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Abstract: 

Within the last decade, the application of supervised machine learning (SML) has become increasingly popular in the 
field of information systems (IS) research. Although the choices among different data preprocessing techniques, as well 
as different algorithms and their individual implementations, are fundamental building blocks of SML results, their 
documentation—and therefore reproducibility—is inconsistent across published IS research papers.  

This may be quite understandable, since the goals and motivations for SML applications vary and since the field has 
been rapidly evolving within IS. For the IS research community, however, this poses a big challenge, because even with 
full access to the data neither a complete evaluation of the SML approaches nor a replication of the research results is 
possible.  

Therefore, this article aims to provide the IS community with guidelines for comprehensively and rigorously conducting, 
as well as documenting, SML research: First, we review the literature concerning steps and SML process frameworks 
to extract relevant problem characteristics and relevant choices to be made in the application of SML. Second, we 
integrate these into a comprehensive “Supervised Machine Learning Reportcard (SMLR)” as an artifact to be used in 
future SML endeavors. Third, we apply this reportcard to a set of 121 relevant articles published in renowned IS outlets 
between 2010 and 2018 and demonstrate how and where the documentation of current IS research articles can be 
improved. Thus, this work should contribute to a more complete and rigorous application and documentation of SML 
approaches, thereby enabling a deeper evaluation and reproducibility / replication of results in IS research. 
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1 Introduction 
Replication of published research is an important endeavor in the academic world. Replication studies 
repeat previously conducted studies with the goal to investigate whether the findings are reliable—and to 
what extent they can be generalized. Over the last decade, a lack of these methodologically important 
supplements have constituted the so-called “replication crisis” —reflecting that many scientific studies and 
their results are in fact difficult or even impossible to replicate. So far, this replication crisis has particularly 
been proclaimed in the fields of medicine and psychology (Schooler, 2014; Tackett et al., 2019).  

While Information Systems (IS) research has started to actively incentivizing replication studies (Olbrich et 
al., 2017; Weinhardt et al., 2019), the rise of methods from Machine Learning in IS entail new challenges in 
replication (Coiera et al., 2018; Hutson, 2018). Especially supervised machine learning (SML) is gaining 
increasing popularity in the field: Between 2010 and 2018, 35 contributions published in Management 
Information Systems Quarterly (MISQ), Information Systems Research (ISR) and Journal of Management 
Information Systems (JMIS) apply SML in their research. In addition, the number of publications in typical 
IS conferences (European Conference on Information Systems (ECIS), International Conference on 
Information Systems (ICIS)) that rely on SML as a key method is also steadily growing over time.  

While SML is enjoying widespread popularity and promises considerable potential in IS research, there is 
room for improvement when it comes to rigorously applying these technologies: Many IS research articles 
lack a thorough documentation of the SML process and the results obtained, which makes it challenging or 
virtually impossible to reproduce or replicate their results. Naturally, researchers may prefer discussing the 
implications of SML results instead of stringently documenting the SML process itself. This, however, will 
contribute to spread the replication crisis described above also in the IS research community, as it is neither 
possible to follow or replicate the precise choices of the research nor to judge whether its results are indeed 
meaningful. We set out to address this problem, and develop and test a documentation standard ultimately 
enabling frequent replication of SML studies in IS.  To this end, we first review the literature to identify the 
typical problem characteristics and choices to be made in SML endeavors. On this basis, we develop a 
“Supervised Machine Learning Reportcard (SMLR)” to provide guidelines for comprehensively and 
rigorously conducting and documenting SML research. We review the literature concerning extant steps 
and SML process frameworks and integrate them into a comprehensive reportcard. Finally, we review 121 
relevant articles, which were published from 2010 to 2018 in renowned IS outlets, such as Management 
Information Systems Quarterly (MISQ), Information Systems Research (ISR) and Journal of Management 
Information Systems (JMIS) and the proceedings of the International Conference on Information Systems 
(ICIS) and the European Conference on Information Systems (ECIS). We use this broad sample to analyze 
how and where the SML documentation of current articles could be improved. This article therefore 
contributes to a complete and rigorous application and documentation of SML research, which promotes 
meaningful and reproducible results.  

The remainder of this article is structured as follows: We introduce the fundamentals and positioning in the 
upcoming Section 2. Then, we derive and describe the problem characteristics and key choices of each 
SML endeavor in Section 3, followed by the introduction of the Supervised Machine Learning Reportcard 
(SMLR) addressing them. In Section 4, we apply this reportcard in an empirical study to relevant IS articles 
and analyze their precision when it comes to SML application and documentation. In Section 5, we conclude 
with recommendations, a summary and limitations of the study. 

2 Fundamentals and Positioning 
When it comes to their type of learning, machine learning techniques can be classified as either supervised 
or unsupervised ones1 (Mohri et al., 2013). In fact, most real-word applications of machine learning are of 
supervised nature (Jordan & Mitchell, 2015), whereby SML aims to predict the (discrete or continuous) value 
of an element by using a data set of observations in which this element is already known and labelled with 
the correct value (Rätsch, 2004). Precisely, we define supervised machine learning as follows—based on 
Mohri et al. (2013, p.5): Supervised machine learning is the concept of learning a function mapping an input 
to an output based on labelled training data, i.e. a sample of input-output pairs. For discrete target values, 
the problem is called a classification problem, for example, when determining product returns in e-commerce 

 
1 Other sources, for example, Fu (2003), also consider reinforcement learning as a third type. However, there is no academic consensus 
on this definitory classification. 
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(Heilig et al., 2016). In contrast, predictions of continuous variables, such as forecasts of electricity prices 
(Feuerriegel & Fehrer, 2016), are subsumed as regression problems. Here, the output of the SML algorithm 
is not a class, but a numerical value that specifies the predicted attribute.  

An SML endeavor, i.e. the application of SML methods to a problem, may serve different purposes and its 
specific design heavily depends on the particular problem. Shmueli & Koppius (2011) differentiate these 
purposes in either explaining or predicting a phenomenon. Regarding the first, statistical models can support 
explanatory-oriented research for testing causal hypotheses. For instance, if a researcher aims at explaining 
patterns in the data with a linear regression, individual model results (like the loading of the regression 
coefficients, the coefficient of determination R2, or p-values) might already fully warrant applying the model; 
there is no further need to evaluate its predictive power on an unseen test or validation set for possible 
deployment within information systems artifacts (Gong et al. (2017); Z. Li et al. (2016); Martens & Provost 
(2014)).  

On the other hand, predictive models can be used to anticipate unseen or future observations. In order to 
do so, researchers need to analyze SML's potential to solve an empirical prediction problem. Thus, they 
need to show its effectiveness in their field studies by reporting on the predictive qualities of a trained model. 
Researchers might compare an SML endeavor to different benchmarks and, consequently, not only show 
its basic functionality, but also the efficiency of leveraging SML for a certain, possibly productive task (Pant 
& Srinivasan, 2010). For instance, they may analyze whether a machine can perform a task better than a 
human (H. Han et al., 2015). Depending on the scope, this step may even require to implement a predictive 
model and embed it into a software tool, for example, to continuously make predictions (Oroszi & Ruhland, 
2010). The focus of our work is on SML applications for predictive purposes. 

When discussing replicability or reproducibility of SML studies for predictive purposes, we need to 
distinguish different possible levels of documentation. The spectrum of reproducibility originally developed 
by Peng (2011) for the field of computer science, is well applicable to our IS SML endeavors. On that basis, 
Figure 1 denotes the range of options that increasingly allow reproduction of results:  While mere results in 
a publication do not support any reproducibility, the exposure of method details, code and/or data will help 
to do so. He argues for the publication of “linked and executable code and data” along with the core article 
as a gold standard to assure reproducibility.  

 
 Figure 1. The spectrum of reproducibility; extended figure based on Peng (2011) 

However, typical IS studies cannot comply with a publication of code and/or data due to confidentiality issues 
(Gimpel et al., 2018; Sharp & Babb, 2018; Timmerman & Bronselaer, 2019), at least if not publicly available 
data sources are used.  For the work at hand, we will, therefore, primarily focus on the documentation of 
the problem characteristics and choices of applying SML—but still stress the importance of providing code 
and data whenever possible.  

When it comes to process models that support SML for predictive tasks, a variety of different possibilities 
exist—the most common being Knowledge Discovery in Databases (KDD) (Fayyad et al., 1996), Cross-
Industry Standard Process for Data Mining (CRISP-DM) (Chapman et al., 2000) and Microsoft Team Data 
Science Process (Microsoft, 2020). Although these process models are extremely popular, they are very 
broad and do not go deep enough to derive measurable criteria for SML endeavors. As they are designed 
for more general data mining and machine learning purposes, they are (by design) not detailed and lack 
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helpfulness and transparency for our purpose. The same shortcoming of high-level abstraction applies to 
other, less popular process models (Anand & Büchner, 1998; Brodley & Smyth, 1995; Cabena et al., 1998; 
Cios et al., 2000; Witten et al., 2011). Since these process models are highly generic and can be applied to 
any kind of data analysis projects—and not SML exclusively—they only focus on a limited part of the overall 
choices and problem characteristics (Kurgan & Musilek, 2006). Furthermore, they do not include precise 
guidelines for the performance estimation and deployment of an SML endeavor, which are especially 
important in IS (Shmueli & Koppius, 2011). A process model is also not suitable for communicating results 
in a scientific publication.  

In this article, we therefore derive problem characteristics and key choices as part of the SMLR; every SML 
endeavor needs to consider and document them to enable readers and reviewers to fully grasp and judge 
the individual project—also for replication studies of machine learning in IS research (Hutson, 2018; 
Olorisade et al., 2017; Voets et al., 2018). Similarly to the proposed reportcard for IS research, related 
“checklists” were proposed in other disciplines—with the idea to append them when submitting a manuscript 
to a conference or journal. A number of articles originate from the field of medicine and aim to educate 
physicians the application of machine learning (Mongan et al., 2020; Pineau, 2020; Qiao, 2019; Winkler-
Schwartz et al., 2019). While these articles share some problem characteristics and choices with IS 
research, their main goal is to map them to the specific needs of a clinical audience. In the field of CS, three 
main articles are important: Pineau (2020) proposes a short checklist to foster reproducibility in general 
machine learning endeavors. He emphasizes precise descriptions in the areas of models, theory, data, code 
and results, e.g., to include clear README files. In the area of Natural Language Processing (NLP), Dodge 
et al. (2019) stress aspects of result reporting and especially hyperparameter tuning. To allow for more 
realistic results, they propose that researchers utilize their novel technique of expected validation 
performance. Furthermore, they elaborate on the documentation of the used hardware. While hardware is 
an important metric in CS to estimate runtimes and complexities of machine learning models (Dodge et al., 
2019; Pineau, 2020), these aspects play a minor role in the reproducibility of the more application-oriented 
IS—and will be neglected in the remainder of this work. Mitchell et al. (2019) present a “model card” with a 
focus on fairness and ethics of machine learning models, as they conclude fairness and bias topics are not 
(yet) integrated into the minds of data scientists. Apart from CS and with a strong focus on the industrial 
sector, Studer et al. (2020) propose an adapted version of CRISP-DM for the application of machine learning 
in the automotive sector with a checklist on specific quality assessment measures. In contrast to these 
related checklists, our proposed SMLR a) focusses on the holistic SML process from problem statement to 
productive deployment, b) details the necessary problem characteristics of specifically SML (and not ML in 
general) and c) presents the findings with an IS audience in mind. Where appropriate, we will highlight 
where insights from other articles influenced the design of our presented SMLR. 

3 Towards Rigorous Supervised Machine Learning Documentation 
The results of the literature review confirm that so far no process model systematically captures all the 
problem characteristics to be reported and choices to be made in SML projects in the field of IS. Thus, we 
set out to collect and merge the necessary problem characteristics and key choices from various sources: 
We gather individual parts of the entire process from relevant literature and augment other parts based on 
logical reasoning and best practices gained from the execution of typical SML projects. 

3.1 Problem Characteristics and Key Choices of Supervised Machine Learning  
For the subsequent analysis, we further divide an SML endeavor into the following three main steps: model 
initiation, model performance estimation, and, if applicable, model deployment (Hirt et al., 2017)—as 
illustrated in Figure 2. In the model initiation step, the objectives for the endeavor are formulated and the 
matching data set is gathered, prepared, and characterized. Having initiated a model, its performance will 
be estimated by training and testing models on a data set D in which the target to be predicted is known. 
First, models learn patterns in the data from a training subset DTr ⊆ D and then apply it towards a test set 
DTe = D / DTr of the data, which was not used for training. Cross-validation approaches are applied to perform 
this with various alternative DTr/DTe splits. 
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Figure 2. Overview of Supervised Machine Learning Steps 

When conducting SML endeavors, it is important to specify problem characteristics (e.g., class distribution) 
and elaborate on the choices made (e.g., performance measure). Additionally, it is necessary to state these 
key insights when publishing the results, because only with this context information can the reader judge 
the endeavor's rigor and meaningfulness. For instance, if the author does not specify if hyperparameter 
optimization was used in the SML process, it is difficult to verify whether the models' performance could be 
further improved or if the author has simply accepted the performance of the first best tuple of 
hyperparameters (Dodge et al., 2019).  

As previously explained, the goal of the endeavor needs to be precisely defined: It should show the purpose 
and the targeted application (Mongan et al., 2020). The necessary activities of initiation and performance 
estimation are linked to the first two, while model deployment is also important when implementation is the 
goal. Model performance estimation aims to estimate a model's performance on unseen data based on a 
set DTe of data for which the feature to be predicted is known. This is a typical SML step across all disciplines 
which leverage it, for example, medicine (Shipp et al., 2002) or physics (Rupp et al., 2013). However, when 
conducting an SML endeavor in IS, not only performance estimation is an inherent step, but also model 
deployment. This implementation within a productive software tool continuously exposes the model to new, 
incoming data (Shmueli & Koppius, 2011). While model performance estimation builds on both training and 
testing activities, model deployment only leverages the training to create a deployable model. For instance, 
within a model performance estimation not all data can be used for model training, as a certain share needs 
to be saved for validation and/or testing purposes. For model deployment, however, it is important to use 
as much data as is available—because more data enables the model to achieve better performances 
(Banko & Brill, 2001). Therefore, after estimating the model performance, the final model is built by using 
all available data D in the model deployment phase. 

3.1.1 Model Initiation 
When conducting SML, a model needs to be defined. A model can be considered as a tuple of parameters 
that describe which algorithm is used, how its parameters are initiated, and what the general process is like. 
These basic assumptions and surrounding conditions are defined in the model initiation. They serve as the 
basis for the subsequent model building, for model evaluation (as part of performance estimation), as well 
as for model deployment.  

First, it is important to state the problem which the SML endeavor aims to address (Qiao, 2019). This 
requires specifying a target value and the SML problem type—for instance, binary / multi-class classification 
or regression problems. It should be clear from the start what the problem type is (“What should be solved”) 
(Chapman et al., 2000). Next, the different aspects of the data used and its characteristics are important to 
estimate the complexity of the task and also to enable meaningful judgement of the final results at a later 
point. This starts with the data gathering and precise definitions on how it is performed (Oquendo et al., 
2012; Winkler-Schwartz et al., 2019). SML requires a target value, which can either be collected together 
with the data or it can be separately labelled (automatically or manually) after the collection. In any event, it 
needs to be explained if and how the labelling takes place. If the volume of the data is too large to be 
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analyzed, it is possible to conduct a sampling2, which pulls a representative subset of the larger data set 
(Dhar et al., 2014). Especially in recent years, the process of sampling has not only been relevant to retrieve 
a representative data set, but also a fair one without any biases (Barocas et al., 2017). With a data set to 
analyze, additional problem characteristics and key choices need to be specified. The data distribution is of 
major importance, since it ultimately determines the interpretation of the results (He & Ma, 2013). For 
instance, in a binary classification on a data set with a minority class distribution of 10%, an accuracy of 
90% is easily achievable by simply predicting all observations as belonging to the majority class. This is, 
furthermore, also a question of the performance metric, which we address at a later point. Irrespective of 
the performance metric, however, the number of classes and their shares need to be specifically mentioned 
for every classification problem (e.g., as a table). The same applies to regression problems (e.g., a 
representation as a boxplot) to enable the reader to understand the basic problem. Furthermore, it is 
important if and which data preprocessing methods are applied—for any type of data. For instance, in the 
specific case of natural language processing (NLP), the possibilities of transforming unstructured text data 
into structured, machine-digestible formats are manifold (Manning & Schütze, 2000). We, therefore, need 
to specify which transformation techniques are applied and why they are applied for a specific problem. 
Apart from the preprocessing, statements about the data quality are of interest. Data quality covers many 
aspects, including correctness (“is it true?”), accuracy (“how precise?”), completeness (“is it complete?”) 
and relevance (“is it related to the initial problem?”) (R. Y. Wang et al., 1993). Sparsity and noise are two 
examples of data quality characteristics—and there are a number of different complexity measures available 
to assess them (Ho & Basu, 2002).  

3.1.2 Model Training and Testing 
Training and testing are essential parts of each machine learning endeavor. However, the purpose of these 
activities needs to be clearly defined: We particularly distinguish between estimating the model's 
performance on unseen data (Section 3.3) and deploying a model within a software tool (Section 3.4). 

In the model training phase, the sampling of data, which occurs prior to training a model, can have a 
significant impact on the performance (Chawla, 2005). Popular sampling techniques for dealing with uneven 
class sizes are undersampling, oversampling or Synthetic Minority Over-sampling Technique (SMOTE). 
Undersampling is applied when the number of random sample instances taken from the majority of 
observations is limited to match the size of the minority data set used for training purposes (Rahman & 
Davis, 2013). In contrast, oversampling randomly duplicates instances from the minority class so that 
researchers can work with more instances than originally available (Rahman & Davis, 2013). SMOTE 
creates new additional synthetic instances to match the number of training set elements in the majority class 
(Chawla et al., 2002). 

The core of the model training phase consists of selecting an algorithm, as well as its parameters, which 
creates another set of choices. For instance, popular machine learning frameworks like the python-based 
“scikit-learn” (Pedregosa & Varoquaux, 2011) and the Java-based “WEKA” (Hall et al., 2009) feature more 
than sixty, respectively, thirty supervised learning algorithm implementations. SML algorithms can be 
classified in different ways (Caruana & Niculescu-Mizil, 2006; Hastie et al., 2009; Kotsiantis, 2007). 
Aggarwal and Zhai (2012) divide supervised algorithms into the major classes of linear algorithms (e.g., 
Support Vector Machines or regressions), decision trees, pattern (rule-)based algorithms, probabilistic and 
Naive Bayes algorithms, and meta-algorithms. Each of these classes has its advantages and 
disadvantages—in general, as well as in relation to the specific data and problem they are applied to. While 
we cannot go into the details of each class, Kotsiantis (2007) provides more details on the particular 
selection criteria. 

When it comes to model testing, it is important to early define one or multiple performance metrics, which 
serve as the central criteria to estimate alternative models' performance and to finally evaluate the success 
of the SML endeavor. Common metrics used for classification tasks are, for instance, accuracy, precision, 
sensitivity, specificity, recall, F-measure or AUC (Powers, 2011). Metrics for regression tasks, on the other 
hand,  include mean squared error (MSE), R2, correlation coefficient (CC), normalized root mean squared 
error (NRMSE), signal-noise ratio (SNR), coefficient of determination (COD), as well as global deviation 
(GD) (Spuler et al., 2015). When it comes to choosing one or multiple metrics, it is again important to 

 
2 It should be noted that when it comes to machine learning, the term sampling can be used in three different scenarios with different 
objectives: It can be used to pull representative data as part of data gathering (as described above), it can be used in the distribution 
of data for a fold as part of the cross-validation (stratified sampling), or it can be used to counterbalance a minority class as part of the 
model training set (e.g., oversampling). 
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consider the nature of the problem, as well as the data set. For instance, although recall is a valuable metric 
to present the fraction of relevant observations among the retrieved observations, it is not meaningful on its 
own, since it can easily be brought to 100% by simply predicting all observations as belonging to the positive 
class. The inherent tradeoff between precision and recall is designed into the set of F-metrics (Goutte & 
Gaussier, 2005). In the case of regression, R2 and explained variance are popular choices. Additionally, for 
both regression and classification, the plotting of a learning curve can be meaningful,  because it can show 
the training and test set errors for each fold of the cross-validation and the respective amounts of data, 
which helps estimate the bias-variance tradeoff (Blanc, 2016). 

3.1.3 Performance Estimation 
Based on the performance estimation it is possible to draw conclusions on how the trained model performs 
on unseen data. In order to do so, it leverages the previously described steps of training and testing. The 
important step to conduct is splitting the data set to allow for these two activities. There are two different 
options when it comes to data splitting, namely percentage split and cross-validation (Abdullah et al., 2011). 
A simple split into a (larger) training set and a (smaller) test set is called a percentage split. The machine 
learning model is trained on the training set and then applied to the test set for evaluation. In IS research, 
data is often precious with a limited amount of available observations. Therefore, the prediction performance 
on the test set may vary significantly in the case of a percentage split, because, depending on which 
instances are present in the training set, it may or may not be trained as “well” (James et al., 2013). 
Generally, the error resulting from this prediction can be divided into bias, variance, and irreducible error 
(Friedman, 1997). In order to counteract the random effect of choosing data for the sets, a k-fold cross-
validation can be implemented. Here, the original data is divided into k folds of equal size. The model is 
trained with (k-1) folds (training set) and applied on the remaining fold, called validation set or local test set. 
This process is repeated k times with each of the k folds. The aggregated performances from the individual 
iterations are averaged and represent a more meaningful performance assessment than a single 
percentage split (Golub et al., 1979). For both cases, percentage split and cross-validation, stratified 
sampling allows for maintaining the original data set's distribution within the training and test set (Neyman, 
1934), which reduces the randomness associated with allocating the two subsets. 

If the goal is to simply demonstrate the capabilities of one machine learning model, one-time splits, such as 
percentage or k-fold, can be sufficient. If, however, the plan is to try out different models, optimize 
parameters, and estimate the error of a model on unseen data, additional steps should be undertaken. If 
any optimization takes place, it is important to test the model on completely unseen data—that is, data, 
which has never been used in any training or optimization iteration (Cawley & Talbot, 2010). A so-called 
hold-out set or global test set should never be used to change models or the choice of them, but preferably 
only to evaluate them once (Tušar et al., 2017). In order to address this, the nested cross-validation first 
splits the data into training/validation set and a hold-out set. Then, cross-validation with parameter 
optimization can be applied within an inner cross-validation, thereby making it possible to select and 
evaluate—but not again optimize—the best performing models within the outer cross-validation. To 
summarize, when it comes to model performance estimation, separating the data into multiple sets is of 
importance and depends on the use case: 

• Training set refers to the data set on which the model is trained. 
• Validation set or local test set refers to the data set on which the model is optimized. It must, 

however, not be used to evaluate the model's performance, otherwise the model tends to overfit. 
A validation set is crucially important if parameter optimization is performed. 

• Hold-out set or global test refers to the data set according to which the model is evaluated, but 
according to which it is never optimized. 

3.1.4 Model Deployment 
The final model deployment phase aims at generating, implementing, and distributing a previously built 
supervised machine learning model within a software tool. Data contains information and is valuable—
therefore, using the complete data set is meaningful for the final machine learning as depicted in Figure 3 
(Gama et al., 2004). It would incorporate parameters, which were typically previously selected from the 
performance estimation. These parameters also help in understanding the robustness of the model (i.e., its 
tendency for overfitting). For instance, analyzing the optimal parameters of the cross-validation's inner folds 
might reveal that a specific parameter combination occurs multiple times, or, if the model is very stable, all 
the time. This combination of parameters might then be directly used for the final training. Alternatively, an 
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additional cross-validation with the complete data set can be utilized to choose the parameters for final 
training.   

 
Figure 3. Data Sets for Training, Testing, and Final Deployment 

Then, an export of the final model, also called serialization (Zaharia et al., 2018), is needed to save the state 
of the model and the used preprocessing pipeline for further usage. Having concluded the serialization 
phase, the serialized object can be built into a workflow, such as a connected web service, to predict the 
target value of new, incoming data. Hereby, data is sent to the serialized object to be preprocessed and 
classified by the model. It is important to consider the validity of this final model, for example, how robust is 
it to changes in the data (Gama et al., 2004) and/or whether its performance is continuously maintained 
(Feurer et al., 2015). Since the model building data might be topical at that point in time, the data might 
change in the future. It is important to address this, preferably directly by continuously updating the model 
automatically, or, at least, by (qualitatively) estimating the performance for future changes (Baier et al., 
2019). For instance, in the case of sensor data in a production line, the predictive model might still be valid 
for a long time—as long as the produced goods remain the same. However, if elements of the production 
line change or new goods are produced, the model needs to be updated. In sum: It is important to address 
how the model copes with new, incoming data and, consequently, whether or not the model is continuously 
improved—and if not, why it is not necessary. 

3.2 The Supervised Machine Learning Reportcard (SMLR) 
For each step of an SML endeavor that were laid out in Section 3.1, we aim to identify key choices and 
problem characteristics to systematically capture and document them. In Figure 4, we present the 
Supervised Machine Learning Reportcard (SMLR), which allocates the identified problem characteristics 
and key choices alongside these steps. When conducting and describing a supervised machine learning 
endeavor, they should be addressed and defined. 

During the model initiation phase, the problem statement itself is a key characteristic, which classifies the 
supervised machine learning problem as being either a binary, a multiclass or a regression problem. Since 
every supervised approach requires data, a detailed description of the data gathering process, as well as 
the construction of a ground truth data set, should be provided. In order to better understand the data itself, 
data distribution should be described, as well as the overall data quality, that is, for example, the sparsity 
and noise of the data. Depending on the distribution of classes, sampling of data points might be necessary 
and needs to be described by the authors (e.g., type of sampling). Lastly, data preprocessing (Kotsiantis, 
2007), as well as feature engineering and vectorizing (Domingos, 2012), not only have a major influence on 
the overall performance of the trained model, but also bear the risk for major methodological mistakes, such 
as data leakage. It is important to consider different methods, as well as reasons for their usage.  

 

Data set

Data used for training in 
model performance estimation

Data used for training in 
model deployment

Data used for testing in 
model performance estimation
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Figure 4. Overview of Supervised Machine Learning Steps and Corresponding Problem Characteristics and 

Key Choices 

In the error estimation phase, the model's performance on unseen data should be estimated. Thus, 
information about the algorithm, the parameter search space, and the search algorithm (e.g., grid search, 
random search), as well as the data splitting method (e.g., percentage split, cross validation) needs to be 
specified. In the proposed reportcard, we list model training and testing as two separate units, which require 
thorough description. During the model training phase, data can be sampled to train a better prediction 
model. Furthermore, researchers should describe the algorithm that was used, as well as its implementation. 
This requirement goes beyond simply reporting the name of the approach. Especially for neural networks, 
researchers need to rigorously document the architecture of their model which for instance includes the type 
of network layers (e.g. convolutional, recurrent, or fully connected layers) applied and the number of neurons 
per layer. The choice of a suitable performance metric for a given problem is essential for the success of a 
supervised machine learning endeavor. Whereas accuracy might represent a model’s performance well in 
a class-balanced scenario, its descriptive capability typically decreases when it comes to highly imbalanced 
data. Each performance metric has its advantages and disadvantages. It is advisable to either use multiple 
(e.g. Accuracy + Precision + Recall + AUC) or composed (e.g. F-score) metrics, as single metrics can be 
easily tuned and do not represent a holistic overview of the qualities of the predictive model. Furthermore, 
the results need to be contextualized according to a performance evaluation/benchmark. For instance, if the 
utilized data set has been used in other articles or even data science challenges like Kaggle, the 
performance results obtained from these works should serve as a benchmark for direct comparison. If such 
results are not available, obvious benchmarks should be referred to. These could be either naïve models 
(e.g., a random guess or the prediction of the majority class/mean from the training set) or simpler models 
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(e.g., a basic linear or logistic regression). By providing this context, the reader can better understand the 
quality of the obtained performance.  

The performance of an estimated model can be used to show the effectiveness of a model. If it needs to be 
implemented for predictive modeling as part of the model deployment phase, the model is put into practice 
to solve the initial problem. In this scenario, the algorithm, as well as the previously identified parameters 
and sampling method should be used for model training. Furthermore, the data, which was used for training 
the final model, should be described. Since models can only represent a hypothesis based on training data, 
its validity decreases as the corresponding real-world situation changes. In order to address these changes, 
researchers should address the model validity and possible continuous improvement techniques, as well as 
the model’s application to unseen data (robustness). 

To ensure the completeness of our approach, we compare the characteristics and choices included in the 
reportcard with two widely used process models for data science projects, namely CRISP-DM (Chapman et 
al., 2000) and Microsoft Team Data Science Process (Microsoft, 2020). This analysis reveals that the 
reportcard in fact covers all important aspects of a machine learning endeavor. We can only determine a 
gap between the reportcard and the two process models regarding the documentation of requirements from 
the field as well as details on the business assessment. However, those two aspects usually do not apply 
to the academic context. A detailed comparison with CRISP-DM and with Microsoft Team Data Science 
Process can be found in the appendix in Table 4 and Table 5. 

The first and foremost aim of this work in general and the SMLR in specific is to generate awareness for the 
identified problem characteristics and key choices when conducting SML. However, if applicable, it can be 
also utilized as a framework to document these precise choices. To demonstrate a possible application, we 
depict a typical machine learning challenge—using the Iris data set (Fisher, 1936)—and report on the results 
in Table 1. 

Table 1. Exemplary Reportcard based on the Iris Data Set. Bold Writing indicates a Problem Characteristic 
or Choice from the Reportcard. 

Problem statement Predict iris flower class based on the four attributes four attributes Petal 
Length, Petal Width, Sepal Length, Sepal width 

Data gathering Pre-defined data set by scikit-learn package for Python (Pedregosa & 
Varoquaux, 2011), originating from Fisher (1936) 

Data distribution Three flower classes setosa, versicolor, virginica with 50 instances each; 150 
instances in total 

Sampling No sampling 
Data quality No missing values 
Data preprocessing methods No preprocessing 
Feature engineering  
and vectorizing 

No additional features apart from Petal Length, Petal Width, Sepal Length, 
Sepal width, no  

Performance estimation 
Parameter Optimization Yes 

Search Space RBF kernel 𝛾 ∈ {0.001;0.0001}  
C ∈ {1;10;100;1000} 

linear kernel C ∈ {1;10;100;1000} 
Search Algorithm Grid Search 

Data split Nested cross-validation, 3 outer folds, 5 inner folds 
Algorithm Support Vector Classifier 
Sampling No sampling 
Performance metric F1-score as a compromise between precision and recall 
Performance evaluation Average F1-score performance on outer folds: 0.9778,  

which is a nearly perfect score 
Model deployment 
Data used Full data set (150 instances) 

Model validity 
Continuous  
Improvement 

No continuous improvement 

Robustness No statement about the suitability possible 
Sampling No sampling 
Algorithm Support Vector Classifier 

Parameters RBF kernel 𝛾 = 0.001  
C = 1000 



Communications of the Association for Information Systems  
 

  Accepted Manuscript 
 

4 Empirical Study 
With the SMLR at hand, we review renowned articles from IS literature to identify the strengths and possible 
improvements on the basis of the presented key choices and problem characteristics. 

4.1 Methodology and Data Set 
For our study, we aim at covering a broad range of high standard, high quality publications in IS. The 
JOURQUAL3 rating, which conducted a total of 64,113 journal and conference evaluations from 1,100 
professors (VHB, 2012, 2019) serves as our basis. We focus on the top three journals and top two 
conference proceedings in the IS community (Hennig-Thurau et al., 2004), namely Management Information 
Systems Quarterly (MISQ), Information Systems Research (ISR), Journal of Management Information 
Systems (JMIS), of as well as the proceedings of, respectively, the International Conference on Information 
Systems (ICIS) and the European Conference on Information Systems (ECIS). 

Table 2. Number of Screened and Relevant Articles for each Outlet from 2010 to 2018 

 MISQ ISR JMIS ICIS ECIS ∑ 

Screened  
articles 

288 463 390 3,118 2,257 6,516 

Relevant  
articles 

7 13 15 43 43 121 

Binary  
classification 

1 8 8 19 24 60 

Multi-class 
classification 

5 2 7 15 10 39 

Regression 1 3 0 9 9 22 

In order to obtain a meaningful number of articles for our study, we cover the time range from 2010 to 2018. 
In total, we download and screen 6,516 articles. Among those papers, we identify those articles where the 
application of SML plays a major role. Naturally, there are “borderline cases” where SML is only applied on 
a side note and documented within a few sentences or small paragraph—while the overall goal of the 
research article is of different nature and SML is not at the core of the project. To name a few examples: 
Huang, Boh, and Goh (2017) apply SML for an automated sentiment labeling, Walden et al. (2018) utilize 
SML for an aspect of their experiment analysis and Ivanov and Sharman (2018) merely apply SML in the 
appendix for a robustness check. For our study of rigor SML application, we exclude these cases as SML 
was not the designated main method for the respective articles. However, we want to stress that our 
proposed SMLR would be a meaningful addition to the documentation of these small applications, too: While 
researchers would not need to go into detail in the body of the text, they could just append the filled 
reportcard at the end of the article for the interested reader and replicant (see Table C1 in the appendix). 

In a first step, we identify 121 full-research and research-in-progress articles, which describe an application 
of SML as detailed in Table 2. It is interesting to note how the importance of SML in IS developed over the 
years. In 2010, only six articles were published which applied SML in their research; in 2018, their number 
peaked with 30 research articles. More details on the chronological development in the distinct outlets are 
presented in Figure 5.  
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Figure 5. Amount of Supervised Machine Learning Articles in the Outlets of  
MISQ, ISR, JMIS, ICIS, and ECIS from 2010 to 2018 

Next, we thoroughly examine all 121 articles across the entire time frame regarding the reportcard steps 
with their problem characteristics and key choices previously defined in Section 3. We distinguish between 
binary classification, multi-class classification, and regression problems (Chollet, 2018). The majority of 
SML-based articles (60) solves binary classification problems (e.g., Oh and Sheng 2011; Pant and 
Srinivasan 2010; Amrit, Wijnhoven, and Beckers 2015), followed by 39 articles with multi-class (e.g., Dorner 
and Alpers 2017; T. Wang et al. 2013; Geva and Oestreicher-Singer 2013) and 22 articles with regression 
problems (e.g., Riekert et al. 2017; Feuerriegel, Riedlinger, and Neumann 2014; Ding, Li, and Chatterjee 
2015). 

Next, we describe our findings with regard to the different steps of model initiation, performance estimation, 
and model deployment, which we have defined in Section 3. These findings are summarized in Table 3 and 
will be discussed in the following. Tables A1 and B1 in the appendices show the individual analyses for 
journals and conferences. It is important to note that we assess all publications according to the same, 
objective criteria. We do not consider whether each of the indicators is meaningful for the individual 
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publication; for example, it might not be necessary for a study on the feasibility of SML for a certain business 
challenge to deal with the necessary steps for deployment. 

Table 3. Overview of Supervised Machine Learning Reportcard Steps and their Documentation 

 

4.2 Model Initiation 
Describing the data characteristics is a fundamental part of understanding the model that is built on top of 
it. At first, it is necessary to name the data source and/or the data collection process. In 12% (15/121) of all 
the reviewed articles, neither the data's origin, nor the source from where the authors have gathered it, is 
clearly stated. The quality of data determines the quality of the model; however, 32% (39/121) of the 
screened articles do not provide any information on data quality. 26% (31/121) of the articles do not describe 
the statistical distribution of the applied data set. This relates both to the distribution of the target variable 
and to the information about the attributes, which is used for prediction. When this information is lacking, it 
is impossible to judge the final model's performance for a given metric. Furthermore, if the distribution is 
unknown to the reader, the performance values can be meaningless—for example, a reported accuracy of 
99% with a 1% minority class can already be achieved by simply assigning all instances to the majority 
class. A good example of a sound data description is provided in Bretschneider and Peters (2016) who refer 
to the total number of messages and the number of harassment messages (target variable), which is 
included in their dataset. Data preprocessing and the engineering of features are also essential choices 
during an SML endeavor. However, 13% (16/121) of the reviewed articles do not include any information 
about the preprocessing or feature engineering activities that are chosen. Yet, this information is very 
valuable to any researcher or practitioner who wants to build a predictive model in the same domain. For 
instance, if we do not know how quality issues, such as incomplete data, have been handled, the results 
may be flawed. Furthermore, it is impossible for other researchers to re-create results if the data's 
preprocessing techniques are omitted, because various different possibilities for preprocessing exist. 
Stange and Funk (2015) thoroughly explain how they transform real-time advertising data before feeding 
this data into the model training phase. Thereby, they enable others to benefit from their knowledge. 

The performance assessment of a model highly depends on the chosen performance metric. This is 
therefore, a critically important decision for every SML endeavor. Due to the importance of this step, it is 
vital to specify the performance metric and the reason why it has been chosen. Nevertheless, only 49% 
(59/121) of all the reviewed articles actually give the reason for the choice of their evaluation metric. For 

14 23

Step Positive Example

100.00% (121/121) Abbasi et al. 2012

87.60% (106/121) Lin et al. 2017

74.38% (90/121) Stange and Funk 2016

14.88% (18/121) Dhar et al. 2014

67.77% (82/121) Hopf et al. 2017

76.03% (92/121) Johnson, Safadi, and Faraj 2015

74.38% (90/121) Martens and Provost 2014

Search Space 12.40% (15/121) Riekert et al. 2017

Search 
Algorithm

13.22% (16/121) Zhou 2017

95.87% (116/121) Urbanke, Uhlig, and Kranz 2017

100.00% (121/121) Oh and Sheng 2011

6.61% (8/121) T. Wang et al. 2013

48.76% (59/121) Fang et al. 2013

48.76% (59/121) X. Han, Wang, and Huang 2017

1.65% (2/121) Abbasi et al. 2018

Continuous 
Improvement

1.65% (2/121) Seebach, Pahlke, and
 Beck 2011

Robustness 15.70% (19/121) Koroleva and José 
Bolufé Röhler 2012
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instance, Riekert et al. (2016) state that they apply accuracy as evaluation metric—however, they do not 
explain why this is the best suited (and meaningful) metric for their underlying problem. 

4.3 Performance Estimation 
In only 19% (23/121) of the reviewed articles authors mention the parameters, which they use in the model 
training phase. Model's performance can vary significantly depending on the chosen parameters and 
therefore the parameter space has to be thoroughly defined and described3. In fact, 96% (116/121) of all 
the reviewed articles include information about how they split the dataset into a training set and a test set 
(e.g., Lash and Zhao 2016; Urbanke, Uhlig, and Kranz 2017; Chatterjee et al. 2018). If authors do not 
disclose this information, the reader cannot judge whether induced results are truly rigorous, because it 
might even imply that they did not split their data at all. If model training and model testing are performed 
on the same dataset, the measured performance is misleading and unrealistically high (James et al., 2013).  

In order to comprehensively understand a trained model's performance, it is important to compare it to 
previously built models—or other approaches that strive to solve the same problem. Thus, if any previous 
research or algorithm deals with the same problem or data set, the performance of the developed model 
should always be compared to the previous model. If there is no previous research, performance should be 
compared to other metrics, for example, random guesses (L. Li et al., 2013) or standard SML algorithms. 
Kozlovskiy et al. (2016) provide a good example by comparing their model's performance to a random 
guess. Only 49% (59/121) of the reviewed articles actually introduce a performance comparison (e.g., Cui, 
Wong, and Wan (2012); Geva and Oestreicher-Singer (2013); X. Han, Wang, and Huang (2017)). The 
remaining articles merely introduce the results of the predictive models without any comparison, in which 
case a reader can hardly judge the actual quality of the presented model.  

4.4 Model Deployment 
The articles in our study show the least reportcard compliance when it comes to the model deployment 
phase. As we pointed out earlier, the deployment phase is not a mandatory/necessary phase for each SML 
endeavor in IS research. In certain cases, authors may only want to prove the feasibility of an approach, 
which includes the application of SML. If a project focuses on this, it is not necessary to build a deployable 
solution and describe how this is best achieved. Nevertheless, only 26% (31/121) out of all the reviewed 
articles in our study at least describe the thoughts about a possible model deployment and the 
corresponding implications. This is only a small share of all screened articles, although IS, as a research 
discipline, should have a strong focus on producing final, implementable results and implications for practice 
(Gholami et al., 2016) . On the other hand, we also found some evidence for solutions, which were deployed 
(e.g. Schwaiger et al. 2017), including explanations on how the authors built their tool and which choices 
are necessary for deployment in an industry setting. However, even the examples which discuss the model 
deployment phase do not emphasize which data can be used for the final, to-be-deployed model.  

Another consideration is model validity in general and model updates in particular (Baier et al., 2019; Studer 
et al., 2020). An SML model is built upon data. One assumes that underlying concepts in this data are 
extracted to fulfill a given task. If an SML model is then deployed, these concepts should not change over 
time; otherwise the model has to adapt to such “concept drifts” (Gama et al., 2004). If, for example, a model 
that classifies user-written texts on a social media platform according the age of their authors is not updated 
from time to time, the prediction quality will decrease—language (i.e., phrases used by certain age groups) 
will change over time. Thus, we claim that the preservation of model validity needs to be properly addressed. 

5 Conclusion 
Supervised Machine Learning (SML) has become a popular method to solve problems in Information 
Systems (IS) research and other disciplines. Although SML offers many possibilities for proving 
effectiveness, efficiency, and application in the problem spaces of predictive modeling, it is important to 
conduct this research in a rigorous and comprehensive manner. Only by doing so, IS researchers enable 
their peers to understand and reproduce the conducted research. In this article, we have developed a 
Supervised Machine Learning Reportcard (SMLR) capturing important key choices and problem 
characteristics, which need to be considered in every SML endeavor. We elaborate on them and their 

 
3 However, this does not apply to, for example, linear regression, since no parameter choice is required. 
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importance. In an empirical study, we use this reportcard to analyze whether recent articles published in 
renowned IS outlets already apply the necessary scrutiny in SML descriptions—and we identify several 
shortcomings in the documentation of SML. For instance, not all the reviewed articles justify the chosen 
performance metrics and only a minority of them uses benchmarks to help the reader understand the 
evaluation of the models.  

The article at hand has two major limitations. First, we only review articles from five journals/proceedings 
and only consider instances from 2010 to 2018. While the selection is based on an acknowledged ranking 
(VHB, 2019), other rankings on important outlets obviously exist. As suggested by this ranking, we treat 
journal and conference publications alike, although journal publications are typically more mature and show 
longer histories of revisions. On the other hand, conference publications are timelier and a good indicator 
for upcoming topics and methods of the community. For the interested reader, however, we append 
differentiated analyses in the appendix. Regardless of rankings and precise outlets, the general message 
still remains that we can observe a lack of documentation. This lack can have two reasons: Either the 
identified key choices and problem characteristics were not considered, or they fell victim to shortening, for 
example, as part of the review process or the compliance to submission guidelines. Our study can, therefore, 
only analyze whether important key steps are addressed within the articles; our study does not allow for 
conclusions to be drawn on the actual research conducted. 

The proposed SMLR may prove helpful in future SML endeavors and serve as a guideline to more rigorous, 
comprehensive research in this area. Once implemented, the reportcard will enable a more transparent view 
on SML articles—and enable their reproducibility in the future. 
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Appendix A: Results of SMLR Study for Journals  

Table A1. Overview of Supervised Machine Learning Reportcard Steps, their Problem Characteristics and 
Choices as well as their Documentation in the Journal Publications Analyzed  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step Positive Example

100.00% (35/35) Abbasi et al. 2012

88.57% (31/35) Lin et al. 2017

82.86% (29/35) T. Wang et al. 2013

37.14% (13/35) Samtani et al. 2017

37.14% (13/35) Dong, Liao, and Zhang 2018

71.43% (25/35) Pant and Srinivasan 2013

62.86% (22/35) Twyman et al. 2015

Search Space 8.57% (3/35) Martens et al. 2016

Search 
Algorithm 11.43% (4/35) Martens et al. 2016

94.29% (33/35) Lash and Zhao 2016

100.00% (35/35) W. Li, Chen, and Nunamaker Jr 2016

5.71% (2/35) Kitchens et al. 2018

42.86% (15/35) Shi et al. 2017

68.57% (24/35) Cui, Wong, and Wan 2012

2.86% (1/35) Abbasi et al. 2018

Continuous 
Improvement 2.86% (1/35) Abbasi et al. 2018

Robustness 8.57% (3/35) Mo, Sarkar, and Menon 2018
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Appendix B: Results of SMLR Study for Conferences 

Table B1. Overview of Supervised Machine Learning Reportcard Steps, their Problem Characteristics and 
Choices as well as their Documentation in the Conference Publications Analyzed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step Positive Example

100.00% (86/86) Kowatsch and Maass 2018

87.21% (75/86) Ram 2015

70.93% (61/86) K.-Y. Huang, Nambisan, and Uzuner 2010

5.81% (5/86) Stange and Funk 2015

80.23% (69/86) Riekert et al. 2017

77.91% (67/86) Pröllochs, Feuerriegel, and Neumann 2015

79.07% (68/86) Baumann et al. 2015

Search Space 13.95% (12/86) Tafti and Gal 2018

Search 
Algorithm

13.95% (12/86) Staudt, Rausch, and Weinhardt 2018

96.51% (83/86) Chatterjee et al. 2018

100.00% (86/86) Tripathi and Kaur 2018

6.98% (6/86) Lüttenberg, Bartelheimer, and Beverungen 2018

51.16% (44/86) Blanc and Setzer 2015

40.70% (35/86) Geva and Oestreicher-Singer 2013

1.16% (1/86) Laing and Kühl 2018

Continuous 
Improvement

1.16% (1/86) Seebach, Pahlke, and Beck 2011

Robustness 18.60% (16/86) Goby et al. 2016
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Appendix C: Comparison to Data Science Processes 
Table 4. Steps of CRISP-DM and equivalent of Reportcard 

CRISP DM phases and tasks Related reportcard choices / characteristics 
Business understanding  

Determine business objectives Model initation – Problem statement 
Assess situation n.a. 

Determine data mining goals Model initation – Problem statement 
Produce project plan n.a. 

Data understanding  
Collect initial data Model initiation – Data gathering 

Describe data Model initiation – Data distribution 
Explore data Model initiation – Data distribution 

Verify data quality Model initiation – Data quality 
Data preparation  

Select data Model initiation – Sampling 
Clean data Model initiation – Data quality 

Construct data Model initiation – Data preprocessing methods 
Integrate data Model initiation – Data gathering 

Format data Model initiation – Feature engineering and vectorizing 
Modeling  

Select Modeling Technique Model training – Algorithm  
Generate Test Design Performance estimation – Data Splitting method 

Build Model Model training – Algorithm/Performance Estimation – Parameter 
optimization 

Assess Model Model testing – Performance metric 
Evaluation  

Evaluate results Model testing – Performance evaluation (benchmarks) 
Review process n.a. 

Determine next steps n.a. 
Deployment  

Plan deployment Model deployment – Data used 
Plan monitoring and maintenance Model deployment – Model validity (continuous improvement / robustness) 

Produce final report n.a. 
Review project n.a. 

 
Table 5. Lifecycle of Microsoft Team Data Science Process and equivalent of Reportcard 

MTDSP stages Related reportcard choices / characteristics 
Business understanding  

Define objectives Model initiation – Problem statement 
Identify data sources Model initiation – Data gathering 

Data acquisition and understanding  
Ingest the data Model initiation – Data gathering 

Explore the data Model initiation – Data distribution, Model initiation – Data quality 
Set up a data pipeline n.a. 

Modeling  
Feature engineering Model initiation – Data preprocessing methods, Model initiation – Feature 

engineering and vectorizing 
Model training Model training – Algorithm, Performance estimation – Data Splitting 

method, Model testing – Performance metric 
Suitability for production Model testing – Performance evaluation (benchmarks) 

Deployment  
Operationalize a model Model deployment  

Customer acceptance  
System validation n.a. 

Project hand-off n.a. 
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