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Chapter 1

Introduction

Traditionally, view is an important aspect of data processing. View support

is desirable because it provides automatic security for hidden data and allows

the same data to be seen by different users in different ways at the same

time. Compared with views in relational database, views for hierarchical data

like XML not only allow basic operations like selection, projection and join,

but also structural swapping of nodes in document trees. For example, a

bibliography XML file (e.g DBLP[19]) contains a list of publications; “under”

each publication there are the authors together with various other properties

of the publication. A frequent view operation on XML data like DBLP is to

find all authors together with their publications, which is indeed a swapping

operation on nodes “Publication” and “Author”.

The starting point of XML view transform is view definition. There are two

1



Chapter 1. Introduction 2

general approaches to define views on source XML data:

1. One way is to define views or queries in script languages like XQuery[32]

or XSLT[33].

2. The alternative approach is to define views by view schemas. Systems

like Clio[24] , eXeclon[11] and the work in [7] fall into this category. Users

only need define a view schema over source data to obtain desired the

view result. This approach is declarative and alleviates user from writing

complex scripts to perform view transformation.

There are problems with the above two approaches which hinder them to

become ideal XML view definition formats.

The query languages (e.g. XSLT and XQuery) cited above in the first approach

usually use regular expressions to express possible variations in the structure of

the data. But the use of regular expression queries means the user is responsible

to phrase their queries in a way that will cover the variations in the structure of

the source data. As an example, suppose again we want to find the information

of authors of each publication; however it is possible that the information we

want may be presented in the source data in two ways: in some places author

is nested under publication (e.g. in a bibliography record) whereas in some

other places publication is nested under author (e.g. in a publication list of

a researcher). Using regular expression means that we have to specify two

patterns: author//publication and publication//author to obtain all relevant
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information. It would be clear that we can extend the example such that in

the worst case an exponential number of regular expressions need to be written

to cover all possible variation in source data.

To overcome the above problem, a solution is to utilize the ontology of source

data, which consists of the list of tag names of elements and attributes in

the data. Apparently, it is much easier to start from the ontology to define

views than to require a user to comprehend the structural details of source

data. As an example, we can extract two keywords author and publication

from source schema. Next we let author be the parent node of publication

in a view schema meaning that we want to find all matching pairs of author

and publication elements which lie on the same path in source documents and

construct the results by placing publication elements under author elements.

Note that we do not restrict the hierarchical order of elements in a matching

pair in source document. The approach discussed in this thesis greatly extends

the above idea: it allows a user to extract element names from the ontology of

source data and define the structure of view via a view schema. All the tedious

work of finding structural variations of view schemas in the source document

will be left to the view processing back-end system. Thus view definitions can

be phrased succinctly based only on the ontology.

Meanwhile, simple tree/graph-structure schema languages like DTD and XML

Schema used in the second approach for XML view (target) schema can not

express many useful semantics and consequently causes ambiguity. To see this,
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let us take a look at a sample XML document in Figure 1.1. It contains infor-

mation about researchers working under different projects and the publication

list for each researcher.

Example 1.1 Consider the source XML document and view schema in Figure

1.1. It has at least two possible meanings:

1. For each project, list all the papers published by project members; for each

paper of the project, list all the authors of the paper.

2. For each project, list all the papers published by project members; for

each paper of the project, list all the authors of the paper working for the

project.

The different interpretations result in quite different views. Current popular

XML schema formats like DTD, XML Schema are unable to express these

semantic differences.

It is one of the main focuses of our work to use a XML schema representation:

Object-Relationship-Attribute model for Semi-Structured data (ORA-SS) [9],

which overcomes the problems of the two current XML view definition ap-

proaches. ORA-SS can extract matches with structural variations from XML

source and meanwhile clearly define the semantics of source data and views.

There are three main proposed ways to process XML view definitions: general

document-based XML query processing engines (e.g. XQuery and XSLT query
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< root > . Root
< Project J Name = ”j1” > . Project

< Researcher R Name = ”r1” > ¦ J Name
< Paper P Name = ”p1”/ > . Researcher

< /Researcher > ¦R Name
< Researcher R Name = ”r2” > . Paper

< Paper P Name = ”p1”/ > ¦P Name
< Paper P Name = ”p2”/ > (b) Source Schema

< /Researcher >
< Project J Name = ”j2” > . Root

< Researcher R Name = ”r2” > . Project
< Paper P Name = ”p1”/ > ¦J Name
< Paper P Name = ”p2”/ > . Paper

< /Researcher > ¦P Name
< Researcher R Name = ”r3” > .Researcher

< Paper P Name = ”p2”/ > ¦R Name
< /Researcher > (c) View Schema

< /Project >
< /root >
(a) Source XML document

Figure 1.1: An sample XML document with DTD-like source and
view schemas

engines such as Xalan[30],XT[8],SAXON[26] and Quip[25]) traverse in-memory

source data trees to output the result tree. Another possible solution is to load

the XML data file into a relational or object-relational database and perform

view transformation using available RDBMS facilities. This method requires

conversion from hierarchical data and schema to relational data and schema.

The third approach and also the one used in this paper is to use a native

XML DBMS to support view transformation. A native XML DBMS is one

which is designed and implemented from the ground up for storage and query

processing of XML data.

Recently, great efforts have been put into the study of XML query optimiza-

tion. Techniques[1][3][34] are developed mainly for processing of queries de-
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fined in the XPath[31] standard, which can express both path and branch

patterns. However, as we demonstrated earlier, XML views defined based on

the ontology of source data can not be mapped to a single XPath expres-

sion. To meet the new challenges, we investigate new XML query processing

techniques for views defined via schema mapping. The new techniques are

integrated with our native XML DBMS XBase to process XML views defined

in ORA-SS format. Experiment results demonstrate the advantages of our

method over current state-of-the-art approaches.

The main contributions of our work are:

1. We introduce a new view schema definition format based on ORA-SS

which can

(a) Extract matches with structural variants in tree-structured data like

XML without issuing an excessive number of queries as XSLT and

XQuery do.

(b) Express a large variety of semantics which results in different view

which is not possible under view schema format like DTD and XML

Schema.

2. A native XML document storage and view transformation prototype

XBase which implements novel XML document storage scheme and query

processing techniques to obtain views defined in our view schema format.
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This thesis is organized as follows:

• Chapter 2 introduces XML data model and the conceptual XML data

model ORA-SS used in our work.

• Chapter 3 surveys recent work on graphical XML view definition, native

XML DBMSs and the latest XML query/view processing techniques.

• Chapter 4 explains in details the advantages of using the ORA-SS data

model for XML view schema definition.

• Chapter 5 explains storing XML documents in a new Object Based Clus-

tering scheme in our prototype XML DBMS system: XBase.

• Chapter 6 shows a new XML query processing technique: Associative

Join to efficiently process XML views defined in ORA-SS format.

• Chapter 7 shows a series of experiments to test the performances of view

transformations in our XML DBMS: XBase.

• Chapter 8 concludes the thesis.



Chapter 2

Background

Recently there has been an increased interest in managing data that does

not conform to traditional data models. The driving factors behind the shift

are diverse: data coming from heterogeneous sources(especially the Web) may

not conform to the traditional Relational or Object oriented model physically;

meanwhile missing attributes and frequent updates to both data and schema

render traditional data models inappropriate in the logical level. The term

semi-structured data has been coined to refer to data with the afore-mentioned

nature. In particular, XML is emerging as one of the leading formats for

representing semi-structured data.

In this chapter, we first briefly describe the XML data model. Next we intro-

duce a recently proposed conceptual model for XML data: Object Relationship

Attribute Model for Semistructured Data or ORA-SS.

8



2.1. XML DATA MODEL 9

2.1 XML data model

An XML document is generally presented by a labelled directed graph G =

(VG, EG, rootG,
∑

G). Each node in the vertex set VG is uniquely identified by

its oid. A node can be of the following types: Element, Attribute, Content.

Each node also has a string-literal label from the alphabet
∑

G. The root

node is denoted by rootG. There are two types of edges in the edge set EG.

The tree edges represent parent-child relationships between two nodes in VG.

Note that any node except rootG has one and only one incoming tree edge but

any number of outgoing tree edges. The reference edges represent reference

relationships defined using ID/IDREF features in XML. As an example, the

following XML element student has an id attribute whose value is unique in

the entire document:

< student id = “U888” name = “Tim Duncan” age = “27” >

Another element can refer to the above element using an ref attribute whose

value is equal to the id value of referred element. E.g:

< student ref = “U0202888” >

The advantage to use ID/IDREF is that we can avoid replications of data in

XML documents.
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If we consider only tree edges, an XML document can be viewed as a tree.

In the remaining of this paper, we focus on tree-structured XML data model

which doesn’t include ID/IDREF edges.

2.2 ORA-SS

DTD and XML Schema are de facto schema formats for XML documents, why

do we need yet another model? There are multiple reasons. First of all, DTD

and XML Schema are text-based; they are primarily designed for validation of

XML documents. In the domain of view definition, it is troublesome to define

views in DTD and XML Schema directly. On the other hand, graphical and

conceptual data models are much more intuitive and easy to design. Next and

more importantly DTD and XML Schema provide little features for expressing

semantic constraints over data they represent as we have pointed out in the

introduction section.

We introduce a semantically expressive data model ORA-SS[9]. ORA-SS has

two important types of diagrams. An ORA-SS instance diagram represents a

XML document while an ORA-SS schema diagram models the corresponding

schema. Drawing from the success of Entity-Relationship model, an ORA-SS

schema diagram has the following basic concepts:

1. Object Class
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Object classes are similar to entity types in the Entity-Relationship model.

Object classes are represented as rectangles in ORA-SS Schema diagram.

2. Relationship Type

Two or more object classes are connected via a relationship type in

schema diagram. Labels associated with edges between object classes

denote the relationship type names and their degrees.

3. Attribute

Attributes are properties of an object class or a relationship type. At-

tributes are represented as circles in ORA-SS Schema diagrams. An

attribute can also be the identifier of an object instance and is repre-

sented as a solid circle in ORA-SS schema diagrams. Labels associated

with edges between object classes and attributes indicate which relation-

ship type the attribute belongs to. Edges between object classes and

attributes without labels indicate the attributes are properties of the

object classes.

In ORA-SS instance diagrams, objects are represented as rectangles labelled

with class names. Labels under leaf nodes show attribute names followed by

their values.

The most important difference between ORA-SS and DTD/XML Schema is

that for each object class, an ORA-SS schema indicates which relationship
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types it participates in. Similarly for each attribute, an ORA-SS schema ex-

plicitly indicates its owner object class or relationship type. This information

can be obtained from labels on edges in an ORA-SS schema diagram. In gen-

eral, an edge with a relationship type label of degree n (n ≥ 2) indicates that

the two object classes (say A , B and A is B’s parent) linked by the edge and

the n− 2 closest ancestors of A form a n-ary relationship type.

Example 2.1 Fig. 2.1 shows an ORA-SS instance diagram and and Fig. 2.2

shows the corresponding schema diagram for the XML file in Fig. 1.1a (with

a few additional attributes on Position and Date).

Like DTD, XML Schema and Data-Guide[12], an ORA-SS schema diagram

shows the tree structure of the XML file. What’s more, the ORA-SS schema

diagram explicitly indicates the following facts about XML documents conform-

ing to the schema:

1. There are two binary relationship types in the schema: Project−Researcher

(JR) and Researcher − Paper (RP). A project can have several re-

searchers and a researcher can work in different projects. Meanwhile,

the set of papers under a researcher doesn’t depend on the project he/she

works in.

2. Position is an attribute of relationship type JR instead of Researcher.

This means that a researcher may hold different positions across projects

he works in.
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3. Date is a single-valued attribute of object class Paper. Different occur-

rences of the same paper will always have the same Date value.

4. J Name,R Name and P Name are identifiers of object classes Project,

Researcher and Paper respectively as indicated by solid circles. Key

values are used to tell if two object occurrences are identical.

r2

Position:
   Leader

Paper

P_Name:
p1

Date:
05/2002

P_Name:
p1

Date:

Paper Paper

Researcher

R_Name:

root

Project Project

J_Name:
j1

Researcher Researcher

R_Name:
r1

Researcher

P_Name:
p1

Date:
05/2002

P_Name:
p2

Date:
03/2000

P_Name:
p2

Date:
03/2000

R_Name:
r3

03/2000

Paper Paper Paper

J_Name:
j2

R_Name:
r2

Position:
Staff Position:

Leader

P_Name: Date:
05/2002 p2

Figure 2.1: ORA-SS instance diagram for the XML file in Fig. 1.1a
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Date
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Paper

Researcher

Project

����
����
����
����
����

����
����
����
����
����

��
��
��
��
��
��

��
��
��
��
��
��

����
����
����
����
����

����
����
����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

�
�
�
�

�
�
�
�

�
�
�
�

Figure 2.2: ORA-SS schema diagram the XML file in Fig. 1.1a
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Information about relationship types in an ORA-SS schema can be obtained

through several possible ways:

1. In the case that the XML document examined is exported from a re-

lational source, then by knowing operations performed on the source

tables to generate the XML data, we can deduce the ORA-SS schema.

For example, in the above example, if we know that the XML file are

generated by joining two relational tables (Project, Researcher) and

(Researcher, Paper), then we can easily know there are two binary re-

lationship types in the ORA-SS schema.

2. In the case that we only have XML documents, then we need to solve

the classic schema discovery problem. This thesis does not focus on the

problem of ORA-SS schema discovery; we use the example to illustrate

the intuition. It should be noted that the relationship type information

implies data dependencies. First we need to assign keys for each object

class to tell if two objects are the same. Next if we find that all occur-

rences of the same Researcher object have the same set of papers as

their children, then Researcher and Paper may probably form a binary

relationship type. This fact has to be confirmed by users because the file

may be too small to find an exception. Otherwise it means the set of pa-

pers under a researcher depends also on the project the researcher works

in; then Project, Researcher and Paper forms a ternary relationship.



Chapter 3

Review of the State of the Art

In this chapter, we review topics related to XML views and view processing.

First we survey popular XML schema formats and query languages and the

relatively new field on graphical XML query language. Next we study XML

document storage schemes which have direct impact on XML view processing.

Finally we review state-of-the-art XML query processing techniques.

3.1 XML Schema Formats and Graphical view

definitions

DTD[10] and XML Schema[27] are current dominant XML schema standards.

DTD is essentially an extension of context-free grammar (CFG) which is able

to specify graph structures of XML data as well as various constructs like

15
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Element, Attribute and ID/IDREF . XML Schema has many more features

compared with DTD. It allows the definition of complex data types in a schema

which is not present in DTD. XML Schema also has features like inheritance.

XML Schema is gradually replacing DTD as the standard XML schema format.

Under the W3C, there are two competing XML query language standards:

XQuery[32] and XSLT[33]. While it is a matter of taste to say which is better,

it seems that XQuery is gaining the upper-hand because strong endowment

from the database research community. Both XQuery and XSLT provide rich

features as query languages and thus become complex. Both of them follow

the SQL tradition and use For-Let-Where-Return as the basic query skeleton.

Aggregate functions are also supported by both languages. It should be noted

that XPath[31] is used to extract information from XML documents in both

standards.

One of the classical graphical query languages is Query By Example (QBE)

from IBM. A graphical query language is often preferred over text-based query

language because of its intuitiveness and ease of use. In the context of XML

graphical query language, important recent developments include XML-GL[2]

and GLASS[23]. XML-GL is built on the base of a graphical representation

of XML documents and DTDs, which is called XML graphs. An XML graph

represents the XML documents and DTDs by means of labelled graphs. An

XML-GL query consists of two parts: left hand side (LHS) and right hand side

(RHS). The LHS of an XML-GL query indicates the data source and conditions
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and the RHS constructs the output. Compared with XML-GL, GLASS is

a more expressive XML visual query language. It employs ORA-SS as its

XML data model. GLASS also supports negation, quantifier and conditional

output, which are not present in XML-GL. A GLASS query consists of LHS

and RHS parts just as XML-GL; however, it has an optional Conditional Logic

Window (CLW) which allows specification of many useful logic conditions such

as negation, existential constraints and IF-THEN conditions.

Example 3.1 The GLASS query in Figure 3.1 displays the members with their

names who have written a publication titled “Introduction to XML or “Intro-

duction to Internet; and for those members who have written Introduction to

XML, it also displays all information about the projects that they have partic-

ipated in.

The vertical line separates LHS and RHS of the GLASS query. : A : and

: B : are conditions which require the members should have a publication titled

“Introduction to XML ( or “Introduction to Internet) respectively.

3.2 XML document storage schemes and Na-

tive XML DBMS

The storage scheme has a great impact on the performance of native XML

DBMS systems. Several native storage schemes have been proposed to store
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Figure 3.1: An example of GLASS query

XML documents:

1. Element-Based scheme (EB). In EB scheme (Figure 3.2b), each element

(and attribute which is also treated as an “element”) is an atomic unit

of storage and elements in an XML document are stored according to

their document (i.e. pre-order) order. The Lore system[21] is a classical

example which uses EB scheme.

2. Element-Based Clustering scheme (EBC). In EBC scheme (Figure 3.2c),

elements with the same tag name are first clustered together and in each

cluster elements are listed by their document order. TIMBER[14] is a

native XML DBMS using EBC scheme.

3. Subtree-based scheme (SB). In SB scheme (Figure 3.2d), a XML docu-

ment tree is divided into subtrees according to the physical page size,

following the rule that the size of a subtree should be as close as possible

to the size of the physical page. A split matrix is defined to make certain
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element nodes are clustered as a record. Similarly, records are stored in

pre-order according to their roots. Natix[16] adopts SB strategy.

4. Document-based scheme (DB) . In DB scheme, the whole XML document

is a single record. An example that adopts the DB strategy is the storage

of Apache Xindice[18] system.

 

a1 

b1 c2 

c1 a2 b2 

(a) A sample XML document: node a1 and a2 have tag 
name A; b1 and b2 have tag B and c1 and c2 have tag C. 

a1 b1 c1 a2 c2 b2 

(b) Storing the XML document in (a) using EB strategy 

a1 a2 b1 b2 

c1 c2 

(c) Storing the XML document in (a) using EBC strategy 

a1 

b1 c2 

c1 a2 b2 

a1 c2 b2 

b1 c1 a2 

(d) Storing the XML document in (a) using SB strategy 

Figure 3.2: Illustration of various XML document storage schemes

The advantage of the EB strategy is its simplicity and robustness. Its biggest

disadvantage is tiny granularity of record because each element and attribute
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is treated as an atomic unit of storage. Tiny granularity results in too many

pointers (physical pointer or logical pointer) among records, which leads to

more storage space and increasing the cost of updating. Meanwhile, because

elements with the same tag are not clustered together, the scheme incurs more

I/O costs in processing queries involving only a small number of tags. The main

disadvantage of the SB strategy is its relatively large granularity of record. In

some cases, most data gained by a single page read from disk is useless for query

processing. The DB strategy treats a whole document as a single record. It is

fine with small files but not suitable for large ones. The whole XML document

must be read and be memory-resident during query processing, which requires

too much memory. EBC to some extents, avoids the problems of other storage

schemes and thus is a more popular XML storage option currently.

Besides the choice of storage schemes, native XML DBMSs usually number

node of an XML document for query processing purposes and store these num-

bers together with records in the database. One of these numbering schemes[3]

is to use (DocumentNo, StartPos : EndPos, LevelNum) to number each node

in the XML file. DocumentNo refers to the document identifier. StartPos and

EndPos are calculated by counting the number of element start and end tags

from the document root until the start and the end of the element. LevelNum

is the nesting depth of the element in the data tree.

Node numbering allows fast processing of XML documents because using the

numbering scheme, the calculation to tell if two nodes are of ancestor/descendant
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or parent/child relationship is done in constant time. For example, in the num-

bering scheme we introduced previously, node A is a descendant of node B if

and only if StartPos(A) > StartPos(B) and EndPos(A) < EndPos(B). No-

tice that using node numbering scheme, we do not need to travel the edges (note

that in the number of travelling steps is dependant on document height) from A

to B to do the ancestor/descendant testing. Similarly, node A is the parent of

node B if and only if StartPos(A) > StartPos(B), EndPos(A) < EndPos(B)

and LevelNum(A) == LevelNum(B)− 1.

3.3 XML View Processing techniques

Query processing and optimization of graph/tree structured data like XML

poses many new problems. In the context of graph structured XML data,

many techniques to build a structural summary on source XML data have

been proposed. Summary structures of XML data, which play a similar role to

indexes of traditional relational databases, are usually much smaller than the

corresponding source data in size and thus they can be used to answer path

and branch queries efficiently. 1− index[22],A(k)− index[17],D(k)− index[4]

and M(k) − index[13] are recently proposed XML structural summaries to

answer path queries.

We focus on tree-structured XML data in this thesis. In the context of

tree (which is a special kind of graph) structured XML data, more opti-
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mization techniques are allowed. Join processing is central to query evalua-

tion. Structural join is essential to XML query processing because most XML

queries impose structural relationships (e.g. Parent− Child and Ancestor −

Descendant relationships) to nodes in query results. For example, the XPath

query Researcher/Paper asks for all Paper elements which are children of

Researcher elements. A binary structural join (which simply contains two

query nodes linked by a Parent − Child or Ancestor −Descendant edge) is

formally defined as follows:

Definition 3.1 (Binary Structural Join[3]) Given two sorted input lists and

a certain numbering scheme for each node in the lists where AList is a list of

potential ancestor (or parents) nodes and DList is a list of potential descendant

(resp. children) nodes, find the list OutputList = [(ai; dj)] of join results, in

which ai is the parent/ancestor of dj and ai is from AList and dj is from

DList.

Zhang et al.[34] proposed a merge join (MPMGJN) algorithm based on

(DocId, LeftPos : RightPos, LevelNum) labelling of XML elements. The

later work by Al-Khalifa et al. [3] gives a stack-based binary structural join al-

gorithm which is both I/O and CPU optimal based on the same XML labelling

scheme. Wu et al. [29] studies the problem of (binary) join order selection for

complex queries based on a cost model which takes into consideration factors

such as selectivity and intermediate result size.
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A more general form of XML query consists of more than binary relationships.

Formally, a twig pattern query Q is a small tree whose nodes are predicates

(e.g. node type test) and edges are either Parent-Child edges or Ancestor-

Descendant edges. A twig pattern match in a XML database D is a mapping

from nodes in Q to database nodes in D such that:

1. Node predicates in Q are satisfied by the corresponding database nodes;

and

2. The Parent-Child or Ancestor-Descendant relationships between query

nodes are also satisfied by the corresponding database nodes.

Usually, a match to a twig pattern query with n nodes is represented as a

n − ary tuple of databases nodes. For example, the following twig pattern

query written using XPath format

section[/title]/paragraph//figure

selects distinct tuples each of which has 4 elements with types section, title,

paragraph and figure respectively. In addition, in each tuple, the figure

element should be a descendant of the paragraph element which in turn is the

child of the section element which is the parent of the title element.

Formally, the problem of twig pattern matching is defined as:
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Definition 3.2 (Twig Pattern Matching [1] )

Given a query twig pattern Q, and an XML database D that has index struc-

tures to identify database nodes that satisfy each of Q’s node predicates, com-

pute ALL the answers to Q in D.

Prior work[29] on XML path pattern processing usually decomposes a twig

pattern into a set of binary relationships which can be either parent-child

or ancestor-descendant relationships. After that, each binary relationship is

processed using binary structural join techniques and the final match results

are obtained by joining individual binary join results together. For example,

the afore-mentioned XPath expression can be processed by a series of struc-

tural joins and merges: (1) structurally join the list of figure with the list

of paragraph to get the paragraphs with at least one figure descendant (2)

structurally join the paragraphs resulted from step 1 with the list of section

(3) structurally join the section list constructed in step 2 with the list of title

(4) finally merge the list of section resulted in step 3 to get the final output.

The intermediate output of each step except the final one is also represented

as a list of tuples. The main problem with the above solution is that it may

generate large and possibly unnecessary intermediate results. For example,

if in the source document there are a lot of paragraph elements with figure

descendants but few of which have section parents, most of the intermediate

output of step (1) becomes redundant once we join it with the list of section
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element.

Without resorting to the inefficient traditional decompose-then-join approach,

twig join tries to evaluate branching queries as a whole. In their paper, Bruno

et al. [1] propose a novel holistic method of XML path and twig pattern pro-

cessing based on Element-Based Clustering which avoids storing intermediate

results unless they contribute to the final results. Their algorithm is I/O and

CPU optimal to twig pattern query consisting of only Ancestor-Descendant

edges. Jiang et al.[15] studies the problem of holistic twig joins on all/partly

indexed XML documents. Chen et al. [5] proposes a new XML element clus-

tering approach which can process Ancestor-Descendant only, Parent-Child

only and XML twig patterns with only one branch node optimally.



Chapter 4

ORA-SS as XML View

Definition Format

ORA-SS schema diagrams can be used to define XML views with a great

variety of semantics. In this chapter, we first explain the advantages of ORA-

SS schema over popular tree/graph based XML schema formats likes DTD

and XML Schema in defining XML views. Next, we explain in detail how to

interpret XML view schemas defined in ORA-SS.

4.1 Why ORA-SS ?

The additional information in the ORA-SS schema diagram such as relation-

ship type sets and attribute types allows to define XML views with a great

26
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variety of semantics.

Figure 4.1 shows such an interesting example. Although the two view schemas

over source schema in Figure 2.2 look nearly identical from a tree-structure

point of view, they represent quite different semantics:

• Figure 4.1a has two binary relationship types. The intention of the view

schema is to find all the papers published by researchers in a project;

and for each paper to find all of its authors.

• Figure 4.1b has only one ternary relationship type. The view is defined

to find all the papers published by researchers in a project just as Fig-

ure 4.1a; however, for each paper Figure 4.1b only finds those authors

working for the project.

To illustrate the ideas, Figure 4.2 gives “correct” (which we will define formally

in Section 4.2) views for view schemas in Figure 4.1a and b. To simplify the

diagram, we use a variant of ORA-SS instance diagram which use identifiers

to represent an object. Notice that both views are correct but view in Figure

4.1a has two more root-to-leaf paths (here we use XPath-like expressions to

represent paths.) than Figure 4.1b: root/j1/p2/r3 and root/j2/p1/r1. They

do NOT appear in view Figure 4.1b because researcher r3 is the author of

paper p2 but not a member of project j1.

The above example clearly shows the expressive power of ORA-SS schema
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diagram. We are going to explain in detail how different semantics are derived

from ORA-SS view schemas in the next section.
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Figure 4.1: Two view schemas for source schema in Fig. 2.2
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(a) Instance of view schema Fig. 4.1a (b)Instance of view schema Fig. 4.1b

Figure 4.2: Correct views for views schemas in Fig. 4.1

User needs only the ontology of source data to define ORA-SS view schemas;

by doing so we free the user from the trouble of looking into complicated details

of the source schema. In terms of mapping from an ORA-SS source schema

to a user-defined view schema, we extend the work by Chen[6] and define the

following basic operations:

1. Projection Just like projection operations in relational model, projec-
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tion in XML context drops object class and/or attributes in the source

schema.

2. Selection The selection operator filters away object instances or attribute

values by applying predicates to object classes or attributes in the source

schema.

3. Swapping XML employs a tree data model; naturally, many views defined

by swapping node positions in the source schema tree. This is an operator

that finds no counter-part in the relational model.

4. Join Two relationship types can be joined on one or more common object

classes.

5. Union Two identical relationship types or object classes can be unioned.

Remark: It should be pointed out that a user do not need to worry about these

mapping operations; however back-end view transformation engines can utilize

these mapping information for optimization.

Example 4.1 Figure 4.3 defines a schema mapping for view transformation.

The source ORA-SS schema has two branches with four binary relationship

types. The relationship R1 : Project − Researcher lists researchers working

under each project. The relationship R2 : Researcher − Paper shows the

publication lists of each researcher. The relationship R3 : Conference−Paper
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root
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R3;2

R4;2

Figure 4.3: Source Schema to View Schema Mapping with object class

mapping

lists papers published in each conference and the relationship R4 : Paper −

Researcher records the authors of each paper.

The view schema has only two binary relationship types. The relationship

Project−Paper shows all the papers published by project members of a project.

It is formed by first join R1 and R2 on Researcher and then taking projection

on the join result. The relationship Paper − Researcher shows the complete

author list of each paper. It is constructed by first swapping R2 and then

unioning the resulting relationship with R4.

Figure 4.4 shows a sample XML document conforming to the source ORA-SS

schema in Figure 4.3. The correct view transformation result is shown in Figure

4.5. The concept of object identifier in ORA-SS, which is missing in both DTD
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and XML Schema, is essential to correctly swap and merge objects in source

XML documents to construct views. Due to its tree structure, an object with

the same identifier may have several occurrences in the source document. A

swap operation in XML view transformation may result in occurrences of the

same object placed under the same parent and thus should be merged to

reduce redundancy. Without the concept of object identifer, merging object

occurrences is not possible. As an illustration, the relationship type Paper −

Researcher in the view schema of Figure 4.3 swaps the order of R2 in the

source schema. Correspondingly, Paper objects now should be placed above

Researcher objects in the view. Notice that in the sample XML document

in Figure 4.4, there are three occurrences of object p2, using their object

identifers, we can merge them and group their children together in the view.

Certainly we can not obtain the desired view result if DTD or XML Schema

is used as the schema definition format because they do not consider object

identifiers.

j1

r1 r2

p1 p2 r6r3r4r1

p4p1

c1

p4p2p1

r3r1

j2

p2

Figure 4.4: Source XML Document of source schema in Fig. 4.3
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j1

p1 p2

r1 r4 r1 r2

j2

p1 p2 p4

r1 r2 r6r1 r4 r3

Figure 4.5: View XML Document of view schema in Fig. 4.3 based

on source XML document in Fig. 4.4

4.2 Semantics of ORA-SS views

ORA-SS, used as the view schema format, introduces different semantics com-

pared to XPath queries. Thus in this section, we define formally the semantics

of ORA-SS view schema.

Our most important assumption is that several objects are related if they are

located on the same path in a source document. Based on this assumption,

given a relationship R: O1/O2/ . . . /On in ORA-SS view schema, a match of

R is a path o1/o2/ . . . /on for which:

1. Object oi is of class Oi.

2. o1, o2, . . . , on should be located on some path p in the source document

but there is no restriction on their order on p.

A relationship type R: O1/O2/ . . . /On in ORA-SS view schema allows much

more possible matches than the XPath expression: O1//O2// . . . //On. The
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reason is that the latter not only requires that the n nodes in a match are

located on the same path but also impose the hierarchical ordering on the

objects (i.e. objects from o1 to on should have increasing depths). The seman-

tics of ORA-SS view schema is useful in many practical scenarios and using it

avoids an excessive number of XPath expressions needed to replace equivalent

ORA-SS view schemas as we pointed out in the introduction chapter. We

extend the idea to define ORA-SS view schema semantics.

In general, a view transformation based on schema mappings can be seen as

an assignment from a source document to its view which satisfies various con-

straints imposed by a view schema which will be discussed shortly. Because

view document trees consist of a collection of paths, naturally we should con-

sider defining constraints over these paths. Formally, we define a complete

path in an ORA-SS instance tree to be a path from the root to a leaf ob-

ject. XPath-like expressions are used to represent paths. For example, path p:

o1/o2/ . . . /on denotes a path with object oi as the parent of object oi+1. An

object in the path is denoted by its identifier. A complete path p is said to be

of type P if p is an instance of a root-to-leaf path P in the ORA-SS schema

diagram. Sub-path of a path p is a segment of p. We say a sub-path p′ is a

relationship sub-path if p′ is an instance of relationship type R. A complete

path is formed by the root and one or several relation sub-paths.

For example, in Figure 4.4, the complete path root/j1/r1/p1 consists of rela-

tionship sub-path j1/r1 of type Proj/Researcher and r1/p1 of type Researcher/Paper.



4.2. SEMANTICS OF ORA-SS VIEWS 34

View schemas defined in ORA-SS impose the following constraints on views:

Definition 4.1 (Relationship Constraint) A complete path p is in the view

tree if p is of type P with P being a root-to-leaf path in the view schema and

for each of p’s relationship sub-paths pi : o1/o2/ . . . /on of some relationship

type R on P , o1,o2,. . .,on lie on some path in the source document, possibly in

a different order than they are in pi.

Definition 4.2 (Object Attribute Constraint) A sub-path p: o/a with object o

as the owner object of object attribute a is in the view tree if o/a is also in the

source document.

Definition 4.3 (Relationship Attribute Constraint) A relationship sub-path

with its relationship attribute a (or p: o1/o2/ . . . /on/a) is in the view tree if a

lies on the same path with o1, o2, . . . , on in the source document. The order of

o1, o2, . . . , on in the source document may be different from their order in p.

A correct view is indeed the collection of all the complete paths together

with attribute values which satisfies the above three constraints. To eliminate

redundancy, we also require that no object (including the root) in views can

have two child objects with the same identifier.

Intuitively, the Relationship Constraint requires objects in each relationship

sub-path of the views be related in source document. Thus objects in a rela-
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tionship sub-path of a view should also lie on some path in the source docu-

ment. The Object Attribute Constraint can be understood as attributes of an

object in a source document should still remain as the attributes of the same

object in view. The Relationship Attribute Constraint essentially states that

an attribute of a relational sub-path p in source document will be the attribute

of a relationship sub-path p’ in the view if p’ contains all objects in p possibly

in a different order.

Example 4.2 The view in Figure 4.5 is the correct view source in Figure 4.4

under the schema mapping in Figure 4.3. The complete path p : j2/p4/r6 is

in the view but none of the complete path in the source document contains all

the three objects. p is in the view because its two relationship sub-paths j2/p4

and p4/r6 are present in the source document, which means the relationship

constraint is satisfied.

4.3 Comparison and Summary

In this chapter, we explain how to use ORA-SS schema diagram as XML

view definition. Compared with other schema-based XML view transformation

approaches like XML-GL[2] and GLASS[23], our approach is different because

we do not require the user to have knowledge on the structure of source schema

(which is often very complex) and perform tedious mapping from source to

view schema. Instead the user only needs to know the ontology (i.e. the lists
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of object classes and attribute names) to define ORA-SS view schema and that

is all users need to do to get view results.

Compared with DTD and XML Schema, the ORA-SS schema diagram provides

a more flexible and expressive a new view schema definition format because:

1. it can succinctly extracts matches with structural variants in tree-structured

data like XML because it considers a set of objects match a relationship

type as long as they are located on some path in the source XML data

and their structural order is not a concern. XSLT and XQuery can only

achieve this by issuing an excessive number of XPath queries.

2. it can express a great variety of semantics which results in different views

because the semantics of a path in ORA-SS view schema is defined not

only by the sequence of its object classes in the path but also the set of

relationship types in the path. This feature is not present in DTD and

XML Schema.

In our discussion, we assume that all ORA-SS view schema defined by users

are meaningful. This assumption may not always be true. We do not cover

this case in this thesis and refer the reader to the work by Chen et.al. [6] which

discusses how to define and validate meaningful views for XML document in

ORA-SS formats.



Chapter 5

XML Document Storage in

Native XML DBMSs

XML data can be stored in many ways. There has been a lot of work on stor-

ing XML documents in relational database. Under such schemes, XML queries

have to be translated to SQL before relational DBMS can do query process-

ing. Meanwhile because of the vast differences in XML queries and traditional

relational queries many optimization techniques devised for relational DBMSs

are shown to be inefficient[34].

An alternative is to store XML documents in specially designed native XML

DBMSs. Recently there are quite a number of native XML DBMSs system

designed and implemented[14][28]. These systems have already shows encour-

aging signs of efficient XML query processing capacities.

37
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In this chapter, we focus on the aspect of XML storage strategy in native XML

DBMS, which has great impact on XML query optimization.

5.1 Object Based Clustering

Object Based Clustering (OBC)[20] is a XML document storage strategy

which facilitates efficient XML query processing. The starting point of OBC

is the following observations:

1. When a query asks to retrieve an element node, it usually retrieves the

text node and attribute node together with that element node. For exam-

ple, the identifer of an object is often retrieved together with the object

itself. So, to group attribute nodes and text node with their ownership

element node as an object helps to reduce the cost of intermediate result

join.

2. The majority of XML queries or views only involve elements whose tag

names form just a subset of all possible tag names in source XML data.

Certainly elements whose tag names do not appear in the query or

view definition will not appear in query result. However, the previously

discussed (Section 2 of Chapter 3) Element-based strategy (EB) and

Subtree-based strategy (SB) store records (element or subtree) in pre-

ordered manner without considering their tag names. This will result in
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great dispersal of elements with the same tag name, which subsequently

leads to more redundant I/Os. Element Based Clustering, on the other

hand, groups elements with the same tag name as a list. The advantage

of this approach is obvious: in answering an XPath query such as A//B,

all we need to do is to perform scans over the clusters A and B.

We can see that Element Based Clustering solves the second problem but

not the first. Our Object Based Clustering approach groups objects of the

same kind (instead of elements of the same tag) as a list and thus solves both

problems. ORA-SS schema can help us to determine how to group several

nodes as an object. More specifically,

1. Object identifier of an object will be stored in the same record as the

object.

2. Object attributes of an object will be stored in the same record as the

object.

3. Relationship attributes directly nested under an object will be stored in

the same record as the object.

4. An object record will have a unique associated label whose use will be

described in the next section.

Object Based Clustering usually have much fewer records (i.e. objects or

elements) compared with Element Based Clustering. By having fewer records,
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we also reduce the total number of physical or logical pointers (e.g. node labels)

associated with the records. On the other hand, unlike Subtree Based scheme,

the contents bundled in a record (i.e. an object) in OBC are often semantically

related and thus have much higher chance of being retrieved together in a

single query. Therefore OBC can help to reduce unnecessary scanning which

is a problem to SubTree Based XML storage schemes.

5.2 Object Labelling Scheme

One question about OBC is that if two objects with parent/child or ances-

tor/descendant relationship are stored in different clusters, how can we tell

they have such relationship when processing path or branching queries. To

solve the problem, OBC gives labels for objects in an XML document. This

idea is borrowed from the well-known region encoding [3] for tree structured

data.

An object label is a 3-tuple: < startPos, endPos, level >. startPos and

endPos are calculated by performing a pre-order (document order) traversal

of the document tree: startPos and EndPos of an element e are calculated

by counting the number of start and end element tags from the document root

until the start and the end of the element e. level is the nesting depth of the

element in the data tree.

The labelling scheme allows us to tell if object o1 is an ancestor of o2 in constant



5.3. OBJECT BASED CLUSTERING VS. ELEMENT BASED CLUSTERING 41

time:

o1 is ancestor of o2 if o1.startPos < o2.startPos and o1.endPos > o2.endPos.

Furthermore, if o1.level = o2.level − 1, we can see o1 is the parent object

of o2. Another feature of such a scheme is that the determination of ances-

tor/descendant relationship is as easy as the determination of parent/child

relationship: there is no need to traverse the path linking the two nodes.

Example 5.1 Figure 5.1 shows how the document in Figure 2.1 is labelled

and stored.

5.3 Object Based Clustering vs. Element Based

Clustering

Many native XML DBMSs (e.g. Timber[14]) use Element Based Clustering

storage scheme. The scheme stores all XML elements with the same tag name

or attribute values with the same type in a cluster. The advantage of this

approach is that it does not need any schema information.

On the other hand, the Object Based Clustering (OBC) scheme groups at-

tributes of an object together with the object itself. Such a scheme can re-

sult in greater efficiency in XML query processing because most real world
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Figure 5.1: The sample XML document in Fig.2.1 stored under Object

Based Clustering. The numbers in parentheses are object labels
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queries on XML data retrieve not only matches to a certain pattern (e.g.

Project//Researcher) in XML source documents but also associated attribute

values of each object found. For example, instead of only specifying the pat-

tern Project//Researcher, a real world XML query will often be in the form

of

Project[J Name]//Researcher[R Name]

because users are not interested in a list of matches with nothing but tag names

but the attribute values of each match.

Using the traditional Element Based Clustering (EBC) approach, attributes

(e.g. J Name) are stored in separate clusters from their owner objects(e.g.

Project). This storage approach results in more structural (label-based) joins

than the Object Based Clustering approach. As an example, in processing an

XPath query which finds researchers with their names under some project

Project[J Name]//Researcher[R Name]

Object Based Clustering approach just needs one structural join between the

clusters of Project and Researcher. On the other hand, EBC needs:

1. Structural join the Project and J Name clusters and store the result in

a temporary list L1.
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2. Structural join the Researcher cluster with the list L1 and store the

result in a temporary list L2.

3. Finally structural join the R Name cluster with the list L2 to produce

the final results to the query.

Note that although the above plan is just one alternative to process the query

using EBC, other plans may change the order of joins but still need to go

through three steps.

It can be seen that using EBC we have two more structural joins than using

OBC: more I/O cost is incurred for storing and reading the two temporary

result lists L1 and L2; we also pay more CPU cost because of the additional

joins.

In summary, by bundling attribute values with their owner objects, OBC

allows more efficient processing of XML queries.



Chapter 6

ORA-SS View Processing on a

native XML DBMS

As the semantics of ORA-SS views show, the relationship type is essential

to ORA-SS schema diagrams. Thus in this chapter, we first describe how to

process view transformation for a single relationship type. Then we give an

algorithm for processing view whose schemas is defined in ORA-SS format in

general.

45
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6.1 Associative Join: A Primitive XML Join

Technique

6.1.1 Structural Query and Associative Query

Structural Join[34][3] and Twig Join[1], discussed in Section 3.3, are join tech-

niques devised to process XML queries expressed in languages based on Regu-

lar Expression. These XML queries are structural, that is, they require nodes

in returned results satisfy certain structural constraints (e.g. parent-child or

ancestor-descendant constraints). For example, the XPath [31] query

course//student

is searching for course and student node pairs in which the course node is the

ancestor of student node.

However, queries to traditional relational databases usually do not require

elements in matching tuples to follow any order in the source data. Using the

previous example, if we are interested in related courses and students but

not their structural order, then we would have to issue two XPath queries:

course//student and student//course. In the worst case (although in the real

world it seldom occurs), if we want to search for all occurrences of tuples of n

related nodes located on the same path in an XML document, we need to issue

n! XPath queries to cover all possible structural variations and then union the
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results of individual queries.

Associative XML query is thus devised to provide great conveniences in com-

posing XML queries without the excessive use of XPath expressions. Formally

an associative XML query can be written in the following form:

Definition 6.1 (Associative XML Query) An associative XML query Q is of

the following form < E1, E2, ..., En > in which each Ei is an element name. A

tuple t :< v1, v2, ..., vn > is said to be a match of Q if (1) label(vi) = Ei and

(2) there is a path p in the XML database which contains all nodes in M . The

associative XML query matching problem is to find all distinct tuples in the

database D which are matches of a given query Q.

Example 6.1 For the associative query < A,B,C >, it has five matchings

in the XML document tree in Figure 6.1: < a1, b1, c1 >, < a2, b1, c1 >, <

a1, b2, c2 >, < a3, b2, c2 > and < a1, b2, c3 >. However, the XPath query

A//B//C has only two matches: < a1, b2, c2 > and < a1, b2, c3 >.

< a1, b1, c1 > is a match to the associative query because there is a path

a1/c1/b1/a2 containing the three elements although they do not follow the hi-

erarchical order in the XPath query A//B//C.
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6.1.2 Processing of Associative Query

Since an associative XML query with n nodes is equivalent to a set of n! XPath

expressions each having a different hierarchical order, one naive approach to

process each of these XPath queries and then union the results of all the

queries. This approach suffers from the large number of XPath queries we

need to process. Current techniques on multiple-XML-query processing also

offer little help because although these techniques try to find common sub-

expressions among multiple XML queries, the exponential number of XPath

expressions is still too big to handle.

In this section, we describe an optimal technique called Associative Join to

process associative XML query. Associative Join is based on XML data storage

schemes which group elements with the same tag or objects of the same class

together as a cluster. Therefore, either EBC or OBC XML storage scheme

can be used. The reason to use such schemes is that they can avoid scanning

of elements whose tag names (or objects whose classes) do not appear in the

query. We also assume each element or object in the XML data tree has been

labelled with a (startPos : endPos, level) triple under region encoding scheme

we have described earlier. Without loss of generality, in the following discussion

of Associative Join algorithm we always use Element Based Clustering. The

techniques can be easily extended to Object Based Clustering technique.

The following lemma is essential to the correctness of our algorithm:
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Lemma 6.1 Given an XML tree whose elements are labelled with (startPos :

endPos, level) under region encoding scheme and two of its elements ei and

ej, if ei.endPos < ej.startPos (i.e. ei.startPos < ej.startPos and ei is not

an ancestor of ej) , then ei will not be an ancestor of any element ex with

ex.startPos > ej.startPos.

The correctness of the above corollary is simple to prove once we see

ex.startPos > ei.endPos.

In our algorithm, for each tag N in an associative query Q, it is associated

with:

• An element stream TN , which consists of all the elements in the document

with tag name N , ordered by their startPos increasingly. Each cluster

TN has a cursor interface. TN .head refers to the element in the cluster

currently under the cursor and TN .advance() moves the cursor to the

next element.

• A stack SN , which stores elements of tag name N . Set(SN) refers to the

set of elements in the stack.

The use of stacks in processing XML query can also be found in the algorithms[1]

for processing of XPath query.
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Our algorithm performs a document-order (pre-order) traversal of element

nodes whose tags appear in the associative query. When an element ej of

tag E1 is visited, we store the element ej in the stack SE1 and discard all

stored elements ei in stacks such that ei is not an ancestor of ej (which means

they can not appear in a match to the associative query together). Notice that

according to Lemma 6.1, ei will not be an ancestor of any unvisited element

ex with ex.startPos > ej.startPos. Therefore to throw away ei will not affect

the final matches. More importantly, we can see at any point of time during

computation, we only keep in the stacks a set of elements which are located

on a path p in the XML tree. Thus the space complexity of our algorithm

is bounded by the longest path in the XML document. All currently known

matches involving ej on the path p can then be output. This can be done by

taking one element from each stack to form the matching tuple.

c1 b2

b1

a2

a3

c2

c3

<4,4,3>

<3,5,2>

<1,13,0>

<2,6,1> <7,12,1>

<8,10,2> <11,11,2>

<9,9,3>

AS S CSB

Ta: a1, a2, a3

Tb: b1, b2

Tc: c1,c2,c3

a1

CA B< >, ,

Figure 6.1: Main data structures used in Associative Join

Example 6.2 Figure 6.1 shows the tree representation of a sample XML doc-

ument and an associative query Q :< A,B, C >. The main data structures
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Figure 6.2: Associative Join on the document and query in Fig. 6.1

used in the algorithm are also shown in the diagram. Notice that we couple

an element stream and a stack with each tag in the associative query. Figure

6.2 gives the details (by using step by step illustration) on how the algorithm

(Figure 6.3) works.

Each iteration of the while loop looks for the stream TQmin
whose current head

element has the smallest startPos. In Figure 6.2 (1), the first matching tuple

is found after elements a1, c1, b1 are read and pushed onto their respective

stacks by order of their startPos. In Figure 6.2 (2), element a2 is read because

now we compare the head elements of all streams and a2 has the smallest

startPos among all remaining elements and pushed into stack SA, we find

another matching tuple < a2, b1, c1 > because b1 and c1 are ancestors of a2.

At this time, none of the elements a1, c1, b1 should be popped because they

may have matches with elements after a2. As another example, in Figure 6.2
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Algorithm: Associative Join

Input:

Associative Query Q
XML Document D stored in OBC clusters

Output:

All matching tuples of Q in D

01 while(not all stream end)

02 Qmin = node N such that TN.head has the smallest startPos
among all streams;

03 for each stack SI such that I is a node in Q
04 pop elements in SI which are not ancestor of TQmin

.head;

05 push TQmin
.head into the stack SQmin

;

06 if(none of the stacks is empty)

07 for each tuple t in Set(SI1)× . . .× Set(SIk)
// I1, . . . , Ik are the nodes in Q except Qmin

08 order TQmin
.head,t.I1,...,t.Ik according to the order of

tags in Q and output the corresponding tuple;

09 TQmin
.advance();

Figure 6.3: Algorithm: Associative Join

(3), when b2 is read, we are certain that b1 and c1 will not have anymore

matches because no new element after b2 (in document order) will be on the

same path with them and thus should be popped according to Lemma 6.1. No

new matching tuple is found at this step. The algorithm halts after Figure 6.2

(6) when all elements in relevant streams have been read.

Now we present the algorithm formally in detail.

The algorithm Associative Join takes in an input associative query Q and a

XML document D stored in EBC or OBC streams. It outputs all matches

of Q in the document D. Line 2 always returns the query node Qmin whose

corresponding stream TQmin
has the smallest startPos among all streams of
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the query tags. Since the elements in a match to Q must be located on the

same path in the document, in line 3 − 4 we pop, from each stack, elements

which are not ancestors of element TQmin
.head. Now if none of the stacks is

empty, we are sure that TQmin
.head must be in matches to Q. These matches

involving TQmin
.head consist of TQmin

.head and one element from each stack

except the stack SQmin
. After outputting the matches in line 6−8, we advance

the cluster TQmin
in line 9. The process ends when all relevant streams end

(line 1).

The algorithm Associative Join reads streams involved in an associative query

only once. Its running time and I/O cost are both O(|Input Streams| +

|Output|). Notice that here Input Streams refers to the streams whose corre-

sponding tags appear in the associative query but not the source document

itself. Meanwhile, the total space used by the stacks will never exceed the

length of the longest root-to-leaf path in source XML document D. So the

space complexity is O(|L|) where L is the length of the longest path in D. The

algorithm is thus both I/O and CPU optimal.

Theorem 6.1 The algorithm Associative Join is both I/O and CPU optimal

for processing an associative query Q. Its space complexity is bounded by the

longest root-to-leaf path in the source XML document D.
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6.2 Processing XML views defined in ORA-SS

formats

An ORA-SS view schema diagram usually consists of several relationships. To

construct a relationship R in the view result, we need to build a list of paths

each of which is of type R and contains objects located on some path in source

XML data. Since we store source XML data using Object Based Clustering,

the associative join technique can be used to build a relationship in ORA-SS

schemas. Our view transformation technique works by processing each indi-

vidual relationship type using associative join and then combine intermediate

results together to get final view document. More specifically, we process views

defined in ORA-SS through the following major steps:

1. Decompose a given ORA-SS view schema V into a set of relationship

types.

2. Construct each relationship type R using associative join technique.

3. Join the intermediate results in Step 2 based on object identifers.

4. Merge the intermediate results in Step 3 based on object identifers to get

the final view results.

Example 6.3 Figure 6.4 shows the construction of views defined in Figure 4.3

over source data in Figure 4.4. The ORA-SS view schema has two relationship
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types:Project− Paper and Paper −Researcher.

1. First we use associative join to build the two relationships Project −

Paper and Paper − Researcher respectively (Figure 6.4 (1) and (2)).

Note that associative join, just like structural join, depends solely on ob-

ject labels. Although there exist tuples containing the same set of objects

(e.g. two j1 − p2 tuples), they indeed represent different occurrences of

objects (e.g. the two p2 objects have different labels). We remove identi-

cal sets of objects (judged by object keys) in the output of associative join

operation.

2. Next, we join the two relations on their overlapping object class Paper

based on identifers of Paper objects. (Figure 6.4(3))

3. Finally the view is produced by merging the paths. (Figure 6.4 (4))

Notice that without the semantics in ORA-SS schema, we can not perform the

above identifer based join.

6.2.1 Value Join vs. Associative Join

In processing views defined in ORA-SS schema, there are two different kinds

of join techniques used:

1. Associative Join, which joins objects based on their object labels.
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(1) Step 1: Construction of relationship Project− Paper

r4 r3 r6r1 r1

p1 p2

r1

p2 p1 p2 p4 p1 p4p1 p4

r1 r2 r1 r3

(2) Step 2: Construction of relationship Paper −Researcher

r6r3r2r1r4r1r1

j1

p1

r2r1r4

j1

p1 p1

j1

p2

j1

p2

j2

p4

j2 j2

p4

j2

p2

j2

p2

j2

p1

(3) Step 3: Value join the results in Step 1 and 2 on object Paper
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p1 p2
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(4) Step 4: Merge paths based object keys and the final output

Figure 6.4: Major Steps in View Transformation for the source docu-

ment in Fig.4.4 and the ORA-SS view schema in Fig.4.3
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2. Value Join, which is similar to traditional join in Relational model and

join objects based on their object identifers.

Under Object Based Clustering, objects of a relationship instance are separated

and stored in different streams. In addition, object label and object key are

stored together with the object. Associated Join is used to find objects which

locate on the same path in the original XML document. On the other hand,

Value Join plays a similar role to equi-join in the relational model, which is

based solely on object identifer values. To “value” join two lists of tuples which

are results of an associative join or another value join, we first find the common

object classes of the two tuple lists and then perform a sort-merge join. The

details are described in the following algorithm.

Algorithm V alueJoin
Input:

LA: a list of object tuples of the same type A
LB: a list of object tuples of the same type B

Output:

L: the join result of LA and LB

01 C := the set of common object classes of A and B
02 sort LA on the keys of objects whose classes are in C
03 sort LB on the keys of objects whose classes are in C
04 L := join LA and LB on the keys of objects whose class are in C
05 return L



6.2. PROCESSING XML VIEWS DEFINED IN ORA-SS FORMATS 58

6.2.2 The importance of relationship set in ORASS view

schema

Processing of XML view defined in ORA-SS schema is determined not only by

the structure of the schema but also the relationship set of the schema because

of the semantics of ORA-SS view. As an example, suppose we modify the

view schema in Figure 4.3 by making Project, Paper and Researcher form a

ternary relationship instead of two binary relationships. Now the transforma-

tion procedure will be greatly different:

1. First we construct the ternary relationship using one associative join on

the three object classes.

2. Merge the tuples produced in step 1 to get the final view results.

Notice that there is no value join step required in this case because there is only

one relationship type in the view schema. Obviously, the final view document

(which is shown in Figure 6.5) will be different.

In the next section, we present the detailed view transformation algorithm

formally.
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j1

p1 p2

r1 r1 r2

j2

p1 p2

r1r1 r3

p4

Figure 6.5: The correct view result for the modified ORA-SS schema

based on Fig. 4.3 with a ternary relationship

6.2.3 ORA-SS View Transformation Algorithm

Because the relationship type set of an ORA-SS view schema is so important

to view transformation, we first make a few definitions to classify different

types of relationship type.

Definition 6.2 (Independent Relationship Type) A relationship type is said

to be independent if its set of participating object classes is not a subset of

that of any other relationship type. Otherwise the relationship is nested.

For example, in the source ORA-SS schema in Figure 4.3, the relationship types

Paper − Researcher and Project − Paper are all independent relationship

type.

In our transformation algorithm, when an independent relationship type is

constructed, all relationship types nested within it will be constructed without
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additional cost.

Definition 6.3 (Child Relationship Type) A relationship type R1 is called

child relationship type of another relationship type R2 if the top-most object

class (in term of schema tree depth) of R1 participates in R2 and is a descen-

dant of the top-most object class of R2.

For example, in the view ORA-SS schema in Figure 4.3, the relationship type

Paper − Researcher is a child relationship type of Project − Paper because

the top-most object class Paper of Paper − Researcher participates in the

relationship type Project− Paper and is child of Project.

Definition 6.4 (Top Level Relationship Type) A relationship type R in an

ORA-SS schema is a top level relationship type if it is not child relationship

type of any other relationship type in the schema.

As an example, for the source ORA-SS schema in Figure 4.3 again, the only

two top level relationships are Project−Researcher and Conference−Paper.

The algorithm ORA− SSV iewTransformer follows the transformation pro-

cedure we discuss thus far. In line 1, it decomposes view schema into a set of

independent relationships. In lines 2-4, it constructs the list of tuples whose

fields correspond to portions of the view schema consisting of all the child re-

lationship type of a top-level relationship. This is done by a recursive method
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Build SubTree. In the method, we first perform an associative join for the in-

put relationship type R and store the resulting tuple list in LR (line 1). If LR

is empty (line 2), since each tree and subtree must have root, we do not need

to proceed to build the child relationships of R. Otherwise, if R has no child

relationship type, the result of associative join will be returned directly (line

3-4). In the case when R has child relationship types, for each child relation-

ship Ri of R, we recursively call the Build SubTree method and then perform

a value join on the returned list with the tuple list LR (line 7-10). Notice that

the number of fields in each tuple of LR grows after each iteration.

The partial results of sub-trees of each top-level relationship type are then

value joined to produce a list of tuples each of which consists of all the object

classes with their attributes (line 4). When value joins are done, we merge the

tuples and then output the view result in line 5.
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Algorithm ORA− SSV iewTransformer
Input:

ORA-SS View Schema V
XML Document stored in Element Clusters

Output:

View Results V

01 S := {R | R is an independant relationship in V }
02 for each top-level relationship R in S
03 LR := Build SubTree(R)

04 L := Value Join(L,LR)

05 Merge and Output L

Function Build SubTree(Relationship R)

01 LR := Associative Join(R)

02 If(LR is empty) return an empty list

03 If(R doesn’t have child relationship in S)
04 return LR

05 Else

07 for each child relationship Ri of R in S
08 LRi

:= Build SubTree(Ri)

09 LR := Value Join(LR,LRi
)

10 return LR

Algorithm Analysis

In building each individual relationship type, the Associative Join technique

does not produce any intermediate results which do not appear in the results

of associative queries. However, the algorithm ORA-SS View Transformer de-

composes an ORA-SS view schema into several relationships and builds these

relationship types separately. The approach thus may generate useless re-

sults which do not appear in the final view results. We comment that holis-

tic join techniques like TwigStack[1] is not applicable here anymore because

TwigStack is devised for extracting matches from source XML documents
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satisfying structural orders (e.g. P-C and A-D relationships) imposed by twig

pattern query. However, the semantics of ORA-SS view schemas allows many

more possible match patterns because the constraint (i.e. “co-path” property

)for the database nodes in the matches is much more relaxed.

An object stream whose corresponding object class O appear in an ORA-

SS view schema will be scanned C times to build independent relationships

where C is the number of independent relationship types O participates in.

It is easy to see that the complexity of our algorithm depends not only on

the set of object classes of a view schema but also the set of independent

relationships. Suppose there are n independent relationship types in an ORA-

SS view schema, our algorithm will perform n associative join operations, n−1

value join operations to join the associative join and other value join results

and 1 final merge to produce the view.



Chapter 7

Experiments

In this section, we present the performance study of various algorithms de-

scribed in previous chapters. We first describe our prototype XML document

storage and view transformation system: XBase. Next, we study in detail

the impact of storage schemes on XML query processing. After that, the per-

formance view transformation algorithm ORA-SS View Transformer will be

presented.

7.1 XBase description

XBase, our XML document storage and view transformation prototype, con-

sists of three main components(Figure 7.1):

1. ORA-SS Schema Parser This module parses ORA-SS source and view

64
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Figure 7.1: Schematic view of our view transformer

schema diagrams defined in XML formats.

2. Storage Manager For XML documents with associated ORA-SS schema

diagram, our Data Storage Manager will store them using the Object

Based Clustering approach.

3. ORA-SS View Transformer Given an ORA-SS view schema, this module,

based on a source XML document, generates the view results.

All the above three modules are programmed in Java 1.4. Now we are going

to describe the three main system components in detail.
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7.1.1 ORA-SS Schema Parser

In XBase, an ORA-SS schema diagram is defined in XML format. XML doc-

uments defining ORA-SS schema are then parsed and turned into data struc-

tures accessible by other system modules. As an example, the XML document

in Figure 7.2 is a valid XML document of the ORA-SS schema diagram in

Figure 2.2. The XML document is easy to understand because we can find

one-to-one mappings from the constructs used in the XML documents to the

ORA-SS schema diagram definition. At the outermost level, the XML docu-

ment consists of definitions of object classes. For each object class, we define

its names, the relationships it participates in, the attributes nested in the ob-

ject class and its child object classes. For each attribute, we use a field Key to

indicate if it is a key; a field called reln indicates the attribute is a relationship

attribute and its values tells the owner relationship of the attribute.

7.1.2 Storage Manager

Our XML document storage manager stores XML documents into a set of

sequential files. Each sequential file consists of objects of the same class. We

call each object in our system a record. The structure of each record is shown

in Figure 7.3. A record in our storage system have varied length. Each record

consists of a header and values of various fields which correspond to attributes

of the object contained in the record. A record header has the following parts:
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< schema >
< Object name = “Project” >

< Relationship name = “JR”/ >
< Attribute Name = “J Name” Key = “Y ”/ >
< ChildObject ref = “Researcher”/ >

< /Object >
< Object name = “Researcher” >

< Relationship name = “JR”/ >
< Relationship name = “RP”/ >
< Attribute name = “R Name” Key = “Y ”/ >
< Attribute name = “Position” Reln = “JR”/ >
< ChildObject ref = “Paper”/ >

< /Object >
< Object name = “Paper” >

< Relationship name = “RP”/ >
< Attribute name = “P Name” Key = “Y ”/ >
< Attribute name = “Date” Reln = “RP”/ >

< /Object >
< /schema >

Figure 7.2: A XML document representing the ORA-SS schema in
Fig. 2.2

1. Label which is the label of the object contained in this record. Each label

has 10 bytes: 4 bytes each are used for startPos and endPos and 2 bytes

for level.

2. Number of Fields which gives the number of attributes of the object. 2

bytes are assigned for this part.

3. A list of <Field ID,Field length> pairs. Each pair gives the type and

length of each attribute value within the record. Each pair occupies 4

bytes with 2 for each component. Each unique attribute name is assigned

a different Field ID.
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Figure 7.3: The structure of a record in XBase
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Figure 7.4: The structure of a page in XBase

The key of each record is always stored as the first field in the record for

easy retrieval and comparison. We do not consider composite key in the im-

plementation of XBase. The field lengths are used to calculate the offsets of

corresponding field values in the record.

Records are placed within pages. The storage manager has a page size of 8KB.

The structure of each page is shown in Figure 7.4. Each page has a page

header. The page header gives the number of records in each page (2 bytes

used for the number) and the length of each record (2 bytes used for each

length). Staffing bytes are used to fill unused space in each page.
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7.1.3 ORA-SS View Transformer

The ORA-SS view transformer of XBase implements various transformation

techniques we discussed in the previous chapter. It takes in an ORA-SS view

schema and accesses the data storage module and then performs view trans-

formation. The resulting views are output as XML documents.

7.2 Datasets

We use both real-world and synthetic XML data in our experiments.

7.2.1 DBLP Bibliography Record (DBLP)

DBLP[19] dataset is a real-world XML data source frequently used as bench-

mark dataset. It is a bibliography file (100 Mbytes in total size) which contains

about 380,000 computer science publications (journal articles, proceedings and

so on) and over 80,000 authors. The ORA-SS schema of the dataset is shown

in Figure 7.5.

7.2.2 Project-Researcher-Paper (JRP)

We synthesize the JRP dataset by our own XML data generator. In a JRP

data instance, on average one project has 5 researchers and each researcher has
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Figure 7.5: The ORA-SS schema of DBLP Dataset

10 publications. For example, in a 20MByte JRP file, there are in total 2400

(distinct) project elements and 12,000 researcher elements (6,000 distinct) and

120,000 (60,000 distinct) paper elements. These numbers increase proportion-

ally with the size of JRP data file. The ORA-SS schema of the dataset is

shown in Figure 7.6.  
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Figure 7.6: The ORA-SS schema of JRP Dataset
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7.3 Performances and Analysis

All our experiments were run on a 2.4GHz Pentium 4 processor with 512MB

memory. We primarily focus on two issues in our experiments. First we inves-

tigate the performance of Object Based Clustering in view processing. Next

we want to compare the performance of our view transformation system with

that of current popular XML query processing engines.

7.3.1 The advantages of OBC storage

Many native XML DBMSs use Element Based Clustering scheme. The scheme

stores all XML element with the same tag name or attribute values with the

same type in a cluster. On the other hand, the Object Based Clustering (OBC)

scheme groups attributes of an object together with the object itself. By

bundling attribute values with their owner objects, OBC allows more efficient

processing of XML queries.

Our experiment results confirm the above observation. We implement both

EBC and OBC storage schemes and use them to process queries on XML

documents. We test the queries in Table. 7.1 for an JRP dataset of 20M

bytes (135,000 elements) and the queries in Table. 7.2 for a DBLP dataset

of 100M bytes. The set of queries consists of both simple ones which are

mainly projections and complex ones. We choose queries with only Ancestor-

Descendant relationships because we are ultimately interested in processing
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Q1 //Paper[P Name]

Q2 //Project[J Name]//Paper[P Name]

Q3 //Researcher[R Name]//Paper[P Name]

Q4 //Project[J Name]//Researcher[R Name]//Paper[P Name]

Table 7.1: XPath Queries on JRP dataset

Q1 //Author[text()]

Q2 //Publication[title]//Author[text()]

Q3 //Publication[title][year][journal][volume]//Paper[P Name]

Table 7.2: XPath Queries on DBLP dataset

ORA-SS view schemas which do not concern with Parent-Child relationships.

The running times of processing the above queries using OBC AND EBC

storage schemes can be seen from Figure 7.7 and Figure 7.8.
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 Figure 7.7: Comparison of XPath Query Processing on EBC and OBC
Storage schemes using a JRP dataset of 20MB

From Figure 7.7 and 7.8, we can see that in most cases, OBC storage scheme
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 Figure 7.8: Comparison of XPath Query Processing on EBC and OBC
Storage schemes using a DBLP dataset of 100MB

can provide more efficient processing of XPath Query compared with EBC.

What is more, the more complex the query is, the more time saving that OBC

results. The only exception is the query Q2 in Figure 7.8: in this case under

the OBC scheme a publication object is bundled with many of its attributes

but only one of them title is required in the final results. Thus OBC causes

unnecessary I/O cost which is not a problem in EBC because EBC doesn’t

need to scan clusters whose elements or attribute values do not appear in

the query. Consequently, the additional I/O costs overtake the benefit of less

structural join. Interestingly, when we require more attributes of a publication

to be output as in Q3 of Figure 7.8, OBC now performs much better than

EBC because of less redundant I/O costs.
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7.3.2 View Processing in XBase

We compare the view processing performance of XBase with state-of-art XML

query processing engines. Among many available candidates, we choose SAXON[26]

(version 7.5) XSLT processor and Quip[25] XQuery processor. SAXON is

the only XSLT engine available now which supports XSLT2.0[33] standard.

XSLT2.0 has features like grouping (i.e. < xsl : for − each − group > direc-

tive) which is important to view transformation operation like value join but

not present in the XSLT1.0. SAXON is implemented using Java and generally

considered as one of the fastest XSLT processors available. Quip is a complete

XQuery[32] processor freely available. XQuery has supports for grouping as

well (i.e. distinct− values() function in XQuery 1.0).

Project-Researcher-Paper(JRP)

We use the following four ORA-SS views (Figure 7.9) over the source schema

which range from simple projections to more complex swapping.

The performances of view transformation using XBase, SAXON and Quip are

shown from Figure 7.10 to Figure 7.16. Note that the running times of SAXON

and Quip include the time spent on loading source XML document.

DBLP

We use the following two ORA-SS views over the DBLP datasets:
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(c) view Project− Paper −Researcher1 (d) view Project− Paper −Researcher2

Figure 7.9: Four views defined over JRP datasets

The performances of view transformation using XBase, SAXON and Quip are

shown in the following figures.

Analysis

XBase are much faster in all test cases than its competitors and we have the

following observations:

1. Our algorithm performs transformation for view schemas having mul-

tiple relationship types on one path (e.g. view schema in Figure 7.9c)

efficiently while the running time of SAXON and QuiP is unacceptable

even for small files(< 1Mb).

It would be interesting to compare transformation for view schemas in

Figure 7.9c and Figure 7.9d. Our method requires about 50% more time
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Figure 7.10: Running time comparison of processing ORASS view
schema in Fig. 7.9a for JRP dataset
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Figure 7.11: Running time comparison of processing ORASS view
schema in Fig. 7.9b for JRP dataset
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Figure 7.12: Running time comparison of processing ORASS view
schema in Fig. 7.9c for JRP dataset
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Figure 7.13: Running time comparison of processing ORASS view
schema in Fig. 7.9d for JRP dataset
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Figure 7.14: Two views defined over DBLP datasets
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Figure 7.15: Running time comparison of processing ORASS view
schema in Fig.7.14a for DBLP dataset

(Figure 7.10 and Figure 7.11)in view schema Figure7.9c because it has

one more relationship type than Figure 7.9d and consequently needs one

more round of associative join and value join. However, although SAXON

7.5 performs reasonably well in Figure7.9d, it simply takes too long to

finish views for Figure7.9c. This happens to Quip too. We list the XSLT

scripts used for both view schemas in Appendix I and II. The scripts

explain why XSLT engines like SAXON is slow for the view schema with

two binary relationship types but much quicker for the view schema with

one ternary relationship type. We extract the most important sections
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Figure 7.16: Running time comparison of processing ORASS view
schema in Fig.7.14b for DBLP dataset

from the two scripts:

(a) Script for Proj − Paper −Researcher1

<xsl:for-each-group select=“root/Project” group-by=“@J Name”>
<xsl:for-each-group select=“current-group()/Researcher/Paper” group-by=“@P Name”>

<xsl:variable name=“vPName” select=“@P Name”/>
<xsl:for-each-group select=“/root/Project/Researcher[Paper/@P Name =$vPName]”
group-by=“@R Name”>

(b) Script for Proj − Paper −Researcher2

<xsl:for-each-group select=“root/Project” group-by=”@J Name”>
<xsl:for-each-group select=“current-group()/Researcher/Paper” group-by=“@P Name”>

<xsl:for-each-group select=“current-group/..”
group-by=“@R Name”>

The two scripts are identical in finding papers written by researchers

in a project (i.e. the first two xsl : for − each − group in the two

scripts). Their main difference lies in the third xsl : for− each− group

directives for Researcher. The script for Proj − Paper − Researcher1

needs to search the whole document for each paper to find the complete

paper author list because the authors may not work for the project.

On the other hand, script for Proj − Paper − Researcher2 avoids the

global search because it only intends to find authors of the paper working

for the project. This example shows that today’s general purpose view
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transformation engines still need more work on optimization.

2. Our algorithm is very efficient in views which project and swap over

portion but not all of the source data(e.g. views Project − Paper,

Paper − Project of JRP datasets and Author,Author − Publication

of DBLP datasets).

This is especially true with big files (e.g. 80MByte DBLP and JRP XML

files) approaching the memory threshold because to load the whole doc-

ument into the memory (which is what SAXON and QuiP do) degrades

the performance significantly.

3. Our algorithm shows little differences in performances for views differing

from each other only in their node structural order.

To illustrate this, let us look at the running times of views Project −

Paper and Paper − Project in Figure 7.10 and Figure 7.11. These two

view schemas only differ on their node order. Our algorithm uses roughly

the same amount of time (about -2 5% of difference) on both views for

all file sizes; on the other hand, SAXON need about 20% more time

to process view Paper − Project. The reason for the big difference in

running times of SAXON and QuiP engines is due to their “tree-walk”

transformation mechanism: different orders in views cause different tree

traversal sequences. However, the running time of associative and value

join and merge operation in the transformation algorithms of XBase are
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determined solely by the total list sizes.



Chapter 8

Conclusion

The starting point of our work is the observation of problems with two kinds

of XML view transformation systems. High level systems like eXcelon[11] and

Clio[24], which perform view transformations by defining target view schema,

have problems with not being able to define views with complex semantics. On

the other hand, general systems like XSLT and XQuery processors require the

user to write transformation scripts themselves. The problem becomes worse

with tree-structured XML data because many possible structural variants need

to be considered in transformation scripts to cover all possible query results.

As we have demonstrated in experiments, it is hard for the systems to optimize

many simple and practical XSLT/XQuery scripts.

Our approach, like the other high-level systems, allows users to define view

schema to get desired views. However, our method differs from other high-

level XML view transformation system in the following aspects:

1. The use of ORA-SS as underlying schema representation allows us to

82
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express view schemas with a great variety of semantic meanings.

2. Our ontology-based view definition approach saves users the trouble of

looking into often complicated source schema. Users just need to know

the set of element names (ontology) in the source schema to define views.

Mapping from source schema to view schema is done by our system.

3. It performs view transformation directly on a native XML DBMS: XBase.

Other systems usually convert schema mapping into XSLT/XQuery scripts

and still rely on XSLT/XQuery engines to perform transformation.

At the same time, based on ORA-SS schemas, our system requires much less

time than general XML processors in processing view transformations.

Our view transformation engine XBase has many novel features. Our stor-

age method Object Based Clustering allows us to leverage on the new join

processing techniques naturally. In most view transformations, only the rele-

vant portions of source document are read. ORA-SS, as the conceptual model

used in our transformation, differs from other traditional structure-based XML

data models by taking into full consideration the semantic information such

as keys, relationship and relationship attribute associated with XML data. In

our transformation method, a relationship type in ORA-SS schema is the ba-

sic unit of transformation. We devise novel and efficient join technique called

associative join to construct a single relationship type.

From a performance point of view, our transformation engine XBase is much
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more efficient compared with XQuery/XSLT engines. In particular, our method

is very fast in projection and swapping over portion of source data because it

only loads data which is required. In comparison, today’s XSLT and XQuery

processors are slow in processing view operations like projection and swap-

ping. Our method is also much faster in processing ORA-SS view schema with

multiple relationships on a single path.

Our work can be extended in several directions. View operations like value se-

lection, negation and so on are not considered in our prototype. Meanwhile in

our view transformation algorithms, we do not utilize source ORA-SS schema

information, which can help to further optimize our view transformation en-

gine.



Bibliography

[1] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal

XML pattern matching. In Proceedings of SIGMOD 2002, pages 310–321,

2002.

[2] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L.Tanca.

XML-GL: a graphical language of querying and restructuring XML doc-

uments. In Proceedings of WWW8, pages 1171–1187, 1999.

[3] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable con-

tinuous query system for internet databases. In Proceedings of SIGMOD

2000, pages 379–390, 2000.

[4] Q. Chen, A. Lim, and K. W. Ong. D(k)-index: An adaptive structural

summary for graph-structured data. In Proceedings of SIGMOD 2003,

pages 134–144, 2003.

[5] T. Chen, T. W. Ling, and C. Y. Chan. Prefix path streaming: a new

clustering method for optimal XML twig pattern matching. In Proceedings

of DEXA 2004, pages 801–811, 2004.

85



BIBLIOGRAPHY 86

[6] Y. B. Chen, T. W. Ling, and M. L. Lee. Designing valid XML views. In

Proceeding of ER 2002, pages 463–478, 2002.

[7] Y. B. Chen, T. W. Ling, and M. L. Lee. Automatic generation of XQuery

view definitions from ORA-SS views. In Proceeding of ER 2003, pages

158–171, 2003.

[8] J. Clark. XT XSLT processor. http://blnz.com/xt/.

[9] G. Dobbie, X. Wu, T. W. Ling, and M. L. Lee. ORA-SS: An Object-

Relationship-Attribute model for Semistructured data. Technical Report

TR21/00, School of Computing, National University of Singapore, 2000.

[10] DTD. Document type definitions. http://www.w3.org/TR/REC-xml.

[11] eXcelon. An general XML data manager. http://www.exceloncorp.com/.

[12] R. Goldman and J. Widom. Dataguides: Enabling query formulation and

optimization in semistructured databases. In Proceedings of VLDB 97,

pages 436–445, 1997.

[13] H. He and J. Yang. Multiresolution indexing of XML for frequent queries.

In Proceedings of ICDE 2004, pages 683–694, 2004.

[14] H. V. Jagadish and S. AL-Khalifa. TIMBER: A native XML database.

Technical report, University of Michigan, 2002.

[15] H. Jiang, W. Wang, H. Lu, and J. X. Yu. Holistic twig joins on indexed

XML documents. In In Proceeding of VLDB 2003, pages 273–284, 2003.



BIBLIOGRAPHY 87

[16] C. C. Kanne and G. Moerkotte. Efficient storage of XML data. In Pro-

ceedings of ICDE 2000, pages 198–209, 2000.

[17] R. Kaushik, P. Sheony, P. Bohannon, and E. Gudes. Exploiting local

similarity for efficient indexing of paths in graph structured data. In

Proceedings of ICDE 2002, pages 129–140, 2002.

[18] M. Ley. Apache Xindice. http://XML.apache.org/xindice/.

[19] M. Ley. DBLP computer science bibliography record.

http://www.informatik.uni-trier.de/ ley/db/.

[20] D. F. Luo, T. Chen, T. W. Ling, and X. F. Meng. On view transformation

support for a native XML DBMS. In Proceeding of DASFAA 2004, pages

226–231, 2004.

[21] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A

database management system for semistructured data. SIGMOD Record,

pages 54–66, 1997.

[22] T. Milo and D. Suciu. Index structures for path expressions. In Proceed-

ings of ICDT 99, pages 277–295, 1999.

[23] W. Ni and T. W. Ling. GLASS: A graphical query language for semi-

structured data. In Proceedings o DASFAA 2003, pages 363–372, 2003.



BIBLIOGRAPHY 88

[24] L. Popa, M. A. Hernandez, Y. Velegrakis, R. J. Miller, F. Naumann, and

H. Ho. Mapping XML and relational schemas with Clio. In Proceedings

of ICDE 2002, pages 498–499, 2002.

[25] QuiP. http://developer.softwareag.com/tamino/quip/.

[26] SAXON. a XSLT processor. http://saxon.sourceforge.net/.

[27] X. Schema. XML Schema. http://www.w3.org/XML/Schema.

[28] H. Schoning. Tamino - a DBMS designed for XML. In Proceedings of

ICDE 2001, pages 149–154, 2001.

[29] Y. Wu, J. M. Patel, and H. V. Jagadish. Structural join order selection for

XML query optimization. In Proceedings of ICDE 2003, pages 443–454,

2003.

[30] Xalan. XSLT processor. http://xml.apache.org/xalan-j/.

[31] XPath. http://www.w3.org/TR/xpath.

[32] XQuery. http://www.w3.org/XML/Query.

[33] XSLT. http://www.w3.org/Style/XSL/.

[34] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohman.

On supporting containment queries in relational database management

systems. In Proceedings of SIGMOD 2001, pages 425–436, 2001.



Appendix A

Appendix

A.1 XSLT Script for view schema in Figure

7.9c:

Remark: The differences of XSLT scripts in Appendix I and II are highlighted

lines.

<xsl:transform>
<xsl:template match=“/”>
<root>

<xsl:for-each-group select=“root/Project” group-by=“@J Name”¿
<Project>

<J Name><xsl:value-of select=“@J Name”/></J Name>
<xsl:for-each-group select=“current-group()/Researcher/Paper” group-by=“@P Name”>
<Paper>

<xsl:variable name=“vPName” select=“@P Name”/>
<P Name><xsl:value-of select=“@P Name”/></P Name>

<xsl:for-each-group select=“/root/Project/Researcher[Paper/@P Name =$vPName]”
group-by=“@R Name”>

<Researcher>
<R Name><xsl:value-of select=”@R Name”/></R Name>

</Researcher>
</xsl:for-each-group>

</Paper>
</xsl:for-each-group>

</Project>
</xsl:for-each-group>

</root>
</xsl:template>

</xsl:transform>
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A.2 XSLT Script for view schema in Figure

7.9d:

Remark: The differences of XSLT scripts in Appendix I and II are highlighted

lines.

<xsl:transform>
<xsl:template match=“/”>
<root>

<xsl:for-each-group select=“root/Project” group-by=“@J Name”¿
<Project>

<J Name><xsl:value-of select=“@J Name”/></J Name>
<xsl:for-each-group select=“current-group()/Researcher/Paper” group-by=“@P Name”>
<Paper>

<xsl:variable name=“vPName” select=“@P Name”/>
<P Name><xsl:value-of select=“@P Name”/></P Name>

<xsl:for-each-group select=“current-group()/..” group-by=“@R Name”>
<Researcher>

<R Name><xsl:value-of select=”@R Name”/></R Name>
</Researcher>
</xsl:for-each-group>

</Paper>
</xsl:for-each-group>

</Project>
</xsl:for-each-group>

</root>
</xsl:template>

</xsl:transform>


