

MODELING ONTOLOGY VIEWS:
An Abstract View Model for Semantic Web

Rajugan, R.1, Elizabeth Chang2, Tharam S. Dillon1, Ling Feng3 and Carlo
Wouters4
1eXel Lab, Faculty of IT, University of Technology, Sydney, Australia; 2School of Information
Systems, Curtin University of Technology, Australia; 3Faculty of Computer Science,
University of Twente, The Netherlands; 4Department of Computer Science & Computer
Engineering, La Trobe University, Australia

Abstract: The emergence of Semantic Web (SW) and the related technologies promise to
make the web a meaningful experience. However, high level modeling, design
and querying techniques proves to be a challenging task for organizations that
are hoping to utilize the SW paradigm for their industrial applications. To
address one such issue, in this paper, we propose an abstract view model with
conceptual extensions for the SW. First we outline the view model, its
properties and some modeling issues with the help of an industrial case study
example. Then, we provide some discussions on constructing such views (at
the conceptual level) using a set of operators. Later we provide a brief
discussion on how such this view model can utilized in the MOVE [1] system,
to design and construct materialized Ontology views to support Ontology
extraction.

Key words: Semantic Web (SW), view models, Ontology views, Object-Oriented
conceptual models (OOCM), conceptual views, Ontology extraction

1. INTRODUCTION

The emergence of Semantic Web (SW) and the related technologies promise to
make the web a meaningful experience. Conversely, success of SW and its
applications depends heavily on utilization and interoperability of well formulated
Ontology bases in an automated, heterogeneous environment. This creates a need to
investigate utilization of (materialized) Ontology views [2] in SW applications, such
as; (a) Ontology extraction, (b) Ontology versioning, (c) sub-ontology bases, and (d)
SW-wrappers for traditional data sources, in industrial settings. However, unlike

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195643267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

traditional database systems, high level modeling, design and querying techniques
still proves to be a challenging task for SW paradigm as, Ontology view definitions
and querying have to be done at high-level abstraction [2, 3].

The databases systems (from relational to deductive systems) have matured
enough to face growing challenges faced by the organizations (both commercial and
governments) and their emerging (and aging) Enterprise Information Systems (EIS).
They have well defined basic principles [4] on which they are built upon. Due to
this, supporting data intensive technologies, such as transaction processing, business
queries, data warehousing, data mining etc. have evolved to a level that can be
considered as “matured”. Many new and ongoing research directions in data
intensive domains still follow the basic principles of databases [5], namely meta-
data, schema and instance data. This, in our view is one of the major differences
between the database and the SW principles, where meta-data schemas and instance
data may overlap. Also, the data extraction process (e.g. queries), in direct contrast
to user queries in database systems, is usually automated and involves meta-data
extraction as part of the process.

On the other hand, Semantic Web directives are still at its infancy in areas such
as data organization, meta-data models and query languages. As a result, in the
present stage of SW developments, there are lots of contradictions than agreements
in regards to basic concepts and definitions of the SW vocabularies (see section 2).
Regardless of contradictions, many organizations, both academic and industry are
working tirelessly in proposing new methodologies, models and are vigorously
formulating standards to streamline the SW paradigm (some consider the present
SW phase to be level 2 activities [1]).

On a positive note, there is an exponential growth in new research directions in
SW applications. These applications range from SW-enabled traditional enterprise
meta-data repositories to time-critical medical information and infectious decease
classification databases. For such vast Ontology bases to be successful and to
support autonomous computing in a distributed (and heterogeneous) environment,
the preliminary design and engineering of such Ontology bases should follow a strict
software engineering discipline [6]. Furthermore, supporting technologies for
Ontology engineering such as data extraction, integration and organization have be
matured to provide adequate modeling and design mechanism to build, implement
and maintain successful Ontology bases. For such purpose, Object-Oriented (OO)
paradigm seems to be ideal choice as it has been proven in many other complex
applications and domains [7, 8].

During mid relational and early Object-Oriented (OO) revolution, during similar
phase of the technological development and standardization (level 2), all agreed
(both academia and industry) that the data models should be independent of the
underlying language semantics and syntaxes and be able to provide needed
abstraction and model portability [7, 9]. Today, this notion still holds true for SW
paradigm.

To address such an issue, in this paper, we propose and abstract view model for
modeling and designing views for SW paradigm (SW-view). Such abstract view
model is defined using a high-level modeling OO language (such XSemantic net

 3

[10, 11] or OMG’s UML [12] or Ontology Web Language (OWL) [13], in contrast
to Ontology specific data language) that is capable of modeling Ontologies.

The rest of this paper is organized as follows. In section 2, we briefly describe
some of the terminologies used in the context of SW, followed by some of the early
work done in view related domain in section 3. Section 4 describes our view model.
Section 5 briefly outlines how our view model is utilized in the MOVE [1] system.
In section 6 we provide some illustrative examples of our view model concepts that
are based on a real-world industrial case study. Section 7 concludes the paper with
some discussion on our future research directions.

2. DATABASES, ONTOLOGIES AND VIEWS

Databases and Ontologies serve to structure vast amount of information that is
available at given point in time [14]. But in theory, there exists a clear distinction
between databases and Ontologies, namely, the clear distinction between the schema
and the instances. In databases (relational, OO, active, etc.), schemas are precisely
defined in one level of abstraction (usually at the logical or schemata level) and
instances are added, edited and/or validated in another layer. Usually views in
database systems are defined as part of the external schema. Conversely, Ontology
bases tend to have heterogeneous schemas at varying levels of abstraction (logical or
instantiated schemas) and instances may co-exist among these schemas to convey
information, concepts or relationship between two concepts to the users.

Another intriguing difference between database and Ontology base is that,
database trend to follow a well-defined and established standard/(s), while Ontology
standards, functionality and definitions trend to differ between implementations and
models due to its infancy [2, 15]. For example, in OWL [16] one can create
instances as part of the ontology but not in the DOGMA approach [6].

For the purpose of this paper, we need to make a distinction between the concept
of abstract view definitions (addressed in this paper) for SW and the view
definitions in SW languages such as Resource Description Framework (RDF) [17]
and the Ontology Web Language (OWL, previously known as DAML+OIL) [16].
Though expressive, SW related technologies and languages suffer from visual
modeling techniques, fixed models/schemas and evolving standards. In contrast,
higher-level OO modeling language standards (with added semantics to capture
Ontology domain specific constraints) are well-defined, practiced and transparent to
any underlying model, language syntax and/or structure [18]. They also can provide
well-defined models that can be transferred to the underlying implementation
models with ease. Therefore for the purpose of this paper, an abstract view for SW is
a view, where its definitions are captured at a higher level of abstraction (namely,
conceptual), which turn can be transformed, mapped and/or materialized at any
given level of abstraction (logical, instance etc.) in a SW specific language and/or
model.

In addition, an abstract view model for SW should be able to deal with not just
one but multiple data encoding language standards and schemas (such as XML,

RDF, OWL etc.), as enterprise content may have not one, but multiple data coding
standards and ontology bases. Another issue that deserves investigation is the
modeling techniques of views for SW. Though expressive, SW related technologies
suffer from proven visual modeling techniques [18]. This is because Object-
Oriented (OO) modeling languages (such as UML) provide insufficient modeling
constructs for utilizing semi-structured (such as XML, RDF, OWL) schema based
data descriptions and constraints, while XML/RDF Schema lacks the ability to
provide higher levels of abstraction (such as conceptual models) that are easily
understood by humans. To address this issue, many researchers have proposed
OMG’s UML (and OCL) based solutions [2, 15, 18-21], with added extensions to
model semi-structured data.

3. RELATED WORK

We can group the existing view models into four categories, namely; (a)
classical (or relational) views [4, 22], (b) Object-Oriented (OO) view models [5, 23],
(c) semi-structured (namely XML) view models [24-26] and (d) view models for
SW. An extensive set of literature can be found in both academic and industry
forums in relation to various view related issues such as (i) models, (ii) design, (iii)
performance, (iv) automation and (v) turning and refinement, mainly supporting the
2-Es; data Extraction and Elaboration (with and some research directions towards 3-
Es, i.e. 2-Es and data Extension). A comprehensive discussion on existing view
models can be also found in [26]. Here, we focus only on view models for semi-
structured data and SW.

Since the emergence of XML [27], the need for semi-structured data models to
be independent of the fixed data models and data access, violates fundamental
properties of the classical data models. Many researchers have attempted to solve
semi-structured data issues by using graph based [28] and/or semi-structured data
models [29, 30]. But, as in the case of relational and OO, the actual view definitions
are only available at the lower levels of the implementation and not at the conceptual
and/or logical level [26, 31].

One of the early discussion on XML views was by Serge Abiteboul [24] and
later more formally by Sophie Cluet et al. [32]. They proposed a declarative notion
of XML views. Abiteboul et al. pointed out that, a view for XML, unlike classical
views, should do more than just providing different presentation of underlying data
[24]. This, he argues, arises mainly due to the nature (semi-structured) and the usage
(primarily as common data model for heterogeneous data on the web) of XML. He
also argues that, an XML view specification should rely on a data model (like
ODMG [33] model) and a query language. In the paper [32], they discuss in detail
on how abstract paths/DTDs are mapped to concrete paths/DTDs. These concepts,
which are implemented in the Xyleme project [34, 35], provide one of the most
comprehensive mechanisms to construct an XML view to-date. The Xyleme project
uses an extension of ODMG Object Query Language (OQL) to implement such an
XML view. But, in relation to conceptual modeling, these view concepts provide no

 5

support. The view model is derived from the instantiated XML documents (instant
level) and is associated with DTD in comparison to flexible XML Schema. Also, the
Xyleme view concept is mainly focused on web based XML data.

Another XML view model; the MIX (Mediation of Information using XML)
[36] view system, is a by-product of developing web scale mediator systems. The
MIX system is based on mediator architecture supporting to provide the user with an
integrated view of the underlying heterogeneous information/data sources. The MIX
system employs XML as the data exchange and integration medium between
mediator components and the XML DTD to provide structural descriptions of the
data. Though MIX system provides support for XML views, it is not an XML view
by nature. It is a by-product to support data mediation for web-based information
systems. Though powerful, the drawback includes no standalone framework to
support XML views and non-standard language/(s) used to query/manipulate data.

Another view model for XML, which is based on Object-Relationship-Attribute
model for Semi-Structured data (ORA-SS) was proposed by authors in [25]. It is an
intuitive data model for XML based on Entity-Relationship (ER) model and the
static OO model. An object in ORA-SS is similar to that of an entity in ER (similar
to that of an XML element), while a relationship is similar to that of a relationship
between two entities in ER. Attributes of ORA-SS describe the objects and
relationships. This is one of the first view model that supports some of abstraction
above the data language level.

In the work [26, 31], we proposed a layered view model for XML with three
levels of abstraction, namely; conceptual, logical and instance levels. In the view
model, the view definitions are captured at the conceptual level using a set of
conceptual operators [37]. The conceptual view definitions are transformed to
logical/schema view definitions (using XML schema definition language) and to
document/instance view query expressions (e.g. such as XQuery and or SQL 2003).
An added advantage of such view model include; (a) capture conceptual semantics
that are easily understood by both human and machines (in contrast to machine-
friendly query expressions), (b) view definition are independent of any query
language syntax, (c) provide view validation using XML (view) schema and (d)
expressive view semantics that support extraction, elaboration or both.

In related work in Semantic Web (SW) [38] paradigm, some view models have
been proposed in [3, 39], where the authors present a RDF views with support for
RDF [17] schema (using a RDF schema supported query language called RQL).
This is one of the early works focused purely on RDF/SW paradigm and has
sufficient support for logical modeling of RDF views. The extension of this work
(and other related projects) can be found at [40]. RDF is an object-attribute-value
triple, where it implies object has an attribute with a value [41]. It only makes
intentional semantics and not data modeling semantics. Therefore, unlike generic
view models, views for such RDF (both logical and concrete) have no tangible scope
outside its domain. In related area of research, the authors of the work proposed a
logical view formalism for ontology [1, 15, 42] with limited support for conceptual
extensions, where materialized ontology views are derived from conceptual/abstract
view extensions.

Another area that is currently under development is the view formalism for SW
Meta languages such as OWL. In some SW communities, OWL is considered to be
a conceptual modeling language for modeling Ontologies, while some others
consider it to be a crossover language with rich conceptual semantics and RDF like
schema structures [1]. It is outside the scope of this paper to provide argument for or
against OWL being a conceptual modeling language. Here, we only highlight one of
view formalism that is under development for OWL, namely views for OWL in the
“User Oriented Hybrid Ontology Development Environments” [43] project.

4. OUR ABSTRACT VIEW MODEL FOR
SEMANTIC WEB

In this paper, we present an abstract view model with conceptual extensions for
the SW (SW-view). Initially such view model was proposed for XML by us in [26,
31], with clear distinction between three levels of abstraction namely; (a)
conceptual, (b) logical (or schematic) and (c) document (or instance). Here it is
adopted for the SW paradigm.

In work with XML, we provided clear distinction between conceptual, logical
and document levels views, as in the case of data engineering, there exists a need to
clearly distinguish these levels of abstractions. But in the case of SW domain,
though there exists a clear distinction between conceptual and logical
models/schemas, the line between the logical (or schema) level and document (or
instance) level trends to overlap due to the nature of the data sources (namely
Ontology bases), where concepts, relationships and values may present mixed sorts,
such as schemas and values [14]. Therefore, in the SW-view model, we provide a
clear distinction between conceptual and logical views, but depending on the
application, we allow an overlap between logical views and document views. This is
one of the main differences between the XML view model and the SW-views.

To our knowledge, other than our work, there exist no research directions that
explore the conceptual and logical view model for the Semantic Web (SW)
paradigm. This notation of SW-view model has explicit constraints and an extended
set of expressive conceptual operators to support Ontology extraction in the MOVE
[1, 2, 15] system.

4.1 Conceptual Views
The conceptual views are views that are defined at the conceptual level with

conceptual level semantics using higher-level modeling languages such as UML. To
understand the SW-view and its application in constructing ontology views, it is
imperative to understand its concept and its properties. First, an informal definition
of the view concept is given followed by a formal definition that serves the purpose
of highlighting the view model properties and the modeling issues associated with
such a high-level construct.

Definition 1: A conceptual view is the one which is defined at the conceptual
level with higher level of abstraction and semantics.

 7

One such abstract view model will; (i) provide data abstraction to view data set
similar to a class (in OO) does to real-world objects, (ii) enable the software
designers (not the programmers) to visualise, construct and validate constructed data
sets (views) that are normally left to implementers, (iii) utilise as a tool to
communicate better with the domain users and to improve domain user feedback (as
users usually used to visualise data as a constructed data sets (views) than a
stored/modelled data) and (iv) be utilised by system designers to add additional data
semantics at a higher level of abstractions to data intensive domains (such as SW or
XML domains), where both data and data semantics are important.

4.2 Conceptual View Properties

To utilize the SW-view model in applications, it is imperative that, one must first
understand some of its unique properties and characteristics. In this section, we first
provide some of the SW-view formal semantics followed by the derivation of the
conceptual view definition. It should be note here that, though there can be more
elaborated definitions are possible depending on the application domain, here we
provide a simplified generic SW-view definition that can be easily applied to
ontology extraction. Following the conceptual view definition are the sections that
address some of the unique characteristics of the SW-views, conceptual operators,
some modeling issues and the descriptive constraint model.

Conceptual Objects (CO): CO refers to model elements (objects, their
properties, constraints and relationships) and their semantic inter-relationships (such
as composition, ordering, association, sequence, all etc) captured at the conceptual
level, using a well-defined modeling language such as UML, or XSemantic nets [10,
11], OWL or E-ERD [4] etc. A CO can be either of type simple content (scontent) or
complex content (ccontent) depending on its internal structure [10, 41, 44]. For
example, CO that uses primitive types (such as integer, character etc) as their
internal structure corresponds to scontent and CO that uses composite objects represent
their internal structure corresponds to ccontent.

Conceptual Schema (CS): We refer conceptual schema as the meta-model (or
language) that allow us to define, model and constrain COs. For example, the
conceptual schema for a valid UML model is the MOF. Also, the UML meta-model
provides the namespace of such schemas.

Like XML/RDF Schema, where the instance will be an XML/RDF document,
here, an instance of the conceptual schema will be a well-defined, valid conceptual
model (in this case in UML) or other conceptual schemas (i.e. such as MOF), which
can be either visual (such as UML class diagrams) or textual (in the case of
UML/XMI models).

Logical/Schema Objects (LO): When CO are transformed or mapped into the
logical/schema level (such rules and mapping formalism described in works such as
[10, 21, 41, 45, 46]), the resulting objects are called LO. These objects are
represented in textual (such as a schema language, OWL) or other formal notations
that support schema objects (such as graph).

Postulate 1: A context (ς) is an item (or collection of items) or a concept that is
of interest for the organization as a whole. It is more than a measure [47, 48] and is a

meaningful collection of model elements (classes, attributes, constraints and
relationships) at the conceptual level, which can satisfy one or more organizational
perspective/(s) in a given domain. Simply said, it is a collection of concepts,
attributes and relationships that are of interest in construction of other ontology/(ies).

Postulate 2: A perspective (∂) is a viewpoint of an item (or a collection of
items) that makes sense to one or more stakeholders of the organization or an
organizational unit, at given point in time. That is, one viewpoint of a context at a
given point in time.

Definition 2: A conceptual view () [31] is a view, defined over a collection
of valid model elements, at the conceptual level. That is, it is a perspective for a
given context at a given point in time.

coV

Let be a collection of COs. Let be the rule set, constraints and syntaxes that
makes a valid collection of CO (according to a meta-modeling language such as
MOF or UML or XSemantic nets). Therefore it can be shown that, a valid
conceptual collection set is a function of , shown as;

X ℜ
X

X ℜ

)(Xℜ=X (1)

We can show that, a valid conceptual view [14] () of the valid CO set
collection is defined as the perspective constructed over a context

coV
X ∂ ς by the

conceptual construct D . The resulting conceptual view belongs to the
domain , (where) with schema , (where

). The conceptual view is said to be valid if it is a valid instance

of the view schema . Therefore conceptual view ;

)(coVD)(DVD ςcoco =)()(coco VS
)(SVS ∂= cococo)(

)(∂coS coV

),,,(XV D∂= ςco (2)

where; (a) the view name of is provided by the perspectivecoV ∂ , (b) the domain
and the namespace for is provided by the context coV ς in the valid CO collection
set of , (c) the view construction is provide by the conceptual construct ; i.e.
conceptual operators that construct the view over a given context, (d) the valid
collection set set provides the data for the view instantiation, (e) the view
schema) that constrains and validates the view instances of the v coV
and (f) the do)(coV provides the domain for view coV . Another
equivalent form of this definitions can be found in our wor

X D

X coV
(coco VS iew

main the
k in [26].

D

As we stated earlier, unlike XML-view model, the distinction between
conceptual and logical levels are clearly state for SW-views, but not between logical
and document views. A detailed discussion of this work can be found in [14].

 9

4.3 Conceptual View Operators

The conceptual constructor is a collection of binary and unary operators, that
operates on CO (at the conceptual level) to produce result that is again a valid CO
collection. The set of binary and unary operators provided here is a complete or
basic set; i.e. other operators, such as division operator [4] and compression (see
section 6) can be derived from these basic set of operators.

4.3.1 Conceptual Binary Operators

The conceptual set operators are binary operators that take in two operands
produces a result set. The following algebraic operators are defined for manipulation
of CO collection sets. A CO collection set can be represented in UML, XSemantic
nets or other high-level modeling languages.

Let yx, be two valid CO collection sets (operands) that belongs to domains
and)()(xdomxco =D)()(ydomyco =D respectively.

1. Union Operator: A Union operator of operands),(yxU yx, produces a CO

collection setR , such that R is again a valid CO collection that includes all
COs that are either in x or in or in both y x and with no duplicates. This can
be shown as in (3) below, where .

y
)()()(yxdom coco DDR ∪=

''),(yyxxyxyx ∪=∪=∪==RU (3)

2. Intersection Operator: An Intersection operator of operands),(yxI yx, produces

a CO collection setR , such that R is again a valid CO collection that includes
all COs that are in both x and y .

yxyx ∩==R),(I (4)

where . Note: Since both Union and Intersection
operators are commutative and associative, they can be applied to n-ary operands.

)()()(yxdom coco DDR ∩=

3. Difference Operator: A Difference operator),(yxD of operands yx, produces a

CO collection setR , such that R is again a valid CO collection that includes all
COs that are in x but not in y .

yxD yx −==R),((5)

where . Also note; the difference operator is NOT commutative.)()(xdom coDR =

4. Cartesian product Operator: A Cartesian product operator of operands),(yx× yx,

produces a CO collection setR , such that R is again a valid CO collection that
includes all COs of x and y , combined in combinatorial fashion.

yxyx ×==× R),((6)

where)()()(yxdom coco DDR ×=

5. Join Operator: A Join operator can be shown in its general form as;

yx
conditionjyx][),(><>< ==R

where, optional join-condition provides meaningful merger of COs. A join-
condition jcondition be of the form; (1) simple-condition: where the join-condition
jcondition is specified using CO simple content Scontent types, (2) complex-condition:
where the join-condition jcondition is specified using CO complex content Ccontent types
and (3) pattern-condition: where the join-condition jcondition is specified using a
combination of one or more CO simple and complex content types in a hierarchy
with additional constraints, such as ordering etc.

(i) Natural Join
A natural join operator of operands),(yx>< yx, is a join operator with no join-
condition specified, produces a CO collection setR , such that R it is equivalent to
a Cartesian product operator. This can be shown as;

),(),(yxyx yxR ×=== ><>< (7)

(ii) Conditional Join

A join operator of operands),(yx>< yx, with explicit join-condition
specified produces a CO collection set

conditionj

R , such that R will have only the
combination of CO collection set that satisfies the join condition. The join-condition

can only be of type; (1) simple-condition and (2) complex-condition. This
join is comparable to the relational operator

conditionj
θ join. This can be shown as;

yx ANDjyx condition])[(),(1
><>< == R (8)

(iii) Pattern Join

A join by pattern is a join by condition operator where the join-condition

is of type pattern-condition.
),(yx><

conditionj

4.3.2 Conceptual Unary Operators

We propose four unary conceptual operators to construct conceptual views
without loss of CO semantic that are represented in the model. The four conceptual
operators are projection, selection, rename, and restruct(ure).

 11

1. PROJECT Operator: Given a valid CO collection set x , and a set of CO (either

or or combination of both and), the project operator
will produce a CO collection set

contents contentc contents contentc

)(x∏ R where it has only the specified CO set
with; (a) persevered node hierarchy, (b) preserved node order and (c) preserved
semantic relationships (if any). If need to , the projected CO set (in the case of
hierarchical CO/(s) can be specified using the W3C XPath [49] standard.

)(,.......),()(21
xCOCOx ∏==∏ R (9)

where the domain of R is)()(1 k
m
k COdomdom ==UR

2. SELECT Operator: Given a valid CO collection set x , the select operator

)(xσ will produce a CO collection setR , where it contains one or more matching

CO (or collection) that satisfy the select-condition . In addition, the
select-conditions can be combined using the AND, OR, NOT logical operators.

conditions

)()(x
conditionsx σσ == R (10)

Again, here, the select-condition Scondition be of the form; (1) simple-condition:
where the select-condition Scondition is specified using CO simple content Scontent types
and the select operator is called value-based, (2) complex-condition: where the
select-condition Scondition is specified using CO complex content Ccontent types and the
select operator is called structure-based and (3) pattern-condition: where the select-
condition Scondition is specified using a combination of one or more CO simple and
complex content types in a hierarchy with additional constraints, such as ordering
etc, where the select operator is called structure-based.

3. RENAME Operator: Given a valid CO collection set x , and a CO src (with old

and new labels), the rename operator able
newold Lll ∈),()(xρ will return x where

the label of is changed. A RENAME operation cannot; (a) alter src src specific
data types and (b) alter src specific contents, values or constraints.

)(),()(xnewold llsrcx ρρ == R (11)

4. RESTRUCT(ure)Operator: Given a CO collection set x , and a CO, src (with a

pair of positions, old and new), where the positions can be either

absolute or relative (in a CO hierarchy), the restructure operator

),(21 pospos

)(xδ will

returnR , where the position of src (src can be either or) is
changed from to .

contents contentc

1pos 2pos

)(),()(21
xpospossrcx δδ == R (12)

But a restructure operation does not allow; (a) deletion of CO/(s) in the
hierarchy, (b) alter CO structural relationships, constraints, names or cardinality and
(c) alter CO data type or values.

Note: The operators presented above are referred to as extended or non-restive
basic set, as many secondary (e.g. DIVISION operator) and restrictive operators (see
section 5) can be derived by combining one or more of these binary and unary
operators.

4.4 Modeling Conceptual Views for SW

In this paper, to model conceptual views, we propose OMG’s UML (for
modelling Ontologies). The only purpose we use this notation is to demonstrate our
concepts and applications, and not to emphasis or promote this as the only modeling
notation for conceptual views.

UML [12] has established itself as the defacto modelling language of choice in
OO conceptual modelling paradigm. UML provides a well defined rich collection of
tools to visually model a given domain into needed level of abstraction. It can be
said that, UML helps to provide a well-defined blue print for a software system that
is easily understood both by users and developers alike. UML also provides
extensibility to the modelling language in the form of stereotypes which we utilise in
defining our conceptual views. In the case of Ontology engineering, UML provide
classes (similar to concepts in ontology), attributes and relationships that are used in
defining Ontology models [2] in this paper.

Another reason we adopt UML is that, its models are portable, i.e. many
schemata transformation rules and mapping techniques exists for transforming UML
models to [20, 21, 41]; (a) XML Schema, (2) Ontology Web Language (OWL), (c)
RDF and (d) XMI. Therefore, for the purpose of this paper, UML is visual
modelling language of choice for OO conceptual modelling and supports abstraction
from classical data models to ontology bases.

4.5 Conceptual View Constraints

In data modeling, specifications often involve constraints. In the case of views, it
is usually specified by the data languages (and mostly excluding constraints
associated with data semantics) in which they are defined in. For example, in
relational model, views are defined using SQL and a limited set of constraints can be
defined using SQL[4, 22], namely, (i) presentation specific (such as display
headings, column width, pattern order etc), (ii) range and string patterns for
aggregate fields, (iii) input formats for updatable views, and (iv) other DBMS
specific (such view materialization, table block, size, caching options etc).

In Object-Relational and OO models, views had similar constraints but they are
more extensive and explicit due to the data model (yet data language dependent).
The OO views are constructed and specified using DBMS specific (such as
OQL[33]) and/or external languages (such as C++, Java or O2C[23]). It is a similar
situation in views for semi-structured data paradigm, where rich set of view

 13

constrains are defined using languages such as OQL based LOREL [50, 51]. Today,
in the case of Ontology engineering (and in Ontology views), this is still holds true,
where constraints are specified using programming modules than at the schemata
and/or logical level. In doing so, the constraints are implicit and mostly accessible
only at runtime of the system and not at the modeling and/or design time.

But the work by authors of [25] provides some form of higher-level view
constraints (under ORA-SS model) for XML views, while the work in [3] provides
some form of logical level view constraints to be defined in views for in SW/RDF
paradigm. As our conceptual view mechanism is defined at a higher-level of
abstraction, we can provide an explicit view constraint specification model, as most
high-level OO languages (such as UML, XSemantic nets, E-ER) provide some form
of constraint specification.

Here, for our view model, we look into using UML/OCL [52] as our view
constraint specification language. Also, our work should not be confused with work
such as [53], where authors use OCL to “model” (not to specify) relational views (in
contrast to ontology views), which utilizes OCL from a data modeling point of view.
In UML, the Object Constraint Language (OCL), which is now a part of the UML
2.0 standard, can support unambiguous constraints specifications for UML models
including specification of ontology model elements . In our conceptual view model,
we incorporate OCL (in addition to built-in UML constraint features) as our view
constraint specification language to explicitly state view constraints. It should be
noted that, we do not use OCL to define views, rather state additional constraints
using OCL. OCL supports defining derived classes [52, 54], which is close to a view
concept [53]. Some examples of UML/OCL constraints for conceptual views are
given in section 6, below.

5. CONCEPTUAL VIEWS AND THE MOVE [1]
SYSTEM

 In the sections 4 above, we have shown how conceptual views can be
constructed in a given industrial settings. Here, we briefly discuss how such views
can be applied in Ontology extraction in the Materialized Ontology View Extractor
(MOVE) system [1]. The MOVE system was initially proposed by Wouters et al. [1,
2, 15], for the construction optimized materialised Ontology views, with emphasis
on automation and quality of the views generated. The MOVE view process
includes model and design of conceptual views with the utilization of restricted
conceptual operators in deriving materialized Ontology views. Some of the
restricted view operators include [2, 14]; (a) synonymous rename (2) selection and
(3) compression.

Definition 3: [14] (Informal) A Strict Semantic Web View (or Ontology View)
is a materialized SW-view that is derived from an Ontology (called the base
ontology). The derivation can consist of any (combination) of the following
operations; synonymous rename, selection and compression.

6. AN ILLUSTRATIVE INDUSTRIAL CASE STUDY

The e-Sol Inc. aims to provide logistics, warehouse, and cold storage space for
its global customers and collaborative partners. The e-Sol solution includes a
standalone and distributed Warehouse Management System (WMS/e-WMS), and a
Logistics Management System (LMS/e-LMS) on an integrated e-Business
framework called e-Hub [55] for all inter-connected services for customers, business
customers, collaborative partner companies, and LWC staff (for e-commerce B2B
and B2C). Some real-world applications of such company, its operations and IT
infrastructure can be found in [55-57]. Here, use this system as the base to model
and integrate (using Ontology views) Ontology bases and various sub-ontology
vocabularies used at various customer and collaborative partner locations.

Figure 1. e-Sol example, Core Data Store Model (UML/OCL)

In WMS (Fig. 1-3), customers book/reserve warehouse and cold storage space
for their goods. They send in a request to warehouse staff via fax, email, or phone,
and depending on warehouse capacity and customers’ grade (individual, company or

 15

collaborative partner), they get a booking confirmation and a price quote. In
addition, customers can also request additional services such as logistics, packing,
packaging etc. When the goods physically arrive at the warehouse, they are stamped,
sorted, assigned lots numbers and entered into the warehouse database (in Lots-
Master). From that day onwards, customers get regular invoices for payments. In
addition, customers can ask the warehouse to handle partial sales of their goods to
other warehouse customers (updates Lots-Movement and Goods-Transfer), sales to
overseas (handled by LMS) or take out the goods in full or in partial (Lots-
Movement). Also customer can check, monitor their lots, buy/sell lots and pay
orders via an e-Commerce system called e-WMS. In LMS, customers use/request
logistics services (warehouse or third-party logistics providers) provided by the
warehouse chains. This service can be regional or global including multi-national
shipping companies. Like e-WMS, e-LMS provide customers and warehouses an e-
Commerce based system to do business. In e-Hub, all warehouse services are
integrated to provide one-stop warehouse services (warehouse, logistics, auction,
goods tracking, payment etc) to customers, third-party collaborators and potential
customers.

In e-Sol, due to the business process, data semantics have to be in different
formats (Ontology bases and vocabularies) to support multiple systems, customers,
warehouses and logistics providers. Also, data have to be duplicated at various
points in time, in multiple databases, to support collaborative business needs. In
addition, since new customers/providers to join the system (or leave), the data
formats has to be dynamic and should be efficiently duplicated without loss of
semantics. This presents an opportunity to investigate how to integrate and utilize
various customers’ and collaborative partners’ Ontology bases for mutual benefit
and SW applications. The following example highlights some example of
conceptual views developed for e-Sol. Note: It should be note that, the examples
and the figures given for the e-Sol are demonstration purpose only and do not
provide the complete Ontology base model of the system.

Example 1: Context (in Fig. 1-2), “staff”, “order”, and “customer” can be
some of the context examples in the e-Sol system.

Example 2: Conceptual views (Fig. 1), “Customer-History”, “Lot-Master-
Charge-History” and “Rent-Warehouse-Space-History” are perspectives / views
in the context of “Warehouse-History” of the e-Sol system.

Example 3: Conceptual view (Fig. 2), “Collaborative-Partner” is a
perspectives / view in the context of “Customer” in e-Sol.

Example 4: Conceptual views, for example, “processed-order” and “overdue-
order” are two contrasting views in the context of “order” of the e-Sol system.

Example 5: In Fig. 2, “Warehouse-Manager” is a valid XML conceptual view,
named in the context of “Staff”. It is constructed using the conceptual SELECT
operator, which can be shown as;

σwarehouse-Staff.Role=“manager”(Core-Users).

Example 6: Similarly (Fig. 2), “Site-Manager” is a perspective/ view in the
given context of “Warehouse-Manager”.

Example 7: Another valid conceptual view “Lot-Master-Charge-History” in
the given context of “Warehouse-History”. Here, at the conceptual level, it is stated
as a materialized conceptual view, implying that it is a persistence view during the
life time of the system. This characteristic is also stated in the OCL statement
(Fig.1).

Figure 2. e-Sol, Business User Model (UML/OCL)

Example 8: In the case of conceptual view “Warehouse-Manager” (Fig. 2), we
indicate the unique staffID by the following OCL expression;

context Staff
inv : self->isUnique(self.staffID)

Example 9: In the case of conceptual view “Income” (Fig. 3), the following OCL
statements hold true;
context Income :: Staff : ID
derive : Staff.staffID

context Income :: benefits : Real
derive : Benefit-Pkg.totalBenefits

context Income :: baseSalary : Real
derive : Salary-Pkg.baseSalary

context Income :: totalSalary : Real
derive : totalSalary =
 (self.baseSalary – self.tax)

 + benefits
 - self.totalDeductions

 17

Example 10: In the case of conceptual views “Warehouse-Manager” and
“Warehouse-Staff”, in the context of “Staff” (Fig. 2), we indicate the adhesion
relationship between them using the following OCL statements given below.

context Warehouse-Staff :: managedBy : ID
derive: Warehouse-Manager.staffID

context Warehouse-Manager
inv: self.responsibleFor := Set(Warehouse-Staff.staffID)

context ManageStaff
inv : Warehouse-Staff->managedBy (Warehouse-Manager.staffID)

Example 11: In the case of conceptual views “Lot-Movement” (Fig. 1), the

exclusive disjunction between Internal-Lot-Movement (stored goods change
owners) and External-Lot-Movement (goods shipped outside the warehouse) can be
show via the OCL statement “OR” between the relationships as shown in Fig. 1.

Example 12: If a new domain requirement exists to add new conceptual view
“Management-Memo” send to all “Warehouse-Manager”, we can do that using
Cartesian Product conceptual operator, where x = Warehouse-Manager and y =
Management-Memo;

yxyx ×==× R),(

Example 13: In the case of conceptual view “Income” (Fig. 3), the conceptual
construct is a conceptual JOIN operator with join conditions, where x = Staff, y =
Salary-Pkg and z = Benefit-Pkg:

)()()..()..(zxANDyx staffIDzstaffIDxstaffIDystaffIDx == →→ = R

Figure 3. A conceptual view example (Income)

Example 14: A compression of elements indicates that those elements are
replaced by a single element in the Ontology view [14]. The element itself
can be a new element, but it will not provide additional semantic information
(compared to the base ontology). The compression operator constituted of one or
more of unary operations combined in sequence.

7. CONCLUSION AND FUTURE WORK

Views have proven to be very useful in databases and here, we presented a
descriptive discussion of an abstract view model for SW (SW-view). We first
provided formal properties of the SW-view model including a set of binary and
unary conceptual operators. Secondly, we provided a brief discussion on issues
related to SW-view model, including some modelling issues and the view constraint
model. Then we briefly presented how SW-views can be utilized in the MOVE
system, followed by some illustrative SW-view based on an industrial case study.

For future work, some further issues deserve investigation. First, the
investigation of a formal mapping and transformation approach of the view
constraints, and to automate the constraint model transformation between the SW-
view model to SW languages, such as RDF and OWL schema constraints. Second,
the automation of the mapping process between conceptual operators to various SW
(high-level) query language expressions (e.g. RDQL) with emphasis on
performance. Third, is the investigation into the dynamic properties of the SW-view
model.

8. REFERENCES

[1] C. Wouters, T. S. Dillon, J. W. Rahayu, E. Chang, and R. Meersman, "Ontologies on the MOVE,"
9th International Conference on Database Systems for Advanced Applications (DASFAA '04), Jeju
Island, Korea, 2004.

[2] C. Wouters, T. S. Dillon, J. W. Rahayu, E. Chang, and R. Meersman, "A Practical Approach to the
Derivation of a Materialized Ontology View," in Web Information Systems, Edited by D. Taniar and
J.W. Rahayu, D. Taniar and W. Rahayu, Eds. USA: Idea Group Publishing, 2004.

[3] R. Volz, D. Oberle, and R. Studer, "Views for light-weight Web ontologies," Proceedings of the
ACM Symposium on Applied Computing (SAC '03), USA, 2003.

[4] R. Elmasri and S. Navathe, Fundamentals of database systems, 4th ed. New York: Pearson/Addison
Wesley, 2004.

[5] W. Kim and W. Kelly, "Chapter 6: On View Support in Object-Oriented Database Systems," in
Modern Database Systems: Addison-Wesley Publishing Company, 1995, pp. 108-129.

[6] P. Spyns, R. Meersman, and J. Mustafa, "Data Modeling Versus Ontology Engineering," SIGMOD,
2002.

[7] T. S. Dillon and P. L. Tan, Object-Oriented Conceptual Modeling: Prentice Hall, Australia, 1993.
[8] I. Graham, A. C. Wills, and A. J. O'Callaghan, Object-oriented methods : principles & practice, 3rd

ed. Harlow: Addison-Wesley, 2001.
[9] OMG-MDA, "The Architecture of Choice for a Changing World®, MDA Guide Version 1.0.1

(http://www.omg.org/mda/)," OMG, 2003.
[10] L. Feng, E. Chang, and T. S. Dillon, "A Semantic Network-based Design Methodology for XML

Documents," ACM Transactions on Information Systems (TOIS), vol. 20, No 4, pp. 390 - 421, 2002.
[11] R.Rajugan, E. Chang, L. Feng, and T. S. Dillon, "Semantic Modelling of e-Solutions Using a View

Formalism with Conceptual & Logical Extensions," 3rd International IEEE Conference on Industrial
Informatics (INDIN '05), Perth, Australia, 2005.

[12] OMG-UML™, "UML 2.0 Final Adopted Specification (http://www.uml.org/#UML2.0)," 2003.
[13] W3C-OWL, "OWL: Web Ontology Language 1.0 reference (http://www.w3.org/2004/OWL/),"

W3C, 2004.

http://www.omg.org/mda/),
http://www.w3.org/2004/OWL/),

 19

[14] C. Wouters, Rajugan R., T. S. Dillon, and J. W. Rahayu, "Ontology Extraction Using Views for

Semantic Web," in Web Semantics and Ontology, D. Taniar and W. Rahayu, Eds. USA: Idea Group
Publishing, 2005.

[15] C. Wouters, T. S. Dillon, J. W. Rahayu, and E. Chang, "A Practical Walkthrough of the Ontology
Derivation Rules," Database and Expert Systems Applications : 13th International Conference
(DEXA '02), Aix-en-Provence, France, 2002.

[16] W3C-OWL, "OWL web ontology language 1.0 reference," W3C, 2002.
[17] W3C-RDF, "Resource Description Framework (RDF), (http://www.w3.org/RDF/)," 3 ed: The

World Wide Web Consortium (W3C), 2004.
[18] I. Cruz, S. Decker, J. Euzenat, and D. McGuinness, "The emerging semantic web : selected papers

from the first Semantic Web Working Symposium," IOS Press,Tokyo : Ohmsha, 2002, pp. 297.
[19] P. Wongthamtham, E. Chang, T. S. Dillon, J. Davis, and N. Jayaratna, "Ontology Based Solution for

Software Development," International Conference on Software Engineering and Applications
(ICSSEA '03), Paris, France, 2003.

[20] D. Gaševic, D. Djuric, V. Devedzic, and V. Damjanovic, "Approaching OWL and MDA Through
Technological Spaces," 3rd Workshop in Software Model Engineering (WiSME 2004), Lisbon,
Portugal, 2004.

[21] D. Gaševic, D. Djuric, V. Devedzic, and V. Damjanovic, "Converting UML to OWL Ontologies,"
Proceedings of the 13 th International World Wide Web Conference, NY, USA, 2004.

[22] C. J. Date, An introduction to database systems, 8th ed. New York: Pearson/Addison Wesley, 2003.
[23] S. Abiteboul and A. Bonner, "Objects and Views," ACM SIGMOD Record, Proceedings of the

International Conference on Management of Data (ACM SIGMOD '91), 1991.
[24] S. Abiteboul, "On Views and XML," Proceedings of the eighteenth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems (PODS '99), Philadelphia, Pennsylvania,
USA, 1999.

[25] Y. B. Chen, T. W. Ling, and M. L. Lee, "Designing Valid XML Views," Proceedings of the 21st
International Conference on Conceptual Modeling (ER '02), Tampere, Finland, 2002.

[26] R.Rajugan, E. Chang, T. S. Dillon, and F. Ling, "A Three-Layered XML View Model: A Practical
Approach," 24th International Conference on Conceptual Modeling (ER '05), Klagenfurt, Austria,
2005.

[27] W3C-XML, "Extensible Markup Language (XML) 1.0, (http://www.w3.org/XML/)," 3 ed: The
World Wide Web Consortium (W3C), 2004.

[28] Y. Zhuge and H. Garcia-Molina, "Graph structured Views and Incremental Maintenance,"
Proceeding of the 14th IEEE Conference on Data Engineering (ICDE '98), USA, 1998.

[29] S. Abiteboul, R. Goldman, J. McHugh, V. Vassalos, and Y. Zhuge, "Views for Semistructured
Data," Workshop on Management of Semistructured Data, USA, 1997.

[30] H. Liefke and S. Davidson, "View Maintenance for Hierarchical Semistructured," Proceedings of
the Second International Conference on Data Warehousing and Knowledge Discovery (DaWak '00),
London, UK, 2000.

[31] R.Rajugan, E. Chang, T. S. Dillon, and F. Ling, "XML Views: Part 1," 14th International
Conference on Database and Expert Systems Applications (DEXA '03), Prague, Czech Republic,
2003.

[32] S. Cluet, P. Veltri, and D. Vodislav, "Views in a Large Scale XML Repository," Proceedings of the
27th VLDB Conference (VLDB '01), Roma, Italy, 2001.

[33] R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell, O. Schadow, T.
Stanienda, and F. Velez, "The Object Data Standard: ODMG 3.0," Morgan Kaufmann, 2000, pp.
300.

[34] Xyleme, "Xyleme Project (http://www.xyleme.com/)," 2001.
[35] Lucie-Xyleme, "Lucie Xyleme: A dynamic warehouse for XML Data of the Web," IEEE Data

Engineering Bulletin, vol. 24, No 2, pp. 40-47, 2001.
[36] B. Ludaescher, Y. Papakonstantinou, P. Velikhov, and V. Vianu, "View Definition and DTD

Inference for XML," Post-ICDT Workshop on Query Processing for Semistructured Data and Non-
Standard Data Formats, 1999.

http://www.w3.org/RDF/),
http://www.w3.org/XML/),
http://www.xyleme.com/),

[37] R.Rajugan, E. Chang, T. S. Dillon, and F. Ling, "A Layered View Model for XML Repositories &

XML Data Warehouses," The 5th International Conference on Computer and Information
Technology (CIT '05), Shanghai, China, 2005.

[38] W3C-SW, "Semantic Web, (http://www.w3.org/2001/sw/)," W3C, 2005.
[39] R. Volz, D. Oberle, and R. Studer, "Implementing Views for Light-Weight Web Ontologies,"

Seventh International Database Engineering and Applications Symposium (IDEAS'03), Hong Kong,
SAR, 2003.

[40] KAON, "KAON Project (http://kaon.semanticweb.org/Members/rvo/Folder.2002-08-
22.1409/Module.2002-08-22.1426/view)," 2004.

[41] L. Feng, E. Chang, and T. S. Dillon, "Schemata Transformation of Object-Oriented Conceptual
Models to XML," International Journal of Computer Systems Science & Engineering, vol. 18, No.
1, pp. 45-60, 2003.

[42] C. Wouters, T. S. Dillon, J. W. Rahayu, E. Chang, and R. Meersman, "A Practical Approach to the
Derivation of a Materialized Ontology View," in Web Information Systems, Edited by D. Taniar and
J.W. Rahayu, Idea Group Publishing, USA, 2004, D. Taniar and W. Rahayu, Eds. USA: Idea Group
Publishing, 2004.

[43] HyOntUse, "User Oriented Hybrid Ontology Development Environments,
(http://www.cs.man.ac.uk/mig/projects/current/hyontuse/)," 2003.

[44] L. Feng, T. S. Dillon, H. Weigand, and E. Chang, "An XML-Enabled Association Rule
Framework," 14th International Conference on Database and Expert Systems Applications (DEXA
'03) 2003, Prague, Czech Republic, 2003.

[45] R. Conrad, D. Scheffner, and J. C. Freytag, "XML conceptual modeling using UML," 19th
International Conference on Conceptual Modeling (ER '00), USA, 2000.

[46] D. Gaševic, D. Djuric, V. Devedžic, and V. Damjanovic, "UML for Read-To-Use OWL
Ontologies," Proceedings of the IEEE International Conference Intelligent Systems, Vrana,
Bulgaria, 2004.

[47] M. Golfarelli, D. Maio, and S. Rizzi, "The Dimensional Fact Model: A Conceptual Model for Data
Warehouses," International Journal of Cooperative Information Systems, vol. 7, pp. 215-247, 1998.

[48] J. Trujillo, M. Palomar, J. Gomez, and I.-Y. Song, "Designing Data Warehouses with OO
Conceptual Models," in IEEE Computer Society, "Computer", 2001, pp. 66-75.

[49] W3C-XPath, "XML Path Language (XPath) Version 1.0," in XML Path Language, vol. November
1999: The World Wide Web Consortium (W3C), 1999.

[50] S. Abiteboul, J. Quass, J. McHugh, J. Widom, and J. Wiener, "The Lorel Query Language for
Semistructured Data," International Journal on Digital Libraries, vol. 1, pp. 68-88, 1997.

[51] R. Goldman, J. McHugh, and J. Widom, "From Semistructured Data to XML: Migrating the Lore
Data Model and Query Language," Proceedings of the 2nd International Workshop on the Web and
Databases (WebDB '99), Philadelphia, Pennsylvania, 1999.

[52] OMG-OCL, "UML 2.0 OCL Final Adopted specification (http://www.omg.org/cgi-
bin/doc?ptc/2003-10-14)," OMG, 2003.

[53] H. Balsters, "Modelling Database Views with Derived Classes in the UML/OCL-framework," The
Unified Modeling Language: Modeling Languages and Applications (UML '03), USA, 2003.

[54] J. B. Warmer and A. G. Kleppe, The object constraint language : getting your models ready for
MDA, 2nd ed. Boston, MA: Addison-Wesley, 2003.

[55] E. Chang, T. S. Dillon, W. Gardner, A. Talevski, Rajugan R., and T. Kapnoullas, "A Virtual
Logistics Network and an e-Hub as a Competitive Approach for Small to Medium Size Companies,"
2nd International Human.Society@Internet Conference, Seoul, Korea, 2003.

[56] E. Chang, W. Gardner, A. Talevski, E. Gautama, Rajugan R., T. Kapnoullas, and S. Satter, "Virtual
Collaborative Logistics and B2B e-Commerce," e-Business Conference, Duxon Wellington, NZ,
2001.

[57] ITEC, "iPower Logistics (http://www.logistics.cbs.curtin.edu.au/)," 2002.

http://www.w3.org/2001/sw/),
http://kaon.semanticweb.org/Members/rvo/Folder.2002-08-22.1409/Module.2002-08-22.1426/view),
http://kaon.semanticweb.org/Members/rvo/Folder.2002-08-22.1409/Module.2002-08-22.1426/view),
http://www.cs.man.ac.uk/mig/projects/current/hyontuse/),
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14),
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14),
http://www.logistics.cbs.curtin.edu.au/),

	INTRODUCTION
	DATABASES, ONTOLOGIES AND VIEWS
	RELATED WORK
	OUR ABSTRACT VIEW MODEL FOR SEMANTIC WEB
	Conceptual Views
	Conceptual View Properties
	Conceptual View Operators
	Conceptual Binary Operators
	Conceptual Unary Operators

	Modeling Conceptual Views for SW
	Conceptual View Constraints

	CONCEPTUAL VIEWS AND THE MOVE [1] SYSTEM
	AN ILLUSTRATIVE INDUSTRIAL CASE STUDY
	CONCLUSION AND FUTURE WORK
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

