5 research outputs found

    Designing Predictive Maintenance for Agricultural Machines

    Get PDF
    The Digital Transformation alters business models in all fields of application, but not all industries transform at the same speed. While recent innovations in smart products, big data, and machine learning have profoundly transformed business models in the high-tech sector, less digitalized industries—like agriculture—have only begun to capitalize on these technologies. Inspired by predictive maintenance strategies for industrial equipment, the purpose of this paper is to design, implement, and evaluate a predictive maintenance method for agricultural machines that predicts future defects of a machine’s components, based on a data-driven analysis of service records. An evaluation with 3,407 real-world service records proves that the method predicts damaged parts with a mean accuracy of 86.34%. The artifact is an exaptation of previous design knowledge from high-tech industries to agriculture—a sector in which machines move through rough territory and adverse weather conditions, are utilized extensively for short periods, and do not provide sensor data to service providers. Deployed on a platform, the prediction method enables co-creating a predictive maintenance service that helps farmers to avoid resources shortages during harvest seasons, while service providers can plan and conduct maintenance service preemptively and with increased efficiency

    ECONOMIC PERSPECTIVE ON ALGORITHM SELECTION FOR PREDICTIVE MAINTENANCE

    Get PDF
    The increasing availability of data and computing capacity drives optimization potential. In the industrial context, predictive maintenance is particularly promising and various algorithms are available for implementation. For the evaluation and selection of predictive maintenance algorithms, hitherto, statistical measures such as absolute and relative prediction errors are considered. However, algorithm selection from a purely statistical perspective may not necessarily lead to the optimal economic outcome as the two types of prediction errors (i.e., alpha error ignoring system failures versus beta error falsely indicating system failures) are negatively correlated, thus, cannot be jointly optimized and are associated with different costs. Therefore, we compare the prediction performance of three types of algorithms from an economic perspective, namely Artificial Neural Networks, Support Vector Machines, and Hotelling T² Control Charts. We show that the translation of statistical measures into a single cost-based objective function allows optimizing the individual algorithm parametrization as well as the un-ambiguous comparison among algorithms. In a real-life scenario of an industrial full-service provider we derive cost advantages of more than 17% compared to an algorithm selection based on purely statistical measures. This work contributes to the theoretical and practical knowledge on predictive maintenance algorithms and supports predictive maintenance investment decisions

    Integration of Novel Sensors and Machine Learning for Predictive Maintenance in Medium Voltage Switchgear to Enable the Energy and Mobility Revolutions

    Get PDF
    The development of renewable energies and smart mobility has profoundly impacted the future of the distribution grid. An increasing bidirectional energy flow stresses the assets of the distribution grid, especially medium voltage switchgear. This calls for improved maintenance strategies to prevent critical failures. Predictive maintenance, a maintenance strategy relying on current condition data of assets, serves as a guideline. Novel sensors covering thermal, mechanical, and partial discharge aspects of switchgear, enable continuous condition monitoring of some of the most critical assets of the distribution grid. Combined with machine learning algorithms, the demands put on the distribution grid by the energy and mobility revolutions can be handled. In this paper, we review the current state-of-the-art of all aspects of condition monitoring for medium voltage switchgear. Furthermore, we present an approach to develop a predictive maintenance system based on novel sensors and machine learning. We show how the existing medium voltage grid infrastructure can adapt these new needs on an economic scale

    How to Conduct Rigorous Supervised Machine Learning in Information Systems Research: The Supervised Machine Learning Reportcard [in press]

    Get PDF
    Within the last decade, the application of supervised machine learning (SML) has become increasingly popular in the field of information systems (IS) research. Although the choices among different data preprocessing techniques, as well as different algorithms and their individual implementations, are fundamental building blocks of SML results, their documentation—and therefore reproducibility—is inconsistent across published IS research papers. This may be quite understandable, since the goals and motivations for SML applications vary and since the field has been rapidly evolving within IS. For the IS research community, however, this poses a big challenge, because even with full access to the data neither a complete evaluation of the SML approaches nor a replication of the research results is possible. Therefore, this article aims to provide the IS community with guidelines for comprehensively and rigorously conducting, as well as documenting, SML research: First, we review the literature concerning steps and SML process frameworks to extract relevant problem characteristics and relevant choices to be made in the application of SML. Second, we integrate these into a comprehensive “Supervised Machine Learning Reportcard (SMLR)” as an artifact to be used in future SML endeavors. Third, we apply this reportcard to a set of 121 relevant articles published in renowned IS outlets between 2010 and 2018 and demonstrate how and where the documentation of current IS research articles can be improved. Thus, this work should contribute to a more complete and rigorous application and documentation of SML approaches, thereby enabling a deeper evaluation and reproducibility / replication of results in IS research

    Deep learning for automobile predictive maintenance under Industry 4.0

    Get PDF
    Industry 4.0 refers to the fourth industrial revolution, which has boosted the development of the world. An important target of Industry 4.0 is to maximize the asset uptime so to improve productivity and reduce the production and maintenance cost. The emerging techniques such as artificial intelligence (AI), industrial Internet of things (IIoT) and cyber-physical system (CPS) have accelerated the development of data-orientated application such as predictive maintenance (PdM). Maintenance is a big concern for an automobile fleet management company. An accurate maintenance prediction can be helpful to avoid critical failure and avoid further loss. Deep learning is a type of prevailing machine learning algorithm which has been widely used in big data analytics. However, how to establish a maintenance prediction model based on historical maintenance data using deep learning has not been investigated. Moreover, it is worthwhile to study how to build a prediction model when the labelled data is insufficient. Furthermore, surrounding factors which may impact automobile lifecycle have not been concerned in the state-of-the-art. Hence, this thesis will focus on how to pave the way for automobile PdM under Industry 4.0. This research is structured according to four themes. Firstly, different from the conventional PdM research that only focuses on modelling based on sensor data or historical maintenance data, a framework for automobile PdM based on multi-source data is proposed. The proposed framework aims at automobile TBF modelling, prediction, and decision support based on the multi-source data. There are five layers designed in this framework, which are data collection, cloud data transmission and storage, data mapping, pre-processing and integration, deep learning for automobile TBF modelling, and decision support for PdM. This framework covers the entire knowledge discovery process from data collection to decision support. Secondly, one of the purposes of this thesis is to establish a Time-Between-Failure (TBF) prediction model through a data-driven approach. An accurate automobile TBF iv Abstract prediction can bring tangible benefits to a fleet management company. Different from the existing studies that adopted sensor data for failure time prediction, a new approach called Cox proportional hazard deep learning (CoxPHDL) is proposed based on the historical maintenance data for TBF modelling and prediction. CoxPHDL is able to tackle the data sparsity and data censoring issues that are common in the analysis of historical maintenance data. Firstly, an autoencoder is adopted to convert the nominal data into a robust representation. Secondly, a Cox PHM is researched to estimate the TBF of the censored data. A long-short-term memory (LSTM) network is then established to train the TBF prediction model based on the pre-processed maintenance data. Experimental results have demonstrated the merits of the proposed approach. Thirdly, a large amount of labelled data is one of the critical factors to the satisfactory algorithm performance of deep learning. However, labelled data is expensive to collect in the real world. In order to build a TBF prediction model using deep learning when the labelled data is limited, a new semi-supervised learning algorithm called deep learning embedded semi-supervised learning (DLeSSL) is proposed. Based on DLeSSL, unlabelled data can be estimated using a semi-supervised learning approach that has a deep learning technique embedded so to expand the labelled dataset. Results derived using the proposed method reveal that deep learning (DLeSSL based) outperforms the benchmarking algorithms when the labelled data is limited. In addition, different from existing studies, the effect on algorithm performance due to the size of labelled data and unlabelled data is reported to offer insights for the deployment of DLeSSL. Finally, automobile lifecycle can be impacted by surrounding factors such as weather, traffic, and terrain. The data contains these factors can be collected and processed via geographical information system (GIS). To introduce these GIS data into automobile TBF modelling, an integrated approach is proposed. This is the first time that the surrounding factors are considered in the study of automobile TBF modelling. Meanwhile, in order to build a TBF prediction model based on multi-source data, a new deep learning architecture called merged-LSTM (M-LSTM) network is designed. Abstract v Experimental results derived using the proposed approach and M-LSTM network reveal the impacts of the GIS factors. This thesis aims to research automobile PdM using deep learning, which provides a feasibility study for achieving Industry 4.0. As such, it offers great potential as a route to achieving a more profitable, efficient, and sustainable fleet management
    corecore