

GLOBAL SCHEMA GENERATION AND QUERY

REWRITING IN XML INTEGRATION

YANG XIA
(B.Eng., Zhejiang University, China)

A THESIS SUBMITTED
 FOR THE DEGREE OF MASTER OF SCIENCE

 DEPARTMENT OF COMPUTER SCIENCE
 NATIONAL UNIVERSITY OF SINGAPORE

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48627574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 i

Acknowledgements

I would like to express my deep gratitude and appreciation to all those who help me

in my research. I would not finish my thesis without their help.

Firstly, I would thank my supervisors Dr Lee Mong Li and Prof Ling Tok Wang, for

their guidance and advice through out my research. They also share with me the

experiences in writing research papers.

I would like to thank Dr Gill Dobbie, for her encouragement and guidance in my

research.

I would thank my friends in database lab, He Qi, Ni Wei, Chen Yabing, Zhou

Yongluan, and all, for their valuable discussions and suggestions.

Finally, I appreciate to my family, my friends, Rong Guodong, Cao Xia, and Zhang

Zonghong, for their love, friendship all the time.

 ii

Table of Contents

ACKNOWLEDGEMENTS... I

TABLE OF CONTENTS... II

SUMMARY ... IV

LIST OF FIGURES .. VI

LIST OF TABLES ...VII

CHAPTER 1 INTRODUCTION...1

1.1 BACKGROUND ..1

1.2 PROBLEM STATEMENT & MOTIVATION..4

1.3 RESEARCH CONTRIBUTIONS ...6

1.4 OVERVIEW OF THE THESIS ..7

CHAPTER 2 PRELIMINARIES..8

2.1 XML SCHEMA MODEL ...8

2.1.1 XML DTD ..9

2.1.2 XML Schema..12

2.1.3 ORA-SS Data model...14

2.2 XML QUERY LANGUAGE...18

2.2.1 XQuery...18

CHAPTER 3 A SEMANTIC APPROACH FOR INTEGRATION OF XML SCHEMAS21

3.1 PRELIMINARIES AND ASSUMPTIONS ...22

3.2 MOTIVATING EXAMPLE..24

3.3 INTEGRATION ALGORITHM ...35

3.3.1 Definitions and Theorems ..36

3.3.2 Integration Algorithm ..38

 iii

3.3.3 Analysis of Algorithm ..43

3.4 COMPARISON WITH RELATED WORK ...46

3.5 SUMMARY ..48

CHAPTER 4 A SEMANTIC APPROACH TO QUERY REWRITING FOR THE

INTEGRATION OF XML DATA ..50

4.1 PRELIMINARIES ..51

4.2 QUERY REWRITING ALGORITHM ..55

4.2.1 Step1: Build the query allocation table..55

4.2.2 Step 2: Identify Local Sources to Answer User Query...60

4.2.3 Step 3: Decompose the user query to subqueries on the local sources................................65

4.2.4 Step 4: Compose the subqueries for join group ...74

4.3 ANALYSIS OF ALGORITHM ...77

4.4 COMPARISON WITH RELATED WORK ...80

4.5 SUMMARY ..85

CHAPTER 5 CONCLUSION AND FUTURE WORK...86

5.1 RESEARCH SUMMARY ..86

5.2 FUTURE WORK ...87

BIBLIOGRAPHY ..88

 iv

Summary

While the Internet has facilitated access to information sources, the task of scalable

integration of these heterogeneous data sources remains a challenge. The adoption of

the eXtensible Markup Language (XML) as the standard for data representation and

exchange has led to an increasing number of XML data sources, both native and non-

native. This thesis examines two issues in XML integration, namely, global schema

generation and query rewriting.

The first issue is global schema generation. Recent integration work has mainly

focused on developing matching techniques to find equivalent elements and attributes

among the different XML sources. We introduce a semantic approach to resolve

structural conflicts in the integration of XML schemas. We employ a data model

called the ORA-SS (Object-Relationship-Attribute Model for Semi-Structured Data)

to capture the implicit semantics in an XML schema, and present a comprehensive

algorithm to integrate XML schemas. Compared with existing methods, our algorithm

adopts an n-nary integration strategy that takes into account the data semantics,

importance of a source, and how the majority of the sources model their data when

resolving structural conflicts such as attribute/object class conflict and ancestor-

descendant conflict. Further, redundant object classes and transitive relationship types

are removed to obtain a more concise integrated schema.

 The second issue is query rewriting. Queries on the integrated schema need to be

rewritten to query the underlying source repositories. We develop an algorithm for

 v

rewriting queries that take the semantic relationship between the source schemas and

the integrated schema into account. Our approach is based on the semantically rich

ORA-SS model. This guarantees that the rewritten queries give the expected results,

even where the integrated view is quite complex.

 vi

List of Figures

Fig. 2.1 An example of ORA-SS schema diagram ... 18

Fig. 3.1. ORA-SS Schema Diagrams for four XML sources...................................... 26

Fig. 3.2. Resolve attribute-object class conflict.. 26

Fig. 3.3. Build a generalization hierarchy from S1 of Fig. 3.1. 27

Fig. 3.4. Integrated graph obtained from the schemas in Fig. 3.1. 28

Fig. 3.5. Different relationship types among equivalent object classes...................... 30

Fig. 3.6. Example of an ancestor-descendant conflict. ... 32

Fig. 3.7. Example of a multiple parent node... 34

Fig. 3.8. Transformed graph obtained from Fig. 3.4... 35

Fig. 3.9. Final integrated schema. ... 35

Fig. 3.10. Integrated schema obtained by [18].. 47

Fig. 3.11. n-nary & binary algorithms .. 48

Fig. 4.1. S12345 is the integrated schema of local schemas S1, S2, S3, S4 and S5... 53

Fig. 4.2. S1234 is the integrated schema of S1, S2, S3 and S4 57

Fig. 4.3. S12345 is the integrated schema of local schemas S1, S2, S3, S4, S5............ 64

Fig. 4.4. S123 is the integrated schema of local schemas S1, S2, S3. 73

 vii

List of Tables

Table 4.1. Mapping table for integrated schema S12345 in Fig. 4.1.......................... 54

Table 4.2. Query Allocation Table for Query Q1... 58

Table 4.3. Query Allocation Table for Query Q2... 59

Table 4.4. Query Allocation Table for Query Q3... 64

Table 4.5. Data sources for S1 and S2 in Fig. 4.2... 82

Table 4.6. Results retrieved by our algorithm and [1, 8, 22] 84

 1

Chapter 1

Introduction

In this chapter we present the background of the thesis, followed by the problem

statement and motivation. We will highlight the research contribution. Finally, we

present the overview of the thesis.

1.1 Background

Advances in the Internet infrastructure have facilitated access to large amounts of

information sources. Many of these sources are heterogeneous, and an integrated

access to these sources remains the focus of ongoing research. Much work has been

done on the integration of relational databases, ranging from semantic enrichment

using a semantic data model such as the Entity-Relationship model or the object-

oriented data model, translation algorithms, and conflict resolution [20][21][22][46].

Integration systems such as [8][18][29][34][37][45] have also been developed.

The adoption of the eXtensible Markup Language (XML) [13] as the standard for

data representation and exchange has led to an increasing number of XML data

sources, both native and non-native. Native XML data sources are essentially XML

files with an associated XML schema, while non-native XML sources such as the

relational database publish their data in XML format together with the XML schema.

 2

In data integration, many systems construct a integrated or mediated schema from

numerous heterogeneous data sources [36][17][45]. Given the semistructured nature

of XML data that can be modeled as a tree or a graph, recent research in integrating

XML data sources has mainly concentrated on schema matching [8][25][45]. Works

such as XClust [25], CUPID [28], SKAT [34][35], and Xyleme [45] have focused on

the matching problem to find equivalent elements among the different sources. A

taxonomy and a survey of matching approaches are given in [41]. Having obtained a

set of equivalent elements, the next step is to obtain an integrated schema. The

authors in [18] use schema learning to generate a set of tree grammar rules from the

DTDs in a class and optimizes the rules to transforms them into an integrated view.

LSD [8] employs instance information and machine learning techniques in their

integration work. We observe that all these works do not take into consideration the

importance of the individual data sources, and how the majority of the local schemas

model their data.

In an integration system, there are mainly two applications. One is the mediator

systems. The other is warehouse frameworks. In the mediator system, the data are

dynamic, such as the data in World-Wide Web. If materialize the global view

(integrated schema), It will be very costly for maintaining it. So normally, the system

will not materialize the global view (integrated schema). The global view is virtual.

Users will typically issue a query on the global schema, and the system will rewrite

the query to the local sources. In the warehouse framework, when the data is more

 3

static, it is more efficient to materialize the global view. So the user query can

directly issue on the materialized integrated schema.

In the mediator system, the user query is rewritten to the query on the local sources.

Each local source has a different coverage, also known as source capability, which

need not necessarily contain all the information needed to answer a user query. A

partial result may be found in one local source and a related partial result may be

found in a different local source. The partial results would then need to be combined

to produce the result for the user query.

Query rewriting is a fundamental task in query optimization and data integration.

Rewriting algorithms have been developed for answering queries using views in

relational databases and in mediators [26, etc]. In answering queries using

materialized views, the objective is to find efficient methods to answer a query using

a set of materialized views over the database, instead of accessing the database itself

[38][39][43][30].

Although the query rewriting problem in data integration can be reduced to the

problem of answering queries using materialized views, scalability becomes an issue

since the number of the local sources in data integration systems is typically very

large compared with the number of materialized views for one database system [38].

 4

1.2 Problem Statement & Motivation

In this thesis, we propose the algorithms for global schema generation and query

rewriting in XML integration.

The first issue is global schema generation. The task of global schema generation in

XML integration is non-trivial for the following reasons:

1. The XML Schema or DTD is lacking in semantics. While this has prompted

proposals to augment the schema with information such as keys [7], and

functional dependencies [23], it remains unclear whether the relationship

between the element objects is binary or n-nary, and whether an attribute

belongs to an element object class (e.g. title of an element book) or to the

relationship type between elements (e.g. quantity of books supplied by a

supplier to a bookshop).

2. The source schemas are heterogeneous, containing various conflicts involving

naming conflict, cardinality conflict, and structural conflict such as

attribute/object class conflict and ancestor-descendant conflict. There is no

unique global schema, but it is subject to the needs of applications and the

perspective of the users.

To address these issues, we develop a semantic approach to the integration of XML

schemas. We employ the semantically rich model ORA-SS [9] for semistructured

data to capture the semantics of the underlying XML data.

 5

The second issue is query rewriting. When XML repositories are involved in data

integration, query rewriting algorithms will need to take into consideration the

hierarchical structures of XML schemas. This gives rise to structural conflicts [47]

which need to be resolved during the rewriting process. XML schemas such as DTD

and XML Schema lack the semantic information necessary for schema integration

and query rewriting. The authors of [47] examine how the ORA-SS model can help to

resolve structural conflicts when integrating XML schemas.

Our query rewriting approach utilizes the ORA-SS model which provides the

necessary semantic information for the query rewriting process. In contrast to the

work in [31] which describes how relational databases can be integrated into an XML

global schema, we assume that the local sources are XML repositories. XML schemas

are first transformed to ORA-SS schema with enriched semantics [4]. If the local

schemas are not available, Chen in [50] proposed an approach to extract ORA-SS

schema from XML document. Some user input is necessary. An ORA-SS integrated

schema can be obtained using the algorithm in [47], which automatically generates

integrated schemas, when given a set of local schemas. Our approach is similar to

other global-as-view approaches. However rather than incorporating the integrated

view definition in the unfolding process, we use a mapping table, created during the

process of integration, in the rewriting of queries. Our algorithm finds the groups of

local schemas that together can answer the query, decomposes the user query to

 6

subqueries for the local schemas in the groups, and recomposes the subqueries to give

the expected results.

1.3 Research Contributions

For global schema generation, an n-nary integration strategy that provides a global

view of the source schemas is adopted. The integrated schema obtained takes into

consideration the underlying data semantics such as different relationship types

among equivalent object classes, the importance of the source schemas, and how the

majority of the sources schemas modeled their data. Structural conflicts such as

attribute-object class conflict and ancestor-descendant conflict are resolved in the

process. Finally, redundant object classes and transitive relationship types are

identified and removed to obtain a more concise integrated schema.

Our query rewriting algorithm utilizes a semantically rich model for semistructured

data in order to rewrite queries that yield correct answers. When XML repositories

are involved in data integration there may be semantics that are not expressed

explicitly in the underlying data sources or the integrated schema. Without the

necessary semantics, it is possible to misinterpret the meaning of the data and

combine the results from different local schemas, leading to unexpected results. In

this thesis, we use the ORA-SS model (Object-Relationship-Attribute model for

SemiStructured data) [9] to describe the schemas of the local data sources and the

integrated schemas. This allows us to distinguish between binary and n-ary

relationship types and to distinguish between attributes of object classes and attributes

 7

of relationship types, and handle these cases properly in the algorithm. Data models

used in existing query rewriting algorithms [1][24][49] are unable represent these

semantics and hence, these algorithms do not consider these cases.

1.4 Overview of the thesis

The rest of the thesis is organized as follows. Chapter 2 gives the preliminaries such

as the basic XML schema languages: DTD, XML Schema, and ORA-SS model, and

the XML query languages. Chapter 3 presents our proposed semantic approach for

the generation of a global schema for XML data sources. Chapter 4 describes our

proposed semantic approach to query rewriting for the integration of XML data.

Chapter 5 concludes the thesis with future research directions.

 8

Chapter 2

Preliminaries

In this chapter, we present an overview of the current XML schema models and XML

query languages.

2.1 XML Schema model

XML is a self-describing language. Yet it still needs schema languages to describe the

structure and typing information. In this section, we examine the various XML

schema languages. Sections 2.1.1 and 2.1.2 describe the widely used Document Type

Definition (DTD) and XML Schema respectively. We will review the Object-

Relationship-Attribute model for Semi-Structured data (ORA-SS model) in Section

2.1.3, which is utilized in our proposed algorithms. The schemas for XML are not

mandatory, yet they could keep the XML document consistent and they are important

for data integration. The following XML document is used as a running example.

 9

<root>
<project jno=”j01”>
 <part pno=”p01”>
 <supplier sno=”s01”>
 <quantity> 100 </quantity>
 </supplier>
 </part>
 <part pno=”p03”>
 <supplier sno=”s01”>
 <quantity> 200 </quantity>
 </supplier>
 <supplier sno=”s02”>
 <quantity> 300 </quantity>
 </supplier>
 </part>
 <funds uno=”u01”></funds>
 <projectmanager mno=”m01”>
 <name> Jack </name>
 </projectmanager>
</project>

</root>

2.1.1 XML DTD

DTD [14] is an original schema language included in XML 1.0 specification. A DTD

can be declared inline in the XML document, or as an external reference. XML DTD

defines the structure of XML documents, and consists of element, and attribute

declaration.

DTD Element

DTD element declarations define the element of XML document, which include the

name of element and content of the element.

The element content may include EMPTY, ANY, #PCDATA, and subelement with

group and participation constraint. EMPTY means no subelement or text are allowed

in this element. ANY means any content is allowed for this element. #PCDATA

declares the text as the content of the element.

 10

For the subelements included in the element declaration, they have their own

structures. There are three basic structures. They are sequence, choice, and group.

Sequence is specified by the ordered subelements, and each subelement is separate by

“,”. They are sequence in XML document, and the subelement will be in the same

order with the sequence declared in the DTD. The choice for the subelement structure

is that one of the set of subelements will be included in the XML document. This is

specified by the “ | ” between each subelements. The aim for group structure is nested.

This makes it possible for combination of the sequence and choice. A simple example

is ((child1|child2), child3). It indicates that child1 or child2 will be included in the

XML document followed by child3.

Element declaration can define the occurrence constraint for the subelements. There

are four types. The basic one is empty specification. This indicates that the

subelement appears once in the XML document. “?” after the subelement indicates

that zero or one instance are required. “+” means one or more instances are required

in the XML document. “*” indicates zero or more instances are required.

DTD Attribute

XML attributes provide some restrictions on the values, and also have enumerated

value list, default values, or fixed values.

 11

For attribute types, we examine 4 widely used attribute types, which is CDATA, ID,

IDREF, and IDREFS. CDATA indicates string character data for attributes. ID

indicates that the value of the attribute is unique in the document. IDREF defines an

attribute that have a value, which match another attribute ID value. It is a reference to

another attribute ID value. IDREFS defines an attribute that have a value, which

match multiple attribute ID values. These multiple values are separated by white

space.

DTD attribute can have default value. It can have three default types. They are

#IMPLIED, #REQUIRED, and #FIXED. #IMPLIED specifies that an attribute is

optional. #REQUIRED indicates that an attribute must contain some value in each

XML document. #FIXED indicates that the attribute value set in the attribute

declaration cannot be changed in the XML document.

The following DTD is for the XML document above.

<!ELEMENT project (part+, funds+, proejctmanager+)>
<!ATTLIST project jno ID #REQUIRED>
<!ELEMENT part (supplier+)>
<!ATTLIST part pno ID #REQUIRED>
<!ELEMENT supplier (quantity)>
<!ATTLIST supplier sno ID #REQUIRED>
<!ELEMENT quantity (#PCDATA)>
<!ELEMENT funds EMPTY>
<!ATTLIST funds uno #REQUIRED>
<!ELEMENT projectmanager (name+)>
<!ATTLIST projectmanager mno ID #REQUIRED>
<!ELEMENT name (#PCDATA)>

 12

2.1.2 XML Schema

XML Schema [14] became an official W3C recommendation in May 2001. It is a

schema language to describe the structure of XML document.

There are two types for XML Schema element. They are simple type and complex

type. Element that only contains text is simple type. While that containing subelement

or contains attributes is complex type. The attribute only contains text, so it is

considered as the simple type. We will present the two types in the below sections.

Simple type:

XML Schema gives more constraints on value types for XML document. There are

some simple types can be specified, like date, integer, Boolean, string, and so on. It is

also possible to build custom simple types to control how the element content should

look like. The occurrence constraint is more specific than DTD, e.g. they could define

their minimal and maximal occurrence by minOccurs and maxOccurs. The syntax of

simple type element is as below:

<xsd:element name=”label” type= “simpletype”/>

The label is the name for element. The simpletype could be xsd:string, if the content

is a string of characters; or xsd:date, xsd:time, xsd:decimal, …

 13

Simple type element allows the user to define their custom types. The custom types

are declared by restriction on the existed simple types, like the range of the element

value.

Complex type:

If we say simple type element specifies the contents for an element, we could say that

the complex type is for the structure of element. Below is the syntax for a complex

type:

<xsd:complexType name= “label”>

…

</xsd:complexType>

The label defines the complex type. Inside the definition, it can declare a sequence,

choice or group, in order to specify which subelement the element contains.

<xsd:attribute name= “label” type= “valuetype”/>

The label is for the attribute name. Valuetype is for the simple types. It also allows

restriction like “required”, “must”, and “prohibited” and so on.

Below is the XML Schema for the XML document.

 14

<xsd:complexType name=”supplierType”>
 <xsd:sequence>
 <xsd:element name=”quantity” type=”xsd:string”
 minOccurs=”1” maxOccurs=”1”/>
 </xsd:sequence>
 <xsd:attribute name=”sno” type=”xsd:string”/>
</xsd:complexType>

<xsd:complexType name=”partType”>
 <xsd:sequence>
 <xsd:element name=”supplier” type=”supplierType” minOccurs=”1”/>
 </xsd:sequence>
 <xsd:attribute name=”pno” type=”xsd:string”/>
</xsd:complexType>
…
<xsd:element name=”project”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”part” type=”partType” minOccurs=”1”/>
 <xsd:element name=”funds” type=”fundsType” minOccurs=”1”/>
 <xsd:element name=”projectmanager” type=”projectmanagerType” minOccurs=”1”/>
 </xsd:sequence>
 <xsd:attribute name=”jno” type=”xsd:string”/>
 <xsd:key name “project”>
 <xsd:selector xpath=”.//part”/>
 <xsd:field xpath=”@pno”/>
 </xsd:key>
…
 </xsd:compexType>
</xsd:element>

XML Schema is in XML format, which make it possible to be parsed by XML parser.

XML Schema includes much richer value types compared with DTD. It is both for

attribute and element. XML Schema supports namespace.

2.1.3 ORA-SS Data model

The XML Schema or DTD is lacking in semantics. For example, in our running

example, they can not specify that quantity is determined by object cases “project”,

“part”, and “supplier”, rather than only “supplier”. While this has prompted proposals

to augment the schema with information such as keys [7], and functional

 15

dependencies [23], it remains unclear whether the relationship between the element

objects is binary or n-nary, and whether an attribute belongs to an element object

class (e.g. title of an element book) or to the relationship type between elements (e.g.

quantity of books supplied by a supplier to a bookshop).

The ORA-SS model (Object-Relationship-Attribute model for Semi-Structured data)

is a semantically rich data model that has been designed for semi-structured data [9].

The rich semantics of ORA-SS allows us to capture more of the real world semantics,

and use them for integration.

The ORA-SS model distinguishes between objects, relationship and attributes. The

main contribution is relationship type in XML is expressed explicitly. The degree of

the relationship type expresses the actual object classes involved in the relationship

type. The attributes are classified by the attributes of object class or relationship type.

We present an overview of ORA-SS model in this section.

ORA-SS model have four diagrams: ORA-SS schema diagram, ORA-SS instance

diagram, functional dependency diagram and ORA-SS inheritance diagram. Below

are the constraints in ORA-SS model.

“

• object

_ attributes of objects

_ ordering on objects

 16

• relationship

_ attributes of relationships

_ degree of n_ary relationships

_ participation of objects in relationships

_ disjunctive relationships

_ recursive relationships

_ symmetric relationships

• attribute

_ key attribute

_ cardinality of attributes

_ composite attributes

_ disjunctive attributes

_ attributes with unknown structure

_ ordering on attributes

_ fixed and default values of attributes

• Semi-structured data instance

• Functional dependencies and other constraints

• Inheritance hierarchy

”

We employ the ORA-SS schema diagram in our integration system. Object class is

like an entity in an ER diagram, a class in an object-oriented diagram or an element in

the semi-structured data model. An object class is presented as a labeled rectangle.

 17

The attributes are presented as labeled circle joined to their object by an edge. Keys

are filled circle. Each relationship type in ORA-SS model has degree and

participation constraints. The relationship is in the form as name, n, p, c. name is the

relationship type label, and n is the degree. p is the participation constraint on the

parent, while c is the participation constraint for the child. A relationship may have

attribute. The following example presents the details.

Example:

The object classes such as “project” and “part” in Fig. 2.1 are represented by labeled

rectangle. The relationship types between the object classes are denoted by name, n, p,

c. Here “jp” and “jps” are relationship types. The participation constraints are defined

using the min:max notation. The labeled circles denote attributes, and the filled

circles denote keys. Attributes are properties of object class or the relationship type.

For example, inFig. 2.1 “jno” is the attribute of object class “project”, while

“quantity” is the attribute of relationship type “jps”. The degree of relationship type

“jps” is 3, which is a ternary relationship type involving object classes “project”,

“part” and “supplier”. The binary relationship declaration can be omitted if it will not

lead to conflicts. For details on ORA-SS, please refer to [9].

 18

Fig. 2.1 An example of ORA-SS schema diagram

2.2 XML Query Language

There are two main query languages for XML, namely XPath [12] and XQuery [15].

XQuery supports more operations and functions and uses XPath as a “leaf

expression”. We will use XQuery as the query language in our query rewriting

algorithm for XML integration. In this section, we present the main expressions of

XQuery.

2.2.1 XQuery

XQuery often retrieves information from XML data and restructures it to create the

results. FLWOR (for-let-where-order by-return) is the main expressions of XQuery.

part

supplier
pno

sno quantity

jps,3,1:n,1:n

jps

project

jno
jp,2,1:n,1:n

funds

uno

project manager

namemno

jpm,2,1:n,1:n

jf,2,1:n,1:n

 19

for clause: Associated one or more variables to expressions, creating a tuple stream in

which each tuple binds a given variable to one of the items to which its associated

expression evaluates. When a for clause contains multiple variables, each with an

associated expression whose value is the binding sequence for that variable, the for

clause iterates each variable over its binding sequence. The resulting tuple stream

contains one tuple for each combination of values in the respective binding sequences.

let clause: A let clause may also contain one or more variables, each with an

associated expression. Unlike a for clause, however, a let clause binds each variable

to the result of its associated expression, without iteration. The variable bindings

generated by let clauses are added to the binding tuples generated by the for clauses.

If there are no for clauses, the let clauses generate one tuple containing all the

variable bindings. The difference from for clause is that let clause bind variables to

the entire result of an expression.

where clause: It is for condition constraints. Only the tuples satisfied the condition

constraints in where clause is retained.

order by clause: Sort the tuples.

return clause: The return clause of a FLWOR expression is evaluated once for each

tuple in the tuple stream, to form the result of the FLWOR expression.

 20

A FLWOR expression starts with one or more for or let clause in any order, followed

by an optional where clause, an optional order by clause, and a required return clause.

Below is an XQuery, which retrievs the project manager in charge of project “p02”.

for $p in /project

where $p/@pno=”p02”

return <result> $p/projectmanager</result>

 21

Chapter 3

A Semantic Approach for Integration of

XML Schemas

We develop a semantic approach to the integration of XML schemas. We employ the

semantically rich model ORA-SS [9] for semistructured data to capture the semantics

of the underlying XML data. An n-nary integration strategy that provides a global

view of the source schemas is adopted. The integrated schema obtained takes into

consideration underlying data semantics such as different relationship types among

equivalent object classes, the importance of the source schemas, and how the majority

of the sources schemas modeled their data. Structural conflicts such as attribute-

object class conflict and ancestor-descendant conflict are resolved in the process.

Finally, redundant object classes and transitive relationship types are identified and

removed to obtain a more concise integrated schema.

In the integration of XML schemas, some of the following conflicts must be

addressed:

A) Name conflicts. Different sources may use different names to express the

same object in the real word.

B) Participation conflicts. Different sources may define different participation for

the same relationship.

 22

C) Structural conflicts. Different sources may use different hierarchy structure to

model the same object and relationship in the real word. For instance, an

element A can be the ancestor of another element B in one source, while in

another source, the same element A can be a descendant element of B.

The rest of the chapter is organized as follows. Section 3.1 presents some background

materials. Section 3.2 gives a motivating example and highlights the various features

that we consider in our integration strategy. Section 3.3 describes the details of the

algorithm to integrate XML schemas. Section Error! Reference source not found.

presents the theoretical analysis. Section 3.4 discusses related work, and we conclude

in Section 3.5.

3.1 Preliminaries and Assumptions

In this section, we first present the overview of the problem statement, followed by

the input and output of the algorithm. Some assumptions are described at the end,

which include the assign equivalent label name and global key assumptions.

This chapter mainly solves the generating integrated schema problem. From local

ORA-SS schemas, the algorithm generating a correct, complete integrated schema,

which is expressed by ORA-SS model. For meaningful integration to occur, we

assume that the various sources model similar domains.

 23

The input to the proposed integration algorithm is a set of ORA-SS schemas, which

has been generated from XML schemas. Details of the transformation of XML

schema to the ORA-SS model are given in [3]. Inputs from the users may be solicited

to enrich the ORA-SS schema with the necessary semantics. We do not deal with

recursive relationship type in our approach. This is because the recursive relationship

type will affect the algorithm to detect the structure conflicts. The details will be

addressed in section 3.3.2.

The output of the algorithm is an integrated schema, also modeled in ORA-SS. Since

queries on the integrated schema will be subsequently mapped to equivalent queries

on the data sources, the integrated schema should contain all the information modeled

in the original schemas. Further, the integrated schema should be as simple and

concise as possible to facilitate users’ understanding.

For assigning equivalent name label, we assume that object classes with the same

label are considered to be semantically equivalent, that is, they refer to the same

object class in the real world. Similarly, attributes of the same object class (or

relationship type) with the same label are also semantically equivalent, that is, they

refer to the same property of an object class (or relationship types) in the real world.

The object classes (or relationship types) in the different original schemas that refer to

the same real world object (or relationship) may have different names. We assume

that the renaming step have been done before the integration process. Note that there

 24

may also be different relationship types between the same object classes. In such

cases, we assume they will be assigned different labels.

Global key and local key conflict arises in integration of XML data. When we

integrate XML sources, the keys of one source might only be local keys of the whole

sources. If such keys do not change to global keys, these local keys might lead to

errors.

For example, the keys of student are both student number in two sources. It seems

easy to integrate them. But in fact the two sources are from two universities, and the

student numbers are only keys within the university.

In such cases, the change from local keys to global keys is necessary. [7] does

research on XML keys. We assume the keys input to our algorithm are global keys.

3.2 Motivating Example

In this section, we illustrate some of the unique features of the integration strategy we

propose. Consider the ORA-SS schema diagrams for four XML sources in Fig. 3.1.

The swi under each schema indicates the source weight, i.e., the importance of a

source. This is determined by users or computed based on some statistic information.

 25

(a) Schema S1, sw1=1

(b) Schema S2, sw2=1

(c) Schema S3, sw3=7

project

partjno

pno

local funds

lno

foreign funds

fno

project
manager

project manager

mno name email
organization

org name

abbreviation full name

project

supplierjno

sno
name project manager

mno

staff

ordinary staff

eno

part

pno

js,2,1:n,1:n

jsp,3,1:n,1:n

name
org name

abbreviation full name

address

 26

(d) Schema S4, sw4=1

Fig. 3.1. ORA-SS Schema Diagrams for four XML sources.

A. Resolve attribute-object class conflict.

This occurs when a concept has been modeled as an attribute in one schema, and as

an object class in another schema. For example, the attribute “project manager” in

schema S1 is semantically equivalent to the object class “project manager” in schema

S2 of Fig. 3.1. This conflict can be easily resolved by mapping the attribute to an

object class (see Fig. 3.2).

Schema S1’: Attribute “project manager” in schema S1 of Fig. 3.1 has been

transformed into an object class “project manager” in S1’.

Fig. 3.2. Resolve attribute-object class conflict

part

supplier
pno

sno quantity

jps,3,1:n,1:n

jps

project

jno
jp,2,1:n,1:n

funds

uno

project manager

namemno

project

partjno

pno

local funds

lno

foreign funds

fno

project manager

mno

 27

B. Resolve generalizations and specializations.

A generalization exists when an object class in one schema is the union of several

object classes in another schema. Consider again Fig. 3.1, the object class “funds” in

schema S4 is a generalization of the object classes “local funds” and “foreign funds”

in schema S1. The integrated schema will include the generalization hierarchy as

shown in Fig. 3.3.

Fig. 3.3. Build a generalization hierarchy from S1 of Fig. 3.1.

C. Merge the schemas to obtain an integrated graph.

Fig. 3.4 shows the graph obtained from merging the schemas S1’, S2, S3 and S4.

Each node in the graph denotes an object class, and edges represent the relationship

types between the object classes. To facilitate processing, attributes are first omitted

from the integrated graph. The attributes will be incorporated into the final integrated

schema. Note that only the equivalent relationship types will merged together.

Semantically different relationship types between the equivalent object classes will be

treated as different relationship types, as indicated by the different edges.

local funds

lno fno

funds

foreign funds

 28

The edges in the integrated graph are weighted as follows. Since we have “project” as

the parent of “part” in schemas S1 and S4, the weight of the edge from “project” to

“part” is given by the sum of the weights of these schemas, that is, 1+1=2. In the

same way, since “project” is the parent of “staff” in schema S3 only, the weight of

this edge is 7. Since the edge from “supplier” to “part” in S3 is actually involved in

two relationship types jsp and sp, its edge weight would be given by 7*2=14.

Fig. 3.4. Integrated graph obtained from the schemas in Fig. 3.1.

D. Transform integrated graph to resolve structural conflicts and remove

redundancy.

We proceed to transform the graph to differentiate the semantically different

relationships between equivalent object classes, identify cycles to resolve ancestor-

descendant conflicts, remove redundant object classes and redundant relationship

types. Redundant relationship types include relationship types that are derived from

projecting higher-degree relationships in the schema and transitive relationship types.

project

supplier

name project manager

staff

ordinary staffpart

js,2,1:n,1:n

jsp,3,1:n,1:n

organization

org name

funds

foreign fundslocal funds

2
7

142

7 2

7
2

7

1

1
7

1 1

 29

D-1. Differentiate semantically different relationship types between equivalent

object classes.

Consider the schemas S5 and S6 in Fig. 3.5 that are structurally the same, except for

the additional object class “contract” in S6. The relationship types between the same

object classes are semantically different. The relationship type in schema S5 indicates

that the person owns the house, while that in schema S6 indicates that the person rents

the house. We first merge the two schemas to obtain the integrated graph G56 before

transforming it to G56’ (see Fig. 3.5). The edges from object classes “house1” and

“house2” to the object class “house” in G56’ indicate foreign key-key references.

Note that the relationship phc between the “person”, “house” and “contract” is

represented explicitly in the transformed graph.

Schema S5 Schema S6

person

house
name

address

ph1,2,1:n,1:n

type

person

house
name

address

ph2,2,1:n,1:n

type
contract

cid time

phc,3,1:1,1:n

 30

Integrated graph G56 Transformed graph G56’

Fig. 3.5. Different relationship types among equivalent object classes.

D-2. Remove relationship types that are projections of higher degree

relationship types.

A schema may model a relationship type that is a projection of another relationship

type in another schema. For instance, if we integrate the schemas S1 and S3, the

integrated graph will contain the binary relationship type between “project” and

“part” from schema S1, and the ternary relationship type between “project”,

“supplier” and “part” from schema S3. Since the former is a projection of latter

relationship type, we remove the binary relationship type and keep the ternary

relationship type in the integrated graph. Subsequently, we can issue a query

“/project//part” on the integrated schema to retrieve all the “part” information.

D-3. Resolve ancestor-descendant conflicts.

person

house1

address

ph1,2,1:n,1:n

house2

address

ph2,2,1:n,1:n
house

address

contract

phc,3,1:1,1:n

person

house

ph2,2,1:n,1:n

contract

ph1,2,1:n,1:n

phc,3,1:1,1:n

 31

An ancestor-descendant conflict arises when a schema models an object class A as an

ancestor of another object class B, and the other schema models B as the ancestor of

A. The simplest form of this conflict is the parent-child conflict in schemas S3 and S4.

We have “supplier” as the parent of “part” in S3, while “part” is the parent of

“supplier” in S4. This conflict creates a cycle “supplier” → “part” → “supplier” in the

integrated graph of Fig 4. One of the edges which represent the inverse relationship

types can be removed to break the cycle. We propose to remove the edge with the

lowest edge weight, that is, the edge from the less important schema. In this case, the

edge from “part” to “supplier” with an edge weight of 2 will be removed.

Fig. 3.6 shows another example of an ancestor-descendant conflict. The object class

“module” is the ancestor of “tutor” in schema S7, while “tutor” is the ancestor of

“module” in S8. This conflict will create a cycle in the integrated graph G78. The

conflict can be resolved by removing one of the edges that has the least weight.

Further, the edge removed should represent a relationship type that can be derived by

a series of joins and projections of the other relationship types involved in the cycle.

If the source weights are sw7=2, sw8=1, then the weight of the edge from “tutor” to

“module” is 1. Since this edge has the lowest edge weight, we will remove it from

G78. The transformed graph obtained at this point will be G78’.

On the other hand, if the source weights are sw7=1, sw8=2, then the weight of the

edge from “tutor” to “module” is 2, and will not be removed. The weights of the

 32

edges from “module” to “lecturer”, and from “lecturer” to “tutor” are both 1. Since

both of these edges have the lowest edge weight, we can remove either one of them,

which will result in the transformed graph G78(a) or G78(b).

 Schema S7 Schema S8 Integrated graph G78

 Transformed graph G78’ Transformed graph S78(a) Transformed graph S78(b)

Fig. 3.6. Example of an ancestor-descendant conflict.

D-4. Remove transitive relationship types.

Transitive relationships types are also redundant, and can be removed so that the

resulting integrated graph will be concise. For example, the relationship type between

“project” and “project manager” in Fig. 3.4 is a transitive relationship type that can be

obtained from the relationship types between “project” and “staff”, and between

“staff” and “project manager”. Thus, we can remove the transitive relationship type

from the integrated graph.

tutor

moduletno

module

module

lecturermno

lno tutor

tno

module

lecturer

tutor

tutor

module

lecturer

module

lecturer

tutor

lecturer

tutor

module

 33

Fig. 3.4 also contains another transitive relationship type between “project manager”

and “org name”. We observe that the object class “organization” does not have any

attribute, and has only one child object class “org name”. This object class from

schema S2 cannot contain any instances in the corresponding XML data files. Since

“organization” is a redundant object class, we propose to remove it and its associated

relationship types from the integrated graph in Fig. 3.4. As a result, the relationship

type between “project manager” and “org name” is no longer a transitive relationship

type.

D-5. Remove multiple parent nodes.

If a node has more than one incoming edges in an integrated graph, then it is called a

multiple parent node. Consider the integrated graph G9-10 in Fig. 3.7. The two

incoming edges to “student” indicate two different relationship types. The attribute

“mark” can only belong to one of them, namely, the relationship type “jd”. In the

transformed graph G9-10’, we will split the multiple parent node and represent these

two relationship types separately.

Schema S9 Schema S10 Integrated graph G9-10

school

studentscname

snu email

project

stduentjno

snu address

jd

jd

mark

school

stduent

project

 34

Transformed Graph G9-10’

Fig. 3.7. Example of a multiple parent node.

Fig. 3.8 shows the transformed graph obtained for the source schemas in Fig. 3.1 after

addressing the above concerns. For instance, when solving ancestor-descendant

conflict, the cycle “supplier”→“part”→“supplier” is detected and the edge

“part”→“supplier” is deleted. The redundant object class “organization” and its

associated edges are deleted. Transitive edges as “project”→“project manager” and

“project”→“part” are also removed. The transformed graph is augmented with

attributes such as “quantity” for the ternary relationship type “jsp”. The final

integrated schema is shown in Fig. 3.9. Note that the attribute “quantity” belongs to

the relationship type “jps” in schema S4 (see Fig. 3.1), which is a ternary relationship

type associating object classes “project”, “ supplier” and “part”. Since the node “part”

is at the lowest level compared to “supplier” and “project”, the attribute “quantity”

becomes an attribute under “part”.

school

student1

snu

student2

snu

student

snu

project

mark

jd

jd

 35

Fig. 3.8. Transformed graph obtained from Fig. 3.4.

Fig. 3.9. Final integrated schema.

3.3 Integration Algorithm

In this section, we present the details of the integration algorithm. We will first

discuss and define some of the terms used.

project

supplier

name project manager

staff

ordinary staffpart

js,2,1:n,1:n

jsp,3,1:n,1:n

org name

funds

foreign fundslocal funds

project

supplierjno

sno
name project manager

mno

staff

ordinary staff

eno

part

pno

js,2,1:n,1:n

jsp,3,1:n,1:n

name

org name

abbreviation full name

local funds

funds

foreign funds

lno fnoemailquantity address

jsp

 36

3.3.1 Definitions and Theorems

We advocate that the object classes that are higher up in the ORA-SS schema are

more important than the object classes at the lower levels such as the leaf level. This

is because they provide the context of the information modeled. The level of a node is

determined by length of the path from the root to node plus one. For example, the

level of the root is 1, the children of the root is 2, etc.

Definition 4.1: The node weight of a node i, denoted by nwi, is determined by the

formula

nwi =
i

l
j

node

sw ji∑ +− 12*

where lji is the level of nodei in schema j, jsw is the source weight of schema j. inode

is the number of node i in the original schemas.

Consider “project” and “part” in Fig. 3.1. The node weight of “project” is given by

nwproject = (1*1+7*1+1*1)/3 = 3, while the node weight for part is given by nwpart =

(1*0.5+7*0.25+1*0.5)/3 = 0.917.

Definition 4.2: If a node i has more than one incoming edges in an integrated graph,

it is called a multiple parent node.

Definition 4.3: If a directed edge sequence <ei0,i1, ei1,i2, … eim,i(m+1), ei(m+1),i0> occurs

in an integrated graph, then a cycle exists.

 37

Definition 4.4: If an object class i is an ancestor of object class j in some local

schema, while i is descendent of object class j in some other local schema. This

conflict is called ancestor-descendant conflict.

Theorem 4.1: An ancestor-descendant conflict occurs iff there is a cycle in the

integrated graph.

Proof: If node i and j are in ancestor-descendant conflict, then there must be a path

from node i to node j in the integrated graph. This is because in some sources, node i

is ancestor of node j. The edges from node i to j in those sources are all recorded in

the integrated graph. Hence, there is at least one path from node i to node j. On the

other hand, there also must be a path from node j to node i. These two paths make a

cycle.

Suppose node i and node j are in one cycle. There is one path from node i to node j,

which means node i is ancestor of node j in some sources. On the other hand, node j

must be ancestor of i in other sources, which is ancestor-descendant conflict. □

Theorem 4.2: In a cycle, there must be at least one multiple parents node or root

node.

Proof: If a cycle does not include any root nodes, then the cycle must connect with

other nodes by some edges. If there are incoming edges from other nodes to this cycle,

the theorem is proven. On the other hand, if there are only outgoing edges from the

 38

cycle to the other nodes, then there must be at least one root node in the cycle, which

is a multiple parent node. □

3.3.2 Integration Algorithm

There are essentially four main steps in our integration algorithm:

1. Preprocessing.

2. Construct integrated graph.

3. Transform graph.

4. Solve participation conflicts

5. Augment graph with attributes.

The input is a set of schemas modeled using the ORA-SS model. The output is an

integrated ORA-SS schema. The third step Transform Graph aims to identify

semantically different relationships among equivalent object classes, resolve

ancestor-descendant conflicts, and remove redundant object classes and redundant

relationship types such as transitive relationship types. The resulting integrated

schema preserves data semantics in the sources, considers how the majority of the

sources model the data, and is concise.

Step 1 Preprocessing.

1.1 Resolve attribute-object class conflict.

 39

If the same concept is expressed as an object class in one schema, and as an

attribute in another schema, then convert the attribute to an equivalent object

class. The attribute becomes the key of this new object class.

1.2 Resolve generalizations and specializations.

When one object class is the generalization object class of some object classes

of other schemas, it becomes the parent node of these object classes.

Step 2 Construct Integrated Graph

2.1 Merge the equivalent object classes and relationship types from original

schemas to obtain an integrated graph G such that each node is an object class,

and edges denote relationship types between the object classes. Note that

attributes are not included in G.

2.2 Compute the weights of the edges.

 For each edge e in G do

 Let e1, e2,… ek be the equivalent edges in the original schemas s1, s2, …sk.

 Let sw1, sw2, … swk be the source weights of the schemas s1, s2, …sk

respectively.

 Let n1, n2, … nk be the number of relationship types the edge is involved in

the schemas s1, s2, …sk

 Set the weight of the edge ew = sw1*n1+sw2*n2+ … swk*nk.

 40

Step 3 Transform Graph

3.1 Differentiate semantically different relationship types between equivalent

object classes.

 For each node ns in G do

If ns has k outgoing edges {es1, es2, …, esk} to the same node nt Then

 Create k duplicate nodes {nt1, …, ntk} of nt;

Each edge esi (from ns to nt), 1 ≤ i ≤ k, becomes an edge from ns to nti;

 For each nti, 1 ≤ i ≤ k, do

Create a foreign key-key reference from the key of nti to that of nt.

 For each child node c of node nt do

 If c is involved in an n-nary relationship type that includes esi

 Then Move c and its descendent nodes from nt to nti .

3.2 Remove relationship types that are projections of higher degree relationship

types.

For each n-nary relationship type R in G do

Let N = {n1, …, nk} be the set of nodes involved in relationship R.

For each relationship type R’ that involves a subset of nodes in N do

If R’ is a projection of R

Then Remove R’ from the integrated graph.

3.3 Resolve any ancestor-descendant conflicts which create cycles in G.

For each multiple parent node mn ordered by node weight

 41

 For each cycle involved of mn in G do

 Let eij be the edge with the smallest edge weight in the cycle.

 If eij can be derived from other relationship types in the cycle.

 Then Remove eij from G.

3.4 Remove redundant relationship types and redundant object classes.

For each multiple parent node n in G do

Let P be the set of parent nodes of n.

While |P| > 1 do

Let pmax ∈ P

Let <n0 , n1, …, nk> be the path from pmax to n, where n0 = pmax, nk = n,

and k > 1.

/* remove redundant object classes with no attribute and only one child

object class. */

For each node ni in the path, 0 < i < k, do

If ni has no attributes and no sub-object classes besides ni+1

Then Remove ni and its associated edges from G;

Create an edge between ni-1 and ni+1;

P = P – {pmax};

If the edge from pmax to n can be derived from <n0 , n1, …, nk>

Then Remove the transitive edge from pmax to n in G.

3.5 Remove multiple parent nodes.

 42

For each multiple parent node nm in G do

Let nm have k incoming edges e1, e2, …, ek from nodes n1, n2, …, nk

respectively.

 Create k duplicate nodes {nm1, …, nmk} of nm;

 Each edge ei (from ni to nm), 1 ≤ i ≤ k, becomes an edge from ni to nmi;

 For each node nmi, 1 ≤ i ≤ k, do

 Create a foreign key-key reference from the key of nmi to that of nm.

For each child node c of node nm do

 If c is involved in an n-nary relationship type that includes ei

 Then Move c and its descendent nodes from nm to ni .

Step 4 Solve participation conflicts

The expression of participation in ORA-SS is min:max. When there are

participation conflicts, the integrated schema use the broadest range, ie

min(mini): max(maxi).

Step 5 Augment Graph with Attributes

5.1 Map the transformed graph G to an equivalent ORA-SS schema S.

5.2 Augment the schema with the attributes of object classes.

5.3 Augment the schema with attributes of relationship types.

 43

3.3.3 Analysis of Algorithm

The integrated schema generated by our algorithm is correct because it does not

violate any semantic in the local source schemas.

Outline of Proof:

Any object class O in the integrated schema S originates from one or more equivalent

object classes in the local schemas. These object classes refer to the same entity type

in the real world. Hence, there is no semantic violation.

For an attribute A of an object class O in the integrated schema S, there are two

possible cases:

(1) A originates from one or more equivalent attribute A’ in the local schemas where

O’ is the owner object class of A’, and O’ and O are equivalent.

(2) A originates from one or more equivalent attribute A’ in the local schemas where

O1 is the owner object class of A’, but O1 and O are not equivalent. O1 is a parent

object class of O in the integrated schema S.

The second case arises because of the attribute-object class conflict where the same

concept is expressed as an attribute A of the object class O1 in one schema S1, and as

 44

an attribute of object class O2, and O1 is the parent object class of O2 in another

schema S2. In step 1.1 of the algorithm, S1 is transformed to a schema S1’ by

creating an object class O2 as a child of Object class O1, and the attribute A becomes

an attribute of object class O2. This new schema S1’ preserves the semantics of the

original local schema S1. A will be an attribute of object class O2 in the integrated

schema S, which is same with S1’. Hence, S does not violate the semantic meaning of

attribute A in S1.

A relationship type R in the integrated schema S originates from the local schemas in

two possible ways:

(1) R originates from one or equivalent relationship types in the local schemas.

Relationship types are equivalent if they have the same participating object classes,

and refer to the same real world relationship that the object classes are involved in.

(2) R is a relationship type created in Step 1.2 of the algorithm to handle

generalization and specialization.

The second case arises when the algorithm needs to resolve generalizations and

specializations. When one object class O in a local schema S1 is the generalization

object class of a set of object classes O1 of another schema S2, then O becomes the

parent object class of these object classes. These relationship types for generalizations

and specializations do not violate the semantics of the local schemas.

 45

If there is an attribute A of a relationship type R in the integrated schema S, A is

generated from some set of equivalent relationship types from local schemas. So there

is no violation.

The integrated schema generated by the above algorithm is complete, because all the

semantics of object class, attribute, relationship type in local schema L can be

generated from the integrated schema S.

Outline of Proof:

The integrated schema is derived from one or more local schemas. All the object

classes, attributes and relationship types in the local schemas will be mapped to some

equivalent construct in the integrated schema. Hence, an underlying local schema can

be generated from the integrated schema. Note that if we have two relationship types

R1 and R2 in the integrated schema, and R1 is a projection of R2, then Step 3.2 will

remove R1 from the integrated schema. Hence, we can still derive the underlying

equivalent relationship type R in a local schema from R2. Further, we can also derive

a relationship type R in a local schema that is the join of a set of relationship types R1,

R2, …Rn in the integrated schema.

 46

3.4 Comparison with Related Work

Research in data integration has focused on various aspects to integrate information

from multiple sources. Most of the work has focused on the matching problem to find

equivalent elements among the different sources. These work include XClust [25],

CUPID [28], SKAT [34][35], and Xyleme [45]. A taxonomy and a survey of

matching approaches are given in [41].

Having obtained a set of equivalent elements, the next step is to obtain an integrated

schema. [18] uses schema learning to generate a set of tree grammar rules from the

DTDs in a class and optimizes the rules to transforms them into an integrated view.

Fig. 3.10 shows the integrated schema that [18] will obtain. Since the method does

not take into account the underlying semantics of the data, the attribute “quantity” is

considered to belong to “supplier”. Further, the relationship type between “project”

and “project manager” is transitive relationship type, which is redundant. The

relationship type from “part” to “supplier” and “project” to “part” is redundant. In

contrast, the integrated schema obtained by our approach preserves the underlying

data semantics and is concise (see Fig. 3.9).

 47

Fig. 3.10. Integrated schema obtained by [18].

LSD [8] employs instance information and machine learning techniques in their

integration work. This is because instances contain more information than the

schemas. For example, if the phone number of a given element have significant

commonalities, the phone numbers are more likely to be the office phones of

employees, rather than home phones. However, the number of instances is very much

larger than that of the schemas. Hence this method is very costly.

All these work do not take into consideration the importance of the individual data

sources, and how the majority of the local schemas model their data. In contrast, our

proposed method employs the ORA-SS conceptual model which is able to capture the

semantics necessary for the resolution of structural conflict during integration. The n-

project

supplierjno

sno

name project manager

mno

staff

ordinary staff

eno

part

pno

js,2,1:n,1:n

jsp,3,1:n,1:n

name

quantity

local funds

lno

foreign funds

fno

funds

uno

email address

org name

abbreviation full name

 48

nary strategy that we adopted provides a global view of the local sources, and is faster

compared to the binary strategy, whose intermediate schemas will grow with the

number of sources. The binary strategy will not be able to utilize the source

importance and how the majority of the sources model the data. For example, when

there is parent and child conflict, the relationship type from the source with small

source weight will be removed. But this relationship might be the majority one. The

final integrated schema might be different with the n-nary strategy, which is more

accurate.

source1 source4source3source2

source1 source4source3source2

intermediate
integrated
schema 1

intermediate
integrated
schema 2

integrated schema integrated schema

A B

Fig. 3.11. n-nary & binary algorithms

3.5 Summary

In this chapter, we have introduced a semantic approach to resolve structural conflicts

in the integration of XML schemas. We employed the ORA-SS semantic data model

to capture the implicit semantics in an XML schema. We presented a comprehensive

n-nary algorithm to integrate XML schemas. Compared to existing methods, our

 49

algorithm takes into account the data semantics, the importance of a source, and how

the majority of the sources model their data. Structural conflicts such as

attribute/object class conflict, ancestor-descendant conflict are resolved in our

approach. We also remove redundant object classes and relationship types such as

transitive relationship types, and relationship types, which are projections of higher

degree relationship types in order to obtain a concise integrated schema.

 50

Chapter 4

A Semantic Approach to Query Rewriting

for the Integration of XML Data

Abstract. Query rewriting is a fundamental task in query optimization and data

integration. With the advent of the web, there has been renewed interest in data

integration, where the data is dispersed among many sources and an integrated view

over these sources is provided. Queries on the integrated view are rewritten to query

the underlying source repositories. In this paper, we develop a novel algorithm for

rewriting queries that take the semantic relation-ship between the source schemas and

the integrated schema into account. Our approach is based on the semantically rich

Object-Relationship-Attribute model for Semi-Structured data (ORA-SS). This

guarantees that the rewritten queries give the expected results, even where the

integrated view is quite complex.

The rest of the chapter is organized as follows. Section 4.1 presents the preliminaries.

Section Error! Reference source not found. gives a motivating example. Section

4.2 describes the algorithm of query rewriting in integration of XML data. Section 0

compares with related work and we conclude in Section 4.5.

 51

4.1 Preliminaries

In this section, we briefly describe the mapping table that we utilize in our integration

strategy.

When the integrated schema is derived from the local schemas, a mapping table

should be created. It contains the mappings from the integrated schema to the local

schemas. Due to the features of tree-like XML data, researchers have proposed many

mapping languages. They can be classified as three types [6], tag-to-tag, path-to-path,

and tree-to-tree. tag-to-tag mapping languages specify the equivalent tags from the

global schema to the local schema. Tag is element or attribute of XML. Tag-to-tag

mappings are simple, yet may not be correct. This is because the context is important

in XML data. For example, the tag-to-tag mapping cannot tell the difference from the

node “name”, a child of the node “person”, and the same label node “name”, a child

of node “building”. The path-to-path mapping language [6][1][44] can solve such

problems. The path from the root to the node is included in the mapping. So it can tell

the difference of two nodes, if they are in different contexts. [1][44] use a mapping

language looks like tag-to-path. Since the global schemas in them are ontology and

identified, they are in fact path-to-path mapping. The tree-to-tree mapping language

gives the mapping based on the tree. [49][32] use tree-to-tree mapping language. For

the node in the global schema, there is a query to specify how to generate the node

from the local schemas. It is easy for global schema materialization and query

rewriting, but it also has drawbacks. The storage for the tree-to-tree mapping

 52

language is very large, especially when the global schema is big. It is hard to generate

such mappings. So the path-to-path mapping language is widely used.

We use path-to-path mapping in this example. Here we focus on the definitions of a

mapping table and not the details of how a mapping table is generated.

For each object class or attribute in the integrated schema, the path from the root to

this object class or attribute is inserted to the left part of the mapping table; the local

schema id and the path to the equivalent object classes or attributes of the local

schemas will be inserted to the right part of the same row in the mapping table. A

motivating example will be shown in the next section. When the mapping is not one

to one, the XQuery functions or user-defined functions are used. The complex details

will be shown in section 4.2.

Consider Fig. 4.1, where schema S12345 is an integration of the local schemas S1, S2,

S3, S4, and S5. Table 4.1. shows a subset of the mapping table generated during the

integration process. The first column of the mapping table gives the path from the

root to each object class or attribute in the integrated schema; the second column

shows the local schema id and the path to the equivalent object classes or attributes in

the local schemas.

 53

 S1 S2 S3

 S4 S5

 S12345

Fig. 4.1. S12345 is the integrated schema of local schemas S1, S2, S3, S4 and S5.

museum

painting
mname

pname

painting

pname artist

museum

artist
mname

aname

funds

fno

museum

painting

mname

pname artist

aname

sculpture

sname
artist

aname

artist

aname

sponsor

sname funds

fno

artist

painting
aname

pname

museum

mname sculpture

sname artist

aname

sponsor

sname funds

fno

 54

Integrated schema Local schema

S12345/museum S1/museum, S3/museum, S5/museum

S12345/museum/mname S1/museum/mname,

S3/museum/mname,

S5/museum/mname

S12345/museum/painting S1/museum/painting, S2/painting,

S4/artist/painting

S12345/museum/painting/pname S1/museum/painting/pname,

S2/painting/pname,

S4/artist/painting/pname

S12345/museum/painting/artist S2/painting/artist, S4/artist

S12345/museum/painting/artist/aname S2/painting/artist, S4/artist/aname

….. …..

Table 4.1. Mapping table for integrated schema S12345 in Fig. 4.1.

A query in the XQuery format has two main parts: the first part contains the selec-

tion conditions, and the second part describes how the result is restructured. A query

allocation table (QAT) stores the selection condition paths and the return result paths

of a query, as well as the local schemas where the data for these paths can be found

(which can be derived from the mapping table as we will show in the next section).

 55

4.2 Query Rewriting Algorithm

A user query on the integrated schema is rewritten to query the local source data.

Because one local data source may contain only partial information, this information

may have to be joined with information from local data source to give the expected

result. In this section, we describe an algorithm for returning the expected result from

the local data sources based on an integrated schema and local schemas. There are

four steps in our algorithm:

Step 1. Build the query allocation table.

Step 2. Group local schemas to form join groups that answer the user’s query.

Step 3. Decompose the user query to subqueries on the local sources.

Step 4. Compose the subqueries from local schemas in a join group.

4.2.1 Step1: Build the query allocation table

In XQuery there are two main parts to a query, one contains selection conditions, and

the other describes how the result is restructured, using projection, swap, and join

operations. A query allocation table consists of a selection condition table and a

return result table. The path of each selection condition and the return result is

inserted into the selection condition table and return result table respectively. The

associated schemas identified from the mapping table are inserted into the

corresponding rows. Algorithm BuildQAT creates the QAT.

 56

Algorithm BuildQAT

Input: user query q, mapping table;

Output: QAT

 for each “selection condition” path sp from user query q

 insert sp as row heading in the selection condition table.

 for each “return result” path rp from user query q

 insert rp as row heading in return result table.

 for each row with path p in QAT

 find path p in the left column of the mapping table

 in the QAT, insert the local schema id of each equivalent object class from the

right column of the mapping table.

There are some cases that must be considered.

Case 1: If a path corresponds to a branch in an ORA-SS schema with n (n>1) relation-

ship sets, it must be split into n subrows, one for each relationship set. Any attrib-utes

of an object class or a relationship set will appear in the row with their object or

relationship set.

Case 2: If a path contains “//” or “/*/”, then the row that stores the original is retained

and rows are created to store the expansion of each path. An expanded path that

contains more than one relationship set is handled using Case 1.

 57

These cases identify the relationship sets involved in the query so that they can be

handled properly and the results returned are expected and correct. This also high-

lights one of the advantages of using ORA-SS schema diagrams to distinguish be-

tween binary and n-ary relationships and treat them properly in the algorithm. For

example, n-ary relationships should not be split into n-1 binary relationship in the

query allocation table.

 S1 S2 S3

project

partjno

pno supplier

sno

jp,2,1:n,1:n

jps,3,1:n,1:n

quantity

jps
supplier2

sno

ps,2,1:n,1:n

 S4 S1234

Fig. 4.2. S1234 is the integrated schema of S1, S2, S3 and S4

Example 1:

Consider the schemas in Fig. 4.2, where schema S1234 is an integrated schema of

schemas S1, S2, S3, and S4. We issue query Q1 on the integrated schema to retrieve

project

partjno

pno supplier

sno

jp,2,1:n,1:n

jps,3,1:n,1:n

quantity

jps

project

supplierjno

sno part

pno

js,2,1:n,1:n

jps,3,1:n,1:n

quantity
jps

project

part
jno

pno

jp,2,1:n,1:n

part

pno
supplier

sno

ps,2,1:n,1:n

 58

information about projects and their parts, and which supplier supplies this part to this

project. Table 4.2. shows the query allocation table for query Q1. We note that the

relationship set among project, part and supplier is a ternary relationship set. Hence,

in the return result table, the path “/project/part/supplier” is not split into two paths.

Since, the local schema S4 does not model this ternary relationship set, it is not

associated with this path. This prevents the retrieval of wrong results by joining the

sources in S3 and S4.

Query Q1: for $j in /project

 return <project> {$j/jno}

 {for $p in $j/part

 return <part>{$p/pno}

{for $s in $p/supplier return {$s}} </part>}

</project>

Selection Condition Table: Empty

Return Result Table:

Table 4.2. Query Allocation Table for Query Q1.

/project/jno S1, S2, S3

/project/part/pno S1, S2, S3

/project/part/supplier S1, S2,

 59

Example 2:

Now let us consider Fig. 4.1, and the query Q2 on the integrated schema S12345,

which retrieves the names of artists that have works in a museum with name “field”.

The query allocation table is shown in Table 4.3. Note the path “/museum//aname” is

retained and rows for each expansion of this path is inserted in the QAT.

Query Q2: for $m in /museum[mname=”field”],$a in distinct-values($m//aname)

 return <artist> {$a} </artist>

Selection Condition Table :

/museum/mname S1, S3, S5

Return Result Table:

Table 4.3. Query Allocation Table for Query Q2.

/museum//aname S3

/museum/painting S1

painting/artist/aname S2, S4

/museum/sculpture S5

sculpture/artist/aname S5

 60

4.2.2 Step 2: Identify Local Sources to Answer User Query.

Next, we need to determine which local schemas must be combined to get the ex-

pected results. These groups of local schemas are called join groups. The local sche-

mas in each join group must contain all the paths required for the selection condition

and must have at least one path for the result.

Algorithm GenerateJoinGroups scans the query allocation table (QAT) to find the

join groups. Lines 1-5 create an ordering on the local schemas based on the rows in

which they first occur in the QAT and store the ordered list in lt. A local schema is

low in the ordering if it first occurs in the top row and high in the ordering if it first

occurs in the bottom row of the QAT. Lines 6-31 use a stack to find the join groups.

The local schemas are considered based on the ordering in the list lt from lowest to

highest. Initially the lowest local schema is pushed onto the stack, and the next

schema to be pushed onto the stack is the next lowest that occurs in a different row.

When the schemas on the stack cover all the selection condition paths in the QAT, we

output them as a join group. The top schema is popped off the stack, and the

algorithm goes on to find the next schema which could contribute to the user query.

The algorithm scans the schemas in the order of lt, so there is no duplication or

missing join groups.

 61

Algorithm GenerateJoinGroups

Input: Query allocation table qat;

Output: join groups

1. create an empty list lt;

2. for i=1 to num_of_row of qat

3. for j=1 to num_of_schema_id of row i

4. if schemaij is present in the rowi and not in list lt

5. add schemaij to list lt;

6. n=the number of local sources in qat;

7. create an empty stack st;

8. for i=1 to n from lt

9. {

10. if schemai is not in the top row in qat

11. break;

12. push schemai on the stack st;

13. if schemai is present in all rows of qat

14. {

15. Output {schemai};

16. st=null;

17. continue;

18. }

 62

19. for j=i+1 to n if schemaj occurs in the rows, which the other schemas in st do not

occur in, and schemaj does not occur in all the rows that the top element of st occurs

in

20. {

21. push schemaj on the stack st;

22. if (the local schemas in st has included all the path information in qat)

23. {

24. output all the schemas in the stack st split by”,” in a “{}”;

25. pop the top schema off the stack st;

26. }

27. }

28. if (j= =n and st has included all the path information of the selection condition

table and at least one result in return result table)

29. output all the schemas in the stack st split by”,” in a “{}”;

30. st=null;

31.}

Example 3:

Consider the schemas in Fig. 4.3. The attribute “location” in S12345 is a combination

of the attributes “address” and “postal code” in S5. The query Q3 retrieves the year

and title of the books that were written by “Tom” in the year “2000”. The

corresponding query allocation table is shown in Table 4.4Table 4.3.

 63

Algorithm GenerateJoinGroups first looks at the first row “/book/author” in Se-

lection Condition Table, and adds S1, S2, S3 in the list lt. Then it checks the second

row “/book/year”, and adds S4 in the list lt. Thus, the lt has local schema order as S1,

S2, S3, and S4. After the order is computed, S1 is first pushed on the stack, and S2 is

then considered. Since it does not add any extra paths, it is not pushed on the stack.

S3 is considered and because it does cover extra paths, it is pushed on the stack.

Together S1 and S3 cover all the path information in the QAT, so {S1, S3} is output

as a join group. S3 is then popped off the stack, S4 is considered. Together S1 and S4

cover all the path information, and {S1, S4} is output as a join group. {S2, S4} and

{S3} are output after that.

Note that {S2, S3} is not a join group, because although they cover all the path

information in the selection condition table of the QAT, S2 does not cover any more

path information that S3 does not cover and consequently would not add new answers

to the result of the query. Note that {S3} is a join group, even though {S1, S3} is also

a join group. The result from the rewritten query in {S1, S3} can return the result as

Q2, while {S3} can return the partial result which has missing information of the title

of book. The union of all the answers from the different join groups will be the final

results.

 64

 S1 S2 S3

 S4 S5 S12345

Fig. 4.3. S12345 is the integrated schema of local schemas S1, S2, S3, S4, S5

Query Q3: for $b in /book where $b/author=”Tom” and $b/year=”2000”

 return <result> {$b/year/text()} {$b/title/text()} </result>

Selection Condition Table:

Return Result Table:

Table 4.4. Query Allocation Table for Query Q3.

/book/author S1, S2, S3

/book/year S3, S4

/book/year S3, S4

/book/title S1

book

isbn author year title

publisher

name location

+

book

isbn author title
+

book

isbn author
+

book

isbn author year
+

book

isbn year

publisher

name address

book

isbn

postal code

 65

4.2.3 Step 3: Decompose the user query to subqueries on the local sources

Step 2 finds the groups of local schemas that together will produce some of the

answers. Step 3 decomposes the user query into queries on the local schema based on

the join groups. Because the answers from a local schema are combined with the

answers from other local schemas in the same join group, we need not only the data

asked for in the user query but also the data necessary to join the parts of the answers

from different local schemas together. We call the classes necessary for joining the

parts of answers, join object classes. The key of the join object class is used for

testing the equivalence when joining the subqueries.

When a user query is decomposed, part of the resulting subquery must include join

object classes. The particular join object class depends on the semantics of the

schema. We now consider 3 different cases:

Case 1: For a join group, if there are n paths in the QAT from different local schemas

with a common ancestor in the user query, then the least common ancestor in the user

query is a join object class.

Case 2: For a join group, if the paths in the QAT are from different local schemas,

and there is an object class that is the end of one path and the start of the other path,

then this intermediate object class is a join object class.

 66

Case 3: For a join group, if two attributes of the same relationship set in a user query

are from different local schemas, then all the object classes involved in this rela-

tionship set are join object classes.

Example 4:

Consider Example 3 and the join group {S1, S3}. S1 provides “/book/title”,

“/book/author” and S3 provides “/book/year”, “/book/author”. To answer the query

Q3, the subqueries from S1 and S3 need to be composed using the key of their least

common ancestor i.e. the key “isbn” of the join object class “book”.

We first consider the case where the local schemas are projections of the integrated

schema. The rewritten query for a local schema will effectively be a projection of the

user query with the join object class identifier included in the return part of the

rewritten query. The rewritten query can be derived as follows:

1. For every path in the for part, where part and return part of the user query,

retain the path if it exists in the local schema.

2. Add the path to any join object class identifiers that are relevant to this local

schema in the join group being considered.

When the local schemas are not projections of the integrated schema, the projection

query needs to be rewritten based on the local schema structure. We will first describe

 67

how to rewrite a user query for a local schema where the subquery on the local

schema returns only one object class or attribute. Then we describe how to rewrite a

user query for a local schema where the subquery on the local schema returns many

object classes or attributes.

4.2.3.1 The subquery that returns only one object class or attribute

We consider two cases. One is for queries involving one object class or attribute, the

other case is for queries involving more than one object class.

Case A1: Queries involving one object class or attribute

An object class in an integrated schema can originate from either an object class or an

attribute in a local schema, or it can be derived from object classes and attributes in

one local schema.

Case (A1-i) Integrated object class originates from a source object class.

When an integrated object class is mapped to an equivalent object class from a local

schema, but the path from the root to the equivalent object class is different, variable

bindings in the for clause or let clause are changed according to the mapping table

that specifies the path of the equivalent source object class.

 68

Example 5:

Consider the source schemas S1, S2, S3, S4 and the integrated schema S1234 in Fig.

4.1. The following query Q4 on the integrated schema S1234 retrieves all the

information on the object class “funds”, which is in path “/museum/sponsor/funds”:

Query Q4: for $f in /museum/sponsor/funds

 return <result> {$f} </result>

From the mapping table, we have S12345/museum/sponsor/funds: S3/museum/funds,

S5/museum/sponsor/funds. It shows that the query could be rewritten to the queries

on the local sources S3 and S5. The rewritten query on source S5 will be the same as

Q4, while the queries on S3 will be different. Below is the query on S3.

Case (A1-ii) Integrated object class originates from an attribute.

An object class can also originate from an attribute, because a concept can be

expressed as an attribute in one schema, and as an object class in another schema.

When rewriting such a query, variable bindings in the for clause or let clause are

changed according to the mapping table that specifies the path of the equivalent

attribute; the equivalent object class is created in the return clause with the attribute

as an attribute of this object class.

 69

Example 6:

The following query is on the integrated schema S12345 of Fig. 4.1. Query Q 5

retrieves the information of artists of the painting with pname “hero”.

Query Q5: for $p in /museum/painting

 where $p/pname=”hero”

 return <result> {$p/artist} </result>

This query will be rewritten for S2 and S4. Schema S2 in Fig. 4.1. models “artist” as

an attribute of the object class “painting”. Query Q5_S2 will compute the information

for artist on local schema S2:

Query Q5_S2: for $p in /museum/painting

 where $p/pname=”hero”

return <result> <artist> <aname> {$p/artist/text()} </aname>

</artist> </result>

Case A1-iii. Integrated object class or attribute originates from a set of object classes

(attributes) or vice versa.

When one object class (attribute) in the integrated schema is the combination of many

object classes (attributes) of another local schema or vice versa, XQuery or user-

defined functions can be used to substitute the path in the user query.

 70

Example 7:

Consider the schemas in Fig. 4.3. Query Q6 retrieves the publisher location of the

book with isbn “7-5053-4849-3/TP.2370” on the integrated schema S12345:

Query Q6: for $b in /book

 where $b/isbn=”7-5053-4849-3/TP.2370”

 return <result>{$b/publisher/location}</result>

Q6 will be rewritten on S5. The mapping in the mapping table shows that

S12345/book/publisher/location:string-join((S5/book/publisher/address/text(),

S5/book/publisher/postalcode/text()),“ ”). We assume that the attribute “location” is

expressed by the address followed by a space and the postal code. The query on S5 is

shown in Query Q6_S5. It combines the address and postal code by the XQuery

functions from the mapping table. The rewritten query on S5 will be:

Query Q6_S5: for $b in /book

 where $b/isbn=”7-5053-4849-3/TP.2370”

 return <result> <location> {string-join(($b/publiser/address/text(),

 $b/publisher/postalcode/text()),” ”)}</location> </result>

Case A2: Query path involves more than one object classes.

When the number of object classes in the query path is more than one, we need to

consider the structural relationship type between the object classes. There are two

 71

cases. (1) Object classes are swapped in the integrated schema and (2) siblings in a

local schema are mapped to ancestor and descendent in the integrated schema.

Case A2-i.When object classes in the integrated schema are swapped in the hierarchy

compared to the local schema, the path in the subquery needs to be rewritten based on

the path of the local schemas.

Example 8:

The following query on the integrated schema S12345 in Fig. 4.1 retrieves all the

“museum” which have the paintings by artist “David”.

Query Q7: for $m in /museum where $m/painting/artist/aname=”David”

 return<museum>{$m/mname/text()}</museum>

The join groups are {S1, S2} and {S1, S4}. In join group {S1, S4}, the join object

class is painting for S4. The projection subquery on S4 is:

Query Q7_S4’: for $p in /painting where $p/artist/aname=”David”

 return<painting>{$p/pname}</painting>

The path expression in the where clauses are changed to the corresponding object

class (attributes) by using /../. The rewritten query on S4 is:

 72

Query Q7_S4: for $p in/artist/painting where $p/../aname=”David”

 return <painting>{$p/pname}</painting>

This query needs to be joined with the subquery for S1 to get the final result for the

user.

Case A2-ii When two object classes have an ancestor-descendant relationship in the

integrated schema, but they are siblings in the local schema. The least common

ancestor of these object classes must be used as binding variables to connect them.

The related path in the where and return clause must be revised based on the structure

of the local schemas.

Example 9:

In Fig. 4.4, students work for projects, and students have their lab. The lab also has

coordinators. Consider the query Q8 on the integrated schema S123, which retrieves a

project lab coordinator where pno is “p01”.

Query Q8: for $p in /project where $p/@pno=”p01”

 return <result>{$p/student/lab/coordinator}</result>

The join groups are {S1, S3} and {S2, S3}. The return clause in Q8 shows that the

query path is from $p to lab. In order to rewrite the query for schema S1, the

 73

algorithm looks for the nearest ancestor node that is common to both project and lab.

Student is then bound to the variable in the for clause as follows:

Query Q8_S1: for $s in /student where $s/project/@pno=”p01”

 return <result>{$s/lab/@lno}</result>

This query needs to join with the subquery for S3 to get the results.

 S1 S2

 S3 S123

Fig. 4.4. S123 is the integrated schema of local schemas S1, S2, S3.

student

project lab

pno lno

sno
sl,2,1:n,1:nsp,2,1:n,1:n project

student

lab

pno

lno

sno

sp,2,1:n,1:n

sl,2,1:n,1:n

project

student

lab

pno

lno

sno

sp,2,1:n,1:n

sl,2,1:n,1:n

coordinator

name

lc,2,1:n,1:n

lab

coordinator

name

lno

lc,2,1:n,1:n

 74

4.2.3.2 The subquery that returns many object classes or attributes

[4] introduced an algorithm for automatic generation of XQuery view definitions for

ORA-SS Views, focusing on the view definitions for hierarchical structures of XML.

Due to space limitations we do not cover this case in this paper except to note that

their algorithm can be used to rewrite the query.

4.2.4 Step 4: Compose the subqueries for join group

When joining subqueries on local schemas in the same join group, the identifier of the

join object classes must be tested for equivalence.

We start by considering the basic case where the same object attributes are from

different local schemas. To compose subqueries from these local schemas in join

groups, the for, where, and return clause are combined together with the join

condition equivalence test inserted in the where clause.

We allow the return results to have missing information. The parent object will not be

removed from the return result, if it has a missing child. For each return object or

attribute, the join equivalence condition test related to this return object or attribute is

nested in the appropriate part of the query.

 75

Example 10:

Consider the schemas in Fig. 4. and query Q9 that retrieves year and title of the books

that were written by “Tom” in year “2000” and retrieves the publisher name if the

book’s publisher location is Singapore.

Query Q9: for $b in /book where $b/author=”Tom” and $b/year=”2000”

 return<result>{$b/year/text()} {$b/title/text()}{

 for $p in $b/publisher

 where contains ($b/publisher/location/text(),”Singapore”)

 return<publisher> {$b/publisher/name} </publisher> }

</result>

The join groups are {S1, S3, S5}, {S1, S4, S5}, {S2, S4, S5} and {S3, S5}. We show

the query example for join group {S1, S3, S5}. The user query is decomposed into

subqueries on the local schemas S1, S3, and S5. The join object class is “book” for

these local schemas. The subqueries on S1, S3 and S5 are shown below:

Query Q9_S1: for $b in /book

 where $b/author=”Tom”

 return <result> {$b/isbn/text()} {$b/title/text()} </result>

Query Q9_S3: for $b in /book

 where $b/author=”Tom” and $b/year=”2000”

 76

 return <result> {$b/isbn/text()} {$b/year/text()} </result>

Query Q9_S5: for $b in /book

 where contains ($b/publisher/address/text(),”Singapore”)

 return<result>{$b/isbn/text()}

 <publisher>{$b/publisher/name} </publisher></result>

The composition of the subqueries for local schemas S1, S3 and S5 is as follows:

for $b1 in doc(“S1.xml”)/book, $b3 in doc(“S3.xml”)/book

where $b1/author=”Tom” and $b3/author=”Tom” and $b3/year=”2000”

and $b1/isbn=$b3/isbn

return <result>{$b3/year/text()} {$b1/title/text()}

{for $b5 in doc(“S5.xml”)/book

where contains ($b5/publisher/address/text(),”Singapore”) and

$b5/isbn=$b1/isbn

return<publisher> {$b5/publisher/name}<publisher>}</result>

Note that, even though the join object class for S1, S3 and S5 is book, the equivalence

tests are on separate lines in the rewritten query. This is because we allow parent

information to be returned even when the information of a child object class is

missing.

 77

4.3 Analysis of Algorithm

In this section, we address the soundness and completeness of our algorithm.

Soundness:

Given a set of local XML schemas L1, L2, …Ln, and their global schema S. Let DL1,

DL2, …DLn be the data sources of L1, L2, …Ln respectively. For a user’s query Q

on the global schema S, a tuple t’ is retrieved via S, only if there exists some

corresponding tuples t, t∈DLi such that t satisfies the conditions specified in Q.

Completeness:

Given a set of local XML schemas L1, L2, …Ln, and their global schema S. Let DL1,

DL2, …DLn be the data sources of L1, L2, …Ln respectively. For a user’s query Q

on the global schema S, a tuple t’ is retrieved via S, if there exists some

corresponding tuple t, t∈DLi such that t satisfies the conditions specified in Q.

Our query rewriting algorithm is sound and complete.

Outline of Proof:

Let L1, L2, … Ln be a set of local XML schemas, and S be their global schema. A

user’s query Q is on the global schema S. Q is rewritten to a set of subqueries QS on

the set of local schemas L. L is the set of local schemas, which could contribute to the

 78

user query Q. Each query QSi in QS is a subquery on one corresponding local schema

Li. Li is a local schema in L. The set of queries in QS is composed to be a set of

rewritten query Q’ on the local schema L. Each query Q’i in Q’ is a query on a set of

local schema.

If we could prove that

(1) The rewritten queries Q’ refer to the set of local schemas L, which could

contribute to query Q.

(2) The predicates of the rewritten queries Q’ are equivalent to the predicates of the

user query Q.

Then the union of the tuples retrieved by Q’ on the local schemas are the same with

the tuples retrieved by Q on the global schema S. i.e. our query rewriting algorithm is

sound and complete.

Equivalence of predicates in Q and Q’ in (2) means the variable in predicates in Q

and Q’ refer to the same object classes, attributes, and relationship types. Operators in

predicates are the same in Q and Q’. The values in predicates are same in Q and Q’.

The first two steps of our algorithm guarantee (1), i.e., rewritten queries Q’ refer to

the set of local schemas L, which could contribute to query Q.

 79

In the first step of our query rewriting algorithm, the IDs of the local schemas, which

match some of the selection condition and the return path, will be inserted in the QAT.

So the schema IDs of L will be included in QAT.

In the second step of our algorithm, all the local schemas, which have IDs in QAT,

are considered (line 2~5 of GenerateJoinGroups). The algorithm GenerateJoinGroups

generates the join groups only if the local schemas have included all the information

of the columns in QAT (line 22 of GenerateJoinGroups) or it has included all the

information of the selection condition columns in QAT (line 28, 29 of

GenerateJoinGroups). Both of these two kinds of join group could answer query Q.

Hence the set of local schema inside the join groups is L.

The third and forth steps of our algorithm guarantee (2).

The third step of our algorithm is decomposing query Q to the set of subqueries QS

on local schemas L. Let QSi be a subquery on local schema Li. Li is a local schema in

L. The predicates in QSi are equivalent to a subset of predicates of Q. The subset

involves those object classes, attributes, and relationship types, which the local

schema Li has. We change the path to those equivalent object classes, attributes, and

relationship types base on the paths in QSi. The changes make the variables in

predicates refer to the same object classes, attributes, and relationship types. The

predicates in QSi is equivalent to a subset of predicates of Q

 80

The forth step composes the set of subqueries within each join group Gi into a

rewritten query Q’i. Q’i is a query in Q’. We have proved that local schemas in join

group contain all the object classes, attributes, and relationship types, which the

predicates of Q refer. So composing the subquery in a join group could generate the

predicates in Q’i, which is equivalent to the predicates in Q. When composing the

subqueries, we employed join object classes, which is reasonable for join and cover

all the possibility of join. There are three possible join in XML: (a) The two paths to

join at the same head, (b) the two paths join at the head of one path and tail of the

other path, and (c) the two paths join by the common path, which is for the object

classes involved in the equivalent relationship types. Our algorithm defines the join

object cases, and joins the subqueries for these three cases in step 3.

One limitation of the proposed solution is the complexity. For instance, the

complexity of the join group generation is O(n2), n is the number of the local schemas.

If the source descriptions (context) are available, the approach could be improved.

For instance, in the fly integration, if we know local source A is the flights within US,

and local source B is the flights within China, it will be efficient not to generate a join

group including A or B, when the user query retrieves the flight information in

Europe. This will also save the time for query rewriting on A and B.

4.4 Comparison with related work

Amman et al. in [1] propose a mediator architecture for querying and integrating

XML data sources. Their global schema is described as an ontology, which is

 81

expressed in a light weight conceptual model. Similar to our algorithm, their method

also finds join groups, where the local sources of the join groups can together

compute the results for the user query. One limitation of this work is that a query

cannot return nested structures.

Lakshmanan and Sadri in [24] propose an infrastructure for interoperability among

XML data sources. Mapping rules are created to map the items in local schemas to a

common vocabulary. They also address the query processing and optimization in the

system. For query processing, they differentiate between inter-source query and intra-

source query, which query across local schemas and within one local schema

respectively. Consistency conditions are used to optimize inter-source queries. One

limitation of this work is that when results from local schemas are joined, the join

variable is limited to the lowest common ancestor of nodes.

In [49], Yu and Popa introduce an algorithm for answering queries through a target

schema. The algorithm uses target constraints that are used to express data merging

rules. The mappings from the integrated schema and local schemas are tree to tree.

Generating such mappings is expensive, especially when the XML sources are

complicated.

The models that are utilized in the works [1, 24, 49] cannot specify that one

relationship type is binary or n-ary and hence, do not distinguish between attributes of

object classes and attributes of relationship sets from the local XML sources. None of

 82

their data model or mapping rules includes such semantic information which could

lead to the retrieval of wrong results.

Example 11:

Recall Example 1 where only S1 and S2 will be considered for the query Q1. Since

the works in [1, 24, 49] cannot distinguish between binary or n-ary relationship sets,

they will join the sources from S3 and S4 to get the result, which is not correct for the

user query. The example below highlights the problem for the attributes and n-ary

realtionship. For simplicity, schemas S3 and S4 are omitted here.

Suppose the data source for S1 is X1, and the data source for S2 is X2 as follows:

X1: X2:

<project jno=”j01”>

 <part pno=”p01”>

 <supplier sno=”s01”>

 <quantity> 100 </quantity>

 </supplier>

 </part>

</project>

<project jno=”j02”>

 <supplier sno=”s02”>

 <part pno=”p01”>

 <quantity> 200 </quantity>

 </part>

 </supplier>

</project>

Table 4.5. Data sources for S1 and S2 in Fig. 4.2.

The results of query Q1 retrieved by our algorithm and [1, 24, 49] are as follows:

 83

Results obtained by our proposed

algorithm

Result obtained by [1, 24, 49]

<result>

 <project jno=”j01”>

 <part pno=”p01”>

 <supplier sno=”s01”>

 <quantity> 100 </quantity>

 </supplier>

 </part>

 </project>

 <project jno=”j02”>

 <part pno=”p01”>

 <supplier sno=”s02”>

 <quantity> 200 </quantity>

 </supplier>

 </part>

 </project>

</result>

<result>

 <project jno=”j01”>

 <part pno=”p01”>

 <supplier sno=”s01”>

 <quantity> 100 </quantity>

 </supplier>

 <supplier sno=”s02”>

 <quantity> 200 </quantity>

 </supplier>

 </part>

 </project>

 <project jno=”j02”>

 <part pno=”p01”>

 <supplier sno=”s01”>

 <quantity> 100 </quantity>

 </supplier>

 <supplier sno=”s02”>

 <quantity> 200 </quantity>

 </supplier>

 </part>

 84

 </project>

</result>

Table 4.6. Results retrieved by our algorithm and [1, 8, 22]

We observe that the results returned by the query rewriting method in [1, 24, 49]

contain the project with jno “j01” has part “p01”, which is supplied by suppliers with

sno “s01” and “s02”. This violates the local data sources X1 and X2, where the

project with jno “j01” has part “p01” is only supplied by suppliers with sno “s01”.

This is because the method in [1, 24, 49] treats the relationship type between part and

supplier as the binary relationship type, instead of the intended ternary relationship

type involving project, part, and supplier. They treat the quantity as the attribute of

part in S2, so when they find the part with pno “p01” has the quantity “100” in X1,

and has quantity “200” in X2, they will combine them to make the final result. This

leads to the wrong answer returned.

In contrast, our algorithm takes the XML hierarchy structure into consideration and

retrieves the correct answers. To summarize, our algorithm differs from existing

works in the following ways:

1. We treat binary and n-ary relationship sets differently. Treating an n-ary

relationship as n-1 binary relationships gives wrong results.

 85

2. We treat attributes of object classes and attributes of relationship sets differently in

the QAT and when we compose the sub queries of the local sources.

3. Our algorithm takes the XML hierarchy structure into consideration when doing

the rewriting.

4.5 Summary

In this chapter, we have introduced a semantic approach to rewriting queries for

semistructured data integration. The ORA-SS model was used in the integration

system to capture the implicit semantics in the XML schemas. A user’s queries on the

integrated schema are rewritten to queries on the local sources. When XML

repositories are integrated there may be semantics that are not expressed explicitly in

the underlying data sources or the integrated schema. Without the necessary

semantics, it is possible to misinterpret the meaning of the data and combine the

results from different local schemas to give unexpected results. Given that we use

ORA-SS to describe the schemas of the local data sources and the integrated schemas,

we are able to distinguish between binary and n-ary relationship types and also able to

distinguish between attributes of object classes and attributes of relationship types,

and in turn treat these cases differently throughout the algorithm. Data models used in

related algorithms are unable represent these semantics and so the related algorithms

do not take these semantics into account.

 86

Chapter 5

Conclusion and Future Work

5.1 Research Summary

The research in this thesis has examined two important issues in XML integration,

namely, global schema generation and query rewriting. In global schema generation,

we employ the semantically rich ORASS data model to capture the implicit semantics

in an XML schema. The proposed integration algorithm adopts an n-nary integration

strategy that takes into account the data semantics, importance of a source, and how

the majority of the sources model their data when resolving structural conflicts such

as attribute/object class conflict and ancestor-descendant conflict. Further, redundant

object classes and transitive relationship types are removed to obtain a more concise

integrated schema.

After the global schema has been generated, the next issue is query rewriting. We

develop an algorithm for rewriting queries that take the semantic relationship between

the source schemas and the integrated schema into account. We are able to distinguish

between binary and n-ary relationship types and also able to distinguish between

attributes of object classes and attributes of relationship types, and in turn treat these

cases differently throughout the algorithm. This guarantees that the rewritten queries

give the expected results, even where the integrated view is quite complex.

 87

5.2 Future Work

When the integrated schema is generated, there is still a problem for update. The

other ongoing work is study on how to optimize the queries in the integration system.

It needs more consideration on the difference of the following two ways. One is

merging the subqueries of the local schemas and computing the results of the merged

query on the local sources. The other way is computing the partial results from the

subqueries and merging them to get the answer.

Our approaches are based on a semantic rich model ORA-SS model. This model

needs the user to input some necessary information. If there isn’t such information,

how to do the integration work is another important topic.

 88

Bibliography

1. B.Amann, C.Beeri, I.Fundulaki, M.Scholl. Querying XML sources using an

Ontology-based Mediator, CoopIS, 2002.

2. S.Castano, V. Antonellis, S. C. Vimercati, M. Melchiori. An XML-Based

Framework for Information Integration over the Web. IIWAS, 2000.

3. Y.B. Chen, T.W. Ling, M.L. Lee. Designing Valid XML Views. ER, 2002.

4. Y. B. Chen, T. W. Ling, M. L. Lee. Automatic Generation of XQuery View

Definitions from ORA-SS Views. ER 2003.

5. Y.Y.Chen, T.W.Ling, M.L.Lee. Automatic Generation of SQLX View

Definitions from ORA-SS Views, DASFAA, 2004.

6. S.Cluet, P.Veltri, D. Vodislav. Views in a Large Scale XML Repository. VLDB,

2001.

7. P. Buneman, S. Davidson, W. Fan, C. Hara, W.C. Tan. Keys for XML. WWW,

2001.

8. A. Doan, P. Domingos, A. Levy. Learning Source Descriptions for Data

Integration. WebDB, 2000.

9. G. Dobbie, X. Wu, T.W. Ling, M.L. Lee. ORA-SS: An Object-Relationship-

Attribute Model for Semi-structured Data. Technical Report TR21/00, National

University of Singapore, 2000.

10. http://www.cogsci.princeton.edu/~wn

11. http://www.sqlx.org

 89

12. http://www.w3.org/TR/xpath

13. http://www.w3.org/XML/

14. http://www.w3.org/XML/Schema

15. http://www.w3.org/XML/Query

16. Alon Y. Halevy. Theory of Answering Queries Using Views. ACM SIGMOD

Record Volume 29 , Issue 4 (December 2000) Pages: 40 – 47.

17. L. Haas, D. Kossmann, E. Wimmers, J. Yang. Optimizing queries across diverse

data sources. VLDB 1997.

18. E. Jeong, C.-N. Hsu. Induction of Integrated View for XML Data with

Heterogeneous DTDs. ACM CIKM, 2001.

19. Alon Y. Levy. Logic-Based Techniques in Data Integration. Logic based artificial

intelligence, 1999.

20. T.W. Ling, M.L. Lee. Relational to Entity-Relationship Schema Translation

Using Semantic and Inclusion Dependencies, in Journal of Integrated Computer-

Aided Engineering, John-Wiley Publishers, Vol 2, No 2, pages 125-145, 1995.

21. M.L. Lee, T.W. Ling. Resolving Structural Conflicts in the Integration of Entity-

Relationship Schemas. OOER, 1995.

22. M.L. Lee, T.W. Ling. Resolving Constraint Conflicts in the Integration of Entity-

Relationship Schemas. ER, 1997.

23. M.L. Lee, T.W. Ling, W.L. Low. Designing Functional Dependencies for XML,

EDBT, 2002.

24. L.V.S.Lakshmanan, F.Sadri. Interoperability on XML Data. ICSW, 2003.

 90

25. M.L. Lee, L.H. Yang, W. Hsu, X. Yang. XClust: Clustering XML Schemas for

Effective Integration, ACM CIKM, 2002.

26. A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava. Answering Queries using

Views, ACM PODS, 1995.

27. D. Maier. Theory of Relational Databases. Computer Science Press, 1983.

28. J. Madhavan, P.A. Bernstein, E. Rahm. Generic Schema Matching with Cupid.

VLDB, 2001.

29. R. Mello, S. Castano, C.A. Heuser. A Method for the Unification of XML.

Information and Software Technology Journal, 2002.

30. Oliver M.Duschka, Michael R. Genesereth. Answering Recursive Queries Using

Views. PODS 1997.

31. Manolescu, D. Florescu, D. Kossman. Answering xml queries over heterogeneous

data sources. VLDB 2001.

32. Morishima, H.Kitagawa, A.Matsumoto. A Machine Learning Approach to Rapid

Development of XML Mapping Queries, ICDE, 2004.

33. Y.Y.Mo, T.W.Ling. Storing and Maintaining Semistructured Data Efficiently in

an Object-Relational Database, WISE, 2002.

34. P. Mitra, G. Wiederhold and J. Jannink. Semi-automatic Integration of

Knowledge Sources. Fusion, 1999.

35. P. Mitra, G. Wiederhold, M. Kersten. A Graph-Oriented Model for Articulation of

Ontology Interdependencies. EDBT 2000.

 91

36. H.Garcia-Molina, Y.Papakonstantinou, D.Quass, A. Rajaraman, Y. Sagiv, J.

Ullman, and J. Widom. The TSIMMIS project: Integration of heterogeneous

information sources. Journal of Intelligent Information Systems, March 1997.

37. F. Naumann, U. Leser, J.C. Freytag. Quality-driven Integration of Heterogeneous

Information Systems. VLDB, 1999.

38. K. Passi, E. Chaudhry. A Global-to-Local Rewriting Querying Mechanism using

Semantic Mapping for XML Schema Integration. ODBASE 2003.

39. R. Pottinger, A. Levy. A Scalable Algorithm for Answering Queries Using Views.

VLDB 2000.

40. K. Passi, L. Lane, S. Madria, Bipin C. Sakamuri, M. Mohania, S. Bhowmick. A

Model for XML Schema Integration. EC-Web 2002.

41. E. Rahm, P. Bernstein. On Matching Schemas Automatically. MSR Tech. Report

MSR-TR-2001-17, 2001.

42. C. Reynaud, J.-P. Sirot, D. Vodislav. Semantic Integration of XML

Heterogeneous Data Sources. IDEAS, 2001.

43. Michael Stonebraker. Implementation of integrity constraints and views by query

modification. SIGMOD, 1975.

44. V.Tannen, V.Christophides, G.Karvounarakis, I.Koffina, G.Kokkinidis, A.

Magkanaraki, D.Plexousakis, G.Serfiotis. The ICS-FORTH SWIM: A Powerful

Semantic Web Integration Middleware, First International Workshop on Semantic

Web and Databases, Co-located with VLDB 2003.

45. Xyleme. A dynamic warehouse for XML Data of the Web. IEEE Data

Engineering Bulletin 24(2):40-47, 2001.

 92

46. L.L. Yan, T.W. Ling. Translating Relational Schema with Constraints into OODB

Schema. IFIP DS-5 Semantics of Interoperable Database Systems. 1992.

47. X. Yang, M. L. Lee, T. W. Ling: Resolving Structural Conflicts in the Integration

of XML Schemas: A Semantic Approach. ER 2003: 520-533.

48. H.Z. Yang, P.A. Larson. Query Transformation for PSJ-queries. VLDB 1987.

49. C.Yu, L.Popa. Constraint-Based XML Query Rewriting for Data Integration.

SIGMOD 2004.

50. Zhuo. Chen. Extracting Schema from XML Documents. Honours Year Project

Report. 2002.

