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Summary 

While the Internet has facilitated access to information sources, the task of scalable 

integration of these heterogeneous data sources remains a challenge. The adoption of 

the eXtensible Markup Language (XML) as the standard for data representation and 

exchange has led to an increasing number of XML data sources, both native and non-

native. This thesis examines two issues in XML integration, namely, global schema 

generation and query rewriting. 

 

The first issue is global schema generation. Recent integration work has mainly 

focused on developing matching techniques to find equivalent elements and attributes 

among the different XML sources. We introduce a semantic approach to resolve 

structural conflicts in the integration of XML schemas. We employ a data model 

called the ORA-SS (Object-Relationship-Attribute Model for Semi-Structured Data) 

to capture the implicit semantics in an XML schema, and present a comprehensive 

algorithm to integrate XML schemas. Compared with existing methods, our algorithm 

adopts an n-nary integration strategy that takes into account the data semantics, 

importance of a source, and how the majority of the sources model their data when 

resolving structural conflicts such as attribute/object class conflict and ancestor-

descendant conflict. Further, redundant object classes and transitive relationship types 

are removed to obtain a more concise integrated schema. 

 

    The second issue is query rewriting. Queries on the integrated schema need to be 

rewritten to query the underlying source repositories. We develop an algorithm for 



 v

rewriting queries that take the semantic relationship between the source schemas and 

the integrated schema into account. Our approach is based on the semantically rich 

ORA-SS model. This guarantees that the rewritten queries give the expected results, 

even where the integrated view is quite complex. 
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Chapter 1   

Introduction 

In this chapter we present the background of the thesis, followed by the problem 

statement and motivation. We will highlight the research contribution. Finally, we 

present the overview of the thesis. 

1.1 Background 

Advances in the Internet infrastructure have facilitated access to large amounts of 

information sources. Many of these sources are heterogeneous, and an integrated 

access to these sources remains the focus of ongoing research. Much work has been 

done on the integration of relational databases, ranging from semantic enrichment 

using a semantic data model such as the Entity-Relationship model or the object-

oriented data model, translation algorithms, and conflict resolution [20][21][22][46]. 

Integration systems such as [8][18][29][34][37][45] have also been developed. 

 

The adoption of the eXtensible Markup Language (XML) [13] as the standard for 

data representation and exchange has led to an increasing number of XML data 

sources, both native and non-native. Native XML data sources are essentially XML 

files with an associated XML schema, while non-native XML sources such as the 

relational database publish their data in XML format together with the XML schema.  
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In data integration, many systems construct a integrated or mediated schema from 

numerous heterogeneous data sources [36][17][45]. Given the semistructured nature 

of XML data that can be modeled as a tree or a graph, recent research in integrating 

XML data sources has mainly concentrated on schema matching [8][25][45]. Works 

such as XClust [25], CUPID [28], SKAT [34][35], and Xyleme [45] have focused on 

the matching problem to find equivalent elements among the different sources. A 

taxonomy and a survey of matching approaches are given in [41]. Having obtained a 

set of equivalent elements, the next step is to obtain an integrated schema. The 

authors in [18] use schema learning to generate a set of tree grammar rules from the 

DTDs in a class and optimizes the rules to transforms them into an integrated view. 

LSD [8] employs instance information and machine learning techniques in their 

integration work. We observe that all these works do not take into consideration the 

importance of the individual data sources, and how the majority of the local schemas 

model their data. 

 

In an integration system, there are mainly two applications. One is the mediator 

systems. The other is warehouse frameworks. In the mediator system, the data are 

dynamic, such as the data in World-Wide Web. If materialize the global view 

(integrated schema), It will be very costly for maintaining it. So normally, the system 

will not materialize the global view (integrated schema). The global view is virtual. 

Users will typically issue a query on the global schema, and the system will rewrite 

the query to the local sources. In the warehouse framework, when the data is more 
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static, it is more efficient to materialize the global view. So the user query can 

directly issue on the materialized integrated schema. 

 

In the mediator system, the user query is rewritten to the query on the local sources. 

Each local source has a different coverage, also known as source capability, which 

need not necessarily contain all the information needed to answer a user query. A 

partial result may be found in one local source and a related partial result may be 

found in a different local source. The partial results would then need to be combined 

to produce the result for the user query. 

 

Query rewriting is a fundamental task in query optimization and data integration. 

Rewriting algorithms have been developed for answering queries using views in 

relational databases and in mediators [26, etc]. In answering queries using 

materialized views, the objective is to find efficient methods to answer a query using 

a set of materialized views over the database, instead of accessing the database itself 

[38][39][43][30].  

 

Although the query rewriting problem in data integration can be reduced to the 

problem of answering queries using materialized views, scalability becomes an issue 

since the number of the local sources in data integration systems is typically very 

large compared with the number of materialized views for one database system [38]. 
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1.2 Problem Statement & Motivation 

In this thesis, we propose the algorithms for global schema generation and query 

rewriting in XML integration. 

 

The first issue is global schema generation. The task of global schema generation in 

XML integration is non-trivial for the following reasons: 

1. The XML Schema or DTD is lacking in semantics. While this has prompted 

proposals to augment the schema with information such as keys [7], and 

functional dependencies [23], it remains unclear whether the relationship 

between the element objects is binary or n-nary, and whether an attribute 

belongs to an element object class (e.g. title of an element book) or to the 

relationship type between elements (e.g. quantity of books supplied by a 

supplier to a bookshop).  

 

2. The source schemas are heterogeneous, containing various conflicts involving 

naming conflict, cardinality conflict, and structural conflict such as 

attribute/object class conflict and ancestor-descendant conflict. There is no 

unique global schema, but it is subject to the needs of applications and the 

perspective of the users. 

 

To address these issues, we develop a semantic approach to the integration of XML 

schemas. We employ the semantically rich model ORA-SS [9] for semistructured 

data to capture the semantics of the underlying XML data.  
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The second issue is query rewriting. When XML repositories are involved in data 

integration, query rewriting algorithms will need to take into consideration the 

hierarchical structures of XML schemas. This gives rise to structural conflicts [47] 

which need to be resolved during the rewriting process. XML schemas such as DTD 

and XML Schema lack the semantic information necessary for schema integration 

and query rewriting. The authors of [47] examine how the ORA-SS model can help to 

resolve structural conflicts when integrating XML schemas. 

 

Our query rewriting approach utilizes the ORA-SS model which provides the 

necessary semantic information for the query rewriting process. In contrast to the 

work in [31] which describes how relational databases can be integrated into an XML 

global schema, we assume that the local sources are XML repositories. XML schemas 

are first transformed to ORA-SS schema with enriched semantics [4]. If the local 

schemas are not available, Chen in [50] proposed an approach to extract ORA-SS 

schema from XML document. Some user input is necessary. An ORA-SS integrated 

schema can be obtained using the algorithm in [47], which automatically generates 

integrated schemas, when given a set of local schemas. Our approach is similar to 

other global-as-view approaches. However rather than incorporating the integrated 

view definition in the unfolding process, we use a mapping table, created during the 

process of integration, in the rewriting of queries. Our algorithm finds the groups of 

local schemas that together can answer the query, decomposes the user query to 
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subqueries for the local schemas in the groups, and recomposes the subqueries to give 

the expected results. 

 

1.3 Research Contributions 

For global schema generation, an n-nary integration strategy that provides a global 

view of the source schemas is adopted. The integrated schema obtained takes into 

consideration the underlying data semantics such as different relationship types 

among equivalent object classes, the importance of the source schemas, and how the 

majority of the sources schemas modeled their data. Structural conflicts such as 

attribute-object class conflict and ancestor-descendant conflict are resolved in the 

process. Finally, redundant object classes and transitive relationship types are 

identified and removed to obtain a more concise integrated schema. 

 

Our query rewriting algorithm utilizes a semantically rich model for semistructured 

data in order to rewrite queries that yield correct answers. When XML repositories 

are involved in data integration there may be semantics that are not expressed 

explicitly in the underlying data sources or the integrated schema. Without the 

necessary semantics, it is possible to misinterpret the meaning of the data and 

combine the results from different local schemas, leading to unexpected results. In 

this thesis, we use the ORA-SS model (Object-Relationship-Attribute model for 

SemiStructured data) [9] to describe the schemas of the local data sources and the 

integrated schemas. This allows us to distinguish between binary and n-ary 

relationship types and to distinguish between attributes of object classes and attributes 
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of relationship types, and handle these cases properly in the algorithm. Data models 

used in existing query rewriting algorithms [1][24][49] are unable represent these 

semantics and hence, these algorithms do not consider these cases. 

 

1.4 Overview of the thesis 

The rest of the thesis is organized as follows. Chapter 2 gives the preliminaries such 

as the basic XML schema languages: DTD, XML Schema, and ORA-SS model, and 

the XML query languages. Chapter 3 presents our proposed semantic approach for 

the generation of a global schema for XML data sources.  Chapter 4 describes our 

proposed semantic approach to query rewriting for the integration of XML data. 

Chapter 5 concludes the thesis with future research directions. 
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Chapter 2  

Preliminaries 

In this chapter, we present an overview of the current XML schema models and XML 

query languages.  

 

2.1 XML Schema model 

XML is a self-describing language. Yet it still needs schema languages to describe the 

structure and typing information. In this section, we examine the various XML 

schema languages. Sections 2.1.1 and 2.1.2 describe the widely used Document Type 

Definition (DTD) and XML Schema respectively. We will review the Object-

Relationship-Attribute model for Semi-Structured data (ORA-SS model) in Section 

2.1.3, which is utilized in our proposed algorithms. The schemas for XML are not 

mandatory, yet they could keep the XML document consistent and they are important 

for data integration. The following XML document is used as a running example. 
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<root> 
<project jno=”j01”> 
    <part pno=”p01”> 
        <supplier sno=”s01”> 
             <quantity> 100 </quantity> 
        </supplier> 
    </part> 
    <part pno=”p03”> 
        <supplier sno=”s01”> 
            <quantity> 200 </quantity> 
        </supplier> 
        <supplier sno=”s02”> 
            <quantity> 300 </quantity> 
        </supplier> 
    </part> 
    <funds uno=”u01”></funds> 
    <projectmanager mno=”m01”> 
        <name> Jack </name> 
    </projectmanager> 
</project> 

</root> 
 

2.1.1 XML DTD 

DTD [14] is an original schema language included in XML 1.0 specification. A DTD 

can be declared inline in the XML document, or as an external reference. XML DTD 

defines the structure of XML documents, and consists of element, and attribute 

declaration.  

 

DTD Element  

DTD element declarations define the element of XML document, which include the 

name of element and content of the element. 

 

The element content may include EMPTY, ANY, #PCDATA, and subelement with 

group and participation constraint. EMPTY means no subelement or text are allowed 

in this element. ANY means any content is allowed for this element. #PCDATA 

declares the text as the content of the element.  
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For the subelements included in the element declaration, they have their own 

structures. There are three basic structures. They are sequence, choice, and group. 

Sequence is specified by the ordered subelements, and each subelement is separate by 

“,”. They are sequence in XML document, and the subelement will be in the same 

order with the sequence declared in the DTD. The choice for the subelement structure 

is that one of the set of subelements will be included in the XML document. This is 

specified by the “ | ” between each subelements. The aim for group structure is nested. 

This makes it possible for combination of the sequence and choice. A simple example 

is ((child1|child2), child3). It indicates that child1 or child2 will be included in the 

XML document followed by child3.  

 

Element declaration can define the occurrence constraint for the subelements. There 

are four types. The basic one is empty specification. This indicates that the 

subelement appears once in the XML document. “?” after the subelement indicates 

that zero or one instance are required. “+” means one or more instances are required 

in the XML document. “*” indicates zero or more instances are required. 

 

DTD Attribute 

XML attributes provide some restrictions on the values, and also have enumerated 

value list, default values, or fixed values. 
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For attribute types, we examine 4 widely used attribute types, which is CDATA, ID, 

IDREF, and IDREFS. CDATA indicates string character data for attributes. ID 

indicates that the value of the attribute is unique in the document. IDREF defines an 

attribute that have a value, which match another attribute ID value. It is a reference to 

another attribute ID value. IDREFS defines an attribute that have a value, which 

match multiple attribute ID values. These multiple values are separated by white 

space. 

 

DTD attribute can have default value. It can have three default types. They are 

#IMPLIED, #REQUIRED, and #FIXED. #IMPLIED specifies that an attribute is 

optional. #REQUIRED indicates that an attribute must contain some value in each 

XML document. #FIXED indicates that the attribute value set in the attribute 

declaration cannot be changed in the XML document. 

 

The following DTD is for the XML document above. 

<!ELEMENT project (part+, funds+, proejctmanager+)> 
<!ATTLIST project jno ID #REQUIRED> 
<!ELEMENT part (supplier+)> 
<!ATTLIST part pno ID #REQUIRED> 
<!ELEMENT supplier (quantity)> 
<!ATTLIST supplier sno ID #REQUIRED> 
<!ELEMENT quantity (#PCDATA)> 
<!ELEMENT funds EMPTY> 
<!ATTLIST funds uno #REQUIRED> 
<!ELEMENT projectmanager (name+)> 
<!ATTLIST projectmanager mno ID #REQUIRED> 
<!ELEMENT name (#PCDATA)> 
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2.1.2 XML Schema 

XML Schema [14] became an official W3C recommendation in May 2001. It is a 

schema language to describe the structure of XML document.  

 

There are two types for XML Schema element. They are simple type and complex 

type. Element that only contains text is simple type. While that containing subelement 

or contains attributes is complex type. The attribute only contains text, so it is 

considered as the simple type. We will present the two types in the below sections. 

 

Simple type: 

XML Schema gives more constraints on value types for XML document. There are 

some simple types can be specified, like date, integer, Boolean, string, and so on. It is 

also possible to build custom simple types to control how the element content should 

look like. The occurrence constraint is more specific than DTD, e.g. they could define 

their minimal and maximal occurrence by minOccurs and maxOccurs. The syntax of 

simple type element is as below: 

 

<xsd:element name=”label” type= “simpletype”/> 

 

The label is the name for element. The simpletype could be xsd:string, if the content 

is a string of characters; or xsd:date, xsd:time, xsd:decimal, … 
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Simple type element allows the user to define their custom types. The custom types 

are declared by restriction on the existed simple types, like the range of the element 

value. 

 

Complex type: 

If we say simple type element specifies the contents for an element, we could say that 

the complex type is for the structure of element. Below is the syntax for a complex 

type: 

 

<xsd:complexType name= “label”> 

… 

</xsd:complexType> 

The label defines the complex type. Inside the definition, it can declare a sequence, 

choice or group, in order to specify which subelement the element contains. 

 

<xsd:attribute name= “label” type= “valuetype”/> 

The label is for the attribute name. Valuetype is for the simple types. It also allows 

restriction like “required”, “must”, and “prohibited” and so on. 

 

Below is the XML Schema for the XML document. 
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<xsd:complexType   name=”supplierType”> 
   <xsd:sequence> 
      <xsd:element   name=”quantity”   type=”xsd:string”             
                     minOccurs=”1”  maxOccurs=”1”/> 
   </xsd:sequence> 
   <xsd:attribute    name=”sno”   type=”xsd:string”/> 
</xsd:complexType> 
 
<xsd:complexType   name=”partType”> 
   <xsd:sequence> 
      <xsd:element   name=”supplier”   type=”supplierType” minOccurs=”1”/> 
   </xsd:sequence> 
   <xsd:attribute   name=”pno”      type=”xsd:string”/> 
</xsd:complexType> 
… 
<xsd:element    name=”project”> 
   <xsd:complexType> 
      <xsd:sequence> 
         <xsd:element   name=”part”  type=”partType” minOccurs=”1”/> 
         <xsd:element   name=”funds”  type=”fundsType” minOccurs=”1”/> 
         <xsd:element   name=”projectmanager”  type=”projectmanagerType” minOccurs=”1”/> 
      </xsd:sequence> 
      <xsd:attribute   name=”jno”  type=”xsd:string”/> 
      <xsd:key name “project”> 
         <xsd:selector xpath=”.//part”/> 
          <xsd:field xpath=”@pno”/> 
       </xsd:key> 
… 
   </xsd:compexType> 
</xsd:element> 
 

XML Schema is in XML format, which make it possible to be parsed by XML parser. 

XML Schema includes much richer value types compared with DTD. It is both for 

attribute and element. XML Schema supports namespace.  

 

2.1.3 ORA-SS Data model 

The XML Schema or DTD is lacking in semantics. For example, in our running 

example, they can not specify that quantity is determined by object cases “project”, 

“part”, and “supplier”, rather than only “supplier”. While this has prompted proposals 

to augment the schema with information such as keys [7], and functional 
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dependencies [23], it remains unclear whether the relationship between the element 

objects is binary or n-nary, and whether an attribute belongs to an element object 

class (e.g. title of an element book) or to the relationship type between elements (e.g. 

quantity of books supplied by a supplier to a bookshop).  

 

The ORA-SS model (Object-Relationship-Attribute model for Semi-Structured data) 

is a semantically rich data model that has been designed for semi-structured data [9]. 

The rich semantics of ORA-SS allows us to capture more of the real world semantics, 

and use them for integration.  

 

The ORA-SS model distinguishes between objects, relationship and attributes. The 

main contribution is relationship type in XML is expressed explicitly. The degree of 

the relationship type expresses the actual object classes involved in the relationship 

type. The attributes are classified by the attributes of object class or relationship type. 

We present an overview of ORA-SS model in this section. 

 

ORA-SS model have four diagrams: ORA-SS schema diagram, ORA-SS instance 

diagram, functional dependency diagram and ORA-SS inheritance diagram. Below 

are the constraints in ORA-SS model. 

“ 

• object 

_ attributes of objects 

_ ordering on objects 
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• relationship 

_ attributes of relationships 

_ degree of n_ary relationships 

_ participation of objects in relationships 

_ disjunctive relationships 

_ recursive relationships 

_ symmetric relationships 

• attribute 

_ key attribute 

_ cardinality of attributes 

_ composite attributes 

_ disjunctive attributes 

_ attributes with unknown structure 

_ ordering on attributes 

_ fixed and default values of attributes 

• Semi-structured data instance 

• Functional dependencies and other constraints 

• Inheritance hierarchy 

” 

 

We employ the ORA-SS schema diagram in our integration system. Object class is 

like an entity in an ER diagram, a class in an object-oriented diagram or an element in 

the semi-structured data model. An object class is presented as a labeled rectangle. 
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The attributes are presented as labeled circle joined to their object by an edge. Keys 

are filled circle. Each relationship type in ORA-SS model has degree and 

participation constraints. The relationship is in the form as name, n, p, c. name is the 

relationship type label, and n is the degree. p is the participation constraint on the 

parent, while c is the participation constraint for the child. A relationship may have 

attribute. The following example presents the details. 

 

Example: 

 

The object classes such as “project” and “part” in Fig. 2.1 are represented by labeled 

rectangle. The relationship types between the object classes are denoted by name, n, p, 

c. Here “jp” and “jps” are relationship types. The participation constraints are defined 

using the min:max notation. The labeled circles denote attributes, and the filled 

circles denote keys. Attributes are properties of object class or the relationship type. 

For example, inFig. 2.1 “jno” is the attribute of object class “project”, while 

“quantity” is the attribute of relationship type “jps”. The degree of relationship type 

“jps” is 3, which is a ternary relationship type involving object classes “project”, 

“part” and “supplier”. The binary relationship declaration can be omitted if it will not 

lead to conflicts. For details on ORA-SS, please refer to [9]. 

 

 

 

 



 18

 

 

 

 

 

 

 

 

 

Fig. 2.1 An example of ORA-SS schema diagram 

2.2 XML Query Language 

There are two main query languages for XML, namely XPath [12] and XQuery [15]. 

XQuery supports more operations and functions and uses XPath as a “leaf 

expression”. We will use XQuery as the query language in our query rewriting 

algorithm for XML integration. In this section, we present the main expressions of 

XQuery.  

 

2.2.1 XQuery 

XQuery often retrieves information from XML data and restructures it to create the 

results. FLWOR (for-let-where-order by-return) is the main expressions of XQuery.  

 

part

supplier
pno

sno quantity

jps,3,1:n,1:n

jps

project

jno
jp,2,1:n,1:n

funds

uno

project manager

namemno

jpm,2,1:n,1:n

jf,2,1:n,1:n
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for clause: Associated one or more variables to expressions, creating a tuple stream in 

which each tuple binds a given variable to one of the items to which its associated 

expression evaluates. When a for clause contains multiple variables, each with an 

associated expression whose value is the binding sequence for that variable, the for 

clause iterates each variable over its binding sequence. The resulting tuple stream 

contains one tuple for each combination of values in the respective binding sequences. 

 

let clause: A let clause may also contain one or more variables, each with an 

associated expression. Unlike a for clause, however, a let clause binds each variable 

to the result of its associated expression, without iteration. The variable bindings 

generated by let clauses are added to the binding tuples generated by the for clauses. 

If there are no for clauses, the let clauses generate one tuple containing all the 

variable bindings. The difference from for clause is that let clause bind variables to 

the entire result of an expression. 

 

where clause: It is for condition constraints. Only the tuples satisfied the condition 

constraints in where clause is retained. 

 

order by clause: Sort the tuples. 

 

return clause: The return clause of a FLWOR expression is evaluated once for each 

tuple in the tuple stream, to form the result of the FLWOR expression. 
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A FLWOR expression starts with one or more for or let clause in any order, followed 

by an optional where clause, an optional order by clause, and a required return clause. 

Below is an XQuery, which retrievs the project manager in charge of project “p02”. 

 

for $p in /project 

where $p/@pno=”p02” 

return <result> $p/projectmanager</result>  
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Chapter 3  

A Semantic Approach for Integration of 

XML Schemas 

We develop a semantic approach to the integration of XML schemas. We employ the 

semantically rich model ORA-SS [9] for semistructured data to capture the semantics 

of the underlying XML data. An n-nary integration strategy that provides a global 

view of the source schemas is adopted. The integrated schema obtained takes into 

consideration underlying data semantics such as different relationship types among 

equivalent object classes, the importance of the source schemas, and how the majority 

of the sources schemas modeled their data. Structural conflicts such as attribute-

object class conflict and ancestor-descendant conflict are resolved in the process. 

Finally, redundant object classes and transitive relationship types are identified and 

removed to obtain a more concise integrated schema. 

 

In the integration of XML schemas, some of the following conflicts must be 

addressed: 

A) Name conflicts. Different sources may use different names to express the 

same object in the real word.  

B) Participation conflicts. Different sources may define different participation for 

the same relationship.  
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C) Structural conflicts. Different sources may use different hierarchy structure to 

model the same object and relationship in the real word. For instance, an 

element A can be the ancestor of another element B in one source, while in 

another source, the same element A can be a descendant element of B. 

 

The rest of the chapter is organized as follows. Section 3.1 presents some background 

materials. Section 3.2 gives a motivating example and highlights the various features 

that we consider in our integration strategy. Section 3.3 describes the details of the 

algorithm to integrate XML schemas. Section Error! Reference source not found. 

presents the theoretical analysis. Section 3.4 discusses related work, and we conclude 

in Section 3.5. 

 

3.1 Preliminaries and Assumptions 

In this section, we first present the overview of the problem statement, followed by 

the input and output of the algorithm. Some assumptions are described at the end, 

which include the assign equivalent label name and global key assumptions. 

 

This chapter mainly solves the generating integrated schema problem. From local 

ORA-SS schemas, the algorithm generating a correct, complete integrated schema, 

which is expressed by ORA-SS model. For meaningful integration to occur, we 

assume that the various sources model similar domains. 
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The input to the proposed integration algorithm is a set of ORA-SS schemas, which 

has been generated from XML schemas. Details of the transformation of XML 

schema to the ORA-SS model are given in [3]. Inputs from the users may be solicited 

to enrich the ORA-SS schema with the necessary semantics. We do not deal with 

recursive relationship type in our approach. This is because the recursive relationship 

type will affect the algorithm to detect the structure conflicts. The details will be 

addressed in section 3.3.2. 

 

The output of the algorithm is an integrated schema, also modeled in ORA-SS. Since 

queries on the integrated schema will be subsequently mapped to equivalent queries 

on the data sources, the integrated schema should contain all the information modeled 

in the original schemas. Further, the integrated schema should be as simple and 

concise as possible to facilitate users’ understanding. 

 

For assigning equivalent name label, we assume that object classes with the same 

label are considered to be semantically equivalent, that is, they refer to the same 

object class in the real world. Similarly, attributes of the same object class (or 

relationship type) with the same label are also semantically equivalent, that is, they 

refer to the same property of an object class (or relationship types) in the real world. 

The object classes (or relationship types) in the different original schemas that refer to 

the same real world object (or relationship) may have different names. We assume 

that the renaming step have been done before the integration process. Note that there 
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may also be different relationship types between the same object classes. In such 

cases, we assume they will be assigned different labels. 

 

Global key and local key conflict arises in integration of XML data. When we 

integrate XML sources, the keys of one source might only be local keys of the whole 

sources. If such keys do not change to global keys, these local keys might lead to 

errors.  

 

For example, the keys of student are both student number in two sources. It seems 

easy to integrate them. But in fact the two sources are from two universities, and the 

student numbers are only keys within the university.  

 

In such cases, the change from local keys to global keys is necessary. [7] does 

research on XML keys. We assume the keys input to our algorithm are global keys.  

 

3.2 Motivating Example 

In this section, we illustrate some of the unique features of the integration strategy we 

propose. Consider the ORA-SS schema diagrams for four XML sources in Fig. 3.1. 

The swi under each schema indicates the source weight, i.e., the importance of a 

source. This is determined by users or computed based on some statistic information.  
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(a) Schema S1, sw1=1 

 

 

 

 

 

 

(b) Schema S2, sw2=1 

 

 

 

 

 

 

 

(c) Schema S3, sw3=7 
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(d) Schema S4, sw4=1                   

Fig. 3.1. ORA-SS Schema Diagrams for four XML sources. 

 

A.  Resolve attribute-object class conflict. 

This occurs when a concept has been modeled as an attribute in one schema, and as 

an object class in another schema. For example, the attribute “project manager” in 

schema S1 is semantically equivalent to the object class “project manager” in schema 

S2 of Fig. 3.1. This conflict can be easily resolved by mapping the attribute to an 

object class (see Fig. 3.2). 

 

 

 

 

Schema S1’: Attribute “project manager” in schema S1 of Fig. 3.1 has been 

transformed into an object class “project manager” in S1’. 

Fig. 3.2. Resolve attribute-object class conflict 
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B.  Resolve generalizations and specializations. 

A generalization exists when an object class in one schema is the union of several 

object classes in another schema. Consider again Fig. 3.1, the object class “funds” in 

schema S4 is a generalization of the object classes “local funds” and “foreign funds” 

in schema S1. The integrated schema will include the generalization hierarchy as 

shown in Fig. 3.3. 

 

 

 

Fig. 3.3. Build a generalization hierarchy from S1 of Fig. 3.1. 

 

C.  Merge the schemas to obtain an integrated graph. 

Fig. 3.4 shows the graph obtained from merging the schemas S1’, S2, S3 and S4. 

Each node in the graph denotes an object class, and edges represent the relationship 

types between the object classes. To facilitate processing, attributes are first omitted 

from the integrated graph. The attributes will be incorporated into the final integrated 

schema. Note that only the equivalent relationship types will merged together. 

Semantically different relationship types between the equivalent object classes will be 

treated as different relationship types, as indicated by the different edges.  
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The edges in the integrated graph are weighted as follows. Since we have “project” as 

the parent of “part” in schemas S1 and S4, the weight of the edge from “project” to 

“part” is given by the sum of the weights of these schemas, that is, 1+1=2. In the 

same way, since “project” is the parent of “staff” in schema S3 only, the weight of 

this edge is 7. Since the edge from “supplier” to “part” in S3 is actually involved in 

two relationship types jsp and sp, its edge weight would be given by 7*2=14. 

                                    

Fig. 3.4. Integrated graph obtained from the schemas in Fig. 3.1. 

 

D. Transform integrated graph to resolve structural conflicts and remove 

redundancy. 

We proceed to transform the graph to differentiate the semantically different 

relationships between equivalent object classes, identify cycles to resolve ancestor-

descendant conflicts, remove redundant object classes and redundant relationship 

types. Redundant relationship types include relationship types that are derived from 

projecting higher-degree relationships in the schema and transitive relationship types.  

 

project

supplier

name project manager

staff

ordinary staffpart

js,2,1:n,1:n

jsp,3,1:n,1:n

organization

org name

funds

foreign fundslocal funds

2
7

142

7 2

7
2

7

1

1
7

1 1



 29

D-1. Differentiate semantically different relationship types between equivalent 

object classes. 

Consider the schemas S5 and S6 in Fig. 3.5 that are structurally the same, except for 

the additional object class “contract” in S6. The relationship types between the same 

object classes are semantically different. The relationship type in schema S5 indicates 

that the person owns the house, while that in schema S6 indicates that the person rents 

the house. We first merge the two schemas to obtain the integrated graph G56 before 

transforming it to G56’ (see Fig. 3.5). The edges from object classes “house1” and 

“house2” to the object class “house” in G56’ indicate foreign key-key references. 

Note that the relationship phc between the “person”, “house” and “contract” is 

represented explicitly in the transformed graph. 

    

 

 

 

 

 

Schema S5                    Schema S6 
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Integrated graph G56    Transformed graph G56’ 

Fig. 3.5. Different relationship types among equivalent object classes. 

 

D-2. Remove relationship types that are projections of higher degree 

relationship types. 

A schema may model a relationship type that is a projection of another relationship 

type in another schema. For instance, if we integrate the schemas S1 and S3, the 

integrated graph will contain the binary relationship type between “project” and 

“part” from schema S1, and the ternary relationship type between “project”, 

“supplier” and “part” from schema S3. Since the former is a projection of latter 

relationship type, we remove the binary relationship type and keep the ternary 

relationship type in the integrated graph. Subsequently, we can issue a query 

“/project//part” on the integrated schema to retrieve all the “part” information. 

 

D-3. Resolve ancestor-descendant conflicts. 
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An ancestor-descendant conflict arises when a schema models an object class A as an 

ancestor of another object class B, and the other schema models B as the ancestor of 

A. The simplest form of this conflict is the parent-child conflict in schemas S3 and S4. 

We have “supplier” as the parent of “part” in S3, while “part” is the parent of 

“supplier” in S4. This conflict creates a cycle “supplier” → “part” → “supplier” in the 

integrated graph of Fig 4. One of the edges which represent the inverse relationship 

types can be removed to break the cycle. We propose to remove the edge with the 

lowest edge weight, that is, the edge from the less important schema. In this case, the 

edge from “part” to “supplier” with an edge weight of 2 will be removed. 

 

Fig. 3.6 shows another example of an ancestor-descendant conflict. The object class 

“module” is the ancestor of “tutor” in schema S7, while “tutor” is the ancestor of 

“module” in S8. This conflict will create a cycle in the integrated graph G78. The 

conflict can be resolved by removing one of the edges that has the least weight. 

Further, the edge removed should represent a relationship type that can be derived by 

a series of joins and projections of the other relationship types involved in the cycle. 

 

If the source weights are sw7=2, sw8=1, then the weight of the edge from “tutor” to 

“module” is 1. Since this edge has the lowest edge weight, we will remove it from 

G78. The transformed graph obtained at this point will be G78’.  

 

On the other hand, if the source weights are sw7=1, sw8=2, then the weight of the 

edge from “tutor” to “module” is 2, and will not be removed. The weights of the 
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edges from “module” to “lecturer”, and from “lecturer” to “tutor” are both 1. Since 

both of these edges have the lowest edge weight, we can remove either one of them, 

which will result in the transformed graph G78(a) or G78(b). 

 

       Schema S7    Schema S8   Integrated graph G78 

 

 

 

 

 Transformed graph G78’ Transformed graph S78(a)    Transformed graph S78(b) 

Fig. 3.6. Example of an ancestor-descendant conflict. 

 

D-4.  Remove transitive relationship types. 

Transitive relationships types are also redundant, and can be removed so that the 

resulting integrated graph will be concise. For example, the relationship type between 

“project” and “project manager” in Fig. 3.4 is a transitive relationship type that can be 

obtained from the relationship types between “project” and “staff”, and between 

“staff” and “project manager”. Thus, we can remove the transitive relationship type 

from the integrated graph. 
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Fig. 3.4 also contains another transitive relationship type between “project manager” 

and “org name”. We observe that the object class “organization” does not have any 

attribute, and has only one child object class “org name”. This object class from  

schema S2 cannot contain any instances in the corresponding XML data files. Since 

“organization” is a redundant object class, we propose to remove it and its associated 

relationship types from the integrated graph in Fig. 3.4. As a result, the relationship 

type between “project manager” and “org name” is no longer a transitive relationship 

type. 

 

D-5.  Remove multiple parent nodes. 

If a node has more than one incoming edges in an integrated graph, then it is called a 

multiple parent node. Consider the integrated graph G9-10 in Fig. 3.7. The two 

incoming edges to “student” indicate two different relationship types. The attribute 

“mark” can only belong to one of them, namely, the relationship type “jd”. In the 

transformed graph G9-10’, we will split the multiple parent node and represent these 

two relationship types separately. 
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Transformed Graph G9-10’ 

Fig. 3.7. Example of a multiple parent node. 

 

 

 

Fig. 3.8 shows the transformed graph obtained for the source schemas in Fig. 3.1 after 

addressing the above concerns. For instance, when solving ancestor-descendant 

conflict, the cycle “supplier”→“part”→“supplier” is detected and the edge 

“part”→“supplier” is deleted. The redundant object class “organization” and its 

associated edges are deleted. Transitive edges as “project”→“project manager” and 

“project”→“part” are also removed.  The transformed graph is augmented with 

attributes such as “quantity” for the ternary relationship type “jsp”. The final 

integrated schema is shown in Fig. 3.9. Note that the attribute “quantity” belongs to 

the relationship type “jps” in schema S4 (see Fig. 3.1), which is a ternary relationship 

type associating object classes “project”, “ supplier” and “part”. Since the node “part” 

is at the lowest level compared to “supplier” and “project”, the attribute “quantity” 

becomes an attribute under “part”. 
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Fig. 3.8. Transformed graph obtained from Fig. 3.4. 

Fig. 3.9. Final integrated schema. 

3.3 Integration Algorithm 

In this section, we present the details of the integration algorithm. We will first 

discuss and define some of the terms used. 
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3.3.1 Definitions and Theorems 

We advocate that the object classes that are higher up in the ORA-SS schema are 

more important than the object classes at the lower levels such as the leaf level. This 

is because they provide the context of the information modeled. The level of a node is 

determined by length of the path from the root to node plus one. For example, the 

level of the root is 1, the children of the root is 2, etc.  

 

Definition 4.1: The node weight of a node i, denoted by nwi, is determined by the 

formula 

nwi =  
i

l
j

node

sw ji∑ +− 12*
 

where lji is the level of nodei in schema j, jsw is the source weight of schema j. inode  

is the number of node i in the original schemas. 

 

Consider “project” and “part” in Fig. 3.1. The node weight of “project” is given by 

nwproject = (1*1+7*1+1*1)/3 = 3, while the node weight for part is given by nwpart = 

(1*0.5+7*0.25+1*0.5)/3 = 0.917. 

 

Definition 4.2: If a node i has more than one incoming edges in an integrated graph, 

it is called a multiple parent node. 

 

Definition 4.3: If a directed edge sequence <ei0,i1, ei1,i2, … eim,i(m+1), ei(m+1),i0> occurs 

in an integrated graph, then a cycle exists. 



 37

 

Definition 4.4: If an object class i is an ancestor of object class j in some local 

schema, while i is descendent of object class j in some other local schema. This 

conflict is called ancestor-descendant conflict. 

 

Theorem 4.1: An ancestor-descendant conflict occurs iff there is a cycle in the 

integrated graph. 

Proof: If node i and j are in ancestor-descendant conflict, then there must be a path 

from node i to node j in the integrated graph. This is because in some sources, node i 

is ancestor of node j. The edges from node i to j in those sources are all recorded in 

the integrated graph. Hence, there is at least one path from node i to node j. On the 

other hand, there also must be a path from node j to node i. These two paths make a 

cycle.  

 

Suppose node i and node j are in one cycle. There is one path from node i to node j, 

which means node i is ancestor of node j in some sources. On the other hand, node j 

must be ancestor of i in other sources, which is ancestor-descendant conflict. □ 

 

Theorem 4.2: In a cycle, there must be at least one multiple parents node or root 

node. 

Proof: If a cycle does not include any root nodes, then the cycle must connect with 

other nodes by some edges. If there are incoming edges from other nodes to this cycle, 

the theorem is proven. On the other hand, if there are only outgoing edges from the 
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cycle to the other nodes, then there must be at least one root node in the cycle, which 

is a multiple parent node. □ 

 

3.3.2 Integration Algorithm 

There are essentially four main steps in our integration algorithm:  

1. Preprocessing. 

2. Construct integrated graph. 

3. Transform graph. 

4. Solve participation conflicts 

5. Augment graph with attributes. 

 

The input is a set of schemas modeled using the ORA-SS model. The output is an 

integrated ORA-SS schema. The third step Transform Graph aims to identify 

semantically different relationships among equivalent object classes, resolve 

ancestor-descendant conflicts, and remove redundant object classes and redundant 

relationship types such as transitive relationship types. The resulting integrated 

schema preserves data semantics in the sources, considers how the majority of the 

sources model the data, and is concise. 

 

Step 1  Preprocessing. 

1.1 Resolve attribute-object class conflict. 
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If the same concept is expressed as an object class in one schema, and as an  

attribute in another schema, then convert the attribute to an equivalent object 

class. The attribute becomes the key of this new object class. 

1.2 Resolve generalizations and specializations. 

When one object class is the generalization object class of some object classes 

of other schemas, it becomes the parent node of these object classes. 

 

Step 2 Construct Integrated Graph  

2.1 Merge the equivalent object classes and relationship types from original 

schemas to obtain an integrated graph G such that each node is an object class, 

and edges denote relationship types between the object classes. Note that 

attributes are not included in G. 

2.2 Compute the weights of the edges.  

   For each edge e in G do 

        Let e1, e2,… ek be the equivalent edges in the original schemas s1, s2, …sk. 

 Let sw1, sw2, … swk be the source weights of the schemas s1, s2, …sk 

respectively. 

 Let n1, n2, … nk be the number of relationship types the edge is involved in 

the schemas s1, s2, …sk 

        Set the weight of the edge ew = sw1*n1+sw2*n2+ … swk*nk. 
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Step 3 Transform Graph 

3.1 Differentiate semantically different relationship types between equivalent 

object classes. 

 For each node ns in G do 

If ns has k outgoing edges {es1, es2, …, esk} to the same node nt Then  

     Create k duplicate nodes {nt1, …, ntk} of nt; 

Each edge esi (from ns to nt), 1 ≤ i ≤ k, becomes an edge from ns to nti; 

 For each nti, 1 ≤ i ≤ k, do 

Create a foreign key-key reference from the key of nti to that of nt. 

     For each child node c of node nt do 

     If c is involved in an n-nary relationship type that includes esi 

     Then Move c and its descendent nodes from nt to nti . 

  

3.2 Remove relationship types that are projections of higher degree relationship 

types. 

For each n-nary relationship type R in G do 

Let N = {n1, …, nk}  be the set of nodes involved in relationship R. 

For each relationship type R’ that involves a subset of nodes in N do 

If           R’ is a projection of R 

Then     Remove R’ from the integrated graph. 

 

3.3 Resolve any ancestor-descendant conflicts which create cycles in G. 

For each multiple parent node mn ordered by node weight 
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    For each cycle involved of mn in G do 

    Let eij be the edge with the smallest edge weight in the cycle. 

    If eij can be derived from other relationship types in the cycle. 

    Then   Remove eij from G. 

 

3.4 Remove redundant relationship types and redundant object classes. 

For each multiple parent node n in G do  

Let P be the set of parent nodes of n. 

While |P| > 1 do  

Let pmax ∈ P  

Let <n0 , n1, …, nk> be the path from pmax to n, where n0 = pmax, nk = n, 

and k > 1. 

/* remove redundant object classes with no attribute and only one child 

object class. */ 

For each node ni in the path, 0 < i < k, do 

If ni has no attributes and no sub-object classes besides ni+1 

Then Remove ni and its associated edges from G; 

Create an edge between ni-1 and ni+1; 

P = P – {pmax}; 

If the edge from pmax to n can be derived from <n0 , n1, …, nk>  

Then   Remove the transitive edge from pmax to n in G. 

 

3.5 Remove multiple parent nodes. 



 42

For each multiple parent node nm in G do  

Let nm have k incoming edges e1, e2, …, ek from nodes n1, n2, …, nk 

respectively. 

 Create k duplicate nodes {nm1, …, nmk} of nm; 

 Each edge ei (from ni to nm), 1 ≤ i ≤ k, becomes an edge from ni to nmi; 

 For each node nmi, 1 ≤ i ≤ k, do 

 Create a foreign key-key reference from the key of nmi to that of nm.    

For each child node c of node nm do 

 If c is involved in an n-nary relationship type that includes ei 

 Then Move c and its descendent nodes from nm to ni . 

 

Step 4 Solve participation conflicts 

The expression of participation in ORA-SS is min:max. When there are 

participation conflicts, the integrated schema use the broadest range, ie 

min(mini): max(maxi). 

 

Step 5 Augment Graph with Attributes 

5.1 Map the transformed graph G to an equivalent ORA-SS schema S. 

5.2 Augment the schema with the attributes of object classes. 

5.3 Augment the schema with attributes of relationship types. 
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3.3.3 Analysis of Algorithm 

 

The integrated schema generated by our algorithm is correct because it does not 

violate any semantic in the local source schemas. 

 

Outline of Proof: 

Any object class O in the integrated schema S originates from one or more equivalent 

object classes in the local schemas. These object classes refer to the same entity type 

in the real world. Hence, there is no semantic violation. 

 

For an attribute A of an object class O in the integrated schema S, there are two 

possible cases: 

 

(1) A originates from one or more equivalent attribute A’ in the local schemas where 

O’ is the owner object class of A’, and O’ and O are equivalent. 

(2) A originates from one or more equivalent attribute A’ in the local schemas where 

O1 is the owner object class of A’, but O1 and O are not equivalent. O1 is a parent 

object class of O in the integrated schema S. 

 

The second case arises because of the attribute-object class conflict where the same 

concept is expressed as an attribute A of the object class O1 in one schema S1, and as 
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an attribute of object class O2, and O1 is the parent object class of O2 in another 

schema S2. In step 1.1 of the algorithm, S1 is transformed to a schema S1’ by 

creating an object class O2 as a child of Object class O1, and the attribute A becomes 

an attribute of object class O2. This new schema S1’ preserves the semantics of the 

original local schema S1. A will be an attribute of object class O2 in the integrated 

schema S, which is same with S1’. Hence, S does not violate the semantic meaning of 

attribute A in S1. 

 

A relationship type R in the integrated schema S originates from the local schemas in 

two possible ways: 

(1) R originates from one or equivalent relationship types in the local schemas. 

Relationship types are equivalent if they have the same participating object classes, 

and refer to the same real world relationship that the object classes are involved in. 

(2) R is a relationship type created in Step 1.2 of the algorithm to handle 

generalization and specialization. 

 

The second case arises when the algorithm needs to resolve generalizations and 

specializations. When one object class O in a local schema S1 is the generalization 

object class of a set of object classes O1 of another schema S2, then O becomes the 

parent object class of these object classes. These relationship types for generalizations 

and specializations do not violate the semantics of the local schemas. 
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If there is an attribute A of a relationship type R in the integrated schema S, A is 

generated from some set of equivalent relationship types from local schemas. So there 

is no violation. 

 

The integrated schema generated by the above algorithm is complete, because all the 

semantics of object class, attribute, relationship type in local schema L can be 

generated from the integrated schema S. 

 

Outline of Proof: 

The integrated schema is derived from one or more local schemas. All the object 

classes, attributes and relationship types in the local schemas will be mapped to some 

equivalent construct in the integrated schema. Hence, an underlying local schema can 

be generated from the integrated schema. Note that if we have two relationship types 

R1 and R2 in the integrated schema, and R1 is a projection of R2, then Step 3.2 will 

remove R1 from the integrated schema. Hence, we can still derive the underlying 

equivalent relationship type R in a local schema from R2. Further, we can also derive 

a relationship type R in a local schema that is the join of a set of relationship types R1, 

R2, …Rn in the integrated schema. 
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3.4 Comparison with Related Work 

Research in data integration has focused on various aspects to integrate information 

from multiple sources. Most of the work has focused on the matching problem to find 

equivalent elements among the different sources. These work include XClust [25], 

CUPID [28], SKAT [34][35], and Xyleme [45]. A taxonomy and a survey of 

matching approaches are given in [41]. 

 

Having obtained a set of equivalent elements, the next step is to obtain an integrated 

schema. [18] uses schema learning to generate a set of tree grammar rules from the 

DTDs in a class and optimizes the rules to transforms them into an integrated view. 

Fig. 3.10 shows the integrated schema that [18] will obtain. Since the method does 

not take into account the underlying semantics of the data, the attribute “quantity” is 

considered to belong to “supplier”. Further, the relationship type between “project” 

and “project manager” is transitive relationship type, which is redundant. The 

relationship type from “part” to “supplier” and “project” to “part” is redundant. In 

contrast, the integrated schema obtained by our approach preserves the underlying 

data semantics and is concise (see Fig. 3.9). 
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Fig. 3.10. Integrated schema obtained by [18]. 

 

LSD [8] employs instance information and machine learning techniques in their 

integration work. This is because instances contain more information than the 

schemas. For example, if the phone number of a given element have significant 

commonalities, the phone numbers are more likely to be the office phones of 

employees, rather than home phones. However, the number of instances is very much 

larger than that of the schemas. Hence this method is very costly. 

 

All these work do not take into consideration the importance of the individual data 

sources, and how the majority of the local schemas model their data. In contrast, our 

proposed method employs the ORA-SS conceptual model which is able to capture the 

semantics necessary for the resolution of structural conflict during integration. The n-
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nary strategy that we adopted provides a global view of the local sources, and is faster 

compared to the binary strategy, whose intermediate schemas will grow with the 

number of sources. The binary strategy will not be able to utilize the source 

importance and how the majority of the sources model the data. For example, when 

there is parent and child conflict, the relationship type from the source with small 

source weight will be removed. But this relationship might be the majority one. The 

final integrated schema might be different with the n-nary strategy, which is more 

accurate. 

source1 source4source3source2

             

source1 source4source3source2

intermediate
integrated
schema 1

intermediate
integrated
schema 2

 

integrated schema     integrated schema 

A       B 

Fig. 3.11. n-nary & binary algorithms 

 

3.5 Summary 

In this chapter, we have introduced a semantic approach to resolve structural conflicts 

in the integration of XML schemas. We employed the ORA-SS semantic data model 

to capture the implicit semantics in an XML schema. We presented a comprehensive 

n-nary algorithm to integrate XML schemas. Compared to existing methods, our 
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algorithm takes into account the data semantics, the importance of a source, and how 

the majority of the sources model their data. Structural conflicts such as 

attribute/object class conflict, ancestor-descendant conflict are resolved in our 

approach. We also remove redundant object classes and relationship types such as 

transitive relationship types, and relationship types, which are projections of higher 

degree relationship types in order to obtain a concise integrated schema. 
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Chapter 4  

A Semantic Approach to Query Rewriting 

for the Integration of XML Data 

Abstract. Query rewriting is a fundamental task in query optimization and data 

integration. With the advent of the web, there has been renewed interest in data 

integration, where the data is dispersed among many sources and an integrated view 

over these sources is provided. Queries on the integrated view are rewritten to query 

the underlying source repositories. In this paper, we develop a novel algorithm for 

rewriting queries that take the semantic relation-ship between the source schemas and 

the integrated schema into account. Our approach is based on the semantically rich 

Object-Relationship-Attribute model for Semi-Structured data (ORA-SS). This 

guarantees that the rewritten queries give the expected results, even where the 

integrated view is quite complex. 

                                                                                                                                          

The rest of the chapter is organized as follows. Section 4.1 presents the preliminaries. 

Section Error! Reference source not found. gives a motivating example. Section 

4.2 describes the algorithm of query rewriting in integration of XML data. Section 0 

compares with related work and we conclude in Section 4.5. 
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4.1 Preliminaries 

In this section, we briefly describe the mapping table that we utilize in our integration 

strategy.  

 

When the integrated schema is derived from the local schemas, a mapping table 

should be created. It contains the mappings from the integrated schema to the local 

schemas. Due to the features of tree-like XML data, researchers have proposed many 

mapping languages. They can be classified as three types [6], tag-to-tag, path-to-path, 

and tree-to-tree. tag-to-tag mapping languages specify the equivalent tags from the 

global schema to the local schema. Tag is element or attribute of XML. Tag-to-tag 

mappings are simple, yet may not be correct. This is because the context is important 

in XML data. For example, the tag-to-tag mapping cannot tell the difference from the 

node “name”, a child of the node “person”, and the same label node “name”, a child 

of node “building”. The path-to-path mapping language [6][1][44] can solve such 

problems. The path from the root to the node is included in the mapping. So it can tell 

the difference of two nodes, if they are in different contexts. [1][44] use a mapping 

language looks like tag-to-path. Since the global schemas in them are ontology and 

identified, they are in fact path-to-path mapping. The tree-to-tree mapping language 

gives the mapping based on the tree. [49][32] use tree-to-tree mapping language. For 

the node in the global schema, there is a query to specify how to generate the node 

from the local schemas. It is easy for global schema materialization and query 

rewriting, but it also has drawbacks. The storage for the tree-to-tree mapping 



 52

language is very large, especially when the global schema is big. It is hard to generate 

such mappings. So the path-to-path mapping language is widely used.  

 

We use path-to-path mapping in this example. Here we focus on the definitions of a 

mapping table and not the details of how a mapping table is generated. 

  

For each object class or attribute in the integrated schema, the path from the root to 

this object class or attribute is inserted to the left part of the mapping table; the local 

schema id and the path to the equivalent object classes or attributes of the local 

schemas will be inserted to the right part of the same row in the mapping table. A 

motivating example will be shown in the next section. When the mapping is not one 

to one, the XQuery functions or user-defined functions are used. The complex details 

will be shown in section 4.2. 

 

Consider Fig. 4.1, where schema S12345 is an integration of the local schemas S1, S2, 

S3, S4, and S5. Table 4.1. shows a subset of the mapping table generated during the 

integration process. The first column of the mapping table gives the path from the 

root to each object class or attribute in the integrated schema; the second column 

shows the local schema id and the path to the equivalent object classes or attributes in 

the local schemas. 
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Fig. 4.1. S12345 is the integrated schema of local schemas S1, S2, S3, S4 and S5. 
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Integrated schema Local schema 

S12345/museum S1/museum, S3/museum, S5/museum 

S12345/museum/mname S1/museum/mname, 

S3/museum/mname,  

S5/museum/mname 

S12345/museum/painting S1/museum/painting, S2/painting, 

S4/artist/painting 

S12345/museum/painting/pname S1/museum/painting/pname, 

S2/painting/pname,  

S4/artist/painting/pname 

S12345/museum/painting/artist S2/painting/artist, S4/artist 

S12345/museum/painting/artist/aname S2/painting/artist, S4/artist/aname 

….. ….. 

Table 4.1. Mapping table for integrated schema S12345 in Fig. 4.1. 

 

A query in the XQuery format has two main parts: the first part contains the selec-

tion conditions, and the second part describes how the result is restructured. A query 

allocation table (QAT) stores the selection condition paths and the return result paths 

of a query, as well as the local schemas where the data for these paths can be found 

(which can be derived from the mapping table as we will show in the next section). 
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4.2 Query Rewriting Algorithm 

A user query on the integrated schema is rewritten to query the local source data. 

Because one local data source may contain only partial information, this information 

may have to be joined with information from local data source to give the expected 

result. In this section, we describe an algorithm for returning the expected result from 

the local data sources based on an integrated schema and local schemas. There are 

four steps in our algorithm: 

 

Step 1. Build the query allocation table.  

Step 2. Group local schemas to form join groups that answer the user’s query. 

Step 3. Decompose the user query to subqueries on the local sources. 

Step 4. Compose the subqueries from local schemas in a join group. 

4.2.1 Step1: Build the query allocation table 

In XQuery there are two main parts to a query, one contains selection conditions, and 

the other describes how the result is restructured, using projection, swap, and join 

operations. A query allocation table consists of a selection condition table and a 

return result table. The path of each selection condition and the return result is 

inserted into the selection condition table and return result table respectively. The 

associated schemas identified from the mapping table are inserted into the 

corresponding rows. Algorithm BuildQAT creates the QAT. 
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Algorithm BuildQAT 

Input: user query q, mapping table; 

Output: QAT 

 for each “selection condition” path sp from user query q 

   insert sp as row heading in the selection condition table. 

 for each “return result” path rp from user query q 

   insert rp as row heading in return result table. 

 for each row with path p in QAT 

  find path p in the left column of the mapping table 

   in the QAT, insert the local schema id of each equivalent object class from the 

right column of the mapping table. 

 

There are some cases that must be considered.  

 

Case 1: If a path corresponds to a branch in an ORA-SS schema with n (n>1) relation-

ship sets, it must be split into n subrows, one for each relationship set. Any attrib-utes 

of an object class or a relationship set will appear in the row with their object or 

relationship set.  

 

Case 2: If a path contains “//” or “/*/”, then the row that stores the original is retained 

and rows are created to store the expansion of each path. An expanded path that 

contains more than one relationship set is handled using Case 1. 
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These cases identify the relationship sets involved in the query so that they can be 

handled properly and the results returned are expected and correct. This also high-

lights one of the advantages of using ORA-SS schema diagrams to distinguish be-

tween binary and n-ary relationships and treat them properly in the algorithm. For 

example, n-ary relationships should not be split into n-1 binary relationship in the 

query allocation table. 
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Fig. 4.2. S1234 is the integrated schema of S1, S2, S3 and S4 

 

Example 1:  

Consider the schemas in Fig. 4.2, where schema S1234 is an integrated schema of 

schemas S1, S2, S3, and S4. We issue query Q1 on the integrated schema to retrieve 
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information about projects and their parts, and which supplier supplies this part to this 

project. Table 4.2. shows the query allocation table for query Q1. We note that the 

relationship set among project, part and supplier is a ternary relationship set. Hence, 

in the return result table, the path “/project/part/supplier” is not split into two paths. 

Since, the local schema S4 does not model this ternary relationship set, it is not 

associated with this path. This prevents the retrieval of wrong results by joining the 

sources in S3 and S4. 

Query Q1: for $j in /project 

   return <project> {$j/jno} 

 {for $p in $j/part 

 return <part>{$p/pno} 

{for $s in $p/supplier     return {$s}} </part>} 

</project> 

 

Selection Condition Table: Empty 

Return Result Table: 

 

Table 4.2. Query Allocation Table for Query Q1. 

 

 

/project/jno S1, S2, S3 

/project/part/pno S1, S2, S3 

/project/part/supplier S1, S2,  
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Example 2:  

Now let us consider Fig. 4.1, and the query Q2 on the integrated schema S12345, 

which retrieves the names of artists that have works in a museum with name “field”. 

The query allocation table is shown in Table 4.3. Note the path “/museum//aname” is 

retained and rows for each expansion of this path is inserted in the QAT. 

 

Query Q2: for $m in /museum[mname=”field”],$a in distinct-values($m//aname) 

   return <artist> {$a} </artist> 

 

Selection Condition Table :   

/museum/mname S1, S3, S5 

 

Return Result Table: 

 

Table 4.3. Query Allocation Table for Query Q2. 

 

/museum//aname S3 

/museum/painting S1 

painting/artist/aname S2, S4 

/museum/sculpture S5 

sculpture/artist/aname S5 
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4.2.2 Step 2: Identify Local Sources to Answer User Query. 

Next, we need to determine which local schemas must be combined to get the ex-

pected results. These groups of local schemas are called join groups. The local sche-

mas in each join group must contain all the paths required for the selection condition 

and must have at least one path for the result.  

Algorithm GenerateJoinGroups scans the query allocation table (QAT) to find the 

join groups. Lines 1-5 create an ordering on the local schemas based on the rows in 

which they first occur in the QAT and store the ordered list in lt. A local schema is 

low in the ordering if it first occurs in the top row and high in the ordering if it first 

occurs in the bottom row of the QAT. Lines 6-31 use a stack to find the join groups. 

The local schemas are considered based on the ordering in the list lt from lowest to 

highest. Initially the lowest local schema is pushed onto the stack, and the next 

schema to be pushed onto the stack is the next lowest that occurs in a different row. 

When the schemas on the stack cover all the selection condition paths in the QAT, we 

output them as a join group. The top schema is popped off the stack, and the 

algorithm goes on to find the next schema which could contribute to the user query. 

The algorithm scans the schemas in the order of lt, so there is no duplication or 

missing join groups. 
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_________________________________________________________ 

Algorithm GenerateJoinGroups  

Input: Query allocation table qat; 

Output: join groups 

1. create an empty list lt; 

2. for i=1 to num_of_row of qat 

3.     for j=1 to num_of_schema_id of row i 

4.         if schemaij is present in the rowi and not in list lt 

5.             add schemaij to list lt; 

6. n=the number of local sources in qat; 

7. create an empty stack st; 

8. for i=1 to n from lt 

9. {     

10.    if schemai is not in the top row in qat 

11. break; 

12.    push schemai on the stack st; 

13.    if schemai is present in all rows of qat 

14.    { 

15. Output {schemai}; 

16. st=null; 

17. continue; 

18.    } 
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19.   for j=i+1 to n if schemaj occurs in the rows, which the other schemas in st do not 

occur in, and schemaj does not occur in all the rows that the top element of st occurs 

in 

20.    { 

21. push schemaj on the stack st; 

22. if (the local schemas in st has included all the path information in qat) 

23. { 

24.         output all the schemas in the stack st split by”,” in a “{}”; 

25.     pop the top schema off the stack st;   

26. } 

27.    } 

28.    if (j= =n and st has included all the path information of the selection condition 

table and at least one result in return result table) 

29. output all the schemas in the stack st split by”,” in a “{}”; 

30.    st=null; 

31.} 

___________________________________________________ 

 

Example 3: 

Consider the schemas in Fig. 4.3. The attribute “location” in S12345 is a combination 

of the attributes “address” and “postal code” in S5. The query Q3 retrieves the year 

and title of the books that were written by “Tom” in the year “2000”. The 

corresponding query allocation table is shown in Table 4.4Table 4.3.  
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Algorithm GenerateJoinGroups first looks at the first row “/book/author” in Se-

lection Condition Table, and adds S1, S2, S3 in the list lt. Then it checks the second 

row “/book/year”, and adds S4 in the list lt. Thus, the lt has local schema order as S1, 

S2, S3, and S4. After the order is computed, S1 is first pushed on the stack, and S2 is 

then considered. Since it does not add any extra paths, it is not pushed on the stack. 

S3 is considered and because it does cover extra paths, it is pushed on the stack. 

Together S1 and S3 cover all the path information in the QAT, so {S1, S3} is output 

as a join group. S3 is then popped off the stack, S4 is considered. Together S1 and S4 

cover all the path information, and {S1, S4} is output as a join group. {S2, S4} and 

{S3} are output after that. 

Note that {S2, S3} is not a join group, because although they cover all the path 

information in the selection condition table of the QAT, S2 does not cover any more 

path information that S3 does not cover and consequently would not add new answers 

to the result of the query. Note that {S3} is a join group, even though {S1, S3} is also 

a join group. The result from the rewritten query in {S1, S3} can return the result as 

Q2, while {S3} can return the partial result which has missing information of the title 

of book. The union of all the answers from the different join groups will be the final 

results. 
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Fig. 4.3. S12345 is the integrated schema of local schemas S1, S2, S3, S4, S5 

 

Query Q3: for $b in /book  where $b/author=”Tom” and $b/year=”2000” 

             return <result> {$b/year/text()} {$b/title/text()} </result> 

Selection Condition Table:   

 

Return Result Table:            

Table 4.4. Query Allocation Table for Query Q3. 

 

/book/author S1, S2, S3 

/book/year S3, S4 

/book/year S3, S4 

/book/title S1 

book

isbn author year title

publisher

name location

+

book

isbn author title
+

book

isbn author
+

book

isbn author year
+

book

isbn year

publisher

name address

book

isbn

postal code



 65

4.2.3 Step 3: Decompose the user query to subqueries on the local sources 

Step 2 finds the groups of local schemas that together will produce some of the 

answers. Step 3 decomposes the user query into queries on the local schema based on 

the join groups. Because the answers from a local schema are combined with the 

answers from other local schemas in the same join group, we need not only the data 

asked for in the user query but also the data necessary to join the parts of the answers 

from different local schemas together. We call the classes necessary for joining the 

parts of answers, join object classes. The key of the join object class is used for 

testing the equivalence when joining the subqueries. 

 

When a user query is decomposed, part of the resulting subquery must include join 

object classes. The particular join object class depends on the semantics of the 

schema. We now consider 3 different cases: 

 

Case 1: For a join group, if there are n paths in the QAT from different local schemas 

with a common ancestor in the user query, then the least common ancestor in the user 

query is a join object class. 

 

Case 2: For a join group, if the paths in the QAT are from different local schemas, 

and there is an object class that is the end of one path and the start of the other path, 

then this intermediate object class is a join object class. 
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Case 3: For a join group, if two attributes of the same relationship set in a user query 

are from different local schemas, then all the object classes involved in this rela-

tionship set are join object classes. 

 

Example 4: 

Consider Example 3 and the join group {S1, S3}. S1 provides “/book/title”, 

“/book/author” and S3 provides “/book/year”, “/book/author”. To answer the query 

Q3, the subqueries from S1 and S3 need to be composed using the key of their least 

common ancestor i.e. the key “isbn” of the join object class “book”.  

 

We first consider the case where the local schemas are projections of the integrated 

schema. The rewritten query for a local schema will effectively be a projection of the 

user query with the join object class identifier included in the return part of the 

rewritten query. The rewritten query can be derived as follows: 

 

1.  For every path in the for part, where part and  return part of the user query, 

retain the path if it exists in the local schema.  

2.  Add the path to any join object class identifiers that are relevant to this local 

schema in the join group being considered. 

 

 

When the local schemas are not projections of the integrated schema, the projection 

query needs to be rewritten based on the local schema structure. We will first describe 
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how to rewrite a user query for a local schema where the subquery on the local 

schema returns only one object class or attribute. Then we describe how to rewrite a 

user query for a local schema where the subquery on the local schema returns many 

object classes or attributes. 

 

4.2.3.1 The subquery that returns only one object class or attribute 

We consider two cases. One is for queries involving one object class or attribute, the 

other case is for queries involving more than one object class. 

 

Case A1: Queries involving one object class or attribute 

An object class in an integrated schema can originate from either an object class or an 

attribute in a local schema, or it can be derived from object classes and attributes in 

one local schema.  

 

Case (A1-i) Integrated object class originates from a source object class. 

When an integrated object class is mapped to an equivalent object class from a local 

schema, but the path from the root to the equivalent object class is different, variable 

bindings in the for clause or let clause are changed according to the mapping table 

that specifies the path of the equivalent source object class. 
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Example 5: 

Consider the source schemas S1, S2, S3, S4 and the integrated schema S1234 in Fig. 

4.1. The following query Q4 on the integrated schema S1234 retrieves all the 

information on the object class “funds”, which is in path “/museum/sponsor/funds”: 

 

Query Q4: for $f  in /museum/sponsor/funds   

        return  <result> {$f} </result> 

 

From the mapping table, we have S12345/museum/sponsor/funds: S3/museum/funds, 

S5/museum/sponsor/funds. It shows that the query could be rewritten to the queries 

on the local sources S3 and S5. The rewritten query on source S5 will be the same as 

Q4, while the queries on S3 will be different. Below is the query on S3. 

 

Case (A1-ii) Integrated object class originates from an attribute. 

An object class can also originate from an attribute, because a concept can be 

expressed as an attribute in one schema, and as an object class in another schema. 

When rewriting such a query, variable bindings in the for clause or let clause are 

changed according to the mapping table that specifies the path of the equivalent 

attribute; the equivalent object class is created in the return clause with the attribute 

as an attribute of this object class.   
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Example 6: 

The following query is on the integrated schema S12345 of Fig. 4.1. Query Q 5 

retrieves the information of artists of the painting with pname “hero”. 

 

Query Q5:  for $p in /museum/painting 

          where $p/pname=”hero”    

                  return  <result> {$p/artist} </result> 

This query will be rewritten for S2 and S4. Schema S2 in Fig. 4.1. models “artist” as 

an attribute of the object class “painting”. Query Q5_S2 will compute the information 

for artist on local schema S2: 

Query Q5_S2:  for $p in /museum/painting 

             where $p/pname=”hero”    

return <result> <artist> <aname> {$p/artist/text()} </aname> 

</artist>  </result> 

 

Case A1-iii. Integrated object class or attribute originates from a set of object classes 

(attributes) or vice versa. 

When one object class (attribute) in the integrated schema is the combination of many 

object classes (attributes) of another local schema or vice versa, XQuery or user-

defined functions can be used to substitute the path in the user query.  
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Example 7: 

Consider the schemas in Fig. 4.3. Query Q6 retrieves the publisher location of the 

book with isbn “7-5053-4849-3/TP.2370” on the integrated schema S12345: 

 

Query Q6: for $b in /book 

                  where  $b/isbn=”7-5053-4849-3/TP.2370” 

         return <result>{$b/publisher/location}</result> 

 

Q6 will be rewritten on S5. The mapping in the mapping table shows that 

S12345/book/publisher/location:string-join((S5/book/publisher/address/text(), 

S5/book/publisher/postalcode/text()),“ ”). We assume that the attribute “location” is 

expressed by the address followed by a space and the postal code. The query on S5 is 

shown in Query Q6_S5. It combines the address and postal code by the XQuery 

functions from the mapping table. The rewritten query on S5 will be: 

 

Query Q6_S5: for $b in /book 

                    where  $b/isbn=”7-5053-4849-3/TP.2370” 

                       return <result> <location> {string-join(($b/publiser/address/text(), 

                                 $b/publisher/postalcode/text()),” ”)}</location> </result> 

 

Case A2: Query path involves more than one object classes. 

When the number of object classes in the query path is more than one, we need to 

consider the structural relationship type between the object classes. There are two 
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cases. (1) Object classes are swapped in the integrated schema and (2) siblings in a 

local schema are mapped to ancestor and descendent in the integrated schema. 

 

Case A2-i.When object classes in the integrated schema are swapped in the hierarchy 

compared to the local schema, the path in the subquery needs to be rewritten based on 

the path of the local schemas. 

 

Example 8: 

The following query on the integrated schema S12345 in Fig. 4.1 retrieves all the 

“museum” which have the paintings by artist “David”. 

 

Query Q7: for $m in /museum where $m/painting/artist/aname=”David” 

                  return<museum>{$m/mname/text()}</museum> 

 

The join groups are {S1, S2} and {S1, S4}. In join group {S1, S4}, the join object 

class is painting for S4. The projection subquery on S4 is: 

 

Query Q7_S4’: for $p in /painting where $p/artist/aname=”David” 

                         return<painting>{$p/pname}</painting> 

 

The path expression in the where clauses are changed to the corresponding object 

class (attributes) by using /../. The rewritten query on S4 is: 
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Query Q7_S4:  for $p in/artist/painting where $p/../aname=”David” 

               return <painting>{$p/pname}</painting> 

 

This query needs to be joined with the subquery for S1 to get the final result for the 

user. 

 

Case A2-ii When  two object classes have an ancestor-descendant relationship in the 

integrated schema, but they are siblings in the local schema. The least common 

ancestor of these object classes must be used as binding variables to connect them. 

The related path in the where and return clause must be revised based on the structure 

of the local schemas. 

 

Example 9: 

In Fig. 4.4, students work for projects, and students have their lab. The lab also has 

coordinators. Consider the query Q8 on the integrated schema S123, which retrieves a 

project lab coordinator where pno is “p01”.  

 

Query Q8: for $p in /project where $p/@pno=”p01” 

         return <result>{$p/student/lab/coordinator}</result> 

 

The join groups are {S1, S3} and {S2, S3}. The return clause in Q8 shows that the 

query path is from $p to lab. In order to rewrite the query for schema S1, the 



 73

algorithm looks for the nearest ancestor node that is common to both project and lab. 

Student is then bound to the variable in the for clause as follows:  

 

Query Q8_S1: for $s in /student     where $s/project/@pno=”p01” 

                return  <result>{$s/lab/@lno}</result> 

This query needs to join with the subquery for S3 to get the results. 

 

 

 

 

 

                                     S1                                               S2 

 

 

 

 

 

                                         S3                                            S123 

Fig. 4.4.  S123 is the integrated schema of local schemas S1, S2, S3. 
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4.2.3.2 The subquery that returns many object classes or attributes 

[4] introduced an algorithm for automatic generation of XQuery view definitions for 

ORA-SS Views, focusing on the view definitions for hierarchical structures of XML. 

Due to space limitations we do not cover this case in this paper except to note that 

their algorithm can be used to rewrite the query. 

 

4.2.4 Step 4: Compose the subqueries for join group 

When joining subqueries on local schemas in the same join group, the identifier of the 

join object classes must be tested for equivalence. 

 

We start by considering the basic case where the same object attributes are from 

different local schemas. To compose subqueries from these local schemas in join 

groups, the for, where, and return clause are combined together with the join 

condition equivalence test inserted in the where clause.  

 

We allow the return results to have missing information. The parent object will not be 

removed from the return result, if it has a missing child. For each return object or 

attribute, the join equivalence condition test related to this return object or attribute is 

nested in the appropriate part of the query.  
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Example 10: 

Consider the schemas in Fig. 4. and query Q9 that retrieves year and title of the books 

that were written by “Tom” in year “2000” and retrieves the publisher name if the 

book’s publisher location is Singapore. 

 

Query Q9: for $b in /book    where $b/author=”Tom” and $b/year=”2000” 

   return<result>{$b/year/text()} {$b/title/text()}{ 

  for $p in $b/publisher 

   where contains ($b/publisher/location/text(),”Singapore”) 

  return<publisher> {$b/publisher/name} </publisher> } 

</result> 

 

The join groups are {S1, S3, S5}, {S1, S4, S5}, {S2, S4, S5} and {S3, S5}. We show 

the query example for join group {S1, S3, S5}. The user query is decomposed into 

subqueries on the local schemas S1, S3, and S5. The join object class is “book” for 

these local schemas. The subqueries on S1, S3 and S5 are shown below: 

 

Query Q9_S1:  for $b in /book 

                    where $b/author=”Tom” 

                   return <result> {$b/isbn/text()} {$b/title/text()} </result> 

 

Query Q9_S3: for $b in /book 

          where $b/author=”Tom” and $b/year=”2000” 
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              return <result> {$b/isbn/text()} {$b/year/text()} </result> 

 

Query Q9_S5: for $b in /book  

          where contains ($b/publisher/address/text(),”Singapore”) 

         return<result>{$b/isbn/text()} 

        <publisher>{$b/publisher/name} </publisher></result> 

 

The composition of the subqueries for local schemas S1, S3 and S5 is as follows: 

 

for $b1 in doc(“S1.xml”)/book, $b3 in doc(“S3.xml”)/book 

where $b1/author=”Tom” and $b3/author=”Tom” and $b3/year=”2000”  

and $b1/isbn=$b3/isbn 

return <result>{$b3/year/text()} {$b1/title/text()} 

{for $b5 in doc(“S5.xml”)/book   

where contains ($b5/publisher/address/text(),”Singapore”) and 

$b5/isbn=$b1/isbn 

return<publisher> {$b5/publisher/name}<publisher>}</result> 

 

Note that, even though the join object class for S1, S3 and S5 is book, the equivalence 

tests are on separate lines in the rewritten query. This is because we allow parent 

information to be returned even when the information of a child object class is 

missing. 
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4.3 Analysis of Algorithm 

In this section, we address the soundness and completeness of our algorithm. 

 

Soundness: 

Given a set of local XML schemas L1, L2, …Ln, and their global schema S. Let DL1, 

DL2, …DLn be the data sources of L1, L2, …Ln respectively. For a user’s query Q 

on the global schema S, a tuple t’ is retrieved via S, only if there exists some 

corresponding tuples t, t∈DLi such that t satisfies the conditions specified in Q. 

 

Completeness: 

Given a set of local XML schemas L1, L2, …Ln, and their global schema S. Let DL1, 

DL2, …DLn be the data sources of L1, L2, …Ln respectively. For a user’s query Q 

on the global schema S, a tuple t’ is retrieved via S, if there exists some 

corresponding tuple t, t∈DLi such that t satisfies the conditions specified in Q. 

 

Our query rewriting algorithm is sound and complete. 

 

Outline of Proof: 

Let L1, L2, … Ln be a set of local XML schemas, and S be their global schema. A 

user’s query Q is on the global schema S. Q is rewritten to a set of subqueries QS on 

the set of local schemas L. L is the set of local schemas, which could contribute to the 
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user query Q. Each query QSi in QS is a subquery on one corresponding local schema 

Li. Li is a local schema in L. The set of queries in QS is composed to be a set of 

rewritten query Q’ on the local schema L. Each query Q’i in Q’ is a query on a set of 

local schema. 

 

If we could prove that  

(1) The rewritten queries Q’ refer to the set of local schemas L, which could 

contribute to query Q.  

(2) The predicates of the rewritten queries Q’ are equivalent to the predicates of the 

user query Q. 

 

Then the union of the tuples retrieved by Q’ on the local schemas are the same with 

the tuples retrieved by Q on the global schema S. i.e. our query rewriting algorithm is 

sound and complete. 

 

Equivalence of predicates in Q and Q’ in (2) means the variable in predicates in Q 

and Q’ refer to the same object classes, attributes, and relationship types. Operators in 

predicates are the same in Q and Q’. The values in predicates are same in Q and Q’.  

 

The first two steps of our algorithm guarantee (1), i.e., rewritten queries Q’ refer to 

the set of local schemas L, which could contribute to query Q. 
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In the first step of our query rewriting algorithm, the IDs of the local schemas, which 

match some of the selection condition and the return path, will be inserted in the QAT. 

So the schema IDs of L will be included in QAT.  

 

In the second step of our algorithm, all the local schemas, which have IDs in QAT, 

are considered (line 2~5 of GenerateJoinGroups). The algorithm GenerateJoinGroups 

generates the join groups only if the local schemas have included all the information 

of the columns in QAT (line 22 of GenerateJoinGroups) or it has included all the 

information of the selection condition columns in QAT (line 28, 29 of 

GenerateJoinGroups). Both of these two kinds of join group could answer query Q. 

Hence the set of local schema inside the join groups is L. 

 

The third and forth steps of our algorithm guarantee (2).  

 

The third step of our algorithm is decomposing query Q to the set of subqueries QS 

on local schemas L. Let QSi be a subquery on local schema Li. Li is a local schema in 

L. The predicates in QSi are equivalent to a subset of predicates of Q. The subset 

involves those object classes, attributes, and relationship types, which the local 

schema Li has. We change the path to those equivalent object classes, attributes, and 

relationship types base on the paths in QSi. The changes make the variables in 

predicates refer to the same object classes, attributes, and relationship types. The 

predicates in QSi is equivalent to a subset of predicates of Q  
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The forth step composes the set of subqueries within each join group Gi into a 

rewritten query Q’i. Q’i is a query in Q’. We have proved that local schemas in join 

group contain all the object classes, attributes, and relationship types, which the 

predicates of Q refer. So composing the subquery in a join group could generate the 

predicates in Q’i, which is equivalent to the predicates in Q. When composing the 

subqueries, we employed join object classes, which is reasonable for join and cover 

all the possibility of join. There are three possible join in XML: (a) The two paths to 

join at the same head, (b) the two paths join at the head of one path and tail of the 

other path, and (c) the two paths join by the common path, which is for the object 

classes involved in the equivalent relationship types. Our algorithm defines the join 

object cases, and joins the subqueries for these three cases in step 3. 

 

One limitation of the proposed solution is the complexity. For instance, the 

complexity of the join group generation is O(n2), n is the number of the local schemas. 

If the source descriptions (context) are available, the approach could be improved. 

For instance, in the fly integration, if we know local source A is the flights within US, 

and local source B is the flights within China, it will be efficient not to generate a join 

group including A or B, when the user query retrieves the flight information in 

Europe. This will also save the time for query rewriting on A and B.  

 

4.4 Comparison with related work 

Amman et al. in [1] propose a mediator architecture for querying and integrating 

XML data sources. Their global schema is described as an ontology, which is 
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expressed in a light weight conceptual model. Similar to our algorithm, their method 

also finds join groups, where the local sources of the join groups can together 

compute the results for the user query. One limitation of this work is that a query 

cannot return nested structures. 

 

Lakshmanan and Sadri in [24] propose an infrastructure for interoperability among 

XML data sources. Mapping rules are created to map the items in local schemas to a 

common vocabulary. They also address the query processing and optimization in the 

system. For query processing, they differentiate between inter-source query and intra-

source query, which query across local schemas and within one local schema 

respectively. Consistency conditions are used to optimize inter-source queries. One 

limitation of this work is that when results from local schemas are joined, the join 

variable is limited to the lowest common ancestor of nodes. 

 

In [49], Yu and Popa introduce an algorithm for answering queries through a target 

schema. The algorithm uses target constraints that are used to express data merging 

rules. The mappings from the integrated schema and local schemas are tree to tree. 

Generating such mappings is expensive, especially when the XML sources are 

complicated. 

 

The models that are utilized in the works [1, 24, 49] cannot specify that one 

relationship type is binary or n-ary and hence, do not distinguish between attributes of 

object classes and attributes of relationship sets from the local XML sources. None of 
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their data model or mapping rules includes such semantic information which could 

lead to the retrieval of wrong results. 

 

Example 11:  

Recall Example 1 where only S1 and S2 will be considered for the query Q1. Since 

the works in [1, 24, 49] cannot distinguish between binary or n-ary relationship sets, 

they will join the sources from S3 and S4 to get the result, which is not correct for the 

user query. The example below highlights the problem for the attributes and n-ary 

realtionship. For simplicity, schemas S3 and S4 are omitted here. 

 

Suppose the data source for S1 is X1, and the data source for S2 is X2 as follows: 

 

X1: X2: 

<project jno=”j01”> 

    <part pno=”p01”> 

        <supplier sno=”s01”> 

             <quantity> 100 </quantity> 

        </supplier> 

    </part> 

</project> 

<project jno=”j02”> 

    <supplier sno=”s02”> 

        <part pno=”p01”> 

             <quantity> 200 </quantity> 

        </part> 

    </supplier> 

</project> 

Table 4.5. Data sources for S1 and S2 in Fig. 4.2. 

 

The results of query Q1 retrieved by our algorithm and [1, 24, 49] are as follows: 
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Results obtained by our proposed 

algorithm  

Result obtained by [1, 24, 49] 

<result> 

    <project jno=”j01”> 

        <part pno=”p01”> 

            <supplier sno=”s01”> 

                <quantity> 100 </quantity> 

            </supplier> 

        </part> 

    </project> 

    <project jno=”j02”> 

        <part pno=”p01”> 

            <supplier sno=”s02”> 

                <quantity> 200 </quantity> 

            </supplier> 

        </part> 

    </project> 

</result> 

<result> 

    <project jno=”j01”> 

        <part pno=”p01”> 

            <supplier sno=”s01”> 

                <quantity> 100 </quantity> 

            </supplier> 

            <supplier sno=”s02”> 

                <quantity> 200 </quantity> 

            </supplier> 

        </part> 

    </project> 

    <project jno=”j02”> 

        <part pno=”p01”> 

            <supplier sno=”s01”> 

                <quantity> 100 </quantity> 

            </supplier> 

            <supplier sno=”s02”> 

                <quantity> 200 </quantity> 

            </supplier> 

        </part> 
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    </project> 

</result> 

 

Table 4.6. Results retrieved by our algorithm and [1, 8, 22] 

 

We observe that the results returned by the query rewriting method in [1, 24, 49] 

contain the project with jno “j01” has part “p01”, which is supplied by suppliers with 

sno “s01” and “s02”. This violates the local data sources X1 and X2, where the 

project with jno “j01” has part “p01” is only supplied by suppliers with sno “s01”. 

This is because the method in [1, 24, 49] treats the relationship type between part and 

supplier as the binary relationship type, instead of the intended ternary relationship 

type involving project, part, and supplier. They treat the quantity as the attribute of 

part in S2, so when they find the part with pno “p01” has the quantity “100” in X1, 

and has quantity “200” in X2, they will combine them to make the final result. This 

leads to the wrong answer returned. 

 

In contrast, our algorithm takes the XML hierarchy structure into consideration and 

retrieves the correct answers. To summarize, our algorithm differs from existing 

works in the following ways: 

 

1. We treat binary and n-ary relationship sets differently. Treating an n-ary 

relationship as n-1 binary relationships gives wrong results. 
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2. We treat attributes of object classes and attributes of relationship sets differently in 

the QAT and when we compose the sub queries of the local sources. 

3. Our algorithm takes the XML hierarchy structure into consideration when doing 

the rewriting.  

4.5 Summary 

In this chapter, we have introduced a semantic approach to rewriting queries for 

semistructured data integration. The ORA-SS model was used in the integration 

system to capture the implicit semantics in the XML schemas. A user’s queries on the 

integrated schema are rewritten to queries on the local sources. When XML 

repositories are integrated there may be semantics that are not expressed explicitly in 

the underlying data sources or the integrated schema. Without the necessary 

semantics, it is possible to misinterpret the meaning of the data and combine the 

results from different local schemas to give unexpected results. Given that we use 

ORA-SS to describe the schemas of the local data sources and the integrated schemas, 

we are able to distinguish between binary and n-ary relationship types and also able to 

distinguish between attributes of object classes and attributes of relationship types, 

and in turn treat these cases differently throughout the algorithm. Data models used in 

related algorithms are unable represent these semantics and so the related algorithms 

do not take these semantics into account. 
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Chapter 5  

Conclusion and Future Work 

5.1 Research Summary 

The research in this thesis has examined two important issues in XML integration, 

namely, global schema generation and query rewriting. In global schema generation, 

we employ the semantically rich ORASS data model to capture the implicit semantics 

in an XML schema. The proposed integration algorithm adopts an n-nary integration 

strategy that takes into account the data semantics, importance of a source, and how 

the majority of the sources model their data when resolving structural conflicts such 

as attribute/object class conflict and ancestor-descendant conflict. Further, redundant 

object classes and transitive relationship types are removed to obtain a more concise 

integrated schema. 

 

After the global schema has been generated, the next issue is query rewriting. We 

develop an algorithm for rewriting queries that take the semantic relationship between 

the source schemas and the integrated schema into account. We are able to distinguish 

between binary and n-ary relationship types and also able to distinguish between 

attributes of object classes and attributes of relationship types, and in turn treat these 

cases differently throughout the algorithm. This guarantees that the rewritten queries 

give the expected results, even where the integrated view is quite complex. 
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5.2 Future Work 

When the integrated schema is generated, there is still a problem for update. The 

other ongoing work is study on how to optimize the queries in the integration system. 

It needs more consideration on the difference of the following two ways. One is 

merging the subqueries of the local schemas and computing the results of the merged 

query on the local sources. The other way is computing the partial results from the 

subqueries and merging them to get the answer.  

 

Our approaches are based on a semantic rich model ORA-SS model. This model 

needs the user to input some necessary information. If there isn’t such information, 

how to do the integration work is another important topic. 
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