. In general, the definition of reversible view can be

depicted as follows.

Definition 3.2 (Reversible View) A valid view schema V of a source schema S is

called a reversible view if the source schema is a valid view of V under our view

operators, i.e. select, drop, join & swap.

According to the definition, if the original source schema can be produced back by

applying some operators to a view, then the view is a reversible view. Among our

view operators, it is obvious a view will not be a reversible view if select or drop

operator is applied in the view. It is because some data will be lost in the view, and it

is impossible to produce the data back from the view. The join operator joins two

object classes together. Based on the rules for the join operator, the source data may

not be lost in the view in some cases. However, we need to introduce new operator to

restore the referenced object class back in order to make the view reversible. Thus,

we will also not consider join operator here. Finally, the swap operator swaps two

object classes in the view, and the view can be reversible by applying another swap

operator. Therefore, we only consider the swap operator for a reversible view. In

particular, the reversible view problem can be depicted as follows.

The Reversible View Problem. Given an object class Oi and its descendant Oj in an

ORA-SS source schema S, Let Oi and Oj be swapped to design a view V, develop a

rule to ensure that the view V is a reversible view.

As the reversible view problem also involves the relationship types in S2 and S3, we

develop the following Rule Swap_3 and Rule Swap_4 to handle them respectively.

 Chapter 3. Designing Valid XML Views

 58

� Rule Swap_3: If an object class Oi and its descendant object class Oj in a source

schema S are swapped in designing a view, and there exists a relationship type R

in S2 which involve at least Oi and a child Oc of Oa, where Oa is in between Oi and

Oj (Oa can be Oi itself) and Oc is not, then the sub schema rooted at Oc is attached

to Oi in the view to keep R intact.

This rule handles relationship type R in S2. If there are no relationship types in S2,

then the rule will not apply. After Oi is swapped below in the view schema, we need

to keep R intact in the view schema. Thus, the rule first attaches the sub tree rooted at

Oc to Oi, which is the lowest object class of R in the path of Oi and Oj in the view

schema. In this way, all object classes of R will still be in one path in the view. Notice

that the attributes of R are still attached to Oc in the view schema. In addition, R may

optionally contain ancestors of Oi. In this case, the same rule applies.

Oa

Oj

Oi

R1(Oi, Ob)

Ob

Oc

R2(Oi, Oa, Oc)

Ok

Oa

Oi

Oj

R1(Oi, Ob)

ObOc

R2(Oi, Oa, Oc)

Ok

Correctness of the Rule Figure 3.23 depicts a simplified ORA-SS source schema,

which contains two relationship types in S2. In particular, there is one relationship

type R1 involving Oi and its child Ob, where Ob is not in the path between Oi and Oj.

Figure 3.23. An ORA-SS source schema for
Swapping Oi and Oj

Figure 3.24. An ORA-SS view schema for
Swapping Oi and Oj

Swap Oi and Oj

 Chapter 3. Designing Valid XML Views

 59

Obviously, R1 is one of relationship types in S2. It is depicted as R1(Oi, Ob) for

simplicity. There is another relationship type R2 involving Oi, Oa and Oc, where Oc is

a child of Oa. Notice Oa is in the path between Oi, and Oj and Ob is not in the path. R2

is thus still one of relationship types in S2 and is depicted as R2(Oi, Oa, Ob) for

simplicity. When Oi and Oj are swapped to design a view as shown in Figure 3.24,

obviously, sub trees rooted at Ob and Oc need to move with Oi and are attached to Oi

to keep the semantics of R1 and R2 intact in the view. In addition, if there are any

attributes of R1 and R2 attached to Ob and Oc, the attributes will also be attached to Ob

and Oc in the view. In this way, the view is still valid as the two relationship types are

still kept intact. □

� Rule Swap_4: If an object class Oi and its descendant object class Oj in a source

schema S are swapped in designing a view, and there exists a relationship type R

in S3 which involve at least Oj and a child Od of Oj, then the sub schema rooted at

Od is attached to the lowest participating object class of R in the path of Oi and Oj

in the view schema to keep R intact.

This rule handles relationship type R in S3. If there are no relationship types in S3,

then the rule will not apply. After Oj is swapped above in the view schema, there are

two cases for the change of R. In the first case, R does not involve any ancestors of

Oj. The sub schema rooted at Od will still be attached to Oj, which is the lowest

participating object class of R in the view. In the second case, R involves some

ancestors of Oj. The sub schema rooted as Od will be attached to the lowest

participating object class of R, which may not be Oj in the view. In this way, all

object classes of R will be still in one path in the view. Notice the attributes of R are

 Chapter 3. Designing Valid XML Views

 60

still attached to Od in the view schema. The correctness of this rule is similar to the

Rule Swap_3. Thus we do not provide details here.

The Rule Swap_3 and Rule Swap_4 not only guarantee the view is valid, but also

produces the reversible view. In case Oi and Oj are swapped again to design another

view, the same rule can be applied again to produce the original source schema. The

following example illustrates the reversible view problem. It also shows an invalid

view may be produced without the Rule Swap_3.

Example 3.9. Suppose we have the source schema shown in Figure 3.25. There are

several relationship types involving the object classes in the source schema. Suppose

we design a view swapping object classes course and student.

We may design a view shown in Figure 3.26. Based on the Rules Swap_1 and

Swap_2, we first move the attributes of the two object classes with them, and the

relationship cs’s attribute grade is attached to course, i.e. the new lowest participating

object class of cs. Note the specification of the relationship dc is labeled on the

incoming edge of course as {dc(department, course), 2, 1:n, 1:1}. The two

participating object classes of the relationship type department and course are

presented explicitly, as the two object classes are not next to each other in one path in

the view schema.

 Chapter 3. Designing Valid XML Views

 61

department

course

student lecturer

tutor

dname

code title

*

stuNo name address hobby grade

stfNo office feedback

stfNo name office work load

dc,2,1:n,1:1

cs,2,1:n,1:n

cst,3,1:n,1:n

dcl,3,1:n,1:n

cs

cst

dcl

department

student

course

lecturer

tutor

dname

stuNo name
*

code title

address

grade

hobby

stfNo office feedback

stfNo name office work load

dc(department,
course),2,1:n,1:1

cs,2,1:n,1:n

cst,3,1:n,1:n
cs

cst

Notice the relationship type dcl among department, course and lecturer is a

relationship type in S2. If we do not have Rule Swap_3, then the object class lecturer

will be attached to student in the view, and the relationship type dcl will be lost in the

view. Thus, all distinguished lecturers will be repeatedly placed under each student in

the corresponding XML view documents. In addition, the attribute of dcl, i.e. work

load below lecturer will also become meaningless. This is because work load

becomes an attribute of lecturer in the view schema. Thus, it also violates the original

meaning of the attribute work load and the view is an invalid view.

To design a valid view as shown in Figure 3.27, the object class lecturer needs to

move down with course to keep the relationship type dcl intact, as stated in Rule

Swap_3. In addition, we also need to explicitly indicate the participating object

classes of dcl, as they are not next to each other in the view. Similarly, the meaning of

the attribute work load is still the work load of a lecturer under a given pair of course

and department, as is in the source schema. In this way, we will not lose any

information for the relationship type and make the view reversible.

Figure 3.25. An ORA-SS source schema for
illustrating reversible issue

Figure 3.26. An invalid ORA-SS view schema
obtained by swapping course and student in

Figure 3.25

 Chapter 3. Designing Valid XML Views

 62

On the other hand, we do not move tutor up with student in the view. Although tutor

and student also participate in one relationship type cst, tutor is attached to course as

course is the lowest participating object class of cst, which is applied based on the

Rule Swap_4. In this way, the designed view is valid, as shown in Figure 3.27.

department

student

course

lecturertutor

dname

stuNo name
*

code title

address

grade

hobby

stfNo office feedback
stfNo name office word

load

dc(department, course),3,1:n,1:1
cs,2,1:n,1:n

cst,3,1:n,1:n dcl(department, course, lecturer), 3,1:n,1:n
cs

cst dcl

department

course

student lecturer

tutor

dname

code title

*

stuNo name address hobby grade

stfNo office feedback

stfNo name office work load

dc,2,1:n,1:n

cs,2,1:n,1:n

cst,3,1:n,1:n

dcl,3,1:n,1:n

cs

cst

dcl

Now suppose we apply another swap operator to design the second view, which

swaps student and course again based on the current view schema in Figure 3.27. As

indicated in the reversible problem, the second view schema should be the same as

the original source schema in Figure 3.25. Similarly, the Rule Swap_1 and Swap_2

apply accordingly. The attributes of student and course move with their object classes.

The relationship attribute grade is thus attached to student again. In addition, based

on Rule Swap_4, the object class lecturer also needs to move up with course as

course is the lowest participating object class of dcl. In this way, the relationship type

dcl is kept intact in the second view schema. Otherwise, we cannot produce the

Figure 3.27. A valid ORA-SS view schema obtained
by swapping course and student in Figure 3.25

Figure 3.28. A valid ORA-SS view schema
obtained by swapping course and student again in

Figure 3.27

 Chapter 3. Designing Valid XML Views

 63

original source schema. The resulting view schema is shown in Figure 3.28, which is

the same as the original source schema in Figure 3.25. □

3.3.5. Aggregate and Order by Operators

In addition to the four view operators discussed above, we also use aggregate

operators to design XML views. We can apply aggregate functions to attributes of

relationship types to derive new attributes in the view schema. The aggregate

functions include sum, max/min or avg.

Example 3.10. Suppose we design a view shown in Figure 3.29 by dropping object

class supplier in source schema shown in Figure 3.2. The view indicates that for a

given project, only those parts needed in the project are placed below as its sub-

elements. The attribute qty of relationship type spj can be aggregated to generate a

new attribute total_qty by applying a sum function. The new attribute indicates the

total quantity of part supplied by all suppliers for a given project. □

Finally, we also consider the order by operator for designing valid XML views as

order is significant in the context of XML data. The order by operator can be applied

on any single-valued attributes in the views. Note that the attributes may belong to

project

part

jp, 2, 1:n, 1:n

jno

pno

jname

pname total_qty

jp

Figure 3.29 The ORA-SS view schema by
applying aggregate operator

project

part

jp, 2, 1:n, 1:n

jno

pno

jname

pname total_qty

jp

<

Figure 3.30 An ORA-SS view schema by
applying order by operator in Figure 3.2

Figure 3.29 An ORA-SS view schema by
applying aggregate operator in Figure 3.2

 Chapter 3. Designing Valid XML Views

 64

object classes or relationship types. We use the following notation to denote the order

by operator in an ORA-SS schema diagram.

• Symbol “<” on an edge between an object class and an attribute indicates the

values of the attribute are in ascending order.

• Symbol “>” on an edge between an object class and an attribute indicates the

values of the attribute are in descending order.

Example 3.11. Let us continue to design a view based on the schema in Figure 3.29.

We place an ascending order by operator on the attribute jno of project in a new view

schema in Figure 3.30. Thus, the instances of project will be shown in the ascending

order of the values of jno in the view document. □

In summary, aggregate and order by operators do not restructure the source schema in

designing views. Thus, the resulting view schema will be the same as the source

schema. The views will not violate semantics, such as functional dependencies and

participation constraints in the source schema. Thus, we do not need to design rules

for the validity of views when these operators are applied.

3.3.6. Design Rules for Participation Constraints in Relationship

When designing an XML view with the operators above, new relationship types may

be derived in the view from existing relationship types. In addition, the view may

change the order of participating object classes of an existing relationship type. In this

case, we need to recalculate the participation constraints of the relationship type.

Example 3.12. Consider the source schema in Figure 3.31. There are three object

classes: course, student and tutor. The meaning of the source schema is: for a given

 Chapter 3. Designing Valid XML Views

 65

course, only those students taking this course are placed below as its sub-elements as

indicated by the relationship type cs; and for a given pair of course and student, only

those tutors teaching the student for the course are placed below as their sub-elements

as indicated by the relationship type cst.

Figure 3.31. Change of participation constraint due to a swap operator

Suppose we design a view obtained by swapping Student and Tutor. The view still

keeps the two relationship types for the three object classes. However in the view

schema, new participation constraints must be derived for cst because the ordering of

participating object classes is changed. Observe the functional dependency diagram

shown in Figure 3.32. The first cardinality for Course, Student and Tutor is (n, n, 1),

which indicates Course and Student determine Tutor. The second cardinality for

Course, Student and Tutor is (1, -, n), which indicates Tutor determines Course. Note

that there is no dependency of Student on Course and Tutor, and vice versa. Therefore

the new parent and child participation constraints in cst become 0:n and 0:n

respectively.

 Chapter 3. Designing Valid XML Views

 66

Another example is shown in Figure 3.33. In this view, Student is dropped from the

source schema. Thus, for a given course, all distinguished tutors teaching the course

are placed below as its sub-elements. In this case we derive a new relationship type ct

by projecting cst. The functional dependency in Figure 3.32 indicates that Tutor

determines Course, i.e. a tutor can only teach in one course, but a course may have

more than one tutors. Therefore the participation constraint for Course in ct is 1:n,

and for Tutor is 1:1. □

In general, the swap, drop and join operators may result in the change of the

participation constraints in the relationship types due to the following changes in the

relationship types. Firstly, the order of the participating object classes of a

relationship type may be changed. Secondly, new relationship types may be derived

by projecting existing relationship types. Thirdly, new relationship types may be

derived by joining existing relationship types. We develop respective rules below for

the different changes. In particular, Rule PC_1 and PC_2 handle the cases where the

order of participating object classes of binary relationship types and n-ary (n>2)

relationship types are changed respectively. Rule PC_3 handles the case where new

Figure 3.32. Functional Dependency Diagram

Figure 3.33. Change of Participation
Constraint due to a projection operation

 Chapter 3. Designing Valid XML Views

 67

relationship types are derived by projecting existing relationship types. Finally, Rule

PC_4 handles the case where new relationship types are derived by joining existing

relationship types. The notations we are using in the following rules are as follows.

• p denotes the parent participation constraints of an original relationship type R.

• c denotes the child participation constraints of an original relationship type R.

• p’ denotes the parent participation constraints of a derived relationship type R’.

• c’ denotes the child participation constraints of a derived relationship type R’.

� Rule PC_1: If R’ is derived in the view by swapping two participating object

classes of an existing binary relationship type R in the source schema, then p’ = c

and c’ = p.

When a swap operator is applied on two participating object classes of a binary

relationship type, the order of the two participating object classes will then be

reversed in the view schema. Thus, in the new relationship type in the view, the

participation constraints will also be reversed.

� Rule PC_2: If R’ is derived in the view by swapping two participating object

classes in an existing n-ary (n>2) relationship type R in the source schema, and

O1, O2, …, On is participating object classes of R’ in the order from ancestor to

descendant in the view schema, then

• For p’: If there exists a functional dependency {O1, O2, … On-1} → On in the

functional dependency diagram, then set p’ to be 1:1, otherwise set p’ to be

0:n (or *).

 Chapter 3. Designing Valid XML Views

 68

• For c’: if there exists a functional dependency: On → {O1, O2 … On-1} in the

functional dependency diagram, then set c’ to be 1:1, otherwise c’ is set 0:n

(or *).

This rule handles the case where a swap operator is applied on an n-ary (n>2)

relationship type. Basically, we use the functional dependency diagram to determine

the value of p’ and c’. When there are corresponding functional dependency, we

directly use it to determine p’ and c’. On the other hand, there may be no functional

dependencies between O1, O2, … On-1 and On in the functional dependency diagram.

Without loss of generality, we assign 0:n to p’ or c’ in this case. That is, the minimum

occurrences of parent or child in R’ is 0 and the maximum occurrences of parent or

child in R’ is n. Thus, it does not violate the semantics in the functional dependency.

� Rule PC_3: If R’ is derived in the view by projecting an existing relationship type

R in the source schema, and O1, O2, …, On is participating object classes of R’ in

the order from ancestor to descendant in the view schema, then

• For p’: If there exists a functional dependency {O1, O2, … On-1} → On in the

functional dependency diagram, then set p’ to be 1:1, otherwise set p’ to be

0:n (or *).

• For c’: if there exists a functional dependency: On → {O1, O2 … On-1} in the

functional dependency diagram, then set c’ to be 1:1, otherwise c’ is set 0:n

(or *).

This rule handles a case where a drop operator is applied on a participating object

class of a relationship type R. In this case, R’ is derived from R as one object class in

 Chapter 3. Designing Valid XML Views

 69

R is dropped in the view. Similar to the Rule PC_2, we still utilize the information of

the functional dependency diagram to decide how to generate p’ and c’. We do not

provide detailed proof here as these two rules are straightforward.

� Rule PC_4: If R’ is derived in the view by joining one relationship type R1 (O11,

O12, …, O1n) with another relationship type R2 (O21, O22, …, O2m), where O1n =

O21 is the common object class they are joined on, then

• For p’: If there exists a functional dependency {O11, O12, …, O1(n-1),

O22, …,O2(m-1)} → O2m, or a functional dependency {O22, O23, …, O2(m-1)} →

O2m, or the two functional dependencies {O11, O12, …, O1(n-1)} → O1n and {O21,

O22, …, O2(m-1)} → O2m; then set p’ to be 1:1, otherwise, set p’ to be 0:n.

• For c’: If there exists a functional dependency O2m → {O11, O12, …, O1(n-1),

O22, …,O2(m-1)} in the functional dependency diagram, then set c’ to be 1:1,

otherwise set c’ to be 0:n (or *).

Correctness of the Rule PC_4:

For p’, if there exists the functional dependency:

{O11, O12, …, O1(n-1), O22, …,O2(m-1), O2m} → O2m

in the functional dependency diagram, it is obvious that p’ is set to be 1:1. Next,

if there exists the functional dependency:

{O22, O23, …, O2(m-1)} → O2m

in the functional dependency diagram, by the augmentation property of a

functional dependency, the functional dependency:

 Chapter 3. Designing Valid XML Views

 70

{O11, O12, …, O1(n-1), O22, …,O2(m-1), O2m} → O2m

can be deduced. Therefore p’ is set to be 1:1. Finally, if there exist the two

functional dependencies:

{O11, O12, …, O1(n-1)} → O1n {O21, O22, …, O2(m-1)} → O2m

by the pseudo-transitivity property of a functional dependency, the functional

dependency:

{O11, O12, …, O1(n-1), O22, …,O2(m-1), O2m} → O2m

can be deduced. Therefore p’ is set to be 1:1. In all the other cases, p’ must be set

to be 0:n.

For c’, there is only one case. That is, if the functional dependency

O2m → {O11, O12, …, O1(n-1), O22, …,O2(m-1)}

exists in the functional dependency diagram, then c’ is set to be 1:1. Otherwise, c’

is set to be 0:n. In this way, the participation constraints are correctly kept and the

view is still valid. □

3.3.7. Design Rules for IDentifier Dependency Relationship

The previous sections present the design rules when selection, drop, join and swap

operators are applied in designing XML views. However, these rules are not enough

when the views contain IDD (IDentifier Dependency) relationship types. An IDD

relationship type is defined as follows:

Definition 3.3. (IDD Relationship Type) An object class A is said to be ID dependent

on its parent object class B if A does not have a key attribute, and an A object can

 Chapter 3. Designing Valid XML Views

 71

only be identified by its parent’s key value (say k1) together with some of its own

attributes (say k2). That is, the key of A is {k1, k2}. The relationship type between A

and B is then called IDD relationship type. It is the same as the ID relationship in ER

diagram.

When we design a view over the IDD relationship type, additional rules are needed to

keep the view meaningful. The following example illustrates this.

Example 3.13. Figure 3.34 shows an IDD relationship type between the object

classes employee and child. For each employee, all the children of the employee are

placed below as the sub-elements. The object class child does not have its key

attribute. That is, it cannot be identified by itself. However, it can be identified by the

key attribute of employee, (i.e. eno) and its own attribute (i.e. cname). That is, the key

attribute of the ID dependent object class child is {eno, cname}. The following

functional dependencies exist.

{eno, cname} → gender, birthday

employee

childeno

cname

child

eno cname
employee

eno

child

eno cname

Figure 3.34. An ORA-SS
source schema diagram of an

IDD relationship type

Figure 3.35. An ORA-SS view
schema swapping employee and

child in Figure 3.34

Figure 3.36. An ORA-SS view
schema dropping employee in

Figure 3.34

IDD,2,1:n,1:1

gender birthday

Based on the source schema in Figure 3.34, we design a view by swapping the object

classes employee and child (see Figure 3.35). This view indicates that for a given

child, his/her parent employee is placed below as a sub-element. Unlike the previous

 Chapter 3. Designing Valid XML Views

 72

view applying swap operators, this view duplicates the key attribute of employe, i.e.

eno for the object class child so that eno and cname can combine a key for the object

class child. This is because the object class child cannot be identified without eno.

Note that this view needs to be enforced with a constraint, which states the eno under

the object child must be the same as the eno under the object employee. The straight

line between the incoming edges of the attributes eno and cname denotes {eno, cname}

is a composite key for the object class child.

We can also design a view by applying a drop operator. Figure 3.36 depicts a view

that drops the object class employee. Thus, the view contains only child object class,

identified by eno and cname. To make the object class child identifiable, the key

attribute of employee, eno, is also combined with the attribute cname to construct a

key for the object class child. A similar situation also exists if a join operator is

applied in a source schema containing an IDD relationship type. □

The above example shows that when we design a view that destroys an IDD

relationship type, the key attribute of the parent object class of the IDD relationship

type should be added to the child object class to construct a key for the child. The

following additional rules indicate for each operator, how XML views should be

designed when IDD relationship types are involved.

� Rule IDD: If an IDD relationship type is destroyed when applying some view

operator and the child object class of this IDD relationship type is in the view,

then the identifier of the parent object class must be added to the child object

class to construct an identifier for the child in the view schema.

 Chapter 3. Designing Valid XML Views

 73

This rule is straightforward. Having presented all the rules to design valid XML view,

we summarize with a theorem may that is derived based on the above rules.

Theorem 3.1 XML views designed based on all the above rules do not violate the

semantics, i.e. functional dependencies, relationship types, and key and foreign key

constraints implied in the original XML documents. They are valid views based on the

definition of valid XML views.

Outline of Proof As all the rules above are correct and do not violate the semantics in

the source schema, the view schema designed based on the rules is thus valid in terms

of semantics.

3.4. View Validation Algorithm

In this section, we summarize all the above rules into an algorithm to validate XML

views. The algorithm will automatically modify parts of the view schema according

to which operator is applied. Each of the four operators – select, drop, join and swap

can be repeatedly applied in the view. Once an operator is applied in the view, the

algorithm first checks if an IDD relationship type is involved. If so, then it applies the

corresponding IDD rule for the operation. After that, the algorithm applies the

relevant rules for the operator. The view obtained is guaranteed to be valid.

Algorithm Algorithm Algorithm Algorithm ValidateViewValidateViewValidateViewValidateView

Input:Input:Input:Input: ORA ORA ORA ORA----SS source schema diagram, a sequence of view opeSS source schema diagram, a sequence of view opeSS source schema diagram, a sequence of view opeSS source schema diagram, a sequence of view operatorsratorsratorsrators

Output:Output:Output:Output: A valid ORA A valid ORA A valid ORA A valid ORA----SS view schema diagramSS view schema diagramSS view schema diagramSS view schema diagram

1. Do

2. Fetch an Operator from the sequence of view operators;

3. Switch (Operator) {

4. CaseCaseCaseCase (select operator): // No rules for select operator

5. break;

6. CaseCaseCaseCase (Drop an object class): //Drop operator

7. If (the object class is a parent object class of an IDD relationship type)

 Apply Rule IDD_1;

 Chapter 3. Designing Valid XML Views

 74

8. Apply Rule Drop_1; // drop attributes of the object class

9. Apply Rule Drop_2; // drop relationship types involving the object class

10. Apply Rule Drop_3 & 4; // handle the relationship types

11. For (each derived relationship type by projecting the dropped object class) do

12. Apply Rule PC_ 3; //modify the participation constraints
13. For (each derived relationship type by joining two relationship types based on the dropped

object class) do

14. Apply Rule PC_ 4 //modify the participation constraints
15. Break;

16. CaseCaseCaseCase (Join two object classes): //Join operator

17. If (the referenced object class is a child object class of an IDD relationship type)

18. Apply Rule IDD_2;

19. Apply Rule Join_1; // attach the sub tree rooted at referenced object class

20. Apply Rule Join_2; // drop the ancestors of referenced object class

21. For (each derived relationship type by projecting the dropped object class in

 the join operation) do

22. Apply Rule PC_3; //modify participation constraints

23. Break;

24. CaseCaseCaseCase (Swap two object classes Oi and Oj): //Swap operator

25. If (the two object classes compose an IDD relationship type)

26. Apply Rule IDD_3;

27. Apply Rule Swap_1; // move the attributes of each object class with them

28. Apply Rule Swap_2; // handle Rel_Set_1(Oi, Oj)

29. If it is the second time for Oj to be swapped {

30. Apply Rule Swap_5 ; //handle Rel_Set_2(Oi, Oj)

31. Apply Rule Swap_6 ; //handle Rel_Set_3(Oi, Oj)

32. } else {

33. Apply Rule Swap_3 ; //handle Rel_Set_2(Oi, Oj)

34. Apply Rule Swap_4; //handle Rel_Set_3(Oi, Oj)

35. }

36. For (each binary relationship type involving the two swapped object class) do

37. Apply Rule PC_1; //modify the participation constraints

38. For (each n-ary (n>2) relationship type involving the two swapped object

 class) do

39. Apply Rule PC_2; //modify the participation constraints

40. Break;

41. }

42. While (there are still operators in the sequence of view operators);

3.5. Summary

In this chapter, we have proposed a systematic approach for valid XML view design.

The approach is composed of three steps. The first two steps are preparatory stages,

which produce an enriched ORA-SS source schema from XML data. In the third step,

 Chapter 3. Designing Valid XML Views

 75

we adopted a set of view operators, such as select, drop, join and swap operators, to

design XML views based on ORA-SS. In addition, we developed a set of rules to

guide the design of valid XML views for each operator. We also gave a proof to show

that the views will be guaranteed to be valid with respect to the rules. Based on the

developed rules, we presented an algorithm to validate designed XML views.

 76

Chapter 4

Generating XQuery View Definitions

In the previous chapter, we presented an approach to designing valid XML views

based on the ORA-SS data model. In the next step, we need to generate query

expressions for those created views. We consider the two main storage methods of

XML data in this thesis. The first method is to store XML data as is in XML files or

in a native XML database. Thus, we need to generate XQuery [40] expressions for the

views, which can then be executed against the XML files. The second method is to

store XML data in an object-relational database (ORDB) system, and we need to

generate SQLX query expressions for the views, as XQuery cannot be executed

directly against the ORDB. This chapter will examine the first method in detail and

develop a complete algorithm to generate XQuery view definitions from ORA-SS

views. The second method will be covered in the next chapter.

XQuery View Definition Generation Problem Given a designed valid ORA-SS view

V and its source schema S and the source document D generate an XQuery view

definition for V, where the XQuery view definition can be evaluated on the source

data D and the result of the view can be produced.

The rest of the chapter is organized as follows. Section 4.1 introduces the syntax of

XQuery. The motivation for generating XQuery view definitions

 Chapter 4. Generating XQuery View Definitions

 77

from ORA-SS views will be presented in section 4.2. The detailed method for the

generation is given in section 4.3. Section 4.4 provides improvements for the method

by utilizing the semantics of ORA-SS schema and the flexibility of XQuery. A

complete algorithm based on the method is given in section 4.5. We provide for an

algorithm analysis in section 4.6. Finally, we summarize the chapter in section 4.7.

4.1. XQuery Syntax

XQuery is a proposed standard for an XML query language from W3C [40]. XQuery

provides flexible query facilities to extract data from real and virtual documents on

the Web. Some of the main draft documents to describe and define XQuery include:

• XQuery 1.0: An XML Query Language: The central document to introduce

the language.

• XQuery 1.0 and XPath 2.0 Data Model: The description of data items a

query implementation must understand, and the basis of the formal semantics.

• XQuery 1.0 and XPath 2.0 Functions and Operators: The basic functions

and operators on Schema data types and XQuery nodes and node sequences.

Basically, XQuery is an expression language. That is, a query in XQuery is an

expression, which reads a sequence of values and returns a sequence of values. The

values may be XML values or atomic values. XML values are also called node values,

which include the following types: element, attribute, namespace, text, comment,

processing-instruction, and document (root) nodes. An atomic value does not contain

other values. It can be a primitive type value or derived type value. The derived types

 Chapter 4. Generating XQuery View Definitions

 78

are variations or restriction of primitive types. The primitive data types include

Numbers, Boolean, String, etc.

There are many forms of XQuery expressions. In this work, we adopt the following

principal forms: path expressions, constructors and FLWOR expressions.

• Path expression in XQuery is the same as expressions in XPath 2.0. A path

expression can be used to locate nodes within trees, which consists of one or more

steps, separated by “/” or “//”.

Example 4.1. Figure 4.1 depicts a sample document on books. Based on this

document, a simple path expression can be depicted as follows:

Document(“book.xml”)//book[@year=”2000”]/title

<bib>
 <book year=”1994”>
 <title>TCP/IP Illustrated</title>
 <author>Stevens</autor>
 <publisher>Addison-Wesley</publisher>
 <price>65.95</price>
 </book>
 <book year=”1992”>
 <title>Advanced Programming in the Unix environment</title>
 <author>Stevens</author>
 <publisher>Addison-Wesley</publisher>
 <price>65.95</price>
 </book>
 <book year=”2000”>
 <title>Data on the Web</title>
 <author>Abiteboul</author>
 <author>Buneman</author>
 <author>Scuiu</author>
 </book>
</bib>

Figure 4.1. A sample XML document named book.xml

 Chapter 4. Generating XQuery View Definitions

 79

The initial context for the path expression is given by document (“book.xml”). The

document function returns the root node of a document. The //book[@year=”2000”]

expression selects the descendant elements of the root, i.e. books published in year

2000. The double slash selects all descendants. The /title expression next selects the

children elements title, which results in a sequence of title nodes in document order

for which the book was published in year 2000. □

• Constructor can be used to create XML structures within a query, which can

contain each type of node in XML.

Example 4.2. The following is a sample constructor based on Figure 4.1:

 For $b in document(“book.xml”)//book[@year=”2000”],

 $t in $b/title, $p in $b/publisher

 Return

 <book title={$t}>

 <publisher> {$p} </publisher>

 <year>2000</year>

 </book>

The constructor under the Return clause contains three element constructors: <book>,

<publisher>, and <year>. The <publisher> and <year> elements are the children

elements of <book>. $p is a variable that is bound to publisher element for the book

published in year 2000. The braces ({ and }) are used here to disambiguate literal text

content from the sub expression $p inside the element constructor that require

evaluation. There is also an attribute constructor for the attribute title of book.

Similarly, the braces are used for the variable $t to indicate it needs to be evaluated.

Notice two for clauses are used here to bind the variables. The for clause will be

presented in detail in the following. □

 Chapter 4. Generating XQuery View Definitions

 80

• FLWOR expression is widely used in XQuery as well as in this work. It is the

main engine of XQuery. The name FLWOR, pronounced “flower”, is suggested

by the keywords for, let, where, order by, and return. It is the analogy of Select-

From -Where-Having from SQL.

• For clause iterates over and binds a variable to each node of a sequence

resulting from a path expression.

• Let clause binds a variable to all nodes of a sequence resulting from a path

expression.

• Where clause serves to filter the generated nodes in For/Let clauses by

retaining desired ones and discarding others.

• Order by clause imposes an ordering on the selected nodes in the clause.

• Return clause constructs the result of the FLWOR expression. It is evaluated

once for each node in the sequence resulting from For/Let clauses.

In general, a FLWOR expression consists of one or more for and/or let clauses, an

optional where clause and order by clause, and a return clause. The where clause

causes the return clause to be evaluated only when the where clause is true.

Example 4.3. We use the document in Figure 4.1 for illustration. Each book element

has an attribute year, and sub elements title, author, publisher and price. Note that the

element price is optional, which does not exist in the third book element.

Suppose we retrieve all books that have more than one author. The XQuery

expression for the query is shown in Figure 4.2. We first use an element constructor

to construct an element results to contain the qualified books. Next, we use a for

 Chapter 4. Generating XQuery View Definitions

 81

clause to bind a variable $book to iterate over each book element. Then we use a let

clause to bind another variable $author to all the author nodes of the book. A where

clause is used to place a predicate count($authors)>1, indicating the following return

clause will be evaluated only when there are more than one author for the book. The

function count returns the number of authors bound by the variable $authors. For

simplicity, we only list the title and authors of the book in the return clause.

The XQuery will return one book from the document because only this book has

more than one author. Figure 4.3 displays the result.

 □

<Results>
{

For $book in document(“book.xml”)//book
Let $authors := $book/author
Where count($authors) > 1
Return
 <book>
 {
 $book/title,
 $book/author
 }
 </book>

}
</Results>

Figure 4.2. An XQuery issued on the document book.xml

<Results>
 <book>
 <title> Data on the Web </title>
 <author> Abiteboul </author>
 <author> Buneman </author>
 <author> Suciu </author>
 </book>
</Results>

Figure 4.3. The result of the XQuery in Figure 4.2

 Chapter 4. Generating XQuery View Definitions

 82

Functions are frequently used in XQuery, e.g, built-in functions document and count.

XQuery also support user-defined functions. We will also define functions in the

generated XQuery from ORA-SS views.

Finally, XQuery is a strongly-typed language, which has static typing (compile-time

type check) and dynamic typing (run-time type check). The types in XQuery actually

match XQuery’s data model and XML Schema. We will use a Boolean operator

instance of for the type checking. The operator returns true if the value of its first

operand matches the type in the second operand.

Example 4.4. Based on the document in Figure 4.1, we issue the following simple

XQuery expression with the operator instance of:

 For $child in document(“book.xml”)//book/node()

 If ($child instance of element title)

 Then process-title($child)

 Else ()

The XQuery expression above binds the variable $child to each node under a given

book element. It invokes a user-defined function process-title, which may be defined

somewhere else, if the value of $child is an element whose tag name is title.

Otherwise, it does nothing. Notice that XQuery also supports a general conditional

expression, such as if-then-else in this example. □

4.2. Motivating Example

Intuitively, users can manually write the XQuery view definitions according to the

ORA-SS views. Unfortunately, XQuery view definitions can be too complex in

usage.

 Chapter 4. Generating XQuery View Definitions

 83

Example 4.5. Consider the XML source file in Figure 4.4 and its corresponding

ORA-SS source schema in Figure 4.5.

supplier

part

sno:
s001

pno:
p001

part

pno:
p002

supplier

part

sno:
s002

pno:
p002

part

pno:
p003

price:
100

price:
120

price:
40

price:
30

part

supplier

sp, 2, 1:n, 1:n

pno

sno price

sp

Figure 4.4. A source XML file

<db>
 <supplier sno=”s001” >
 <part pno=”p001”> <price>100</price> </part>
 <part pno=”p002”> <price>120</price> </part>
 </supplier>
 <supplier sno=”s002”>
 <part pno=”p002”> <price>40</price> </part>

<part pno=”p003”> <price>30</price> </part>
 </supplier>
</db>

Figure 4.5. ORA-SS Source Schema for
the file in Figure 4.4

Figure 4.6. ORA-SS View Schema obtained
by swapping supplier and part in Figure 4.5

part

supplier

pno:
p001

sno:
s001

part

supplier

pno:
p002

sno:
s001

supplier

sno:
s002

part

supplier

pno:
p003

sno:
s002

price:
100

price:
120

price:
40

price:
30

Figure 4.7. The Instance diagram for the source in Figure 4.2

Figure 4.8. The Instance diagram for the view in Figure 4.3

supplier

part

sp, 2, 1:n, 1:n

sno

pno price

sp

 Chapter 4. Generating XQuery View Definitions

 84

Figure 4.6 shows a view that has been designed by swapping object classes supplier

and part. Note that the attribute price does not move up with part, because it is an

attribute of the relationship type sp. Figures 4.7 and 4.8 show the ORA-SS instance

diagram for the source and view schema in Figure 4.5 and 4.6 respectively.

Figure 4.9 shows the XQuery expression for the view in Figure 4.6. We first use an

element constructor to construct a root element db for the view document (line 1).

Next, each object class is processed as follows.

For object class part, a for clause is first used to bind a variable $p_no to iterate over

each distinct value of the key attribute of part (line 2). For simplicity, we use $in in

this clause to represent the source XML document. For each of these key values, a let

clause binds $p_set to those part nodes which have this key value (line 3). This

variable will be used in the return clause of the object class in case where there are

1. <db>
2. for $p_no in distinct-values($in//part/@pno)
3. let $p_set := $in//part[@pno=$p_no]
4. let $p := subsequence($p_set, 1, 1)
5. return
6. <part pno={$p_no}>
7. {
8. for $s_no in distinct_values($in//supplier/@sno)
9. let $s_set :=$in//supplier[@sno=$s_no]
10. let $s := subsequence($s_set, 1, 1)
11. where some $p1 in $in//part
12. satisfies (exists($p1[@pno=$p_no]) and
13. exists($p1[ancestor::supplier/@sno=$s_no]))
14. return <supplier sno={$s_no}>
15. {$s/part[@pno=$p_no]/price}
16. </supplier>
17. }
18. </part>
19. </db>

Figure 4.9. A View definition in XQuery expression for view in Figure 4.6

 Chapter 4. Generating XQuery View Definitions

 85

aggregate attributes attached to the object class. Another let clause is used to bind

another variable $p to one of the part nodes in the sequence bound by $p_set. We use

a built-in function in XQuery subsequence to return 1 node at the position 1 of the

sequence (line 4). The variable $p will be used to generate rest attributes of part (if

any) except the key attribute. Here, part has no other attributes except pno. A return

clause then returns the element part and its attribute pno (line 5-6).

Next, we generate the child object class supplier of the generated object class part. A

pair of braces is used here to contain the query expression of supplier, which makes

the query expression of supplier as a nested query of part. XQuery will generate

object class supplier a sub element of part in the view document. Similar to part, a

for clause first binds a variable $s_no to iterate over each distinct value of the key

attribute of supplier (line 8). For each of these distinct key values, a let clause is then

used to bind $s_set to those supplier nodes which have this key value (line 9).

Another let clause is then used to bind $s to one of the supplier nodes in the sequence

bound by $s_set (line 10). The variable $s will generally be used to generate the rest

of the attributes of supplier except the key attribute. Here, the variable will also be

used to generate the relationship attribute price. In addition, we cannot fetch all the

distinct suppliers under each object class part. Instead, we can only select those

suppliers that supply the part with the given key value $p_no, because there is such a

relationship type between supplier and part in the view schema. As shown in Figure

4.8, the supplier set for the part node whose key value is “p001” should have only

one node, namely, the node with key value “s001”, because only this supplier

supplies the part “p001” (see Figure 4.7). Therefore, we need to add a where clause in

 Chapter 4. Generating XQuery View Definitions

 86

the XQuery expression for supplier so that only those suppliers that have a

descendant part whose key value is equal to $p_no are selected (lines 11-13). Next, a

return clause constructs the element supplier and its key attribute sno. We use $s to

construct the attribute price as a sub element of supplier, because price is an attribute

of the relationship type between supplier and part (line 14-16).

The XQuery in Figure 4.9 can be executed by any XQuery engine to produce the

results in Figure 4.10 by executing the XQuery view definition in Figure 4.9. The

view result is exactly the same as the ORA-SS instance diagram in Figure 4.8. □

It is clear that the XQuery expression is much more complex than the swap operator

that is used to design the view. The view in this example contains two object classes

only. In general, the complexity and length of XQuery view definitions increase

dramatically as the number of object classes grows. The probability of making errors

in the view definitions also increases if users are to manually define such views in

XQuery. Fortunately, this problem can be addressed using our approach which

provides a set of simple view operators for users to define views from which XQuery

expressions can be automatically generated with an algorithm.

<db>
 <part pno=”p001” >
 <supplier sno=”s001”> <price>100</price> </supplier>
 </part>
 <part pno=”p002”>
 <supplier sno=”s001”> <price>120</price> </supplier>
 <supplier sno=”s002”> <price>40</price> </supplier>
 </part>
 <part pno=”p003”>
 <supplier sno=”s002”> <price>30</price> </supplier>
 </part>
</db>

Figure 4.10. The XML instance for the view in Figure 4.6

 Chapter 4. Generating XQuery View Definitions

 87

4.3. Rules for Generating XQuery View Definitions

4.3.1. Main Idea

In this section, we will propose an algorithm to automatically generate XQuery

definitions from ORA-SS views. The main idea of the algorithm is as follows. We

scan an ORA-SS view using a depth-first traversal method. For each object class in

the ORA-SS view, we generate an XQuery expression. Then we combine all the

query expressions together according to the tree structure of the view. Basically,

XQuery uses braces ({ and }) to separate query expressions of object classes. In particular,

a query expression of an object class (say O1) in the ORA-SS view is embraced

within a pair of braces. When the next object class to be processed (say O2) is a

sibling of O1 in the view, then the algorithm will use another pair of braces to contain

the query expression of O2, which is placed next to the pair of braces of O1. In this

way, the two object classes will be generated as sibling elements in the result

document. On the other hand, when the next object class to be processed (say O2) is a

child of O1 in the view, then the algorithm will still use another pair of braces to

contain the query expression of O2, which is however placed within the pair of braces

of O1. Thus, the two object classes will be generated as parent-child elements in the

result document.

The algorithm composes a query expression for each object class using a FLWOR

expression. A FLWOR expression consists of for, let, where, order by and return

clauses. We will compose the XQuery view definitions for an object class by using

one for clause, two let clauses, one optional where and order by clause, and one

return clause.

 Chapter 4. Generating XQuery View Definitions

 88

• A for clause is first used to bind a variable $o_no to iterate over each distinct

key value of the object class (say o). The variable $o_no will be used to

generate the key attribute of o in the view document.

• A let clause is then used to bind a variable $o_set to a sequence of o nodes

which has the key value equal to $o_no. The variable $o_set will be used to

generate another variable bound to one single node in the sequence. It can be

used to generate aggregate attribute attached to o in the view (if any).

• Another let clause is used to bind a variable $o to one single node in the

sequence bound by $o_set. The variable $o will be used to generate the rest

attributes of o in the view document.

• An optional where clause is used to enforce the necessary condition predicates

in the query expression of o. The condition predicates may be selection

conditions on attributes of o or from the influence of its ancestors in the view.

• In general, the influence of an ancestor (say vo) on o in the view schema

denotes the restriction of vo on o in the view schema generated by the

condition constraints generated for vo in the where clause of o. Those

ancestors having the influences on o are also called influential object classes

in the thesis.

• An optional order by clause is used to enforce order on attributes attached to o

according to the view schema. The order can be ascending or descending.

• A return clause is used to construct the element result of o with the attributes

attached to o. The attributes can be attributes of o or relationship attributes.

 Chapter 4. Generating XQuery View Definitions

 89

The XQuery expression of each object class consists of the above five clauses. It is

straightforward to generate the for, let, order by and return clauses for each object

class in the view. However, it is not a trivial task to generate the where clause for the

object class. The where clause may contain selection conditions enforced on attributes

attached to the object class. The selection conditions can be directly added in the

where clause. The where clause may also contain condition constraints. They are

generated because many different object classes may exert influences on the given

object class in the view, which cannot be directly generated and needs to do analysis

on the path of the object class in the view. In the following sub sections, we will

focus on the generation of this part of where clause.

4.3.2. Analyzing Vpath

We use the example in Section 4.2 to illustrate the generation of where clause. When

we process supplier in the example, we have to consider the influence of its parent,

the object class part, in the view schema. When the key value of part is “p001”, we

have only one supplier whose key value is “s001” under the part in the view. Thus, in

order to generate the correct conditions constraints in the where clause for an object

class in the view, it is important to know all the influential object classes, and their

corresponding effects. Intuitively, the data instances for an object class in a view are

determined by all the object classes in the path from the root to the object class. We

have the following definition for the path.

Definition 4.1. (vpath) For an arbitrary object class o in an ORA-SS view, the path

from the root of the view to o is called the vpath of o. The object classes that occur in

the vpath of o exert influence on the data instances for o in the view.

 Chapter 4. Generating XQuery View Definitions

 90

By analyzing the object classes in the vpath of an object class o in an ORA-SS view,

we can capture all their influences on o in a series of condition constraints in a where

clause. In the following subsections, we first identify different types of object classes

that can appear in a vpath of o in an ORA-SS view. Then we provide a set of generic

rules to generate condition constraints in the where clause of o.

There are three types of object classes in the vpath of an object class o in any views

designed with our operators. The three types are classified based on their origins in

the source schema as follows.

Type I: For an arbitrary object class o in an ORA-SS view schema, if an object

class in its vpath is o’s ancestor or descendant in the source schema then

the object class is called a Type I object class in the vpath of o.

Type II: For an arbitrary object class o in an ORA-SS view schema, if an object

class in its vpath is a descendant of o’s ancestors, which is not in the same

path with o in the source schema, then the object class is called a Type II

object class in the vpath of o. In another words, a Type II object class in o’s

vpath is o’s sibling, descendant of o’s sibling, o’s ancestor’s sibling, or

descendant of o’s ancestor’s sibling in the source schema.

Type III: For an arbitrary object class o in an ORA-SS view schema, if an object

class in its vpath is another object class in another source schema, whose

ancestor or descendant in the source schema has a foreign key to key

reference with o’s ancestor or descendant in o’s source schema, then the

object class is called a Type III object class in the vpath of o. Type III

object classes are generated in the vpath of o in the view schema by

 Chapter 4. Generating XQuery View Definitions

 91

applying at least a join operator, or a join operator and a series of swap

operators together.

AF

B C

D

O

E

H J

K L

M N
G

P

Type I

Type I

Type III

Type II

O

D

P

J

K

...

...

...

Vpath of O

Source schema 1 Source schema 2

Example 4.6. Consider the simplified ORA-SS source schema and view schema in

Figure 4.11. There is a foreign key to key reference from object class D in source

schema 2 to object class F in source schema 1 (see Figure 4.11(a)). We may design a

view schema shown in Figure 4.11(b). Consider the vpath of object class O in the

view schema. Note that object class O is from source schema 2 in Figure 4.11(a).

There are four object classes in the vpath of O, namely D, P, J and K. The object

classes D and P are the ancestor and descendant of O respectively in the source

schema. Hence, D and P are Type I object classes in the vpath of O in the view

schema. Next, the object class J is O’s ancestor B’s descendant in the source schema.

Thus, J is a Type II object class in the vpath of O. Finally, the object class K is in

source schema 1 in Figure 4.11(a), whose parent F has a foreign key to key reference

with D, which is the parent of O. Therefore, K is a Type III object class in the vpath

of O. The object class K is generated in the view schema by first applying a join

Figure 4.11(a). Two simplified ORA-SS source schema

Figure 4.11(b). One simplified
ORA-SS view schema based on

Figure 4.11(a)

 Chapter 4. Generating XQuery View Definitions

 92

operator to D and F so that K can be attached below D as its child, and then applying

swap operators so that K can become the parent of O in the view schema. □

4.3.3. Rules for Generating Condition Constraints of an Object Class

We have identified three types of object classes in the vpath of a given object class in

an ORA-SS view schema in the previous section. The different types of object classes

have a different influence on the given object class in the view schema, which results

in a different condition constraints in the where clause of XQuery expression of the

object class. In this section, we present a set of rules to generate condition constraints

for a given object class. We first present rules for generating for and let clauses to

bind variables for the object class. Next, we develop a set of rules to generate

different condition constrains in the where clause for each type of object class in the

vpath of the object class. We also develop a rule to handle selection conditions

enforced in the attributes attached to the given object class. The following notations

are used.

• o refers to an arbitrary object class in an ORA-SS view.

• vo refers to an arbitrary object class in o’s vpath in the view.

• o_no and vo_no refer to the key attributes of object class o and vo

respectively.

• $in represents the XML source document.

The following two rules handle two different cases to generate for/let clauses for a

given object class o. In the first case, o is not a referencing object class in the view.

We only need to generate the for/let clause to bind variables to the object class. In the

 Chapter 4. Generating XQuery View Definitions

 93

second case, o is a referencing object class in the view. We also need to generate the

for/let clause to bind variables to the referenced object class, as we need to use the

variables to process the attributes of the referencing object class.

� Rule For_Let_1: For an arbitrary object class o in an ORA-SS view schema,

which is not a referencing object class (e.g. object class O in Figure 11(b)),

generate the following for/let clauses for o:

For $o_no in distinct-values($in//o/@o_no)
Let $o_set := $in//o[@o_no=$o_no]
Let $o := subsequence($o, 1, 1)
Where clause

The first for clause binds a variable $o_no to iterate over each distinct key value of

the object class. The first let clause binds another variable $o_set to a sequence of o

nodes which has the key value equal to $o_no. The second let clause binds a variable

$o to one single node in the sequence bound by $o_set. The variable $o will be used

to generate the rest attributes of o in the view document. Note that we generate an

empty where clause to contain condition constraints generated in other rules below.

� Rule For_Let_2: For an arbitrary object class in an ORA-SS view schema o,

which is a referencing object class generated by a join operator and ref_o is the

referenced object class, generate the following for/let clauses for o:

For $o_no in distinct-values($in//o/@o_no)

Let $o_set := $in//o[@o_no=$o_no]

Let $o := subsequence($o_set, 1, 1)

For $ref_o_no in distinct-values($in//ref_o/@ref_o_no)

Let $ref_o_set := $in//ref_o[@ref_o_no=$ref_o_no]

Let $ref_o := subsequence($ref_o_set, 1, 1)

Where $ref_o_no = $o_no

 Chapter 4. Generating XQuery View Definitions

 94

In this rule, we generate for/let clauses for both the referencing object class o and the

referenced object class ref_o. As the attributes of ref_o may be attached to ref_o in

the view schema, we must use the variable bound to ref_o to generate these attributes

in the view document. Note that we also generate a condition constraint in the where

clause, which indicates only the instance of the referenced object class whose key

value is equal to the current key value of the referencing object class. This is because

the referencing object class refers to the referenced object class with equal key values.

These two rules are straightforward. Their main purpose is to bind variables for the

object class for later use in the where clause and return clause. In the following, we

will present the rules of generating other condition constraints in the where clause.

Since vo is an ancestor of o in the view and a pre-order search is employed to

generate the query expression for the view, the query expression for vo will be

generated before o. Thus, we can use the current qualified key value of vo when

generating the condition constraints of o because it is already generated. To

understand the context of the generated condition constraints, we also show the first

for clause and return clause of XQuery expression of o in the following rules. The for

clause binds a variable $o_no to iterate over each distinct key value of o. The

condition constraints in the following where clause will then retain satisfied key value

of o bound by $o_no and discard those unsatisfied. Note that the for and return clause

are generated only once for o, although they will appear in each rule to construct the

context of the generated condition constraints. As a matter of fact, all the generated

condition constraints for o will finally be combined together in a single where clause.

 Chapter 4. Generating XQuery View Definitions

 95

For illustration purpose, we also use bold font to highlight the generated condition

constraints in the following rules.

Firstly, there are 2 rules for type I object classes: Type_I_A and Type_I_B, which

handles 2 different cases where an object class is a Type I object class in the vpath of

o in the view schema. In particular, Rule Type_I_A handles the case where vo is an

ancestor of o in the source schema. On the other hand, Rule Type_I_B handles the

case where vo is an descendant of o in the source schema.

� Rule Type_I_A: If vo is an ancestor of o in the source schema (see Figure

4.12(a)), then we generate the condition constraints in the where clause of o as

shown in Figure 4.12(b).

Correctness of the Rule: In this case, vo is still an ancestor of o in the source schema.

However, the object classes between vo and o in the view schema may not be the

same as the object classes between vo and o in the source schema. For each instance

of vo in the view document, we need to retrieve those instances of o, which are the

descendants of the instance of vo in the source document, as the descendants of the

instance of vo in the view document. The condition constraints generated in Rule

Type_I_A exactly retain those instances of o. In particular, it indicates if an instance

of o with key value $o_no is selected as a child of an instance of vo with the current

for $o_no in distinct-values($in//o/@o_no)
where some $vo1 in $in//vo satisfies (
 exists($vo1[@vo_no=$vo_no]) and
exists($vo1[descendant::o/@o_no=$o_no]))
return <o o_no={$o_no}/>

vo

o

vo

o

$in

view
source

vo_no

o_no

vo_no

o_no

Figure 4.12(b). Condition constraints
generated in Rule Type_I_A Figure 4.12(a). The case for rule Type_I_A

 Chapter 4. Generating XQuery View Definitions

 96

qualified key value $vo_no in the view, then it must satisfy such a condition that an

instance of vo in the source with key value $vo_no has a descendant instance of o

with key value $o_no. Thus, the condition constraints generated in Rule Type_I_A

correctly reflect the influence of vo on o in the view schema. □

� Rule Type_I_B: If vo is a descendant of o in the source schema (see Figure

4.13(a)), then we generate the condition constraints in the where clause of o as

shown in Figure 4.13(b).

Correctness of the Rule: In this case, vo is a descendant of o in the source schema,

as shown in Figure 4.13(a). It becomes an ancestor of o in the view schema by

applying some swap operators. The object classes between vo and o in the view

schema many not the same as the object classes between vo and o in the source

schema, because some object classes may be dropped in designing the view. For each

instance of vo appearing in the source document, we find the particular instance of o,

which is the ancestor of the instance of vo in the source document, as the descendant

of the instance of vo in the view document. No other instances of o can be retrieved in

this case. We generate the condition constraints in Rule Type_I_B. It indicates if an

instance of o with key value $o_no is selected as a child of an instance of vo with the

current qualified key value $vo_no in the view, then it must satisfy such a condition

for $o_no in distinct-values($in//o/@o_no)
where some $vo1 in $in//vo satisfies (
exists($vo1[@vo_no=$vo_no]) and
exists($vo1[ancestor::o/@o_no=$o_no]))
return <o o_no={$o_no}/>

Figure 4.13(b). Condition constraints
generated in Rule Type_I_B

o

vo

vo

o

$in

viewsource

o_no

vo_no

vo_no

o_no

Figure 4.13(a). The case for Rule Type_I_B

 Chapter 4. Generating XQuery View Definitions

 97

that an instance of vo in the source with key value $vo_no has ancestor instance of o

with key value $o_no. Thus, it exactly retain the instance of o, which is the ancestor

of vo with key value $vo_no and satisfy our requirement. □

Now we handle Type II object classes in the vpath of o in the view schema. In the

case where vo is a Type II object class in o’s vpath, vo has no ancestor-descendant

relationship with o according to the definition in section 4.2.2. That is, there is no

direct connection between vo and o. However, it still has influence on o through an

intermediate object class – the Lowest Common Ancestor of vo and o in the view

schema. We have the following Theorem 4.1 for Type II object classes.

Theorem 4.1 Given an arbitrary object class o in an ORA-SS view schema, if an

object class vo is a Type II object class in the vpath of o in the view schema, then vo

still has influence on o through the influence of the lowest common ancestor object

class of vo on o in the source schema. In other words, the influence of vo on o is the

same as the influence of the lowest common object class on o.

Proof: Suppose object class LCA is the lowest common object class of vo and o in

the source schema, as shown in the left side of Figure 4.14. Without loss of

generality, we design a view in which LCA is an ancestor of vo, which is an ancestor

of o, as shown in the right side of Figure 4.14(a), or LCA is a descendant of vo, which

is an ancestor of o, as shown in the right side of Figure 4.14(b). Each instance of vo

(say vo1) appearing in the view document must be under one instance of LCA (say

lca1) in the source document, which subsequently determines a set of instances of o

in the source document, say (o1, o2, …on), which will appear as the descendants of

vo1 in the view document. In other words, because vo1 determines lca1 and lca1

 Chapter 4. Generating XQuery View Definitions

 98

determines (o1, o2, …, on), vo1 determines (o1, o2, …, on). Therefore, vo1

determines the same set of instances of o (o1, o2, …on) as lca1 determines. The

influence of vo on o is the same as the influence of LCA on o. In addition, we must

use the lowest common ancestor of vo and o as the intermediate object class, because

it reflects the minimized restriction of vo on o in the view. If we use an ancestor of vo

and o in a higher level as the intermediate object class, then we may introduce a wider

range of instances of o, some of which are not necessarily needed under the instance

of vo in the view document. Thus, vo has influence on o in the source schema through

the lowest common ancestor of them as the intermediate object class. □

Based on Theorem 4.1, we propose two rules in the following for Type II object

classes in the vpath of o in the view schema. The first rule – Rule Type_II_A

considers the case where the lowest common object class of vo and o in the source

schema is in the vpath of o in the view schema. The second rule – Rule Type_II_B

then considers the case where the lowest common object class of vo and o in the

source schema is not in the vpath of o in the view schema.

� Rule Type_II_A: If vo is a Type II object class in o’s vpath in the view schema

and the Lowest Common Ancestor of vo and o in the source schema, say LCA, is

LCA

o

vo

o

$in

viewsource

vo

LCA

Figure 4.14(a). The case 1 for Rule Type_II_A

LCA

o

LCA

o

$in

viewsource

vo

vo

Figure 4.14(b). The case 2 for Rule Type_II_A

 Chapter 4. Generating XQuery View Definitions

 99

also in the vpath of o in the view schema (see Figure 4.14(a)), then we do not

need to generate condition constraints for vo in the where clause of o.

Correctness of the Rule: Since vo is a Type II object class in the vpath of o in the

view schema, the influence of vo on o is the same as the influence of the lowest

common object class (say LCA) on o according to the Theorem 4.1 presented above.

In addition, the lowest common object class LCA is also in the vpath of o in the view

schema, which can be an ancestor or descendant of vo, as shown in the right side of

Figure 4.14. Thus, the influence of LCA on o will be considered when processing

LCA as another object class in the vpath of o. We do not need to consider the

influence of vo on o to generate the condition constraints of vo again in the case.

 □

� Rule Type_II_B: If vo is a Type II object class in o’s vpath and the Lowest

Common Ancestor of vo and o, say LCA, is not in the vpath of o in the view

schema (see Figure 4.15(a)), then we generate the condition constraints of vo in

the where clause of o as shown in Figure 4.15(b).

Correctness of the Rule: In this case, the lowest common object class of vo and o

(say LCA) is not in the vpath of o in the view schema. Based on Theorem 4.1, we

need to generate the condition constraints of vo to reflect the influence of vo on o. In

LCA

o

vo

o

$in

viewsource

vo

vo_no o_no

vo_no

o_no

for $o_no in distinct-values($in//o/@o_no)
where some $LCA in $in//LCA satisfies (
 exists($LCA//o[@o_no=$o_no]) and
 exists($LCA//vo[@vo_no=$vo_no]))
return <o o_no={$o_no}/>

Figure 4.15(a). The Case for Rule
Type II_B

Figure 4.15(b). Condition constrains
generated in Rule Type II_B

 Chapter 4. Generating XQuery View Definitions

 100

particular, the influence of vo on o can be depicted as follows. For a given instance of

vo, we need to retrieve those instances of o, which are the descendants of an instance

of LCA in the source document, which is the ancestor of the instance of vo in the

source document. The condition constraints generated in Rule Type_II_B indicate

that if an instance of o with key value $o_no is selected in the view under the instance

of vo with the current qualified key value $vo_no, then there must exist an instance of

LCA (say $LCA) in the source that has both a descendant instance of o with key

value $o_no and a descendant instance of vo with key value $vo_no. Thus, the

condition constraints exactly reflect the influence of vo on o in this case. □

In the case where vo is a Type III object class in the vpath of o, vo and o are linked

together by a referencing and referenced object classes in the source schema based on

the definition of a Type III object class. Although vo and o have no ancestor-

descendant relationship, vo still has influence on o through the referencing and

referenced object classes. We have the following theorem for Type III object classes.

Theorem 4.2 Given an arbitrary object class o in an ORA-SS view schema, if an

object class vo is a Type III object class in the vpath of o in the view schema, then vo

is linked to o through a referencing object class and a referenced object class in the

source schema, and vo still has influence on o through the influence of the

referencing object class and referenced object class on o in the source schema. In

other words, the influence of vo on o is the same as the influence of the referencing

and referenced object classes on o.

 Chapter 4. Generating XQuery View Definitions

 101

Proof: Suppose vo is a Type III object class in the vpath of o in the view, as shown in

the right side of Figure 4.16. Without loss of generality, one descendant of o (say

referencing) refers to one ancestor of vo (say referenced) with a foreign key to key

reference in the source schema, as shown in the left side of Figure 4.16. For a given

instance of vo in the source document, say vo1, it must have one ancestor instance of

the referenced object class, say referenced1, which in turn determines a set of

instances of the referencing object class, say referencing1, … referencingm, because

there is a foreign key to key reference between the two object classes. Furthermore,

each instance of the referencing object class referencingi (1 ≤ i ≤ m) also determines

one instance of o in the source document, say oi, because the referencing object class

is a descendant of o. Thus, the instance of vo (vo1) determines a set of instances of o,

which is the same as the instance of the referencing and referenced object classes

determine. That is, the influence of vo on o in the source schema is the same as the

influence of the referencing and referenced object class on o in the source schema. □

Note that the referencing and referenced object classes play the same role as the

lowest common ancestor of vo and o in Rule Type_II_A and Rule Type_II_B. Based

referenced o

referencing

vo

o

$in1 $in2

viewsource

r_no r_no

r_no

vo_no

o_no

vo

vo_no

referencingr_no_Ref

Figure 4.16. The Case for Rule Type III_A

 Chapter 4. Generating XQuery View Definitions

 102

on Theorem 4.2, we propose the following rules for Type III object class. There are 4

different rules according to the different positions of the referencing object class in

the source schema. Without loss of generality, the referenced object class in the

following rules is always in the same schema as vo, and the referencing object class is

always in the same schema as o. In general, the referenced object class is a top object

class in an ORA-SS schema, because it will result in unnecessary redundancies if it is

not a top object class. Furthermore, the reference between the referencing and

referenced object class will be meaningless. Based on the reasons above, we do not

consider the case where the referenced object class is a descendant of vo in the

following rules.

� Rule Type_III_A: If vo is a Type III object class in the vpath of o in the view

schema and the referencing object class is also in the vpath of o in the view

schema (see Figure 4.16), then we do not need to generate condition constraints

of vo in the where clause of o.

Correctness of the Rule: In this case, since the referencing object class is still in the

vpath of o in the view schema, the influence of the referencing object class on o in the

view schema will also be considered to generate condition constraints in the where

clause of o. Based on Theorem 4.2, the influence of vo on o is the same as the

influence of the referencing object class on o. Thus, the condition constraints of vo in

the where clause of o are the same as the condition constraints of the referencing

object class in the where clause of o. We thus do not need to generate the same

condition constraints again. □

 Chapter 4. Generating XQuery View Definitions

 103

� Rule Type_III_B: If vo is a Type III object class in the vpath of o in the view

schema and the referencing object class is not in the vpath of o, and o is an

ancestor of the referencing object class in the source schema (see Figure 4.17(a)),

then we generate the condition constraints for vo in the where clause of o as

shown in Figure 4.17(b).

Correctness of the Rule: In this case, the referencing object class is not in the vpath

of o in the view schema. Based on Theorem 4.2, we need to generate the condition

constrains of vo in the where clause of o for the influence of vo on o. Note that o is an

ancestor of the referencing object class in the source schema. The influence of vo on o

can be depicted as follows. For a given instance of vo, we need to retrieve those

instances of o, which are the ancestors of an instance of the referencing object class,

which refers to an instance of the referenced object class, which is the ancestor of the

instance of vo in the source document. Based on the requirement, we generate the

condition constraints in Rule Type_III_B, which indicate that if an instance of o with

for $o_no in distinct-values($in2//o/@o_no)

where some $referenced in $in1//referenced
satisfies
(exists($referenced[descendant::vo/@vo_no=
$vo_no]))

 and some $referencing in $in2//referencing
satisfies
(exists($referencing[@r_no=$referenced/@r
_no]) and

exists($referencing[ancestor::o/@o_no=$o_no]
))

return <o o_no={$o_no}/>

referenced o

referencing

vo

o

$in1 $in2

viewsource

r_no
r_no

r_no

vo_no

o_no

vo

vo_no

r_no_Ref

Figure 4.17(b). Where condition generated in
Rule Type_III_B

Figure 4.17(a). The Case for
Rule Type_III_B

 Chapter 4. Generating XQuery View Definitions

 104

key value $o_no is selected under the instance of vo with the current qualified key

value $vo_no, then there must exist an instance of the referenced object class in

source 1 ($in1) that has a descendant instance of vo with key value $vo_no and there

also must exist an instance of referencing object class in source 2 ($in2) that has a key

value equal to the instance of the referenced object class’s key value and has an

ancestor instance of o with key value equal to $o_no. Thus, the condition constraints

exactly reflect the influence of vo on o. □

� Rule Type_ III_C: If vo is a Type III object class in the vpath of o and o is the

referencing object class itself in the source schema (see Figure 4.18(a)), then we

generate the condition constraints in the where clause of o as shown in Figure

4.18(b).

Correctness of the Rule: In this case, o is the referencing object class in the source

schema. Based on Theorem 4.2, the influence of vo on o is as follows. For a given

instance of vo in the view document, we retrieve those instances of o in the source

document, which refer to the corresponding instances of the referenced object class,

which are the ancestor of the instance of vo in the source document. Based on the

requirement, we generate the condition constraints of vo in Rule Type_III_C, which

indicates that if an instance of o with key value $o_no is selected under the instance

for $o_no in distinct-values($in2//o/@o_no)

where some $referenced in $in1//referenced
satisfies (

exists($referenced[@r_no=$o_no]) and

exists($referenced[descendant::vo/@vo_no=
$vo_no]))

return <o o_no={$o_no}/>

referenced o(referencing) vo

o(referencing)

$in1 $in2

viewsource

r_no o_no
vo_no

o_no

vo

vo_no

r_no_Ref

Figure 4.18(b). Where condition
generated in Rule Type_III_C

Figure 4.18(a). The case for Rule Type_III_C

 Chapter 4. Generating XQuery View Definitions

 105

of vo with the current qualified key value $vo_no in the view document, then there

must exist an instance of the referenced object class in the source document, which

has a key value equal to $o_no and a descendant instance of vo with key value

$vo_no. The condition constraints retain the same set of instances of o as the

influence of vo on o as mentioned above. □

� Rule Type_III_D: If vo is a Type III object class in the vpath of o in the view

schema and the referencing object class is not in the vpath of o, and o is a

descendant of the referencing object class in the source schema (see Figure

4.19(a)), then we generate the condition constraints in the where clause of o as

shown in Figure 4.19(b).

Correctness of the Rule: The case for Rule Type_III_D is similar as the case in Rule

Type III_B except that o is now a descendant of the referencing object class in the

source schema in this case. Based on Theorem 4.2, vo has influence on o through the

influence of the referenced and referencing object class on o. Since the referencing

object class is not in the vpath of o in the view schema, we need to generate the

condition constrains for the influence of vo on o in the view schema. The influence of

vo on o is as follows. For a given instance of vo in the view document, we need to

vo

referencing

o o

$in1 $in2

viewsource

referenced
vo

r_no

vo_no

r_no

o_no

vo_no

o_no

r_no_Ref

for $o_no in distinct-values($in2//o/@o_no)

where some $referenced in $in1//referenced
satisfies
(exists($referenced[descendant::vo/@vo_n
o=$vo_no])) and some $referencing in
$in2//referencing satisfies
(exists($referencing[@r_no=$referenced/
@r_no]) and
exists($referencing[descendant::o/@o_no=$o
_no]))

return <o o_no={$o_no}/>

Figure 4.19(b). Where condition generated
in Rule Type_III_D

Figure 4.19(a). The case for Rule Type_III_D

 Chapter 4. Generating XQuery View Definitions

 106

retrieve those instances of o in the source document, which are the descendants of

those instances of the referenced object class in the source document, which refers to

those instances of the referencing object class in the source document, which are the

ancestors of the instance of vo in the source document. Based on the requirement, we

generate the condition constraints in Rule Type_III_D, which indicates that if an

instance of o with key value $o_no is selected under the instance of vo with the

current qualified key value $vo_no, then there must exist an instance of the referenced

object class in source 1 ($in1) that has a descendant instance of vo with key value

$vo_no and there also must exist an instance of referencing object class in source 2

($in2) that has a key value equal to the instance of the referenced object class’s key

value and also has an descendant instance of o with key value equal to $o_no. The

condition constraints exactly reflect the influence of vo on o. □

The four rules for Type III object class consider the case where vo is from the schema

of the referenced object class and o is from the schema of the referencing object class.

In fact, vo can be from the schema of the referencing object class and o can be from

the schema of the referenced object class. In this case, a similar set of rules can be

derived to generate the condition constraints of vo on o in the where clause of o.

All the rules above generate the condition constraints of a given object class, which

are from the object classes in the vpath of the given object class. Besides the

condition constraints, there may be select operators, i.e. selection conditions enforced

on the attributes attached to the given object class. We also need to generate condition

constrains for those selection condition. The following Rule Selection_Condition

handles this case.

 Chapter 4. Generating XQuery View Definitions

 107

� Rule Selection_Condition: If there is a selection condition enforced on an

attribute a attached to o (say σ$o/a), then the selection condition σ$o/a is appended

to the where clause of the XQuery expression of o.

Rule Selection_Condition is straightforward. For each selection condition, we just

need to directly append it into the where clause of o.

4.3.4. Rules for Generating Attributes Attached to an Object Class

Next, we can generate a return clause to produce the object class o in the view

document. In addition, there may also be different attributes attached to o in the view

schema. They can be single-valued attributes or multivalued attributes of o or

relationship types, or aggregate attributes of relationship types.

We propose the following rules for the different attributes. Rule Attribute_1 handles

single-valued attributes of o. Rule Attribute_2 handles multivalued attributes of o.

Rule Attribute_3 handles single-valued attributes and multi-valued attributes of

relationship types attached to o. Rule Attribute_4 handles aggregate attributes of

relationship types attached to o. Finally, Rule Attribute_5 and Attribute_6 handles

attributes from the referenced object class in the case where o is a referencing object

class generated by a join operator.

We show the for and the two let clauses of the XQuery expression of o because we

use the variable $o to generate the attribute of o, which is bound in the let clauses.

The attributes in the following rules will be generated using the attribute constructor

or the element constructor in the return clause, which is highlighted in bold font.

 Chapter 4. Generating XQuery View Definitions

 108

� Rule Attribute_1: If an attribute (say a) is a single-valued attribute of o in the

view schema, then a is generated as an attribute of o in the view document by

using an attribute constructor within the start tag of o as shown in Figure 4.20.

Rule Attribute_1 handles single-valued attributes of object classes. We can generate

such attributes as attributes of the element o in the view document as shown in Figure

4.20. An attribute constructor is used to construct the attribute a. The variable $o is

bound to a single node of object class o with its key value equal to the current

qualified key value $o_no.

� Rule Attribute_2: If an attribute (say a) is a multi-valued attribute of o in the

view schema, then a is generated as a sub element of o in the view document by

using an XPath expression nested in the element constructor of o as shown in

Figure 4.21.

for $o_no in distinct-values($in//o/@o_no)

let $o_set := $in//o[@o_no=$o_no]

let $o := subsequence($o_set, 1, 1)

where clause

return <o a = {$o/@a}> </o>

Figure 4.20. The generated clause for Rule Attribute_1

for $o_no in distinct-values($in//o/@o_no)

let $o_set := $in//o[@o_no=$o_no]

let $o := subsequence($o_set, 1, 1)

where clause

return <o> {$o/a} </o>

Figure 4.21. The generated clause for Rule Attribute_2

 Chapter 4. Generating XQuery View Definitions

 109

Rule Attribute_2 handles multivalued attributes of o in the view schema. Since an

attribute in XML documents cannot have multiple values, we must generate the

multi-valued attributes as sub elements of o as shown in Figure 4.21.

� Rule Attribute_3: If an attribute (say a) is a single-valued or multi-valued

attribute of a relationship type R(o1, o2, …, o), where o1, o2, …, o are the

participating object classes of R from top to bottom in the view schema, then a is

generated as a sub element of o in the view document by using an XPath

expression nested in the element constructor of o as shown in Figure 4.22.

Correctness of the Rule: In this case, we handle the single-valued or multi-valued

attribute of relationship type (say R), which is attached to o in the view schema. That

is, o is the lowest participating object class of the relationship type. Suppose R has

participating object class o1, o2, …, o from the top down in the view schema. We

need to use an XPath expression for a shown in Figure 4.22. The XPath expression

begins from the variable $o1, which is bound to the first object class o1 of R. It then

goes down all the way to o along with the object classes of R. There is one predicate

for each object class from o2 to o in the XPath expression, which indicates that the

key value of each object class (from o2 to o) must be equal to the current qualified

for $o_no in distinct-values($in//o/@o_no)

let $o_set := $in//o[@o_no=$o_no]

let $o := subsequence($o_set, 1, 1)

where clause

return <o> {$in/o1[@o1_no=$o1_no]/…/o[@o_no=$o_no]/a} </o>

Figure 4.22. The generated clause for Rule Attribute_3

 Chapter 4. Generating XQuery View Definitions

 110

key value of the object class. In this way, we can choose those qualified values of the

attribute a in the view document. □

� Rule Attribute_4: If an attribute (say a) is an aggregate attribute of a

relationship type R(o1, o2, …, o) by applying an aggregate function (say AGG) to

an original attribute a’ of R’, where o1, o2, …, o are the participating object

class of R from the top down in the view schema and R is derived from R’, then a

is generated as a sub element of o in the view document by using an XPath

expression nested in the element constructor of o as shown in Figure 4.23.

Correctness of the Rule: Rule Attribute_4 handles aggregate attributes of

relationship types attached to o in the view schema. Obviously, it still needs to be

generated as a sub element of o in the view document. Based on the rules of

designing valid XML views, when an object class is dropped, which participates in a

relationship type (say R’) in the source schema, the attribute of R’ (say a’) can be

aggregated into an aggregate attribute (say a) in the view schema by applying an

aggregate function (say AGG). A new relationship type R can also be derived by

projecting R’ based on the dropped object class. Suppose the rest of the object classes

of R’, that is, the participating object classes of R, are o1, o2, …, o. Then the XPath

for $o_no in distinct-values($in//o/@o_no)

let $o_set := $in//o[@o_no=$o_no]

let $o := subsequence($o_set, 1, 1)

where clause

return <o>

 <a> { AGG($in//o1[@o1_no=$o1_no]//…//o[@o_no=$o_no]/a’) }

 </o>

Figure 4.23. The generated clause for Rule Attribute_4

 Chapter 4. Generating XQuery View Definitions

 111

expression below collects a sequence of qualified values of a’, which is indicated by

the predicates in the XPath expression.

$in//o1[@o1_no=$o1_no]//…//o[@o_no=$o_no]/a’

Note double slashes are used in the XPath expression, because there may be other

dropped object classes between o1, o2, …, o. Next, the aggregate function AGG is

applied to the sequence of values of a’ and the value of the aggregate attribute a is

then computed.

 AGG($in//o1[@o1_no=$o1_no]//…//o[@o_no=$o_no]/a’)

Finally, since the XPath expression returns only a value, it is nested in an element

constructor for a, which is subsequently nested in the element constructor for o. In

this way, the entire element constructor in the return clause in Figure 4.23 generates

the aggregate attribute a as a sub element of o in the view document. □

� Rule Attribute_5: If o is a referencing object class and an attribute of o (say a)

is a single-valued attribute from the referenced object class ref_o, then generate a

as an attribute of o using ref_o in the view document as shown in Figure 4.24.

for $o_no in distinct-values($in//o/@o_no)

let $o_set := $in//o[@o_no=$o_no]

let $o := subsequence($o_set, 1, 1)

for $ref_o_no in distinct-values($in//ref_o/@ref_o_no)

let $ref_o_set := $in//ref_o[@ref_o_no=$ref_o_no]

let $ref_o := subsequence($ref_o_set, 1, 1)

where $ref_o_no = $o_no

return <o a = $ref_o/@a >

Figure 4.24. The generated clause for Rule Attribute_5

 Chapter 4. Generating XQuery View Definitions

 112

In this rule, we process the single-valued attributes from the referenced object class

when o is the referencing object class. Note that we must use the variables bound to

the referenced object class to generate the attributes. The variables have been

generated in Rule For_Let_2.

� Rule Attribute_6: If o is a referencing object class and an attribute of o (say a)

is a multi-valued attribute from the referenced object class ref_o, then generate a

as an attribute of o using ref_o in the view document as shown in Figure 4.25.

In this rule, we handle the multivalued attributes from the referenced object class

when o is a referencing object class. As in Rule Attribute_2, we must generate these

attributes as sub elements of o in the view document. The difference is that we need

to refer to variables bound to the referenced object class in this rule.

The order by operators can be applied to attributes because order is significant in

XML. Thus, we use the following rule to handle order by operators applied to

attributes attached to o.

for $o_no in distinct-values($in//o/@o_no)

let $o_set := $in//o[@o_no=$o_no]

let $o := subsequence($o_set, 1, 1)

for $ref_o_no in distinct-values($in//ref_o/@ref_o_no)

let $ref_o_set := $in//ref_o[@ref_o_no=$ref_o_no]

let $ref_o := subsequence($ref_o_set, 1, 1)

where $ref_o_no = $o_no

return <o> {$ref_o/a} </o>

Figure 4.25. The generated clause for Rule Attribute_6

 Chapter 4. Generating XQuery View Definitions

 113

� Rule Order_By: If an order by operator is applied to an attribute a attached to o

with an ascending or descending order, then an XPath expression with the

ascending or descending flag is generated in the order by clause of o as follows:

Order by $o/a ascending | descending

This rule is straightforward. The XPath expression $o/a in the order by clause denotes

the results of the return clause of o will be ordered by the value of attribute a attached

to o with ascending or descending order.

4.4. Improvements

Based on the set of rules in the previous section, we can develop a complete

algorithm to generate XQuery expressions for ORA-SS views. Unfortunately, there

are several shortcomings in the approach. Firstly, when generating the query

expression for a given object class in the views, we process each object class in the

vpath of the object class in the views to generate the condition constraints of the

object class. However, some of the condition constraints may not be necessary. That

is, we may produce redundant condition constraints in the algorithm. Secondly, some

ORA-SS views may not change the structure of the source schema, such as views

involving only selection operators applied to the root object class. For those views,

the algorithm will still generate condition constraints for all the object classes in the

vpath of a given object class in order to produce the XQuery expression for the object

class. However, it is not the simplest way to generate the XQuery expression in this

case. We can use another simple form of XQuery to express such views.

 Chapter 4. Generating XQuery View Definitions

 114

We propose the following two improvements. Section 4.4.1 discusses how to reduce

the redundant condition constraints in the algorithm by using the semantics in the

views. Section 4.4.2 examines how to express views involving only selection

operators with a simple form of XQuery.

4.4.1. Reducing redundant condition constraints

In the naïve approach, we generate the condition constraints for each object class in

the vpath of a given object class in the views. These condition constraints are

sufficient for the XQuery expression of the object class. However, some of them may

be not necessary. The following example illustrates this.

member

project

mname

jno

job_title

jname

publication

pno pub_title

jm, 2, 1:n, 1:n

mp, 2, 1:n, 1:n

Example 4.7. Figure 4.26 depicts an ORA-SS view schema diagram that contains

three object classes, i.e. project, member and publication. There is one binary

relationship type jm between project and member, indicating which members

participate in a given project. The other binary relationship type mp between member

and publication indicates which publications are published by a member. Suppose

Figure 4.26. an ORA-SS view schema diagram

 Chapter 4. Generating XQuery View Definitions

 115

now we generate the XQuery expression for the view. When processing object class

member, we generate the condition constraints for the influence of project on member.

Next, we process object class publication. Since there are two object classes in the

vpath of publication, we generate the condition constraints for the two object classes

project and member respectively.

However, the object class publication has a relationship with only one object class

member and has no relationship with project in the view schema. That is, no matter

under which instance of project, for a given instance of member, only those instances

of publication published by the instance of member can be displayed. In other words,

a given instance of project determines a set of instances of member that participates in

this project. Each of those instances of member then determines those instances of

publication that are published by the instance of member. Thus, object class project

only has influence on publication through the influence of object class member on

publication, which is similar to the case in Rule Type II & III object class presented

in Section 4.3. Since member is also in the vpath of publication in the view schema,

we do not need to generate the condition constraints for the influence of project on

publication. □

The example shows that not all object classes in the vpath of a given object class need

to be processed to generate condition constraints. The following theorem identifies

which object classes in the vpath of an arbitrary object class can be discarded.

Theorem 4.3 For an arbitrary object class o1 in the vpath of o in an ORA-SS view

schema, if o1 and o participate in a relationship type R in the view schema, then o1

needs to be retained to generate the condition constraints for o. If o1 and o do not

 Chapter 4. Generating XQuery View Definitions

 116

participate in any relationship type in the view schema, then o1 can be discarded and

no condition constraints for the influence of o1 on o need to be generated.

Proof: In the case where o1 and o participate in a relationship type R in the view

schema, a given instance of o1 in the view document must determine a set of instances

of o through R. Thus, o1 has direct influence on o in the view schema. We have to

generate the condition constraints for the influence of o1 on o. In the case where o1

and o do not participate in any relationship type in the view schema, that is, o1 has no

direct influence on o in the view schema. Thus, o1 can be discarded and no condition

constraints need to be generated for o1. □

In general, o1 is called a determining object class of o and R is called a determining

relationship type of o in the view schema. Formally, we have the following definition

for the determining object class and determining relationship types for a given object

class in an ORA-SS schema.

Definition 4.2 (DOC & DRT) Given an arbitrary object class o in an ORA-SS view

schema, if an object class o1 in the vpath of o participates in a relationship type R

with o in the view schema, then o1 is called a Determining Object Class (DOC) of o in

the view schema, and the relationship type R is called a Determining Relationship

Type (DRT) of o in the view schema.

Based on the definition, a DRT of o involves DOCs of o and a DOC of o participates

in DRTs of o. A DOC of o is also an ancestor of o in the view schema, because it is in

the vpath of o. The instances of o in the view document are determined by the

instances of DOCs of o in the view schema through their corresponding DRTs of o.

 Chapter 4. Generating XQuery View Definitions

 117

Based on Theorem 4.3 and the definition above, we propose a pre-process rule to

generate only the necessary condition constraints for o.

� Pre-Process Rule: If an object class vo in the vpath of o is a DOC of o in the

view schema, then condition constraints for the influence of vo on o need to be

generated in the XQuery expression of o based on Rule Type I, II or III. If vo is

not a DOC of o in the view schema, then no condition constraints for the influence

of vo on o need to be generated.

The pre-process rule is straightforward. It can be easily proved to be correct based on

theorem 4.3 and the definition of DRT and DOC. When generating condition

constraints of o, the rule will be applied before the Rule Type I, II and III in section

4.3. Thus, those object classes in the vpath of o that are not DOCs of o will be

omitted and unnecessary condition constraints will be avoided. Instead, we only need

to generate condition constraints for DOCs of o in the view schema.

4.4.2. Views involving only selection operators

When a view is designed by selection operators only, the structure of the view is the

same as the source schema. In fact, the view document just retains some data and

discards other data of the source document while keeping the structure of the source

document intact. Thus, we do not have to use the previous rules such as Rule Type I,

II or III to generate XQuery expression for the view. Instead, we adopt features of

XQuery to generate simpler form of XQuery expression for the view.

 Chapter 4. Generating XQuery View Definitions

 118

member

project

mname

jno='j001'

job_title

jname

publication

pno pub_title

jm, 2, 1:n, 1:n

mp, 2, 1:n, 1:n

Example 4.8. Figure 4.27 depicts a view designed based on the view schema in

Figure 4.26. The view only applies a selection operator on the attribute jno: “jno =

j001”. Thus, the view has the same structure as the previous view in Figure 4.26.

We can use the rules in the section 4.3 to generate an XQuery expression for the view.

However, the generated expression of the view will be unnecessarily complicated.

Figure 4.27. an ORA-SS view schema diagram applying a
selection operator in Figure 4.26

For $x in doc()/root return convert-children($x) ; // $x represents the root of the doc

declare convert-children($x) {
 for $y in $x/node() return convert-node($y) };

declare function convert-node($x) {
 if ($x instance of element(project,*) then
 if ($x[@jno="j001"]) then element {node-name($x)} {$x/@*, convert-children($x)}
 else (return null)
 else if ($x instance of element()) then
 element {node-name($x)} {$x/@*, convert-children($x)}
};

Figure 4.28. The XQuery expression for the view in Figure 4.27

 Chapter 4. Generating XQuery View Definitions

 119

Actually, we generate another XQuery expression for this view by defining some

functions, as shown in Figure 4.28.

In this XQuery expression, we use a recursive tree walk technique with a function

called convert-node. The purpose of the function is to filter those nodes that do not

satisfy the selection operator in the view. In particular, if a node bound by $x is an

element of project and its attribute jno is equal to j001, then the element and its

attributes will be kept in the resulting view document. Otherwise, if the node $x is an

element of project and its attribute jno is not equal to j001, then the function will

return a null value. That is, the project element will be discarded in the resulting view

document. Next, for the rest elements of the source document, the function will return

them as is. □

Note that this type of XQuery expression can be applied only when the selection

operators are applied in the root object class in the view. Obviously, this type of

XQuery expression will be simpler than the XQuery expression generated using the

rules in Section 4.3, as these rules will generate many condition constraints in the

XQuery expression. In this type of XQuery expression generated by using functions,

there will be no condition constraints for each object class in the view. Note that the

larger the number of object classes in the view, the simpler this type of XQuery

expression will be compared to one generated using the rules in section 4.3. Formally,

we have the following rule to generate this type of XQuery expression.

� Rule Selection_View: If an ORA-SS view is designed with selection operators σi

(i=1, …, n) only applied to the root object class; then:

 Chapter 4. Generating XQuery View Definitions

 120

• Step 1. Generate the main query expression and the function convert-children

as follows:

 For $x in doc()/root return convert-children($x) ;
 Declare convert-children($x) {
 for $y in $x/node() return convert-node($y)
 };

• Step 2. Generate the function convert-node to process selection operator σi

on object class oi (i = 1, …, n) in the view:

 Declare function convert-node($x) {
 if ($x instance of element(o1,*) then

 if (σ1) then element {node-name($x)} {$x/@*, convert-children($x)}
 else (return null)
 ……

 else if ($x instance of element(on,*) then

 if (σn) then element {node-name($x)} {$x/@*, convert-children($x)}
 else (return null)
 else if ($x instance of element()) then
 element {node-name($x)} {$x/@*, convert-children($x)}
 };

This rule only applies to the case where a view is designed with selection operators

applied to the root object class only. In this case, the view definition does not have to

be generated by processing each object class in the view as mentioned in section 4.3.

Instead, it can be generated by using a recursive tree walk with XQuery functions. In

the Rule Selection_View above, we first generate the main view definition that

contains only one for clause in step 1, which uses a function called convert-children

to process each child node of the source document. The function convert-children is

also defined in step 1, in which we use another function called convert-node to check

if a node satisfies the selection operators in the view schema. In step 2, we define the

second function convert-node to process each selection operator in the view. For each

selection operator, we generate an if clause to check if a node satisfies its

 Chapter 4. Generating XQuery View Definitions

 121

corresponding selection operators in the view schema. If so, then it will be kept in the

view document. If not, it will be discarded in the view document. Finally, all the rest

of the objects are copied in the view document with the last else if clause.

4.5. Illustrating Example

We use the following example to illustrate how to generate XQuery view definitions

from ORA-SS views based on the rules.

Example 4.9. Suppose we design a view based on the ORA-SS source schema shown

in Figure 4.29. Notice there is a foreign key to key reference from project’ to project

(i.e. jno). In this view, we first join object class project’ and project. Next, we drop

object class supplier. The view is shown in Figure 4.30. Based on the rules above, we

generate the XQuery view definitions as shown in Figure 4.31.

supplier

project'

qty

part

jno

spj,3,1:n,1:n

sno

pno

price

spj

jname

ps employee

*

eno ename progress

je, 2, 1:n, 1:n

je

project

ps, 2, 1:n, 1:n

sname

pname

factory

fno fname

sf,2,1:n,1:n email

jno

part

project'

jname

pj,2,1:n,1:npno

pj

pname

factory

fno fname

pf,2,1:n,1:n

jno total_qty

employee

eno ename progress

je,2,1:n,1:n

je

*

email

Figure 4.29. An ORA-SS source schema
Figure 4.30. An ORA-SS view schema based

on Figure 4.28

 Chapter 4. Generating XQuery View Definitions

 122

1. <db>
2. for $p_no in distinct-values($in//part/@pno)
3. let $p_set := $in//part[@pno=$p_no]
4. let $p := subsequence($p_set, 1, 1)
5. return
6. <part pno={$p_no} pname={$p/@pname}>
7. {
8. for $f_no in distinct_values($in//factory/@fno)
9. let $f_set :=$in//factory[@fno=$f_no]
10. let $f := subsequence($f_set, 1, 1)
11. where some $p1 in $in//part
12. satisfies (exists($p1[@pno=$p_no]) and
13. exists($p1[descendant::factory/@fno=$f_no]))
14. return <factory fno={$f_no} fname={$f/@fname}/>
15. }
16. {
17. for $j_no’ in distinct_values($in//project’/@jno)
18. let $j_set’ := $in//project’[@jno=$j_no’]
19. let $j’ := subsequence($j_set’, 1, 1)
20. for $j_no in distinct_values($in//project/@jno)
21. let $j_set := $in//project[@jno=$j_no]
22. let $j := subsequence($j_set, 1, 1)
23. where some $p2 in $in//part
24. satisfies (exists($p2[@pno=$p_no]) and
25. exists($p2[descendant::project’/@jno=$j_no’]) and $j_no=$j_no’)
26. return <project’ jno={$j_no} jname={$j/@jname}>
27. <total_qty>
28. sum($in//part[@pno=$p_no]//project’[@jno=$j_no’]/qty)
29. </total_qty>
30. {
31. for $e_no in distinct-values($in//employee/@eno)
32. let $e_set := $in//employee[@eno=$e_no]
33. let $e := subsequence($e_set, 1, 1)
34. where some $j1 in $in//project
35. satisfies (exists($j1[@jno=$jno]) and
36. exists($j1[descendant::employee/@eno=$eno]))
37. return <employee eno={$e_no} ename={$e/@ename}>
38. {$e/email}
39. {$in//project[@jno=$j_no]//employee[@eno=$e_no]/progress}
40. </employee>
41. }
42. </project’>
43. }
44. </part>
45. </db>

Figure 4.31. The XQuery view definition for ORA-SS view schema in Figure 4.30

 Chapter 4. Generating XQuery View Definitions

 123

First, we process the root object class part (line 1-6). As it is the root object class, we

do not need to generate any condition constraints for its expression. We first generate

one for and two let clauses to bind variables to part and then generate a return clause

to construct the element for part. Next we process the first child of part – factory

(line 7-15). Similarly, we first generate for and let clauses to bind variables to object

class factory. Then we generate condition constraints in its where clause based on

Rule Type_I_A as part is a DOC of factory in the view schema and an ancestor of

factory in the source schema. The condition constraints indicate that only those

instances of factory can be retrieved which are the descendants of the current part

instance in the source data.

Next, we process the second child of part – project’ (line 17-29). As project’ is a

referencing object class, we not only generate variables for project’, but also generate

variables for its referenced object class project, which will be used to generate the

attributes of the referencing object class. Similarly, we generate condition constraints

in its where clause based on Rule Type_I_A as part is a DOC of factory in the view

schema and an ancestor of factory in the source schema. The condition constraints

indicate that only those instances of project’ can be retrieved which are the

descendants of the current part instance in the source data. For the relationship

attribute total_qty, we generate it as a sub element of project’ (line 27-29) based on

Rule Attribute_4 as total_qty is an aggregate attribute.

Finally, we process the child of project’ – employee (line 30-41). We first generate

for and let clauses to bind variables to employee. Although both part and project’ are

ancestors of employee in the view schema, only project’ is its DOC because of

 Chapter 4. Generating XQuery View Definitions

 124

relationship type je. Thus, we then generate condition constraints in the where clause

of employee based on Rule Type_I_A for the influence of project’ on employee. The

condition constraints indicate that only those instances of employee can be retrieved

which are the descendants of the current project instance in the source data.

In summary, this example illustrates how we generate XQuery view definitions from

ORA-SS views based on the rules above. The generated view definition can be

evaluated on XQuery engines and can produce the result of an XML view. As the

example shows, our method of automatically generate XQuery view definitions from

ORA-SS views and alleviates users from manually write complicated XQuery

expression. □

4.6. XQuery View Definitions Generation Algorithm

We designed an algorithm to automatically generate XQuery view definitions from

ORA-SS views. Algorithm Generate_View_Definition takes as inputs a view schema

v and a source schema s and produces an XQuery view definition for the view.

Algorithm Generate_View_DefinitionAlgorithm Generate_View_DefinitionAlgorithm Generate_View_DefinitionAlgorithm Generate_View_Definition

Input: view v; source sInput: view v; source sInput: view v; source sInput: view v; source s

Output: XQuery view definition of vOutput: XQuery view definition of vOutput: XQuery view definition of vOutput: XQuery view definition of v

1. If v is designed with selection operators only then

2. apply Rule Selection_View;

3. End if

4. generate the start tag for root of the view: “<root>”

5. For each child o of the root of v do

6. generate a start bracket: “{“

7. Generate_Objectclass_Definition(o, v);

8. generate a end bracket: “}”

9. End for

10. generate the end tag for root of the view: “</root>”

The algorithm Generate_View_Definition generates view definitions in XQuery. The

ORA-SS views that are input in the algorithm are valid. Firstly, it processes those

 Chapter 4. Generating XQuery View Definitions

 125

views that are designed with selection operators only by using the Rule

Selection_View (line 1-3) in section 4.4. Next, it generates a root element for the

view because each XML document must have a root element, which is above the first

object class in the ORA-SS view. By default, this root element is not shown as an

object class in the ORA-SS views. Finally, for each child object class of the root, say

o, it calls the function Generate_ObjectClass_Definition to generate an XQuery

definition for o and all its descendants. Each of the definitions is contained in a pair

of curly brackets, indicating that they are sub elements of the root element. The

function Generate_ObjectClass_Definition takes as inputs a given object class and the

view schema and produce an XQuery view definition for the object class.

FunctionFunctionFunctionFunction Generate_ObjectClass_Definition Generate_ObjectClass_Definition Generate_ObjectClass_Definition Generate_ObjectClass_Definition

Input: object class o; view vInput: object class o; view vInput: object class o; view vInput: object class o; view v

Output: view definition of o and its descendantsOutput: view definition of o and its descendantsOutput: view definition of o and its descendantsOutput: view definition of o and its descendants

1. If o is not a referencing object class then

2. apply Rule For_Let_1;

3. Else

4. apply Rule For_Let_2;

5. End if

6. For each DOC of o (vo) in the vpath of o do

7. If vo belongs to type I then

8. ProcessTypeI(vo, o); //generate condition constraints for Type I object class

9. End if

10. If vo belongs to type II then

11. ProcessTypeII(vo, o); //generate condition constraints for Type II object class

12. End if

13. If vo belongs to type III then

14. ProcessTypeIII(vo, o); //generate condition constraints for Type III object class

15. End if

16. append the generated condition in the where clause;

17. End for

18. For each selection operator applied to attributes of o do

19. apply Rule Selection_Condition;

20. End for

21. For each order by operator applied to attributes of o do

22. apply Rule Order_By;

 Chapter 4. Generating XQuery View Definitions

 126

23. End for

24. generate a return clause with a start tag for o:

 “return <o> ”

25. For each single-valued attribute of o do

26. apply Rule Attribute_1;

27. End for

28. For each multi-valued attribute of o do

29. apply Rule Attribute_2;

30. End for

31. For each single-valued or multi-valued attribute of relationship type attached to o do

32. apply Rule Attribute_3;

33. End for

34. For each aggregate attribute of relationship type attached to o do

35. apply Rule Attribute_4;

36. End for

37. For each single value attribute of o from referenced object class do

38. apply Rule Attribute_5;

39. End for

40. For each multi-valued attribute of o from referenced object class do

41. apply Rule Attribute_6;

42. End for

43. If o has no child then

44. generate an end tag for o: “</o>”

45. return the generated XQuery definition for o;

46. Else

47. For each child object class co of o do

48. generate a start brace: “{“

49. Generate_View_Definition(co, v);

50. generate an end brace: “}”

51. End for

52. generate an end tag for o: “</o>”

53. return the generated definition;

54. End if

In the function Generate_ObjectClass_Definition, we first generate the for/let clauses

to bind necessary variables for object class o (line 1-5). Rule For_Let_1 and Rule

For_Let_2 will apply based on whether o is a referencing object class or not.

Then the algorithm processes each DOC of o in the vpath of o in the view schema to

generate condition constraints (line 6-17). This is because only DOCs of o have

 Chapter 4. Generating XQuery View Definitions

 127

influences on o, as stated in section 4.4.1. The functions ProcessTypeI, ProcessTypeII

and ProcessTypeIII integrate rules for Type I, II & III object classes respectively.

They take vo and o as inputs and generate corresponding condition constraints that

reflect the influence of vo on o. The generated condition constraints will be combined

into the where clause. Next, the condition constraints for the selection operators

applied to o will also be generated and appended into the where clause of o (line 18-

20). An order by clause will also be generated if there is any order by operator

applied to attributes attached to o (line 21-23).

Next, the algorithm generates a return clause for o to construct the element result of o

(line 24). It then process different attributes attached to o based on rules Attribute_1

to Attribute_6 (line 25-42). At this point, the XQuery view definition for o itself is

generated. If there is no child for o, then the view definition for o will be returned

(line 43-45). If there are children for o, then for each child of o, the function

Generate_ObjectClass_Definition is called recursively untill all the descendants of o

have been processed (line 47-51). Note that pairs of braces are generated to indicate

that the children of o are generated as sub-elements of o (line 48, 50). In this way, we

generate the complete XQuery view definition of the view.

4.7. Algorithm Analysis

In this section, we provide an analysis of the proposed method and prove its

correctness. In the algorithm Generate_View_Definition, XML views involving

selection operators only are processed first. Next, it generates the root element of the

view, and the function Generate_ObjectClass_Definition is called to generate the

definition for each sub tree rooted at a child object class (say o) of the root, which are

 Chapter 4. Generating XQuery View Definitions

 128

then combined together to construct the whole XQuery expression of the view. If the

function Generate_ObjectClass_Definition returns the correct definition for the sub

tree rooted at o in the view, then the algorithm Generate_View_Definition will return

the correct XQuery expression for the ORA-SS view.

The algorithm in the function Generate_ObjectClass_Definition is from the intuition

that the data instances represented by an object class in an ORA-SS view are

determined by all the DOCs in its vpath. A pre-condition that is true for the algorithm

is that o is an object class of an ORA-SS view v and the number of the descendants of

o in the view is n (n ≥ 0). After executing the algorithm with o and its view v as

input, we have result = Generate_Objectclass_Definition(o, v). Then a post-condition

states what is to be true about the generated result which is given by result = XQuery

expression of a sub tree rooted at o. The proof of correctness takes us from the pre-

condition to the post-condition.

(a) n = 0. This is the base case where o has no children. The algorithm generates a

variable in a for clause to iterate over each key value of o. Next, for each DOC in

the vpath of o, it generates the condition constraints in a where clause based on

the rules corresponding to different types of object class, which are proved to be

correct in section 4.3. The selection operators and order by operators are also

processed as well as the attributes attached to o based on the rules in section 4.3.

Finally, a return clause is generated to construct the element result of o. Thus, the

algorithm generates and returns the correct XQuery expression for o itself.

(b) n > 0. In this inductive step, o will have children. In this case, we have an

inductive hypothesis that assumes Generate_Objectclass_Definition(o, v) returns

 Chapter 4. Generating XQuery View Definitions

 129

the correct XQuery expression of a sub tree rooted at o for all the object class o

such that 0 ≤ j ≤ n-1 where j is the number of descendants of o. Having the

correctness of the base case, the algorithm first generates the correct XQuery

expression for o itself. Then it processes each child of o, say c. By the inductive

hypothesis, GenerateViewDefinition(c) will return the correct XQuery expression

of a sub tree rooted at c since 0 ≤ j ≤ n-1 where j is the number of descendants of

c. By combining the query expression of o and o’s children, the algorithm returns

the correct XQuery expression of a sub tree rooted at o.

4.8. Summary

Motivated by the complexity of manually defining XML views using XQuery, we

developed a method to automatically generate XQuery view definitions from views

defined using the ORA-SS conceptual model. The method removes the need for users

to manually write XQuery expressions. Visual query languages are proposed for

XQuery language, such as XML-GL [87]. They can also be used to define XML

views in convenient way. However, there is a fundamental difference between our

approach and the thesis. Most of the visual query languages do not have a mechanism

that guarantees the constructed views are valid. In contrast, our approach can provide

such a facility based on the ORA-SS data model. To the best of our knowledge, this is

the first work to employ a semantic data model for the design and query of XML

views. Using a conceptual model for the design and querying of XML views provides

a fast and user-friendly approach to retrieve XML data.

 Chapter 5. Generating SQLX View Definitions

 130

Chapter 5

Generating SQLX View Definitions

In the previous chapter, we generate XQuery view definitions from ORA-SS views in

the case where XML data are stored in XML files or native XML databases. In this

chapter, we consider the other case where XML data are stored in an object-relational

database. In order to directly produce the result of the XML views from the object-

relational database, we adopt SQLX [75] to express the designed ORA-SS views.

SQLX queries are SQL queries with XML extensions, which can be directly

evaluated in the object-relational database and produce XML results. However, it is

difficult to manually write SQLX view definitions for the ORA-SS views.

We develop an approach to automatically generating SQLX view definitions from the

designed ORA-SS views in the case where XML data are stored in an object-

relational database. The approach employs the semantics in the ORA-SS views and

supports all general XML views designed with our view operators. It removes the

need for users to manually write complex SQLX view definitions. The reason why we

adopt the object-relational database in this approach is because it removes a lot of

redundancies in the XML documents and some joins in relational databases. We also

develop a method to design the corresponding object-relational storage structure for

an ORA-SS source schema. The method will be introduced in detail in the next

subsection. Formally, the problem to be solved in this chapter is depicted as follows.

Note in the problem definition that T refers to the object-relational database storage

 Chapter 5. Generating SQLX View Definitions

 131

for the ORA-SS source schema designed based on our own approach presented in the

next subsection.

SQLX View Definition Generation Problem Given a designed valid ORA-SS view

schema V, its ORA-SS source schema S and its corresponding object-relational

database storage T, generate a SQLX view definition for V, where the SQLX view

definition can be evaluated on the storage T and the result of the view can then be

produced.

The rest of the chapter is organized as follows. Section 5.1 introduces the object-

relational storage structure for XML data. The syntax of SQLX is given in section 5.2.

A motivating example is given in Section 5.3. Section 5.4 presents the method to

generate SQLX query definitions from valid ORA-SS views. Section 5.5 illustrates

how to use the method to generate SQLX view definitions. A complete algorithm is

presented in section 5.6, following by an algorithm analysis in section 5.7..

5.1. The O-R Database Storage for XML based on ORA-SS

Based on an ORA-SS source schema, we can design an efficient storage structure for

XML data in an object-relational database [59]. The main rules of this storage

structure are as follows.

• Each object class with all its attributes in the schema forms one relation. The

identifier of this object class becomes the primary key of the relation. Each

multi-valued attribute forms a nested relation in the relation.

• Each relationship type with the object identifiers of its participating object

classes and all its attributes forms one relation. The key of the relationship

 Chapter 5. Generating SQLX View Definitions

 132

type can be determined by the participation constraint of the relationship type.

Each multi-valued attribute forms a nested relation in the relation.

Example 5.1. Figure 5.1 shows an ORA-SS schema, and Figure 5.2 shows the

corresponding object-relational schema for the ORA-SS schema in Figure 5.1. Each

object class, such as supplier, is stored in a relation with its attributes (sno and

sname). Each relationship type, such as ps, is stored into another relation with its

attributes (price). As a multi-valued attribute of employee, email is stored in the

relation for employee as an embedded nested relation as follows.

employee (eno, ename, (email)*).

For object class project’ in the schema, we can refer to jno in the relation spj in the

storage in Figure 5.2. This is because project’ participates in the relationship type spj

and the following inclusion dependency holds:

 Πjno project’ = Πjno spj.

supplier

project'

qty

part

jno

spj,3,1:n,1:n

sno

pno

price

spj

jname

ps employee

*

eno ename progress

je, 2, 1:n, 1:n

je

project

ps, 2, 1:n, 1:n

sname

pname

factory

fno fname

sf,2,1:n,1:n email

S1 S2

jno

 Object relations:
 supplier (sno, sname);
 part (pno, pname);
 factory (fno, fname);
 project (jno, jname);
 employee (eno, ename, (email)*);

 Relationship relations:
 ps (pno, sno, price);
 sf (sno, fno);
 spj (sno, pno, jno, qty);
 je (jno, eno, progress);

Figure 5.2. The Object-relational storage
schema for the ORA-SS schema in Figure 5.1 Figure 5.1. An ORA-SS source schema

 Chapter 5. Generating SQLX View Definitions

 133

This approach to map XML data to an object-relational database removes a lot of

redundancies that typically exist in XML documents. For example, the attribute

sname of supplier will be stored repeatedly in XML files if it supplies different parts.

However, in the object-relational storage, it is stored only once in the object relation

supplier. In addition, the multi-valued attribute email of object class employee is

stored as an embedded nested relation in the object relation employee. Suppose we

store employee in relational database systems; then we will have two relations for

employee. One is to store single-valued attributes of employee with its key attribute.

The other is to store the multi-valued attribute with its key attribute. Thus, we need to

join the two relations when we retrieve all attributes of employee in the relational

database. Fortunately, our storage removes such joins because all attributes of

employee are stored in one relation. In summary, the storage approach provides for a

more efficient storage compared to using XML files to store XML data. Other work

[99] [100] has shown how to remove all redundancy for many common cases. □

5.2. SQLX Syntax

Having stored XML data in the object-relational database and designed valid views

based on ORA-SS, we need to define executable query expressions for those views so

that we can produce XML results for those views from the underlying database. We

choose SQLX as the query expressions for XML views. SQLX is the standard

extension to SQL for XML-related specification and is becoming the standard

technology for publishing XML data in a robust environment, i.e., the environment of

a traditional database. SQLX has provided several functions to produce XML values.

 Chapter 5. Generating SQLX View Definitions

 134

These functions include xmlelement, xmlforest, xmlagg, etc. We adopt xmlagg and

xmlelement functions to define the ORA-SS views.

• Xmlelement generates an XML element.

• Xmlagg produces forest of XML elements from a collection of individual

elements.

The syntax of xmlelement is as follows.

xmlelement operator ::=

 XMLELEMENT <left parenthesis>

 NAME <XML element name>

 [<comma> <XML attributes>]

 [{ <comma> <XML element content> }…]

 <right parenthesis>

The first argument to xmlelement provides the name of the element that is being

constructed. The second argument, if it is specified, provides the attributes for the

element that is being constructed. It has the form xmlattributes (…). The subsequent

arguments provide the content for the element that is being constructed.

Function xmlagg normally contains an xmlelement function as its argument to

integrate all instances of the element represented by the xmlelement function together

under one parent element.

Example 5.2. Based on the storage schema in Figure 5.2, we issue a SQLX query to

retrieves all suppliers supplying part with pno equal to p01 and their prices for this

part. The XML result of the query will be retrieved from relation supplier and sp.

Suppose the Object-Relational database of supplier and sp are shown in Figure 5.3.

The shadow part of each table indicates it is the key of the table.

 Chapter 5. Generating SQLX View Definitions

 135

 supplier sp

sno sname

s01 supplier01

s02 supplier02

Figure 5.4 depicts the SQLX query, which first produces the root element supplier_list by

using an xmlelement function. Next, it employs an xmlagg function to collect all supplier

elements that supplies part with pno equal to p01 under the root element. The attribute sno

and sname of supplier are also retrieved by using the function xmlattribute, which is used

within the xmlelement function for supplier. The xmlattribute function will automatically

extract the name of sno and sname as the attribute name in the XML result. Next, the price

element is then presented as a sub element of supplier instead of an attribute of supplier,

because it is an attribute of relationship type ps. Note without the xmlagg function, each

supplier element will be placed under each different supplier_list element. The XML result of

the SQLX query is shown in Figure 5.5. □

5.3. Motivating Example

Although SQLX query definitions for ORA-SS views can be evaluated directly in the

object-relational database and produce XML results for those views, it is not easy for

sno pno price

s01 p01 100

s02 p01 120

s01 p02 130

s02 p02 150

Select xmlelement (“supplier_list”,
 xmlagg(
 xmlelement(“supplier”,
 xmlattributes(s.sno, s.sname),
 xmlelement(“price”, sp.price))))
From supplier s, sp
Where s.sno=sp.sno and sp.pno=”p001”

Figure 5.4. A SQLX query to retrieve all suppliers
of part “p01” and their prices

<supplier_list>
 <supplier sno=“s01” sname=“supplier01”>
 <price> 100 </price>
 </supplier>
 <supplier sno=“s02” sname=“supplier02”>
 <price> 120 </price>
 </supplier>
</supplier_list>

Figure 5.5. An instance result for the query in Figure 5.4

Figure 5.3. An Object-Relational database of relations supplier and sp

 Chapter 5. Generating SQLX View Definitions

 136

users to manually write SQLX queries and such SQLX queries are generally difficult

to understand. The following example illustrates this.

Example 5.3. We use the same example as in section 4.2. Consider the ORA-SS

source schema in Figure 5.6. There are two object classes and one relationship type

between them. Based on the storage method in section 5.2, the ORDB for the source

schema is as follows.

 Object relations: supplier(sno); part(pno)

 Relationship relation: sp(sno, pno, price)

Figure 5.7 shows a view designed by swapping object classes supplier and part. Note

that the attribute price does not move up with part, as it is an attribute of the

relationship type sp.

1. Select xmlelement(“root”,
2. xmlagg(
3. xmlelement(“part”,
4. xmlattributes(part.pno),
5. (Select xmlagg(xmlelement(“supplier”,
6. xmlattributes(supplier.sno)
7. xmlelement(“price”, sp.price)))
8. From supplier , sp
9. Where part.pno = ps.pno and ps.sno = supplier.sno
10.)
11. From part

Figure 5.8. The SQLX View definition for the view in Figure 5.7

part

supplier

sp, 2, 1:n, 1:n

pno

sno price

sp

Figure 5.6 An ORA-SS Source Schema Figure 5.7. An ORA-SS View Schema by
swapping supplier and part in Figure 5.6

supplier

part

sp, 2, 1:n, 1:n

sno

pno price

sp

 Chapter 5. Generating SQLX View Definitions

 137

Figure 5.8 shows the SQLX expression for the view in Figure 5.7. First, the SQLX

view definition generates a root element for the view (line 1) as each XML document

has a root element. Next, we process the first object class in the view – part and

generate the query block for it. As it is the first object class of the ORA-SS view

schema, we retrieve all records in the relation part to construct the instances of part in

the view. That is, we do not need to generate any condition constraint for part in its

SQL clauses. Thus, we do not have a Where clause after the From clause of the query

block for part in line 11.

Next, we process the only child of part – supplier (line 5-10). We generate a sub

query nested in the query block for part so that supplier will be shown as a sub

element of part in the XML view. To retrieve those correct instances of supplier

under a given part, we need to generate condition constraints in the Where clause of

the query block of supplier. Note there is a relationship type between part and

supplier – sp, which indicates for a given instance of part, only those instances of

suppliers that supply that part are placed under the instance of part. Thus, we must

consider the constraint in the query block of supplier. We employ the relationship

relation ps and generate the constraint in the Where clause of the query block of

supplier.

It is clear that the SQLX expression is much more complex than the swap operator

that is used to design the ORA-SS view. Comparing with the single swap operator,

the SQLX view definition contains nested SQL queries. Like an XQuery expression

in Chapter 4, the complexity and length of SQLX view definitions increases

dramatically as the number of object classes grows. The probability of making errors

 Chapter 5. Generating SQLX View Definitions

 138

in the view definitions also increases if users are to manually define such views in

SQLX. Fortunately, this problem can be addressed using our approach which

provides a set of simple view operators for users to define views from which SQLX

expressions can be automatically generated with an algorithm. □

5.4. Rules for Generating SQLX View Definitions

In this section, we present the proposed method of generating SQLX view definitions.

We first introduce the main idea and then examine the different relationship types in

ORA-SS views, which are critical to generate SQLX view definitions. Finally, we

present the complete rules for generating SQLX view definitions.

5.4.1. Main Idea

The main idea behind the method of generating SQLX view definitions is based on

the intuition: an object in the view is determined by some particular objects in the

view through relationship types involved. We illustrate this from the SQLX view

definition in Figure 5.8.

First, we observe that it is straightforward to generate Select and From clause in the

query block of a given object class in the ORA-SS view. In general, the Select clause

contains an xmlagg and an xmlelement function to express an object class and its

attributes in XML form. The From clause then enables us to retrieve the data from

those relations related to the object class in the object-relational storage structure.

In fact, the difficult part of the method is to generate the condition constraints in the

Where clause of the query block of the object class. The condition constraints of an

object class are actually determined by those relationship types involving the object

 Chapter 5. Generating SQLX View Definitions

 139

class and its ancestors. In other words, they are determined by its DOCs through its

corresponding DRTs (see the definition in section 4.4.1). For example, the condition

constraints for supplier (line 9) are generated based on the relationship type sp

between supplier and its ancestor part in the view schema. The relationship type sp is

supplier’s DRT and object class part is supplier’s DOC in the view schema. Note that

this idea is also applicable to the generation of XQuery view definitions (see section

4.4.1).

Based on the observation, we summarize by saying that the information of DRT and

DOC is critical to generate the condition constraints of a given object class in the

view schema. Obviously, it is easy to identify DOCs of a given object class once its

DRTs have been identified, as DOCs are the ancestors of the object class participating

in the DRTs. For the DRTs, as there are different relationship types in an ORA-SS

view, there are also different DRTs for a given object class.

5.4.2 DRTs in ORA-SS Views

There are different sets of DRTs in an ORA-SS view schema. This is because the

DRTs of an object class in a view are not necessarily the same as those in the source

schema. They can be new relationship types derived by projecting or joining original

relationship types in the source schema. We cannot directly use them in generating

query expressions. Thus, we adopt a 2-step method in generating the query

expression. First, we generate the query expression of the object class based on the

DOCs and DRTs in the view schema. Second, for those clauses in the query

expression involving the derived relationship types, we rewrite them with the original

relationship types in the source schema. Note that we are assuming that the XML data

 Chapter 5. Generating SQLX View Definitions

 140

are stored in an ORDB based on the method presented in section 5.1. The relationship

types in the source schema are directly mapped to the relations in the ORDB.

Therefore, the rewritten SQLX query expression can be directly evaluated on the

ORDB. In general, for an arbitrary object class O in an ORA-SS view schema V,

there are three sets of DRTs:

• DRT_Set_1(O) = {R | R is a DRT of object class O in view schema V and is

an original relationship type in source schema S}

• DRT_Set_2(O) = {R | R is a DRT of object class O in view schema V and is

derived by projecting on an existing relationship type in source schema S}

• DRT_Set_3(O) = {R | R is a DRT of object class O and is derived by joining

original relationship types in source schema S}

Example 5.4. Suppose we design a view in Figure 5.10 based on the source schema

in Figure 5.9 by applying the two operators. The source schema here is the same as

supplier

project

jname

part

spj,3,1:n,1:nsno

pno

price

spj

ps

employee

eno ename progress

je

ps, 2, 1:n, 1:n

sname

pname

factory

fno fname

sf,2,1:n,1:n

jno qty je,2,1:n,1:n

*

email

part

project

jname

pj,2,1:n,1:npno="p001"

pj

pname

factory

fno fname

pf,2,1:n,1:n

jno total_qty

employee

eno ename progress

je,2,1:n,1:n

je

*

email

Figure 5.9. An ORA-SS source schema Figure 5.10. The ORA-SS view schema based on Figure 5.9

 Chapter 5. Generating SQLX View Definitions

 141

the one in Figure 5.1. The two operators drop the object class supplier and place a

selection condition {pno = “p001”} in the view schema.

In the view schema in Figure 5.10, relationship type je is a DRT of object class

employee in the view schema and an original relationship type in the source schema.

Thus, je belongs to DRT_Set_1(employee). Next, relationship type pj is a DRT of

object class project in the view schema and is derived by projecting original

relationship type spj in the source schema as object class supplier is dropped. That is,

pj belongs to DRT_Set_2(project). Finally, relationship type pf is a DRT of object

class factory in the view schema and is derived by joining original relationship types

ps and sf in the source schema shown in Figure 5.9. Thus, pf belongs to

DRT_Set_3(factory). □

5.4.3 Generation Rules

Having identified the three types of DRTs in the view schema, we can employ the

information of DRTs and DOCs of a given object class to generate its query

expression. Before we propose the rules of the generation, we need to preprocess the

set of DRTs of the object class. This is because we may remove unnecessary DRTs

while still losing no influences of the DOCs on the object class through the DRTs.

� Preprocess Rule: Let R1 and R2 be DRTs of an object class O in an ORA-SS view

V, let {O11, O12, …, O1i}, {O21, O22, …, O2j} be the DOCs of O participating in R1

and R2 respectively in V. If {O11, O12, …, O1i} ⊆ {O21, O22, …, O2j}, and the

following inclusion dependency Π{O11, O12, …, O1i} R2 ⊆ Π{O11, O12, …, O1i} R1 holds in

the view, then R1 can be removed from the set of DRTs of O.

 Chapter 5. Generating SQLX View Definitions

 142

Correctness of the Rule: The given inclusion dependency implies that the instances

of O11, O12, …, O1i in R2 are a subset of the instances of O11, O12, …, O1i in R1. Thus,

the influences of O11, O12, …, O1i on O through R1 are contained in the influence of

O11, O12, …, O1i through R2. In another words, the influence of the DOCs {O11, O12,

…, O1i} on O through R2 is more restrictive than the influence of the same DOCs on

O through R1. Note {O11, O12, …, O1i} is the complete set of DOCs from R1, which

implies the complete influence of the DOCs on O through R1 can be expressed in the

influence of DOCs on O through R2. Therefore, R1 can be removed from the set of

DRTs of O without losing any influence of DOCs of O on O in the view. □

supplier

project

sno

jno

sname

jname

part

pno pname

sp, 2, 1:n, 1:n
spj, 3, 1:n, 1:n

price qty

spj
sp

Example 5.5. Figure 5.11 depicts an ORA-SS view where two relationship types

exist: R1 (sp, 2, 1:n, 1:n) involves object classes supplier and part, and R2 (spj, 3, 1:n,

1:n) involves object classes project, supplier and part. For object class part, R1 and

R2 are its DRTs and object class project and supplier are its DOCs in the view.

Suppose the inclusion dependency Π{supplier, part}R2 ⊆ Π{supplier, part}R1 holds in the

Figure 5.11 An ORA-SS view containing project, supplier & part

 Chapter 5. Generating SQLX View Definitions

 143

view. According to the preprocessing rule, R1 can be removed from the DRTs of part

in the view. □

The preprocessing rule reduces the size of the set of DRTs for an object class in the

view. Thus, there will be less relationship types to be processed, and then it will be

more efficient to generate the query expression for ORA-SS views. Note that the

preprocess rule is also applicable to the generation of XQuery in the Chapter 4. This

is because the DRTs are independent of the query language we adopted.

There are a total of 5 rules for generating SQLX query expression for an ORA-SS

view. Suppose we process an object class O in an ORA-SS view. The first two rules:

Rule Gen_1 and Rule Gen_2 aim to process the object class itself in the views. Since

the single-valued attributes of O are stored together with the object class in one table

in the ORDB, they are considered together with O in Rule Gen_1 and Gen_2. Next,

Rule Gen_3 handles the case where there are still derived relationship types in the

generated condition constraints in Rule Gen_2. Rule Gen_4 then processes attributes

of relationship types attached to O in the view, and Rule Gen_5 processes multi-

valued attributes of O or multi-valued attributes of relationship types attached to O.

Finally, if there are any selection conditions enforced on attributes attached to O,

Rule Gen_6 will append the selection conditions in the where clause. Finally, Rule

Gen_7 will process the case where the order-by operator is applied in the view. For

each rule, we will also present an illustrating example, which is based on the view

schema in Figure 5.10. Its source schema is shown in Figure 5.9 and its ORDB is

shown in Figure 5.2. In addition, we use the following notations.

• Rel(O) denotes the relation for an arbitrary object class O in the ORDB.

 Chapter 5. Generating SQLX View Definitions

 144

• Rel(O).key denotes the key of the object class O in the relation.

• Rel(R) denotes the relation for an arbitrary DRT of O (say R) in the ORDB.

• {O1, O2, … , On} denotes the DOCs of O in R in the view.

• Rel(R).O, Rel(R).O1, Rel(R).O2, …, Rel(R).On denotes the keys of O, O1, O2,

…, On in Rel(R).

Note that R may not be an original relationship type in the source schema. Thus, it

will have no corresponding relation in the ORDB. In this case, Rel(R) denotes a

pseudo relation for R in the following rules, which will be rewritten into its

corresponding original relations in the ORDB in our rules. In addition, we employ a

pre-order tree traversal algorithm to process the view. Thus, the ancestors of O will be

processed before O. Since O1, O2, …, On are ancestors of O, when we generate the

SQLX query expression for O, we can directly employ the current instance of O1, O2,

… , On to generate the condition constraints of O because the query expression for O1,

O2, … , On are processed before O.

� Rule Gen_1: If O has no DRTs in the view, then no condition constraints related

to DRTs are generated in the Where clause of the query expression of O.

In this rule, O has no DRTs in the view, in other words, O does not participate in any

relationship type with its ancestors in the view. Therefore, no object class in the view

has an influcence on O. We do not need to generate any condition constraints for O in

this stage. Note we may need to generate other condition constraints when there are

selection conditions enforced on attributes of O, which will be processed in Rule

Gen_5. In general, Rule Gen_1 only applies to the root object class in an ORA-SS

 Chapter 5. Generating SQLX View Definitions

 145

view. For the other object classes in the view, there is at least one DRT for them. A

non-root object class without any DRTs in an ORA-SS view will certainly result in

unnecessary redundancies. This is because all instances of this object class will

repeatedly occur under each combination of instances of its ancestors. We do not

consider this type of XML data in this paper.

Example 5.6. Suppose we generate the SQLX query expression for the view in

Figure 5.10. The root object class of the view is part. As shown in Figure 5.12, its

query expression has no condition constraints in the where clause. □

� Rule Gen_2: For an arbitrary DRT of O (say R) in the view,

Case 1: If R belongs to DRT_Set_1(O) and involves the DOCs of O in the view:

{O1,…,On}, then generate the following condition constraints in the Where clause

of the query expression of O:

keyOlORlkeyOlORlORlkeyOl nn).(Re).(Re...).(Re).(Re).(Re).(Re 11 =∧∧=∧=

Case 2: If R belongs to DRT_Set_2(O) and is generated by projecting an

relationship type R’, and R involves the DOCs of O in the view: {O1,…,On}, then

Step 1: Generate the following condition constraints in the Where clause of

the query expression of O::

keyOlORlkeyOlORlORlkeyOl nn).(Re).(Re...).(Re).(Re).(Re).(Re 11 =∧∧=∧=

Select xmlagg(
 xmlelement(“part”,
 xmlattributes(p.pno, p.pname))
From part

Figure 5.12. The query expression for part

 Chapter 5. Generating SQLX View Definitions

 146

Step 2: Replace Rel(R) with Rel(R’) in the condition constraints generated in

Step 1:

keyOlORlkeyOlORlORlkeyOl nn).(Re).'(Re...).(Re).'(Re).'(Re).(Re 11 =∧∧=∧=

Case 3: If R belongs to DRT_Set_3(O) and is generated by joining two

relationship types R1 and R2 based on a common object class Oc, and R involves

the DOCs of O in the view: {O1,…,On}; then

Step 1: Generate the following condition constraints in the Where clause of

the query expression of O:

keyOlORlkeyOlORlORlkeyOl nn).(Re).(Re...).(Re).(Re).(Re).(Re 11 =∧∧=∧=

Step 2: For O participating in the relationship type Rp (p=1 or 2), replace the

generated condition constraint Rel(O).key=Rel(R).O in step 1 with:

Rel(O).key = Rel(Rp).O

Step 3: For Oi (i=1, …, n) participating in the relationship type Rp (p=1 or

2), replace the generated condition constraint Rel(R).Oi = Rel(Oi).key in step

1 with:

Rel(Rp).Oi = Rel(Oi).key

Step 4: For the common object class Oc of R1 and R2, append the following

condition constraint in the Where clause of the query expression of O:

Rel(R1).Oc = Rel(R2).Oc

Correctness of the Rule: The three cases in Rule Gen_2 process the three sets of

DRTs of O in the view.

 Chapter 5. Generating SQLX View Definitions

 147

Case 1. Object class O participates in an original relationship type R with its DOCs

(O1, …, On). Thus, the values of O in the view are determined by the values of O1, …,

On through R. We then need to find those values of O that participates in Rel(R) with

O1, …, On whose key values are equal to Rel(O1).key, …, Rel(On).key respectively.

Note that the values of Rel(O1).key, …, Rel(On).key have already been fixed because

O1, …, On are O’s ancestors and are processed before O. The algebra expression for

the values of O with the generated condition constraints is as follows, which

corresponds to the generated query expression of O in case 1 above.

∏O
((σo1=Rel(o1).key ∧ … ∧ on=Rel(on).key Rel(R)) Rel(O))

Case 2. Object class O participates in a derived relationship type R with its DOCs

(O1, …, On) in the view. Similarly, we first find those values of O that participate in

Rel(R) with O1, …, On whose key values are equal to Rel(O1).key, …, Rel(On).key

respectively. The algebra expression for O is as follows:

∏O
((σo1=Rel(o1).key ∧ … ∧ on=Rel(on).key Rel(R)) Rel(O))

This is actually the generated query expression in the step 1 in case 2. However, R is

a derived relationship type by projecting R’. R does not exist in the ORDB. Thus, we

have to replace R with R’ in the condition constraints, which is thus step 2 in case 2.

Without such a replacement, the condition constraints will be meaningless because R

is only shown in the view. The algebra expression for O after the replacement is as

follows.

∏O
((σo1=Rel(o1).key ∧ … ∧ on=Rel(on).key Rel(R’)) Rel(O))

 Chapter 5. Generating SQLX View Definitions

 148

The generated condition constraints after replacement express the influence of the

DOCs (O1, …, On) on O through R in the view by using R’.

Case 3. Object class O participates in a derived relationship type R with its DOCs

(O1, …, On) in the view. First, the algebra expression for O is expressed by using R as

follows, which corresponds to the step 1 in case 3:

∏O
((σo1=Rel(o1).key ∧ … ∧ on=Rel(on).key Rel(R)) Rel(O))

However, R is derived by joining R1 and R2 based on their common object class Oc.

We need to replace R with R1 and R2 in the generated condition constraints. Thus, the

algebra expression for O will be as follows:

∏O
((σo1=Rel(o1).key ∧ … ∧ on=Rel(on).key (Rel(R1) Rel(R2))) Rel(O))

The rewritten algebra expression actually contains the step 2, 3 and 4 in case 3. It will

rewrite the condition constraints involving object class O and all DOCs of O (O1, …,

Oi) in R , and then append a condition constraint involving the common object classes

Oc to connect the condition constraints rewritten in steps 2 and 3. □

Note that R’, R1 or R2 in cases 2 and 3 may still be derived relationship types. In this

case, case 2 or case 3 can be repeatedly applied until all the relationship types in the

where clauses are original relationship types in the source schema. The generated

condition constraints for all the DRTs of O in the view are finally combined together

into one where clause of the query expression of O, which then correctly expresses

the influence of the DOCs on O in the XML view.

 Chapter 5. Generating SQLX View Definitions

 149

We use the following examples to illustrate the three different cases. The generated

condition constraints in the Where clause in the example are highlighted in italic font.

Example 5.7. Suppose we process the object class employee in the view schema in

Figure 5.10. The object class employee has one DRT in the view schema – je, which

is an original relationship type. Thus, according to case 1 in Rule Gen_2 above, we

directly use je to generate the condition constraints in the where clause of the query

block of employee, as shown in the condition constraints of the where clause in

Figure 5.13. □

Example 5.8. Suppose we process the object class project in the view schema in

Figure 5.10. The object class project has one DRT in the view schema – pj, which is a

derived relationship type obtained by projecting on the original relationship type spj

in the source schema: pj = ∏ jnopno,
spj. Thus, according to case 2 in Rule Gen_2

above, we first use pj to generate the condition constraints in the Where clause of the

query expression of project, as shown in Figure 5.14. Next, we replace pj in the

condition constraints with the original relationship type spj. The new condition

constraints are shown in Figure 5.15. □

Select xmlagg(
 xmlelement(“employee”,
 xmlattributes(e.eno e.ename))
From employee e, je
Where e.eno=je.eno and je.jno=j.jno

Figure 5.13 The query expression for employee

 Chapter 5. Generating SQLX View Definitions

 150

Example 5.9. Suppose we process the object class factory in the view schema in

Figure 5.10. The object class factory has one DRT in the view schema – pf, which is

derived by joining original relations ps and sf in the ORDB. Thus, we first generate

condition constraints with the DRT pf as shown in Figure 5.16. Next, we rewrite the

condition constraints with the original relations ps and sf as shown in Figure 5.17. □

Rules Gen_2 above generates the condition constraints for each DRT of an object

class O in an ORA-SS view. After we have processed all the DRTs of O based on the

three cases, we still need to process the generated condition constraints further. This

is because there may still be derived relationship types in the generated condition

Figure 5.14. The query expression for project with view relationship type pj

Select xmlagg(
 xmlelement(“project”,
 xmlattributes(project.jno, project.jname)))
From project, spj
Where spj.jno = project.jno and spj.pno = part.pno

Figure 5.15. The query expression for project by replacing view

relationship type pj with source relationship type spj

Select xmlagg(
 xmlelement(“project”,
 xmlattributes(project.jno, project.jname)))
From project, pj
Where pj.jno = project.jno and pj.pno = part.pno

Select xmlagg(
 xmlelement(“factory”,
xmlattributes(f.fno, f.fname)))
From factory f, pf
Where f.fno=pf.fno and pf.pno=p.pno

Figure 5.16. The query expression for factory
with view relationship type pf

Select xmlagg(
 xmlelement(“factory”,
xmlattributes(f.fno, f.fname)))
From factory f, ps, sf
Where f.fno=sf.fno and sf.sno=ps.sno and
 ps.pno=p.pno

Figure 5.17. The query expression for factory
by replacing view relationship type pf with

source relationship type ps and sf

 Chapter 5. Generating SQLX View Definitions

 151

constraints. For example, a derived relationship type may be produced in the view by

joining two relationship types and then projecting the joined one. To meet the

requirements of such cases, we have the following Rule Gen_3.

� Rule Gen_3: If there are still derived relationship types in the generated

condition constraints in Rule Gen_2, then repeat the process in case 2 and 3 in

Rule Gen_2 until all the relationship types in the condition constraints are

original relationship types in the source schema.

Next, we process attributes attached to O in the view schema. In particular, Rule Gen

4 considers single-valued attributes of a relationship type attached to O. There are two

cases. In the first case, the attributes belong to an original relationship type in the

source schema. In the second case, the attributes belong to a derived relationship type

in the view. The derived relationship type must be generated by projecting out an

original relationship type in the source schema. This is because there are no attributes

for the derived relationship type by joining two relationship types. The attributes may

be derived by applying aggregate functions to original attributes of the relationship

type in the source schema. Next, Rule Gen 5 processes multi-valued attributes, which

may belong to object class or relationship type.

� Rule Gen_4: For an arbitrary single-valued attribute A of R attached to O,

Case 1: If R is an original relationship type, then generate an xmlelement

function for A as a sub-element of O:

xmlelement(“A”, R.A)

 Chapter 5. Generating SQLX View Definitions

 152

Case 2: If R is derived from Ro, A is derived by applying aggregate function on Ao

of Ro (say agg(Ao)), and the DOCs of O is O1, …, On; then generate a sub query

for A as a sub element of O:

 Select xmlelement(“A”, agg(Rel(Ro).Ao))

 From Ro

Where Rel(Ro).O=Rel(O).key ∧ Rel(Ro).O1=Rel(O1).key ∧ … ∧ Rel(Ro).On=Rel(On).key

In case 1, we handle an original single-valued attribute A of a relationship type R

attached to O in source schema. Since A is a relationship attribute, we must generate

it as a sub element of O instead of an attribute of O. In case 2, we handle an attribute

A, which is an aggregate attribute by applying aggregate function such as sum, avg, or

max/min on the original attribute Ao. Thus, the algebra expression of A is as follows:

AGG (∏A
(σo=Rel(o).key ∧ o1=Rel(o1).key ∧ … ∧ on=Rel(on).key Rel(Ro))),

which corresponds to the sub query generated in case 2 above. The following two

examples illustrate the two different cases above.

Example 5.10. Suppose we process the attribute progress of relationship type je in

the view schema in Figure 5.10. As it is a relationship attribute below object class

employee, we generate it as a sub element of employee as shown in Figure 5.18. Note

Select
 xmlagg(
 xmlelement(“employee”,
 xmlattributes(e.eno, e.ename),
 xmlelement(“progress”, je.progress)))
From employee e, je
Where e.eno = je.jno and je.jno = j.jno

Figure 5.18. The query expression for employee
with relationship attribute progress

 Chapter 5. Generating SQLX View Definitions

 153

the condition constraints in the where clause restricts both the object employee and

the attribute je. □

Example 5.11. Suppose we process the attribute total_qty of relationship type pj in

the view schema in Figure 5.10. This is an aggregate attribute by applying the sum

function to the original attribute qty of the relation spj in the ORDB. Since the

attribute is attached to object class project, we generate it as a sub element of project

as shown in Figure 5.19. □

The following Rule Gen_5 handles multi-valued attributes attached to O in the view

schema. There are three cases in this rule. Since a multi-valued attribute is stored as a

nested table within the relation for O in the ORDB, we will refer to the nested table

for the multi-valued attribute by using a table function.

� Rule Gen_5: For an arbitrary multi-valued attribute A attached to O,

Case 1: If A is an original attribute of O, then generate the following sub query

for A as a sub element of O:

 Select xmlagg(xmlelement(“A”, A))

 From table(Rel(O).A)

Select
 xmlagg(
 xmlelement(“project”,
 xmlattributes(j.jno, j.jname),
 (Select xmlelement(“total_qty”, sum(spj.qty))
 From spj
 Where spj.jno = j.jno and spj.pno = p.pno
)))
From project j, spj
Where spj.jno = j.jno and spj.pno = p.pno

Figure 5.19. The query expression for project with relationship attribute total_qty

 Chapter 5. Generating SQLX View Definitions

 154

Case 2: If A is an original attribute of R, then generate the following sub query

for A as a sub element of O:

 Select xmlagg(xmlelement(“A”, A))

 From table(Rel(R).A)

Case 3: If A is an attribute of R derived by mapping Ao of Ro into a bag of values,

and the DOCs of O are O1, …, On, then generate the following sub query for A as

a sub element of O:

 Select xmlagg(xmlelement(“A”, Ao))

 From Rel(Ro)

Where Rel(Ro).O=Rel(O).key ∧ Rel(Ro).O 1=Rel(O1).key ∧ … ∧ Rel(Ro).On=Rel(On).key

In case 1, we handle a multi-valued attribute A of an object class O. Case 2 is similar

to case 1 except that A belongs to a relationship type now. We simply generate a sub

query to use the nested table for A to retrieve all the values of A. In case 3, we handle

a multi-valued attribute A derived from an original attribute Ao by projecting a

relationship type Ro in the source schema. A can be denoted as bag(Ao) as A is

mapped into a bag of values of Ao. Thus, the following multi-valued dependency will

hold in Ro:

{O1, …, On, O} bag(Ao)

The algebra expression of A is as follows:

Bag (∏A
(σo=Rel(o).key ∧ o1=Rel(o1).key ∧ … ∧ on=Rel(on).key Rel(Ro))),

which corresponds to the sub query generated in case 3 above.

 Chapter 5. Generating SQLX View Definitions

 155

Example 5.12. Suppose we process the multi-valued attribute email of object class

employee in the view schema in Figure 5.10. Based on case 1 in Rule Gen_4, we

generate a sub query for it within the query clause for employee (see Figure 5.20). □

Having processed the object class and all the attributes attached to it, we still need to

process selection conditions on the attributes. We have the following Rule Gen_6.

� Rule Gen_6: If a selection predicate P is enforced on an attribute A attached to

O, then append P to the Where clause of the query expression of O.

In summary, the above rules consider all the different cases for object classes,

relationship types and attributes in ORA-SS views. Based on the rules, we can

develop an algorithm to generate the SQLX query definition for an ORA-SS view

schema. As a complete example, Figure 5.21 depicts the SQLX query expression for

the view schema in Figure 5.10 generated by the algorithm.

As mentioned in the previous chapter for designing valid XML views, order by

operators can be applied to attributes because order is significant in XML. Thus, we

use the following rule to handle order by operators applied to attributes attached to O.

� Rule Gen_7: If an order by operator is applied to an attribute A attached to O

with an ascending or descending order, then an order by clause with its

Select xmlagg(
 xmlelement(“employee”,
 xmlattributes(employee.eno, employee.ename)
 (select xmlagg(xmlelement(“email”, email))
 from table(employee.email)
))
From employee, je
Where employee.eno = je.eno and je.jno = project.jno

Figure 5.20. The query expression for employee with multi-valued attribute email

 Chapter 5. Generating SQLX View Definitions

 156

corresponding ascending or descending flag is generated following the where

clause of O as follows:

Order by A ascending | descending

This rule is straightforward. If there are more than one order by operators applied to

the attributes attached to O, then we still generate one order by clause to contain all

the operators.

5.5. Illustrating Example

Based on the rules above, we generate SQLX view definition for the ORA-SS view in

Figure 5.10.

Example 5.13. The SQLX view definition is shown in Figure 5.21. Note that we use

a pre-order method to generate the view definition. First, we generate a root element

for the view (line 1) as each XML document has a root element. Next, we process the

first object class in the view – part. As it is the root object class in the view, based on

Rule Gen_1, we can retrieve all records in the relation part to construct the instances

of part in the view. That is, we do not need to generate any condition constraint for

part. Thus, we do not have a Where clause after the From clause of the query block

for part in line 30.

 Chapter 5. Generating SQLX View Definitions

 157

Next, we process the first child of part – factory (line 5-9). We generate a sub query

contained in the query block for part so that factory will be shown as a sub element of

part in the view. The DRT of factory is pf which is derived by joining the original

relationship types ps and sf. Based on case 3 in Rule Gen_2, we employ ps and sf to

generate the condition constraints in the where clause of the query block of factory.

The second child of part – project is processed next (line 10-25). Similarly, we

generate a sub query for the object class that is contained in the query block for part.

Figure 5.21 The SQLX view definition for the view in Figure 5.10

1. Select xmlelement(“root”,
2. xmlagg(
3. xmlelement(“part”,
4. xmlattributes(p.pno, p.pname),
5. (Select xmlagg(xmlelement(“factory”,
6. xmlattributes(f.fno, f.fname)))
7. From factory f, ps, sf
8. Where f.fno = sf.fno and sf.sno = ps.sno and ps.pno = p.pno
9.)
10. (Select xmlagg(xmlelement(“project”,
11. xmlattributes(j.jno, j.jname),
12. (Select xmlelement(“total_qty”, sum(spj.qty))
13. From spj
14. Where spj.jno = j.jno and spj.pno = p.pno
15.)
16. (Select xmlagg(
17. xmlelement(“employee”,
18. xmlattributes(e.eno, e.ename),
19. (select xmlagg(xmlelement(“email”, email))
20. from table(e.email)
21.)
22. xmlelement(“progress”, je.progress)))
23. From employee e, je
24. Where e.eno = je.jno and je.jno = j.jno
25.)))
26. From project’ j, spj
27. Where j.jno = spj.jno and spj.pno = p.pno
28.)
29.)))
30. From part p

 Chapter 5. Generating SQLX View Definitions

 158

We also need to generate the correct condition constraints for project, as there is a

DRT of project in the view schema, which is the relationship type pj between part

and project. It is derived by projecting the original relationship type spj. Thus, based

on case 2 of Rule Gen_3, we need to use spj to generate the appropriate constraint for

the sub query. The generated condition constraints in the Where clause is shown in

line 24, which indicate only those instance of projects under which there is the

current instance of part (indicated by p.pno) are chosen. This sub query follows the

previous query block for factory as its sibling. There is also an aggregate attribute

total_qty in the sub query, which belongs to the derived relationship type pj. Based on

case 2 of Rule Gen_4, we use another nested query to generate the aggregate attribute

(lines 12-15). The nested query computes the total quantity of each instance of part

(indicated by p.pno) under a given instance project (indicated by j.jno).

Finally, we process the child of project – employee (line 16-25). The sub query for

the object class is contained in the query block for project so that employee will

appear as a sub element of project in the XML view. The condition constraints for

employee are shown in line 23, which indicates only those instances of employees that

participate in the current instance of project (indicated by j.jno) are chosen. The

constraints are generated based on the relationship type je between project and

employee, as je is the DRT of employee in the view schema. Note that there is a

multi-valued attribute of employee – email. Based on case 1 of Rule Gen_5, it is

generated as a sub query in the query block of employee (line 19-21) because there

may be more than one value for email. In addition, there is a relationship type

 Chapter 5. Generating SQLX View Definitions

 159

attribute called progress under employee. It is generated as a sub element of employee

shown in line 22 based on case 1 of Rule Gen_4.

The example above demonstrates how we use the rules in this section to generate

SQLX view definition for an ORA-SS view. It also shows the complexity of SQLX

view definitions. As indicated above, the length of the SQLX query is 30 lines.

However, we only need to use two view operators to design the view. By using the

method to automatically generate the SQLX view definitions from ORA-SS views

based on the rules, we alleviate users from manually writing the complicated SQLX

view definitions. □

5.6. SQLX View Definitions Generation Algorithm

The above rules consider all the different cases for object classes, relationship types

and attributes in ORA-SS views. Based on the rules, we develop an algorithm to

generate the SQLX query definition for an ORA-SS view schema. The algorithm

takes as inputs an ORA-SS view rooted at object class O, its ORA-SS source schema

and the corresponding storage schema in the object-relational database. Its output is

the SQLX query definition for the view.

Algorithm Algorithm Algorithm Algorithm GenerateViewDefinitionGenerateViewDefinitionGenerateViewDefinitionGenerateViewDefinition

Input:Input:Input:Input: ORA ORA ORA ORA----SS view schema, ORASS view schema, ORASS view schema, ORASS view schema, ORA----SS source schema, OR storage schemaSS source schema, OR storage schemaSS source schema, OR storage schemaSS source schema, OR storage schema

Output:Output:Output:Output: SQLX query definition for the view SQLX query definition for the view SQLX query definition for the view SQLX query definition for the view

1. Generate an Select clause for O

2. Generate a From clause for O

3. If the DRTs of O is null then

4. apply Rule Gen_1

5. Else

6. Generate a empty Where clause for O;

7. For each relationship R in the DRTs of O do

8. If R belongs to DRT_Set_1(O) then

9. append R in the From clause;

 Chapter 5. Generating SQLX View Definitions

 160

10. apply Case 1 of Rule Gen_2;

11. Else if R belongs to DRT_Set_2(O) and derived from R’then

12. append R’into the From clause;

13. apply Case 2 of Rule Gen_ 2;

14. Else if R belongs to DRT_Set_3(O) and derived from R1 & R2 then

15. append R1, R2 into the From clause;

16. apply Case 3 of Rule Gen_2;

17. End if

18. End for

19. End if

20. Apply Rule Gen_3;

21. For each single-valued attribute A of relationship type R attached to O do

22. If R is an original relationship type in source schema then

23. apply Case 1 of Rule Gen_4

24. Else if R is derived by projecting existing relation then

25. apply Case 2 of Rule Gen_4

26. End if

27. End for

28. For each multi-valued attribute A attached to O do

29. If A is an original attribute of O then

30. apply Case 1 of Rule Gen_5

31. Else if A is an original attribute of relationship type R then

32. apply Case 2 of Rule Gen_5

33. Else if A is a derived attribute of relationship type R then

34. apply Case 3 of Rule Gen_5

35. End if

36. End for

37. For each selection condition applied on attributes attached to O do

38. apply Rule Gen_6

39. End for

40. For each order by operator enforced on attributes attached to O do

41. apply Rule Gen_7

42. End for

43. For each child object class CO of O do

44. Generate a start parenthesis “(“

45. GenerateViewDefinition(CO)

46. Generate an end parenthesis “)”

47. End for

48. Generate an end part for O: “))”//end part for xmlagg and xmlelement

49. Return the generated query expression

 Chapter 5. Generating SQLX View Definitions

 161

The algorithm uses a pre-order method to process each object class in the view. For

an arbitrary object class O, the algorithm first generates an xmlagg and an xmlelement

function within a Select clause for O and its attributes (line 1). Next, the algorithm

generates a From clause to contain all relations to be used in generating the query

expression of O (line 2). The From clause will contain the object relation for O and

all its DRTs’ relations. After that, we check whether the DRTs of O are null, if no,

Rule Gen_1 is applied (line 4). Otherwise, it generates an empty Where clause to

contain all condition constraints to be generated for O (line 6). Next, the condition

constraints for each DRT of O are generated and combined in the Where clause, as

shown in the first for loop in the algorithm (line 7 -19). Next we apply Rule Gen_3 to

repeat the scanning and rewriting process until all the relationship types in the

generated condition constraints are original relationship types in the source schema

(line 20). Next, the algorithm processes single-valued relationship attributes below O

based on Rule Gen 4, which is implemented in the second loop in the algorithm (line

21 – 27). Then the algorithm processes multi-valued attributes attached to O based on

Rule Gen 5, which is implemented in the third loop in the algorithm (line 28 – 36).

Next, it processes the select operator and the order-by operator applied on attributes

attached to O (line 37-42). Finally the algorithm is recursively called to process the

children of O, and the complete generated query expression is returned.

5.7. Algorithm Analysis

In this section, we provide an analysis of the proposed method and demonstrate its

correctness. The intuition behind the algorithm Generate_View_Definition is that the

data instances represented by an object class in an ORA-SS view are determined by

 Chapter 5. Generating SQLX View Definitions

 162

its DOCs through their corresponding DRT in the view. A pre-condition that is true

for the algorithm is that O is an object class of an ORA-SS view and the number of

the descendants of O in the view is n (n ≥ 0). After executing the algorithm with

object class O, its view schema V and source schema S as input, we have result =

Generate_View_Definition(O, V, S). Then a post-condition states what is to be true

about the generated result which is given by result = SQLX expression of the view

rooted at O. The proof of correctness takes us from the pre-condition to the post-

condition.

(c) n = 0. This is the base case where O has no descendants. The algorithm first

generates a Select clause to express O and its attributes in XML format by using

xmlelement and xmlagg functions. A From clause is also generated to contain

relations for O and the DRTs of O. For each DRT of O, we generate appropriate

condition constraints for O in one Where clause based on Rule Gen_2. In

addition, the selection conditions applied on attributes attached to O (if any) are

also appended in the Where clause. All the condition constraints in the Where

clause correctly restrict what instances O represents in the view. Next, for each

attribute attached to O, we generate an appropriate query block for it according to

Rule Gen_4 and Rule Gen_5. Finally, the algorithm generates and returns the

correct SQLX expression for O itself.

(d) n > 0. In this inductive step, O has descendants. We have an inductive hypothesis

that assumes Generate_View_Definition(O, V, S) returns the correct SQLX

expression of a sub tree rooted at O for all the object class O such that 0 ≤ j ≤ n-1

where j is the number of descendants of O. Having the correctness of the base

 Chapter 5. Generating SQLX View Definitions

 163

case, where j = 0, the algorithm first generates the correct SQLX expression for O

itself. When it processes each child of O (say C), by the inductive hypothesis,

Generate_View_Definition(C, V, S) will return the correct SQLX expression of a

sub tree rooted at C since 0 ≤ j ≤ n-1 holds now where j is the number of

descendants of C. By combining the query expression of O and O’s children, the

algorithm returns the correct SQLX expression of the view rooted at O.

5.8. Summary

In this chapter, we have developed an approach to automatically generate SQLX

query expressions for XML views designed based on ORA-SS data model. The XML

data are stored in an object-relational database by employing semantics in the ORA-

SS schema. This approach removes the need for users to manually write query

expressions on views and provides a user-friendly interface to retrieve XML data via

views. SQLX query expressions are becoming the standard of retrieving XML data

from traditional databases. They can be directly executed against the object-relational

database and produce the XML view documents, while other query language such as

SQL can only generate intermediate tables, which have to be tagged to generate the

final XML documents.

 164

Chapter 6

CASE Tool

We have presented our approach to designing valid XML views by applying our view

operators in chapter 3 and algorithms to automatically generate XQuery and SQLX

query definitions from designed valid ORA-SS views in chapter 4 and 5 respectively.

To further facilitate the design and generation of XML views, we developed a CASE

tool based on the approaches, which provides a graphical user interface (GUI) so that

a view designer can easily design a valid XML view by a few button clicks. In this

chapter we will introduce the functions of the CASE tool. Our implementation of the

CASE tool is in Java and uses JDK 1.3. We use JDBC as the API to connect to the

commercial object-relational database system Oracle 9i, which is run on Red Hat

Linux 8.0.

We have implemented the following three main functions in our CASE tool, which

include the approach to designing valid XML views and automatically generating

 Chapter 6. CASE Tool

 165

SQLX query expressions for ORA-SS views. The architecture of the CASE tool is

shown in Figure 6.1.

Figure 6.1. The Architecture of the CASE Tool

As shown in the architecture, before we begin to design XML views, XML source

data have been stored in an object-relational database by using the storage method in

Chapter 5. In addition, the ORA-SS source schema has also been stored in XML

documents. Next, users can design valid XML views based on the ORA-SS source

schema, which will be introduced in section 6.1. Secondly, users can generate the

SQLX query definition for a designed view schema, which will be presented in

section 6.2. Thirdly, users execute the SQLX query on Oracle 9i and generate an

XML view document, which will be shown in section 6.3.

6.1. Function 1 – Designing valid XML views

6.1.1. Load ORA-SS source schema

To start designing an XML view, users need to load an ORA-SS source schema into

the GUI first. The ORA-SS source schema is stored in an XML file, which describes

the complete information of object classes, relationship types and attributes in the

Valid ORA-SS view schema

Graphical ORA-SS
source schema

XML data

Designing

Transforming

Generating

An Object-relational
database

SQLX view
definitions

Executing

ORA-SS source schema
in XML documents

Conforming to

 Chapter 6. CASE Tool

 166

ORA-SS source schema. One sample XML file for an ORA-SS source schema is

shown in Figure 6.2.

Figure 6.2. A sample XML document storing an ORA-SS source schema

Firstly, this document depicts two object classes part and supplier, each of which is

expressed as an entity element, which has the following sub-elements: name, parent,

level, attribute and pKey. In particular, these sub-elements describe the name of the

object class, the parent of the object class, the level of the object class in the schema,

the attributes attached to the object class and the primary key of the object class. Next,

the document depicts one relationship type ps involving the two object classes, which

<ORASS>
 <entity>
 <name>Part</name>
 <parent>Root</parent>
 <level>1</level>
 <attribute>
 <name>pno</name>
 </attribute>
 <attribute>
 <name>pname</name>
 </attribute>
 <pKey>pno</pKey>
 </entity>
 <entity>
 <name>Supplier</name>
 <parent>Part</parent>
 <level>2</level>
 <attribute>
 <name>sno</name>
 </attribute>
 <attribute>
 <name>sname</name>
 </attribute>
 <attribute>
 <name>price</name>
 <belongs>ps</belongs>
 </attribute>
 <pKey>sno</pKey>
 </entity>
 <relation>
 <name>ps</name>
 <participant>Part</participant>
 <participant>Supplier</participant>
 <parentCard>*</parentCard>
 <childCard>+</childCard>
 </relation>
</ORASS>

 Chapter 6. CASE Tool

 167

is expressed as a relation element. The relationship type information, i.e. the name of

the relationship type, the participating object classes and the participation constraints

are contained as sub-elements in the relation element.

The CASE tool parses the XML file and displays the ORA-SS schema diagram on the

GUI. Figure 6.3 shows a screen shot of loading the source schema.

Figure 6.3. Load a source schema in the GUI interface

6.1.2. Design views based on source schema

After loading the ORA-SS source schema, users are able to design views by applying

view operators. Right clicking on the entity on which users want to apply an operator

displays a list of operators.

The target entity selected in the GUI can be an object class or an attribute. If the

 Chapter 6. CASE Tool

 168

target entity is an object class, there will be 4 operators available, namely Select,

Drop, Join and Swap. Figure 6.4 shows a screenshot in the case where an object class

is selected.

Figure 6.4. Operate an object class in the GUI interface

(1) Select. When a Select operator is selected, a dialog box will pop up and allow

users to input selection conditions enforced on the attributes below the object classes

selected. As mentioned in chapter 3, there will be no rules for the Select operator.

(2) Drop. When a Drop operator is selected, the CASE tool starts to apply the Rules

for the Drop operator. During this process, users may be required to answer a few

questions such as how to name a derived relationship type, how to handle a

relationship attribute, what aggregate function to apply etc. Bases on a user’s answers,

 Chapter 6. CASE Tool

 169

the CASE tool produces a view schema that caters to the user’s requirement.

(3) Swap. When a Swap operator is selected, the CASE tool shows a list of object

classes that can be swapped with it. These object classes are ancestors and

descendants of the selected object class. Users can choose a particular object class

among the list, and the CASE tool applys the Rules for Swap operator to produce a

valid view.

(4) Join. When a Join operator is selected, the CASE tool checks whether there is any

object class that can be joined with the selected object class in the schema. If there is,

it proceeds to ask the user how to handle the object classes above and below the

referenced object class. The CASE tool will then transform the schema accordingly.

If the target entity is an attribute, there will be 2 operators available, namely Add

selection condition and Drop. Figure 6.5 shows a screenshot in the case where an

attribute is selected. When the first operator is selected, users are allowed to input a

selection condition on the selected attribute. The CASE tool will then store the

condition as a property of the attribute. When a Drop operator is selected, the CASE

tool detaches the attribute from the object class it belongs to and removes the attribute

from the schema diagram.

 Chapter 6. CASE Tool

 170

Figure 6.5. Operate an attribute in the GUI interface

6.2. Function 2 – Generating SQLX View Definitions

After users apply all the view operators on the schema, a valid XML view will be

produced and displayed. By clicking the Translate button on the GUI, the CASE tool

starts traversing the view schema diagram from the root object class and generates a

SQLX expression for the view. Then a complete SQLX view definition will be shown

immediately under the tab View Definition in the GUI, which can be executed directly

on the database or saved for later use. Figure 6.6 shows a sample a SQLX view

definition.

 Chapter 6. CASE Tool

 171

Figure 6.6. Generate a SQLX view definition in the GUI interface

6.3. Function 3 – Producing an XML View Document

Users can execute the generated SQLX view definition on a remote Oracle 9i

database system to produce an XML view document as Oracle 9i supports the OR

model. Notice that XML source data are stored in the object-relational database as

presented in Chapter 5. When users click the Run button on the GUI, the CASE tool

connects to the underlying Oracle 9i database and sends the SQLX query over for

execution. It then receives the result from database and displays it on the GUI. Figure

6.7 shows a sample output view.

 Chapter 6. CASE Tool

 172

Figure 6.7. Produce output view document in the GUI interface

The developed CASE tool provides a user-friendly environment for view designers. It

facilitates the design process and alleviates users from sophisticated manual work.

Apart from the three main functions presented in the previous sections, The CASE

tool also offers other desirable features. For example, the graphical interface for

displaying an ORA-SS schema diagram allows users to move the components in the

diagram as they want. It can also layout the components in an arranged way when the

user clicks the Layout Button. Moreover, the CASE tool allows users to modify the

generated SQLX query or paste another query on the panel which appears as another

view definition, and run the query to produce a view document. In summary, our

CASE tool simplifies the process of designing a valid XML view and provides a

flexible and friendly design environment for users.

 173

Chapter 7

Related Work

In this chapter, we describe the work that is related to the content of this thesis. We

begin from the emergence of XML data management, followed by a discussion of

view mechanisms in context, such as relational databases and object-oriented

databases. Next, we discuss the related work on XML views. The XML views may be

presented on top of relational databases or XML data.

7.1. Emergence of XML Data Management

As the large volume of data increases on the Web, there has been a significant body

of recent research from database community on managing and querying these data. A

survey on database techniques for the World-Wide Web [32] has identified different

classes of tasks of data management on the Web, which include modeling and

querying the web, information extraction and integration, and web site construction

and restructuring.

Before XML became the standard of data exchange, semi-structured data on the web

had been examined in a significant body of research [1] [17] [78]. Firstly, many semi-

structured data models, query and view definition languages have been proposed [34]

[15] [56] [10] [55] [29]. They are used for querying and managing Web data [29] [10]

[55] and integration of heterogeneous data [34] [48], etc. Research prototypes on

managing semi-structured data have also been proposed, such

 Chapter 7. Related Works

 174

 as Lore [56] [65], which is a DBMS designed specifically for managing semi-

structured data. Furthermore, more sophisticated issues, such as query rewriting using

semi-structured views [62] [33] and incremental view maintenance for semi-

structured data [77] [86] [9] have been discussed as these issues are also important for

semi-structured database or mediators.

As XML emerges on the Web as the standard of data exchange, it becomes more

necessary to manage XML data than semi-structured data [5]. Thus, the systems for

semi-structured data, such as Lore [35] mentioned before, are migrating to support

storing and querying XML data. Database research opportunities on XML data

management have also been examined in [85], which proposes issues of storage,

indexing and information retrieval on XML. XML data management has also posed

new challenges in database theory. [79] proposed two roles of database theory for

XML data management. One is conceptualization of XML, such as the recent work

on keys for XML [16] and the ORA-SS data model for XML [49]. The other is to

answer some particular technical questions about XML storage or XML type

checking. The developments in database theory related to XML have also been

examined in [84], which discussed various issues on schemas, constraints and queries.

As one of the main topics related to XML data management, a lot of XML query

languages have been proposed along with XML data management, such as XML-QL

[22], a declarative XML query language [50], and XQuery from W3C [40], etc.

Furthermore, other existing languages, such as ODMG OQL language, have also been

extended to support a full-fledged XML query language [28]. Obviously, these XML

query languages can be used to query XML data and define XML views.

 Chapter 7. Related Works

 175

7.2. View Mechanism in RDB & OODB

The notion of views is essential in relational databases [81] [82] [83], which has been

extensively explored in the context of relational database systems [81] [82] [45].

They increase the flexibility of a database system by allowing users or applications to

see data from different viewpoints [8] [26] [66]. The view mechanism in relational

databases can be implemented by using a straightforward modification technique

[76]. Similarly, the topic of views has also been examined in the object-oriented

database context [4] [13] [36] [68] [71] [74] [80]. A view mechanism in the OODB

context is more complicated then its analogue in the relational databases, as the view

mechanism in the OODB not only restructures data but also integrates operations on

data [70] [69]. As semi-structured data emerges on the Web, a view mechanism for

semi-structured databases has also been proposed in [7], which introduces many new

problems because of the nature of semi-structured data. Furthermore, the issues

related to views for semi-structured data, such as materialized view maintenance,

have also been discussed in [77] [86].

As increased XML data has appeared on the Web and development of XML data

management systems has growed, the view mechanism for XML data has also been

examined. The view mechanism for XML data management is even more crucial than

the analogue in relational databases, as it can be used to integrate heterogeneous

sources and add a structured interface on top of some otherwise semi-structured data

[2]. Currently, there has been a lot of work on XML views of relational data or XML

data. We discuss the work on XML views of relational data in section 7.3. In section

7.4, we then discuss XML views on top of XML data.

 Chapter 7. Related Works

 176

7.3. XML Views on Relational Data

As XML becomes the standard for data exchange on the web, existing relational data

are published as XML views to exploit the potential of XML. There has been a lot of

work on this scenario. [89] has described the details of most of the recent works on

this scenario.

SilkRoute [30] [31] adopts two declarative languages RXL and XML-QL to define

and query views over relational data respectively. XPERANTO [18] [19] [72] [73]

uses a canonical mapping to create a default XML view from relational data, and

other views can be defined on top of the default view. XQuery views [40] are also

supported over the XML views in XPERANTO. Instead of adopting XQuery,

ROLEX [14] [47] composes XSLT stylesheet with defined XML views to produce a

new XML view definition. On the other hand, [43] presents an algorithm to translate

XSLT scripts over XML views into efficient SQL queries. Having all these work on

translating XML query into SQL query, [90] then focuses on the efficiency of the

SQL queries generated by the translation process. It concludes that the quality of the

resulting SQL should be a concern of the translation algorithm itself, rather being left

in the hands of a traditional relational optimizer. However, it only supports path

queries. Further, [98] introduces a new operator to support relation-valued variables

in relational engines so that it can be enhanced for efficient XML publishing. Next, in

[97], an efficient XQuery complier is proposed in the purely relational context, which

translates not only path queries, but also a core set of XQuery queries into SQL.

All the research work above has considered the issue of query translation for XML

views. On the other hand, there has also been some research work focusing only on

 Chapter 7. Related Works

 177

the mapping process of relational data to XML views. [88] provides a language for

defining XML views that are guaranteed to be DTD-conformant, as well as a

middleware for evaluating these views. As a part of MIX project [12] [63], [11]

proposes a method to translate a relational schema to a view graph guided by a user.

[25] directly translates a relational schema to an XML tree structure with the help of

the semantically rich data model – ORA-SS [24].

In addition, major commercial database systems have provided the ability to export

relational data to materialized XML views. In Oracle XML DB [60], XML views are

defined by using the forthcoming SQL/XML standard, which is an extension to SQL

[75]. Oracle XML DB can only support XPath queries on XML views, which will be

translated into an equivalent SQL query. Microsoft SQL Server 2000 [58] defines an

XML view with an annotated XSD XML schema and supports XPath queries over the

annotated XML Schema. IBM DB2 XML Extender [42] uses a Document Access

Definition (DAD) file to define an XML view. However, it does not support any

XML query languages over the XML view. In addition, IBM XML for Tables [27]

provides an XML view of relational tables and a query of those views as if they were

XML documents based on the XPERANTO project [18] [19] [72] [73].

Unlike the related work in this scenario, which publish relational data into XML

views, our work in this thesis focuses on presenting XML views on top of XML data.

7.4. XML Views on XML Data

In this scenario, XML views are presented on top of XML data. In particular, XML

data can be stored in two main ways. One is to store XML data into traditional

 Chapter 7. Related Works

 178

databases. The other is to store XML data as text files or in native XML databases.

Our work in this thesis considers both cases.

Firstly, for the case where XML data are stored in traditional databases, most of the

related work assumes XML data is stored in relational databases. STORED [91]

stores XML data into relational databases by using data mining techniques. It also

proposes an algorithm to translate an input STORED query into SQL. In [92], an edge

approach and an attribute approach are proposed for storing XML data in relational

databases. This technology also translates basic operations in a path expression to

SQL. XRel [93] uses a path-based approach to store XML data, and a core part of

XPath is identified for translating into SQL. In [94], ordered XML data are

considered to be supported by the unordered relational data model. This work

proposes algorithms for translating ordered XPath expressions into SQL. [95] stores

all XML data in a single table containing a tuple for each element, attribute and text

node. This approach in [95] can also support XQuery with arbitrarily nested FLWR

expressions. Finally, [46] presents a generic algorithm to translate path expression

queries into SQL in the presence of recursion in the schema and queries.

Unlike the related work above, our corresponding work in this thesis (chapter 5)

stores XML data into an object-relational database based on an ORA-SS data model.

This storage technique keeps semantics implied in the XML data and removes

unnecessary redundancies, which may exist in the other technologies. Further, we

propose an algorithm to generate SQLX view definitions from ORA-SS views, which

can then be executed to produce materialized XML views. This alleviates users from

manually writing complicated SQLX view definitions.

 Chapter 7. Related Works

 179

Secondly, there have also been several new technologies proposed for the case where

XML data are stored as text files or in native XML storage. Xyleme [21] [51] defines

an XML view by connecting one abstract DTD to a large collection of concrete DTDs

with an extension of OQL as the query language. ActiveView [3] [6] defines views

with active features, such as method calls and triggers, on ArdentSoftware’s XML

repository using a view specification language. Other technologies in this case discuss

several sub issues of XML views on top of XML data. The issue of DTD inference

for views of XML data is examined in [64]. It extends the descriptive ability of DTD

and shows that the extended DTD can be always inferred for a selection view. [44]

proposes another view inference approach to automatically derive an integrated XML

view on heterogeneous XML DTDs. Instead of using a query language to define

views, [52] defines views through source schema and view schema mappings. In [67],

the focus is then on view definition of XML data at the conceptual level and the

semantics required in accommodating such view mechanisms at this higher level of

abstraction.

Unlike the related work in this case, our corresponding work in this thesis (chapter 4)

automatically generates XQuery view definitions from ORA-SS views. The generated

XQuery view definitions can then be evaluated on native XML databases or XQuery

engines to produce materialized XML views. This alleviates users from manually

writing complicated XQuery view definitions.

Further, unlike the related work in the two cases above, our work does not consider

the issue of translating XML queries on XML views into SQLX queries on the object-

relational database or XQuery on the native XML database. However, the view

 Chapter 7. Related Works

 180

operators proposed in our work can be treated as query operators to issue queries on

ORA-SS views, which can then be translated into new ORA-SS view schemas. Thus,

we can generate the SQLX or XQuery view definitions from the new view schema by

employing the algorithm in our work. In this way, our work can be extended to

support translating query operators on ORA-SS views into SQLX queries on the

object-relational database.

7.5. XML Views on Integration Systems

Since XML views can be presented on top of relational data and XML data, it will be

natural for XML views to be presented as a middleware in integration systems. Thus,

there has also been work on this scenario. The MIX system [11] [12] [63] adopts a

DTD as a mediator to assist users in query formulation and query processors and its

query language is a subset of XML-QL. The XML version of YAT [20] then

proposes a generic algebra for XML query evaluation. It also discusses optimization

techniques for XML-based integration system. Agora [53] [54] uses a LAV (local-as-

view) approach and provides an algorithm for translating XQuery FLWR expression

into SQL in the context of heterogeneous data sources. It first translates the XML

query into a SQL query on a generic, virtual relational schema, and then rewrites this

SQL query into a SQL query over the real relational schema. The MARS system [23]

[96] supports both GAV (global-as-view) and LAV views. It exploits integrity

constraints on both the relational and XML data and compiles the queries, views and

constraints from XML into the relational framework.

 Chapter 7. Related Works

 181

7.6. Summary

All the related work on XML views in this chapter exploit the potential of XML by

exporting their data into XML views. As mentioned before, our work in this thesis

belongs to the scenario in which XML views are presented on top of XML data.

Unlike the related works in this scenario, our work in this thesis considers semantic

information when designing XML views (chapter 3). In particular, we design XML

views based on a semantically-rich data model (ORA-SS). By developing a set of

design rules, our work guarantees the validity of XML views, while the related work

cannot. In addition, most related work used query languages to define XML views,

which may be complicated in expressing the views. By contrast, our work proposes

several simple view operators to design XML views, which are easy to use and can

still be used to design flexible yet valid XML views. Finally, our work automatically

generates XQuery/SQLX query expressions for the designed views, which thus

alleviate users from manually writing complicated query expressions for the views.

 Chapter 8. Conclusions

 182

Chapter 8

Conclusions

8.1. Summary of Thesis Work

XML views exploit the potential of XML as the standard for exchanging data on the

Internet. As views, they also secure underlying source data and provide an

application-specific view. In this thesis, we examined how to design valid XML

views and generate query expressions of XML views based on source XML data.

Before we presented the main work, we introduced a novel data model for semi-

structured/XML data, i.e. ORA-SS. The ORA-SS data model is a semantically rich

data model. It not only reflects the nested structure of XML data, but also

distinguishes between object classes, relationship types and attributes. It is also

possible to specify the degree of n-ary relationships and indicate if an attribute is an

attribute of a relationship or an attribute of an object class. These semantics are

lacking in other existing semi-structured/XML data models including OEM, XML

DTD and XML Schema. In designing XML views, these semantics are critical in

ensuring that the designed views are valid. That is, they are consistent with the source

schema in terms of semantics. We also use the semantics expressed in an ORA-SS

data model to generate query expressions of XML views.

Based on the ORA-SS data model, we first presented a method of designing valid

XML views. In this method, an ORA-SS source schema is first extracted from the

XML source data. Then the source schema is enriched with necessary semantics with

 Chapter 8. Conclusions

 183

the help of user inputs. Finally, based on the enriched ORA-SS source schema, we are

able to design valid XML views. We adopted four main view operators to design the

views. They are the selection, drop, join and swap operators. For each operator, we

presented a set of rules to guide the design of valid XML views with the operator. All

the rules guarantee that the designed views are valid in terms of semantics in the

source schema.

Having the designed ORA-SS views, we provided a way to generate query

expressions for the views. Since the two main storage structures for XML data are

native storage (XML documents) and object-relational storage, we proposed two

algorithms to generate different query expressions for XML views based on the two

different storage structures.

In the first case, XML data are stored in XML documents. We generate XQuery view

definitions for the XML views. XQuery is the standard XML query language from

W3C. However, it is difficult for users to write manually the XQuery view definition

for XML views. Thus, we proposed an algorithm to automatically generate XQuery

view definitions for the designed XML views, which removes the need for users to

manually write the view definitions. Furthermore, we developed an improvement

version of the algorithm by utilizing the semantics of ORA-SS views, such as

relationship types in the views. The improved version also separately handles the

views involving selection operators only and the rest of the views.

In the second case, XML data are stored in an object-relational database, which

removes a lot of redundancies existing in the first case. We developed an algorithm to

automatically generate SQLX view definitions from the XML views. SQLX is the

 Chapter 8. Conclusions

 184

standard extension of SQL to process XML. By executing SQLX queries against an

object-relational database, we can directly produce XML result from the object-

relational database. This algorithm also utilized the semantics expressed in the ORA-

SS views to generate the view definitions for the views.

To the best of our knowledge, our work is the first one to employ a semantic data

model for the design and query of XML views. Compared to other related work, our

work enables us to design flexible yet valid XML views. In addition, our work

automatically generates query expressions for the views, while others require users to

manually write the query expressions. Our work also provides a graphical CASE tool

to facilitate the design and querying of XML views. In summary, using a conceptual

model for the design and querying of XML views not only validates XML views, but

also provides a fast and user friendly approach to retrieve XML data.

8.2. Future Research Directions

Firstly, the thesis work can be easily extended to support querying on ORA-SS views

by using our view operators. That is, the view operators can be used as query

operators. We can use the query operators to compose queries on views. In particular,

a query on a view involves only selection operators in most cases. Thus, we only need

to compose the view definition generated by the algorithms in the thesis with these

selection operators by directly inserting these operators into the corresponding where

clauses in the view definition. In the rest of the cases, a query on a view may involve

more complex operators, such as drop, swap or join operators. Then we directly apply

these operators to the view and generate an intermediate view tree that is the result of

the query. Next we use the algorithms proposed in the thesis here to generate the

 Chapter 8. Conclusions

 185

query definition for the intermediate ORA-SS view tree. In this way, we are able to

map any query on ORA-SS views into an equivalent query on the underlying source

XML data.

Secondly, XML view update is a natural extension to the thesis work. It has two

issues to be explored. The first issue is the updatability of XML views. In other

words, we need to examine if an XML view is able to be updated. The second issue is

how to update those updatable XML views. On the other hand, materialized XML

view maintenance should also not be neglected in the future work.

Thirdly, the following areas can also be considered as the continuing work: XML

views on top of views with a number of constraint enforcement strategies may be

used without problems. The transformation mechanism in the thesis can be more

powerful with the help of advanced ER models. The treatment of cardinality

constraints, functional dependencies and their derivation discussed in Chapter 4 and

Chapter can also be handled in a more advanced form. Moreover, the object relational

storage of XML can be seen as database transformation (from XML data to OR data).

It deserves further research from this direction in the future work. The achievements

made by other ER researchers can also be taken into consideration for the extension

of the work. For instance, the higher order entity-relationship has a sound foundation

and deserves to be explorer further. Moreover, the main proofs in the thesis based

their argumentation on set semantics. We can also extend them to support list

semantics. Finally, optimizing the XQuery/SQLX queries generated in this work is

another future work.

 186

Bibliography

1. Serge Abiteboul. Querying semi-structured data. ICDT 1997, pp. 1-18.

2. Serge Abiteboul. On Views and XML, PODS 1999, pp. 1-9.

3. Serge Abiteboul, Vincent Aguilear, Sebastien Ailleret, et. al. XML repository and
Active Views Demonstration, VLDB Demo 1999, pp.742-745.

4. Serge Abiteboul, Anthony Bonner. Objects and Views. SIGMOD 1991, pp. 238-247.

5. Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web. Morgan Kauffman,
1999.

6. Serge Abiteboul, Sophie Cluet, Laurent Mignet, et. Al. Active views for electronic
commerce, VLDB 1999, pp.138-149.

7. Serge Abiteboul, Roy Goldman, Jason McHugh, et. al. Views for semistructured data.
In Proceedings of the Workshop on Management of Semistructured Data 1997, pp. 83-
90.

8. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley, Reading-Massachusetts, 1995.

9. Serge Abiteboul, Jason McHugh, et, al.. Incremental maintenance for materialized
views over semistructured data. VLDB 1998, pp. 38-49.

10. Serge Abiteboul and Victor Vianu. Queries and computation on the Web. ICDT 1997,
pp. 262-275.

11. Chaitanya Baru. Xviews: XML views of relational schemas. DEXA Workshop 1999,
pp.700-705.

12. Chaitanya Baru, Amarnath Gupta, Bertram Ludaescher, et. al. XML-Based Information
Mediation with MIX, SIGMOD Demo 1999, pp.597-599.

13. Eliso Bertino. A View Mechanism for Object-Oriented Databases. EDBT 1992, pp
136-151.

14. Philip Bohannon, Sumit Ganguly and Henry Korth, et. al. Optimizing view queries in
ROLEX to support navigable tree results. VLDB 2002, pp. 119-130.

15. Peter Buneman, Susan Davidson and Gerd Hillebrand, et. al. A query language and
optimization techniques for unstructured data. SIGMOD 1996, pp.505-516.

16. Peter Buneman, Susan Davidson, Wenfei Fan, et. al. Keys for XML. WWW 2001, pp.
201-210.

17. Peter Buneman. Semistructured data. PODS 1997, pp. 117-121.

18. Michael Carey, Daniela Florescu, Zachary Ives, et. al. XPERANTO: Publishing
Object-Relational Data as XML, WebDB Workshop, 2000, pp.105-110.

19. Michael Carey, Jerry Kiernan, Jayavel hanmugasundaram, et. al. XPERANTO: A
Middleware for Publishing Object-Relational Data as XML Documents, VLDB Demo
2000, pp. 646-648.

20. Vassilis Christophides, Sophie Cluet, Jerome Simeon. On Wrapping Query Languages
and Efficient XML Integration, SIGMOD 2000, pp. 141-152.

 Bibliography

 187

21. Sophie Cluet, Pieanglo Veltri, Dan Vodislav, Views in a large scale XML repository,
VLDB 2001, pp. 271-280.

22. Alin Deutsch, Mary Fernandez, Daniela Florescu, et, al. Querying XML Data. IEEE
Data Engineering. Bulletin 1999, pp. 10-18.

23. Alin Deutsch and Val Tannen. MARS: A System for Publishing XML from Mixed and
Redundant Storage. VLDB 2003, pp.203-212.

24. Gillian Dobbie, Xiao Ying Wu, Tok Wang Ling, Mong Li Lee, ORA-SS: An Object-
Relationship-Attribute Model for SemiStructured Data, Technical Report TR21/00,
School of Computing, National University of Singapore, 2000.

25. Wen Yue Du, Mong Li Lee, Tok Wang Ling, XML Structures for Relational Data,
WISE 2001, pp. 151-160.

26. Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems.
Benjamin/Cummings Publishing Company, Inc., Redwood City, California, second
edition, 1994.

27. Catalina Fan, John Funderburk, Hou-in Lam, Et. al. XTABLES: Bridging Relational
Technology and XML, IBM Research Report,2002.

 http://www7b.boulder.ibm.com/dmdd/library/techarticle/0203shekita/0203shekita.pdf

28. Leonidas Fegaras and Ramez Elmasri. Query engines for Web-accessible XML data.
VLDB 2001, pp. 251-260.

29. Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. A query language and
processor for a web-site management system. In Workshop on Management of
Semistructured Data, SIGMOD 1997, pp. 4-11.

30. Mary Fernandez, Wang-Chiew Tan, Dan Suciu, SilkRoute: Trading Between Relations
and XML, WWW 2000, pp.723-745.

31. Mary Fernandez, Wang-Chiew Tan, Dan Suciu, “Efficient Evaluation of XML
Middleware Queries”, SIGMOD 2001, pp. 103-114.

32. Daniela Florescu, Alon Levy and Alberto Mendelzon. Database Techniques for the
WorldWide Web: A Survery. ACM SIGMOD Record 1998, pp.59-74.

33. Daniela Florescu, Alon Levy, and Dan Suciu. Query containment for conjunctive
queries with regular expressions. PODS 1998, pp. 139-148.

34. Hector Garcia_Molina et al. The TSIMMIS approach to mediation: data models and
languages. Journal of Intelligent Information Systems 1997, pp.117-132.

35. Roy Goldman, Jason McHugh, and Jennifer Widom. From semistructured data to
XML: Migrating the Lore data model and query language. WebDB Workshop 1999,
pp. 25-30.

36. Sandra Heiler and Stanley B. Zdonik. Object Views: Extending the Vision. ICDE 1990,
pp. 86-93.

37. http://www.w3.org/DOM/

38. http://www.w3.org/TR/xslt

39. http://www.w3.org/XML/

40. http://www.w3.org/XML/Query

 Bibliography

 188

41. http://www.w3.org/XML/Schema

42. IBM DB2 . http://www- 3.ibm.com/software/data/db2/extenders/xmlext/index.html

43. Sushant Jain, Ratul Mahajan, and Dan Suciu. Translating XSLT Programs to Efficient
SQL Queries. WWW 2002, pp. 616-626.

44. Euna Jeong, Chun-Nan Hsu. Induction of Integrated View for XML Data with
Heterogeneous DTDs. CIKM 2001, pp. 151-158.

45. Henry Korth and Abraham Silberschatz. Database System Concepts. McGraw-Hill,
New York, 1991.

46. Rajasekar Krishnamurthy, Venkatesan T. Chakaravarthy, Raghav Kaushik, et, al.
Recursive XML Schemas, Recursive XML Queries, and Relational Storage: XML-to-
SQL Query Translation. ICDE 2004, pp. 42-53.

47. Chengkai Li, Philip Bohannon, Henry Korth, et, al. Composing XSL Transformations
with XML Publishing Views. SIGMOD 2003, pp. 515-526.

48. Chen Li, Ramana Yerneni, Vasilis Vassalos, et, al. Capability based mediation in
tsimmis. SIGMOD Demo 1998, pp. 564-566.

49. Tok Wang Ling, Mong Li Lee, Gillian. Dobbie. Applications of ORA-SS: An Object-
Relationship-Attribute Model for Semistructured Data. IIWAS 2001, pp 17-28.

50. Meng Chi Liu, Tok Wang Ling. Towards Declarative XML Querying. WISE 2002, pp.
127-136.

51. Lucie Xyleme. A dynamic warehouse for XML data of the Web. IEEE Data
Engineering Bulletin, 2001

52. Daofeng Luo, Ting Chen, Tok Wang Ling, Xiaofeng Meng. On View Transformation
Support for a Native XML DBMS. DASFAA 2004, pp. 226-231.

53. Ioana Manolescu, Daniela Florescu, Donald Kossmann. Answering XML Queries over
Heterogeneous Data Sources, VLDB 2001, pp.241-225.

54. Ioana Manolescu, Daniela Florescu, Donald Kossmann, et, al. Agora: Living with
XML and relational. VLDB Demo 2000, pp.623-626.

55. Alberto Mendelzon and Tova Milo. Formal models of the Web. PODS 1997, pp.134-
143.

56. Jason McHugh, Serge Abiteboul, Roy Goldman, et, al. Lore: A Database Management
System for Semistructured Data, Technical Report, Stanford University Database
Group, Feb. 1997.

57. Jason McHugh, Serge Abiteboul, Roy Goldman, et, al. Lore: A database management
system for semistructured data. SIGMOD 1997, pp. 54-66.

58. Microsoft Corp. http://www.microsoft.com/XML.

59. Yuan Yin Mo, Tok Wang Ling, Storing and Maintaining Semistructured Data
Efficiently in an Object-Relational Database, WISE 2002, pp. 247-256.

60. Oracle Corp. http://www.oracle.com/XML.

61. Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object
Exchange Across Heterogeneous Information Sources. ICDE 1995, pp. 251-260

 Bibliography

 189

62. Yannis Papakonstantinou and Vasilis Vassalos. Query rewriting using semistructured
views. SIGMOD 1999, pp.455-466.

63. Yannis Papakonstantinou and Pavel Velikhov. Enhancing Semistructured Data
Mediators with Document Type Definitions. ICDE 1999, pp. 136-145.

64. Yannis Papakonstantinou and Victor Vianu. DTD inference for views of XML data.
PODS 2000, pp. 35-46.

65. Dallan Quass, Jennifer Widom, Roy Goldman, et, al. LORE: A Lightweight Object
REpository for Semistructured Data, SIGMOD 1996, pp. 549.

66. Raghu Ramakrishnan. Database Management Systems. McGraw-Hill, 1997.

67. Rajagopal Rajugan, Elizabeth Chang, Tharam S. Dillon, et, al. XML Views: Part 1.
DEXA 2003, pp. 148-159.

68. Elke Rundensteiner and Lubomir Bic. Automatic View Schema Generation in Object-
Oriented Databases. Technical Report 92-15, Department of Information and Computer
Science, University of California, Irvine, Jan. 1992.

69. Cassio Santos. Design and implementation of object-oriented views. Lecture Notes in
Computer Science, 978, 1995

70. Cassio Santos, Serge Abiteboul, Claude Delobel, Virtual Schemas and Bases, EDBT
1994, pp. 81-94.

71. Marc H. School, Christian Laasch, and Markus Tresch. Updatable Views in Object-
Oriented Databases, DOOD 1991, pp. 189-207.

72. Jayavel Shanmugasundaram et al, Efficiently Publishing Relational Data as XML
Documents, VLDB 2000, pp.65-76.

73. Jayavel Shanmugasundaram, Jerry Kiernan, Eugene Shekita, et, al. Querying XML
Views of Relational Data, VLDB 2001, pp.261-270.

74. John J. Shilling and Peter F. Sweeney. Three Steps to Views: Extending the Object-
Oriented Paradigm. OOPSLA 1989, pp.353-361.

75. SQLX. http://www.sqlx.org

76. Mike Stonebraker. Implementation of Integrity Constraints and Views by Query
Modification. SIGMOD 1975, pp. 65-78.

77. Dan Suciu. Query Decomposition and View Maintenance for Query Languages for
Unstructured Data. VLDB 1996, pp. 227-238.

78. Dan Suciu. An overview of semistructured data. SIGACT News 1998, pp. 28-38.

79. Dan Suciu. On Database Theory and XML. SIGMOD Record 2001, pp. 39-45.

80. Katsumi Tanaka, Masatoshi Yoshikawa, and Kozo Ishihara. Schema Virtualization in
Object-Oriented Databases. ICDE 1988, pp. 23-30.

81. Jeffrey D. Ullman. Principles of Database and Knowledge Base Systems, Volume I.
Computer Science Press, 1988.

82. Jeffrey D. Ullman. Principles of Database and Knowledge Base Systems, Volume II:
The New Technologies. Computer Science Press, 1989.

83. Jeffrey D. Ullman and Jennifer. Widom. A First Course in Database Systems. Pretice
Hall, 1997.

 Bibliography

 190

84. Victor Vianu. A Web Odyssey: from Codd to XML. PODS 2001, pp. 1-15.

85. Jennifer Widom. Data Management for XML: Research Directions. IEEE Data
Engineering Bulletin, 1999, pp. 44-52.

86. Yue Zhuge and Hector Garcia-Molina. Graph Structured Views and Their Incremental
Maintenance. ICDE 1998, pp 116-125.

87. Stefano Ceri, Sara Comai, Ernesto Damiani, et. al. XML-GL: a graphical language of
querying and restructuring XML documents, SEBD 1999, pp. 151-165.

88. Michael Benedikt, Chee Yong Chan, Wenfei. Fan, et, al. DTD-Directed Publishing
with Attribute Translation Grammars. VLDB 2002, pp. 838-849.

89. Rajasekar Krishnamurthy, Raghav Kaushik, and Jeffrey F. Naughton. XML-SQL
Query Translation Literature: The State of the Art and Open Problems. In XML
Database Symposium, 2003, pp. 1-18.

90. Rajasekar Krishnamurthy, Raghav Kaushik, Jeffrey F. Naughton. Efficient XML-to-
SQL Query Translation: Where to Add the Intelligence? VLDB 2004.

91. Alin Deutsch, Mary Fernandez, and Dan Suciu. Storing semistructured data with
STORED. SIGMOD 1999, pp. 431-442.

92. Daniela Florescu, Donald Kossman. Storing and Querying XML Data using an
RDBMS. Data Engineering Bulletin, 22(3), 1999, pp.27-34.

93. Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura, Shunsuke Uemura,
XRel: a path-based approach to storage and retrieval of XML documents using
relational databases. TOIT 2001, pp. 110-141.

94. Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, et, al. Storing and querying ordered
XML using a relational database system. SIGMOD 2002, pp. 204-215.

95. David DeHaan, David Toman, Mariano P. Consens, M. Tamer Özsu, A Comprehensive
XQuery to SQL Translation using Dynamic Interval Encoding. SIGMOD 2003, pp.
623-634.

96. Alin Deutsch, Val Tannen. Reformulation of XML Queries and Constraints. ICDT
2003, pp. 225-241.

97. Torsten Grust, Sherif Sakr, Jens Teubner: XQuery on SQL Hosts. VLDB 2004.

98. Surajit Chaudhuri, Raghav Kaushik, and Jeffrey Naughton. On relational support for
XML publishing: Beyond sorting and tagging. SIGMOD 2003, pp. 611-622.

99. Marcelo Arenas and Leonid Libkin. A Normal Form for XML Documents. ACM
Transactions on Databases Systems (TODS), 29(1):195-232, 2004.

100. M. Vincent, J. Liu and C. LIU, Strong Functional Dependencies and a Redundancy
Free Normal Form for XML, ACM Transactions on Database Systems (TODS) 29(3):
445-462, September 2004.

