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Abstract 
The Digital Transformation alters business models in all fields of application, but not all industries 
transform at the same speed. While recent innovations in smart products, big data, and machine learn-
ing have profoundly transformed business models in the high-tech sector, less digitalized industries—
like agriculture—have only begun to capitalize on these technologies. Inspired by predictive mainte-
nance strategies for industrial equipment, the purpose of this paper is to design, implement, and evaluate 
a predictive maintenance method for agricultural machines that predicts future defects of a machine’s 
components, based on a data-driven analysis of service records. An evaluation with 3,407 real-world 
service records proves that the method predicts damaged parts with a mean accuracy of 86.34%. The 
artifact is an exaptation of previous design knowledge from high-tech industries to agriculture—a sector 
in which machines move through rough territory and adverse weather conditions, are utilized exten-
sively for short periods, and do not provide sensor data to service providers. Deployed on a platform, 
the prediction method enables co-creating a predictive maintenance service that helps farmers to avoid 
resources shortages during harvest seasons, while service providers can plan and conduct maintenance 
service preemptively and with increased efficiency. 
Keywords: Predictive Maintenance, Agriculture, Data-driven Service, Design Science Research 

1 Introduction 
Agricultural production is subject to heavy seasonal variations in workload and adverse weather condi-
tions. For farmers, agricultural machines (e.g., tractors and combine harvesters) are particularly vulner-
able to unforeseen downtimes in high seasons. For service providers, harvesting periods often come with 
severe resource shortages, which constrain the availability of service technicians and spare parts. One 
strategy to prevent these shortages is to avoid machine downtimes preemptively, as targeted by various 
predictive maintenance approaches (Mobley, 2002) in other industries—especially fostered and estab-
lished in the ongoing Digital Transformation.  
Digital Transformation—a topic of strategic importance for organizations (Henriette et al., 2016)—re-
fers to the application of digitization and digitalization techniques on an organizational level in combi-
nation with innovative digital technologies (Priyadarshy, 2017). Thus, Digital Transformation enables 
organizations to establish new business models based on data-driven services and, thereby, to offer new 
value propositions for their customers. Digitization is the binary conversion of analogous information 
into a digital format (Hess et al., 2016, 2016; Tilson et al., 2010), whereas digitalization refers to a socio-
technical process of applying digitization to a broader (social or institutional) context (Tilson et al., 
2010). 
Predictive maintenance is an example for such new data-based services but extant research is currently 
focused on industrial production and manufacturing. In this area, application scenarios require high data 
availability and sophisticated systems integration. Particularly, information systems for predictive 
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maintenance rely heavily on sensor data to monitor a machine’s condition and predict defects and down-
times of equipment. For the predictive maintenance of agricultural machines, this design knowledge is 
insufficient, because sensor data are often unavailable in this scenario (Liu et al., 2016). However, extant 
design knowledge on maintaining industrial equipment can be subjected to an exaptation (Gregor and 
Hevner, 2013), to enable the implementation of predictive maintenance strategies for agricultural ma-
chines. 
At a closer inspection, differences between industrial and agricultural production are rooted in unavail-
able and scattered data. First, digitalization in agriculture is all but starting, and onboard communication 
in agricultural machines has not been standardized, yet (Liu et al., 2016). Also, machines are non-sta-
tionary and cannot be connected by wire, while wireless communication is often difficult due to limited 
network coverage in rural areas. Both factors impede the availability and accessibility of machine and 
sensor data (Liu et al., 2016)—the type of data which most current predictive maintenance concepts are 
built on. Second, unlike industrial settings, data on the capacity and utilization of agricultural machines 
are not documented in Enterprise Resource Planning (ERP) systems (Lokuge et al., 2016). Third, agri-
cultural production is subject to rough territory and adverse weather conditions, requiring the integration 
of external data—such as weather and geographic data—into predictive maintenance services. These 
data are semi-structured, so analyzing them requires special databases and substantial data preparation 
activities. Fourth, agricultural machines and their components are seldom managed in Enterprise-Asset-
Management (EAM) systems, leading to incomplete and inconsistent data on a machine’s condition, 
maintenance, and state of construction. Following Lokuge et al. (2016), the lack of information system 
usage in agriculture is caused by a low maturity of IT infrastructure, low level of IS acceptance, lack of 
specialized systems for the agricultural sector, the reluctance of IT consulting in the agricultural sector, 
and the high investment costs of implementing IT.  
As regards organizational issues, maintenance activities for agricultural machines involve many stake-
holders, whereas, in industrial production, the entire lifecycle of a machine is often governed by the 
same company. In agricultural production, farmers operate machines, detect defects based on gut feel-
ings or identify defects after their occurrence, and reactively schedule inspection appointments with 
their local service companies. These service companies possess service records on the maintenance 
events they conduct, including structured and unstructured data. Manufacturers, on the other hand, have 
access to specific machine data (e.g., bill-of-materials or even sensor data), but lack access to service 
records and, therefore, possess limited data on a machines’ condition and state of construction after its 
warranty period has expired. In these distributed settings, data on agricultural machines are scattered, 
leading to an insufficient digital representation of the machines that render current predictive mainte-
nance concepts insufficient for the agricultural sector. 
In an exaptation and extension of predictive maintenance strategies from industrial settings, we design 
a predictive maintenance method for agricultural machines. Deployed on a platform, the method enables 
service providers and farmers to preemptively conduct maintenance activities to avoid machine 
downtimes in high seasons. The method is the first IT artifact that exclusively predicts defects of ma-
chine components based on service records since sensor data on agricultural machines is insufficient.  
The paper unfolds as follows. In Section 2, we discuss related research on predictive maintenance. In 
Section 3, we explain and justify how we performed the exaptation of existing design knowledge on 
predictive maintenance services for industrial equipment, to design a method for predictive maintenance 
of agricultural machines. In Section 4, we report on the design, demonstration, and evaluation of our IT 
artifact. Section 5 concludes the paper and motivates further research on this topic. 

2 Related Research on Predictive Maintenance 
Just like in other industries, digital technologies, big data analytics, and the Digital Transformation as a 
whole now leave their mark on the traditional agricultural sector, which has started to undergo a tremen-
dous transformation (Pham and Stack, 2018). However, unlike other sectors, Digital Transformation in 
agriculture is accompanied faintly by scholarly research (Carbonell, 2016). While recent research efforts 
put forward smart farming (e.g., Lantzos et al., 2013; Kruize et al., 2016; O'Grady and O'Hare, 2017), 
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Digital Transformations’ impact on the domain has only recently started to be discussed. Kamilaris et 
al. (2017) provide a literature review on big data practices in the agricultural sector and conclude that 
despite “data analysis is leading to advances in various industries, it has not yet been widely applied in 
agriculture.” (Kamilaris et al., 2017, p. 23). To embed our research into extant theory, we, therefore, 
build on recent research and IT artifacts for predictive maintenance in other industries, including the 
high-tech sector. 

2.1 An Overview of Maintenance Strategies 
In industrial production and manufacturing, maintenance and repair of machines and equipment are done 
following one of three strategies—reactive maintenance, preventive maintenance, or predictive mainte-
nance (Mobley, 2002). In reactive maintenance, machines and equipment are operated until a defect or 
malfunction occurs, which is then fixed (Mobley, 2002). For this strategy, maintenance is not planned 
or scheduled and components are used as long as possible, which minimizes costs for spare parts, but 
makes machines vulnerable for downtimes (Mobley, 2002). In preventive maintenance, equipment is 
replaced before a defect occurs. The interval of usage is usually defined regarding operating hours, based 
on experience or maintenance intervals pre-specified by manufacturers (Mobley, 2002). Thus, compo-
nents might be replaced before the end of their lifetime has been reached, increasing costs compared to 
reactive maintenance. Conversely, preventive maintenance avoids or reduces downtimes since mainte-
nance activities can be scheduled before a defect occurs. In predictive maintenance, repairs are 
scheduled based on the condition of a machine or component (Mobley, 2002). Machines or components 
are used as long as possible, but are replaced proactively before a defect is predicted (Nadj et al., 2016). 
Usually, a machine’s condition is monitored and analyzed based on sensor data (Carnero, 2006), while 
some approaches additionally use data from Enterprise-Resource-Planning (ERP) systems to predict 
downtimes (Groba et al., 2007). Predictive maintenance allows scheduling maintenance activities effi-
ciently and simultaneously reduce costs for spare parts. Importantly, each maintenance and repair strat-
egy can be the best choice to maintain a machine or component, to minimize total costs (see Figure 1.).  

 
Figure 1.  Total costs of maintenance, depending on the degree of prevention (Mobley, 2002) 

2.2 IT Artifacts for Predictive Maintenance 
Current research on predictive maintenance is interdisciplinary and focuses on different aspects. 
Amongst others, it addresses asset management and scheduling (Demoly and Kiritsis, 2012; Daily and 
Peterson, 2017), decision making and automation (Deshpande and Modak, 2003; Mourtzis et al., 2014), 
required technologies and infrastructure (e.g. wireless sensor networks and communication) (Akhondi 
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et al., 2010; Madni and Madni, 2008), processing huge amounts of data (Lee et al., 2015; Oneto et al., 
2016; Daily and Peterson, 2017)), applying particular algorithms for data analytics (Niang et al., 2006; 
Unal et al., 2014), Internet of Things technologies and platforms (Bayoumi and McCaslin, 2016; 
Wortmann and Flüchter, 2015), frameworks and architectures for predictive maintenance (Groba et al., 
2007; Sayed et al., 2015; Ramirez et al., 2013; Venkataraman et al., 2011), and the integration of existing 
information systems (López-Campos et al., 2013; Li and Roy, 2016). Additionally, some research fo-
cuses on new opportunities for organizations, e.g., the design of new or improved services and business 
models enabled by cyber-physical products (Herterich et al., 2015; Lee et al., 2014; Amberg et al., 2009).  
The goals pursued with predictive maintenance also vary. Amongst others, approaches target the 
prediction of emerging defects (Woldman et al., 2015; Traore et al., 2015; Sayed et al., 2015; Peng et 
al., 2010), the Remaining Useful Life (RUL) of components (Prytz et al., 2015), the probability for 
exceeding a particular timeframe called prediction horizon (Prytz et al., 2015), and deriving decisions 
for maintenance actions (Galar et al., 2012; Ghosh and Roy, 2010; Huynh et al., 2015; Wang et al., 
2010). As regards fields of application, next to industrial production predictive maintenance has focused 
aircrafts (Austin et al., 2003), railways (Umiliacchi et al., 2011), oil and gas operations (Nadj et al., 
2016), military vehicles (Woldman et al., 2015), and electronic systems (López-Campos et al., 2013). 
Also, some first approaches in the agricultural sector are available but focus on different aspects than 
this paper, including predictive maintenance in greenhouses (Yu and Zhang, 2013) or the application of 
wireless sensor technologies (Ruiz-Garcia et al., 2009). The predictive maintenance approach of Liu et 
al. (2016) predicts the mean time between repairs for agricultural machines and is therefore related to 
our case. Their approach is based on service records without considering any technical components, but 
time series of failures of each machine. This means that they calculate the time between failures for an 
agricultural machine and predict the next time interval. The time interval between failures is very small 
compared to our case. Since for the case of Liu et al. (2016) defects occur between 1,431 and 2,082 
minutes for one wheat harvester, whereas in our case the mean time between repairs of one machine is 
62 weeks, the datasets deviate considerably. Also, Liu et al. (2016) do not consider the condition of 
components in a machine. Therefore, while repairs can be performed before a defect occurs, benefits for 
service providers are limited, since only the time of the repair can be scheduled, but spare parts cannot 
be ordered preemptively. Express deliveries for spare parts or tools might still be necessary, which leads 
to delays and additional costs for customers. 
Prytz et al. (2015) predict required repairs for truck and bus compressors. Their approach is based on 
service records, but additionally considers Logged Vehicle Data—aggregated data reflecting the usage 
of the truck or bus—that was not available in our scenario. The purpose of their approach is to predict 
if a compressor survives a predefined time horizon (so-called prediction horizon). The prediction hori-
zon is defined as a period between planned visits to a service station, which is 15 weeks on average for 
trucks and buses. Except during warranty time, farmers usually do not schedule visits at the service 
station proactively, but rather apply a reactive maintenance strategy, so that visits at the service station 
are notably less frequent than for trucks (62 weeks on average). Therefore, the prediction horizon in our 
case could not be defined as the time between planned visits at the service station. Instead, we defined 
the harvesting period as prediction horizon, since a defect during this time has particularly severe con-
sequences for farmers and service companies.  
Predictive maintenance approaches can be categorized based on the type of data they process and the 
methods they apply to make predictions (Figure 2.). As regards methods, Edwards et al. (1998) identify 
statistical-based and condition-based approaches. While statistical-based approaches use historical data 
of incidents to predict future failures, condition-based approaches use real-time sensor data to estimate 
the attrition of components (Edwards et al., 1998). Peng et al. (2010) and Prytz et al. (2015) sub-classify 
condition-based maintenance approaches based on real-time data into physical-model based approaches, 
knowledge-based approaches, data-driven approaches, and combined approaches. Contradicting Ed-
wards et al. (1998), they view statistical-based approaches as a subset of data-driven methods, which 
include multivariate statistical methods, such as Principal Components Analysis or Bayesian Networks. 
According to Peng et al. (2010), data-driven approaches comprise approaches that apply artificial neural 
networks and similar artificial intelligence methods. "Physical model-based approaches usually employ 
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mathematical models that are directly tied to physical processes that have direct or indirect effects on 
the health of related components" (Peng et al., 2010, p. 299). Knowledge-based methods can further be 
divided into expert systems and fuzzy logic approaches (Peng et al., 2010). Expert systems use rules 
derived from domain knowledge of experts to solve a particular problem or gain new knowledge on a 
topic (Peng et al., 2010). Fuzzy logic approaches use fuzzy pattern recognition principles or fuzzy clus-
tering for fault prognosis and self-learning processes (Peng et al., 2010).  

 
Figure 2.  Systematizing predictive maintenance approaches 

Against this backdrop, our approach can be categorized as a combination of a knowledge-based expert 
system and a statistical-based approach, as defined by Edwards et al. (1998). The knowledge-based 
expert system is based on position data designed to predict the harvesting period and required workloads 
until and during harvesting. The statistical-based predictive maintenance approach is based on historical 
service records to predict defects of critical parts in an agricultural machine. 

3 Research Method 
The purpose of our paper is to develop a theory for design and action to specify how IT artifacts for the 
predictive maintenance of agricultural machines ought to be designed. Design science research is on a 
dual mission (Sein et al., 2011) to solve problems relevant to an application domain by designing IT 
artifacts, while simultaneously offering generalized theories for design and action (Gregor and Jones, 
2007; Gregor and Hevner, 2013). The core of our IT artifact is a method for predicting defects of critical 
components and estimating if the components will hold long enough to prevent downtimes in the next 
critical period (i.e., harvesting period) in which agricultural machines must be operational. 
The design process is built on an exaptation of IT artifacts that have been designed to enable predictive 
maintenance strategies in the high-tech industries. In line with Gregor and Hevner (2013), an exaptation 
is focused on re-utilizing design knowledge from one field (here: predictive maintenance of industrial 
equipment), to solve a relevant problem in another field (here: predictive maintenance of agricultural 
machines). The core of the exaptation fits the IT artifact to the particular technological and organiza-
tional context that constitutes the maintenance of agricultural machines. In particular, agricultural ma-
chines often lack the amounts and structure of data that applies in industrial settings, rendering current 
IT artifacts useless to predict defects of agricultural machines. On the other hand, statistical methods 
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used for computing the predictions themselves can be applied without major changes, since from a sta-
tistical point of view, both problems exhibit the same structure. 
To design and implement a predictive maintenance approach, we applied the design science research 
method, as proposed by Peffers et al. (2007). The design process took a problem-centered initiation that 
focused overcoming current deficiencies in agricultural machinery service. The design goal was two-
fold, (1) improving the current maintenance service for customers by reducing downtimes and (2) mak-
ing service providers’ operations more efficient by preventing resource shortages and optimize spare 
part handling in high seasons. We cooperated with a large agriculture company, which performs mainte-
nance activities on behalf of most manufacturers of agricultural machines. Importantly, while some of 
these companies collect sensor data on their machines from the remote, these data are not being made 
available to the service company, for strategic reasons concerning access to the customer interface. 
Following the advice of Shearer (2000) on how to set up a data mining model, we first analyzed current 
predictive maintenance systems’ properties and modeled business processes of the as-is and to-be 
maintenance service, including roles and resources. Thus, we identified service processes, the business 
context, and the data available on machines. To populate the prediction method, we used real service 
records that were provided by the company. We enriched the dataset with external data to set up a data 
model to be accessed by our prediction method. Just like external data sources, the internal data sources 
were only partly integrated. Therefore, we prepared the data, including joining separate data tables, 
harmonizing data, and concatenating service records. Also, data quality was checked, to assess if ana-
lyzing the data yields meaningful predictions. Since components that are part of routine checks might 
be preventively replaced during a check and therefore before a defect occurs, the actual defect would 
not be contained in our data. Thus, considering components that are part of routine checks might lead to 
false predictions (Susto et al., 2015). Because of this constraint and weak data quality and data availa-
bility (i.e., missing sensor data), we focused the predictions on critical machine components that can 
potentially cause downtimes and are not part of routine checks performed on a machine. Subsequently, 
we first designed a knowledge-based expert system to predict the next harvesting season and the required 
workload, and second designed a data-driven model to predict if critical components will defect.  
We demonstrate our artifact by implementing the prediction method. We evaluated our prediction 
method with 3,407 real-world service records on agricultural machines. In line with approved techniques 
to classify the performance of data mining models (Fawcett, 2006), we calculated Receiver Operating 
Characteristic (ROC) graphs and confusion matrices to assess the accuracy of our predictions. Since the 
stakeholders in our scenario were not data scientists, we designed a graphical web-interface on which 
farmers and service providers can access all data on their machines, along with the predictions that were 
computed by the method we implemented. 

4 A Predictive Maintenance Method for Agricultural Machines 

4.1 Problem Identification 
In the initiation, we identified the problem of seasonal resource shortages—especially during harvesting 
time—from two perspectives. Farmers’ revenues are highly dependent on efficient and effective har-
vesting, such that the breakdown of their machine is a worst-case scenario in that period (Kusumastuti 
et al., 2016). For service providers, a standstill of machines for a long or unpredicted period is critical 
for customer satisfaction. Service providers need to have service technicians available on standby duty 
and work overtime during harvesting periods to work through farmers’ service requests. Also, out of 
stock spare parts have to be ordered on short notice and might even be transported in express delivery, 
which causes severe scheduling problems and additional costs.  
The breakdown of machines, maintenance strategies, and countermeasures are not exclusive to the ag-
ricultural sector but approaches that are discussed in different domains often lack applicability in this 
sector. While many approaches implemented in the industry rely on live-tracked sensor data, agriculture 
is subject to a lack of sensor data, divergent data-formats, and distributed data ownership. Others have 
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observed that the agricultural sector is characterized by old-fashioned IT, leading to a gap between in-
novative tools on the market and their exploitation and application in agriculture (Antle et al., 2017). 
Kusumastuti et al. (2016) categorize six types of problems in crop-related agriculture, three of which 
have to leave their mark on predictive maintenance services. First, agriculture is a seasonal business 
(Salin, 1998; Tsubone et al., 1983) that is constraint by short time windows, e.g., for harvesting. Devi-
ation from these time windows can have severe adverse effects since it directly influences product qual-
ity, subject to the crops seeded (Arnaout and Maatouk, 2010; Bohle et al., 2010; Higgins et al., 1998). 
Second, resource limitations are particularly strong (Kusumastuti et al., 2016) and effect all steps in the 
supply chain. Third, in harvesting times, the availability and operationality of agricultural machines are 
crucial. Adverse weather conditions can suddenly have severe implications, e.g., on a harvest season’s 
length (Allen and Schuster, 2004) and crop maturity time (Tan and Çömden, 2012), leading to high 
complexity in the management of agricultural supply chains (Kusumastuti et al., 2016). 

4.2 Definition of Objectives 
The main objective implemented by our IT artifact is to predict if a component will fail during harvesting 
times. Critical components are essential for a machine’s operation and—if they fail—cause an entire 
machine to stop. Therefore, the prediction method of future defects is the core of a predictive mainte-
nance service that can be provided on a web-based platform. If a critical component is predicted to fail 
during harvesting season, the farmer has to be notified by a mobile application. The service platform 
enables a farmer to make an ad hoc maintenance appointment for the replacement of defective compo-
nents before the critical period starts and consequently to reduce harvesting losses due to machine fail-
ures. The prediction of defects also enables a service provider to plan a specific maintenance action and 
to order required spare parts proactively. Thus, the service provider can plan all resources in advance 
and increase the efficiency of the maintenance service.  

4.3 Design and Development 
Our method consists of two steps. Since the service records only contain information of a defect that 
already occurred and sensor data are not available, we cannot analyze the circumstances leading to a 
defect. Instead, we identify several features from the service records to predict, if a component has to 
be replaced during a maintenance appointment at the service station. Since this is no prediction for a 
future point in time but an existing service record, we need to create future service records containing 
the machine state during harvesting time and predict, if these generated service records will contain 
defect components. Therefore, in a first step, we implement a knowledge-based approach to identify the 
next period for harvesting and estimate the workload until and during the next harvesting period. This 
information is used to generate future service records since all varying information of the service records 
can be extracted from the expert system. In a second step, a data-driven approach is applied to predict 
the defects of critical components in the generated service records. If the defect of a critical component 
is predicted, it needs to be replaced before the harvest starts to prevent downtimes. 
To identify the harvesting period and estimate workloads, we designed a knowledge-based expert sys-
tem based on position data of the machines. Since an estimation of future working hours until and during 
harvesting time is required, the operating time of a machine needs to be analyzed. In an industrial con-
text, a production plan could be used to estimate future operating hours of the machine. However, a 
production plan or a similar datum does not exist in agricultural production. In contrast to Prytz et al. 
(2015), who determined the RUL of truck compressors, operating hours of agricultural machines are 
typically not as steady as for trucks (except for agricultural contractors). Due to a missing integration 
with the service company's Customer Relationship Management (CRM) system, we had to identify har-
vesting periods otherwise. Therefore, we took advantage of the seasonality of field work. We assumed 
that the time horizon and required working hours for harvesting can be estimated based on the cultivated 
type of crops and the average working hours performed on a field. For this, we analyzed location data 
and timestamps of one agricultural machine and designed a knowledge-based method to predict the 
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harvesting period and required workloads for one particular customer. This method is an expert system 
based on the following rules: 

1. Cultivated fields can be identified by clustering position data points that are nearby. 

2. For each cultivated field, working hours can be analyzed to identify periods with a high workload. 

3. The harvesting period for each cultivated field can be estimated based on comparing periods with a 
high workload on a particular field to reference calendars for seeding and harvesting. The identified 
harvesting period is defined as prediction horizon. 

4. The average workload of former harvesting periods is considered as the required workload for the 
prediction horizon. The required workload for the period between the last repair and the prediction 
horizon is estimated based on the average workload for cultivating the identified crops (rule 3). 

5. If a farmer cultivates more than one field, the expected harvesting times for all fields are considered 
to determine the predicted time horizon. 

6. If a defect of a critical component is predicted for the identified time horizon, a proactive exchange 
of the components is recommended to prevent downtimes. 

The estimation of a prediction horizon is subject to constraints. First, our assumptions are not valid for 
agricultural contractors, since cultivated fields might change often and machines are scheduled to max-
imize their capacity. Second, we assume that historical data are available to identify if working hours 
on a field are related to seeding or harvesting based on cultivated crops and crop rotation. 
To design the data-driven method for the prediction of defects, we applied the Cross-Industry Standard 
Process for Data Mining (CRISP-DM) reference method proposed by Shearer (2000). Following the 
steps of the reference method, we first modeled the current maintenance process with event-driven pro-
cess chains (EPC) and identified the data generated in each activity. One of the main challenges was to 
understand the inter-organizational distribution of data—among manufacturers, farmers, and service 
companies. The service company for which we implemented the system had not integrated their ERP 
and CRM systems. Our prediction method, therefore, analyzes service records extracted from the service 
company’s ERP system. We preprocessed the data, e.g., by joining separate data tables, harmonizing 
data, and concatenating service records that were distributed across multiple rows. Subsequently, we 
selected one exemplary critical component to be included in the analysis, based on the available records 
identified by service technicians. We identified all machine types that contained this critical component. 
As a result, we compiled a table containing all service records for the identified machine types. Since 
no real-time sensor data were available, our prediction focuses on whether or not the component will 
fail. 
The resulting prediction method consists of six steps (Figure 3.). First, all service records that listed the 
critical component were labeled ‘1’ in an additional column. Since service records are intermittent data, 
one service record only contains a specific amount of operating hours of one machine. Components 
usually do not defect at the same operating hour, so we assumed that predicting a failure based on clus-
tered service records might improve our results. Additionally, we assumed that service records contain-
ing the defect component are more important to determine clusters of service records than functional 
components. Therefore, we filtered service records labeled with ‘1’ (step 2) and clustered the records 
based on operating hours and year of construction of the maintained machine (step 3). Subsequently, the 
identified clusters were assigned to all service records (label ‘0’ and ‘1’) (step 4). In step 5, we applied 
a data mining algorithm for classification (Random Forest) (Coppersmith et al., 1999) to learn and pre-
dict the assigned clusters of the fourth step. This is necessary to obtain probabilities for the assignment 
to a cluster, which can be used as a feature for the prediction of defects in step 6. The probability for 
cluster assignment indicates the impact of the feature “cluster” for predicting defects. If the probability 
for the cluster assignment is low, the feature “cluster” should not have the same impact on the prediction 
of defects as if the probability for the cluster assignment is high. In step 6, we applied a classification 
algorithm (Gradient Boosted Trees) (Friedman, 2001) to predict if the considered critical component 
will defect. For this, the algorithm predicts the values of the column that contains the labels ‘0' and ‘1'.  
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Figure 3. Data-driven predictions of critical components’ defects 

The designed method can predict the replacement of a defective component in service records. To pre-
dict defects during harvesting period, additional future service records are generated based on the results 
of the knowledge-based expert system. Our prediction method is then applied for these service records 
and if a component is predicted to fail, it has to be replaced proactively. 

4.4 Demonstration 
To demonstrate the proposed method, we implemented workflows using the open source software tool 
KNIME (KNIME.COM AG, 2018). A first workflow was implemented to estimate workloads and iden-
tify the harvesting period. First, we identified fields by clustering position data of one tractor using the 
density-based clustering algorithm DBScan (see the first image in Figure 4.). Applying this algorithm 
enabled us to identify fields with high accuracy, but also to identify roads (second image in Figure 4.). 
The roads were filtered manually, such that only clusters of fields remained in our dataset. Second, we 
analyzed working hours on one field and plotted them in a histogram to identify the crops grown on the 
fields and their harvesting times. The data used for this purpose were limited and did not cover a whole 
year. Nevertheless, we were able to identify calendar weeks with higher workload (see third image in 
Figure 4.) and we calculated the average working hours for one field. In this example, the highest work-
load was at the beginning of October. Due to a lack of historical data, it is unclear if the workload 
reflected seeding or harvesting activities. Reference calendars indicate that these activities could either 
represent harvesting of corn or green fodder, or seeding of winter crops. 
For predicting defects in service records, we implemented an additional workflow using KNIME 
(KNIME.COM AG, 2018). As common in data-driven analytics, we cycled through several iterations 
to find the best prediction algorithm. We first implemented a workflow for predicting the defects of a 
critical component. According to our method, we initially labeled service records containing the con-
sidered component with ‘1’ and remaining service records with ‘0’. For this purpose, we used a String 
Replacer node. By applying a Rule-based Filter node we filtered service records labeled with ‘1’. In the 
next step, we utilized a k-means-algorithm and assigned resulting clusters to all service records using 
the Cluster Assigner node. Next, we used an X-Partitioner node to divide our real-world dataset—con-
sisting of 3,407 service records—into training and test datasets. The X-Partitioner node is the starting 
point for a cross-validation loop that is described in the evaluation section in more detail. We applied a 
stratified sampling since the number of defects in our dataset is very low (11.48%). The training dataset 

1. Add label to service records: 
‘1’ = defect, ‘0’ = functional

2. Filter service records with label ‘1’

3. Cluster service records based on 
operating hours and year of 

construction

4. Assign determined clusters to 
remaining service records

5.* Learn and predict clusters 
(Random Forest)

6.* Learn and predict label
(Gradient Boosted Trees)* before these steps the data are separated 

into a training and a test dataset
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(2,556 service records) was subsequently used to learn a Random Forest model, which was applied to 
predict the clusters assigned before. The resulting model was applied on the test dataset (851 service 
records). Before dividing these records again for the prediction of labels, we applied a SMOTE node to 
oversample the defects based on a technique called Synthetic Minority Oversampling Technique 
(SMOTE) developed by Chawla et al. (2002). As a result, the dataset contained nearly equal amounts 
of defective and operational parts. This step was necessary to improve the prediction to be conducted in 
the following steps. 80% (1,206 service records) were used to learn the model for predicting the labels, 
which was a Gradient Boosted Trees Learner here. With the remaining 20% (302 service records), the 
resulting prediction model was tested.  
Resulting from the prediction method is a prediction model that is applied for incoming data on a web-
based service platform. The platform website supports different views for farmers and service techni-
cians. Farmers can access dashboards to analyze their whole vehicle-fleet or particular vehicles and —
if required—schedule appointments before a defect occurs. Service technicians can plan and schedule 
maintenance activities based on future spare part demands resulting from the prediction. 

   
Figure 4.  Field detection from clustered GPS data and activity duration analysis for one field 

4.5 Evaluation 
We evaluated our data-driven prediction method with established measures to assess the accuracy of 
cluster and regression algorithms (Fawcett, 2006). For cluster algorithms, we compiled a confusion ma-
trix and a ROC curve, and calculated measures for precision, recall, and the algorithm’s overall accu-
racy. As described before, we applied a cross-validation loop to validate our model and confirm our 
results. For this, the data were separated into four equal subsets of which three are used as training data 
and one is used as test data. The prediction workflow is executed four times. Each time another subset 
of data is used as test data. Small deviations in the results of the four executions indicate how good the 
model adapts to independent datasets as used in practice.  
Since position data was not available for each maintained machine, the evaluation of the data-driven 
prediction method is done based on existing service records, while the additionally generated service 
records for the prediction of defects during harvesting time cannot be evaluated. We assume that the 
results for the generated service records will only deviate negligibly since all relevant features (e.g., 
operating hours, the age of a machine, and year, month and day of defect) can be extrapolated by apply-
ing the knowledge-based expert system. 
Following the steps of the prediction method, we first evaluated the predictive accuracy of clusters. 
Since the overall accuracy is very high and does not vary substantially throughout the validation loops, 
we focus on the overall accuracy (see Table 1.) and do not report the confusion matrix here. 
 

Measure First partition Second partition Third partition Fourth partition 
Accuracy 0.9836 0.9941 0.9930 0.9906 

Table 1.  Accuracy of cluster prediction (step five) 
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Since we oversampled the data before predicting the labels, we evaluated both the results of the enriched 
dataset and a filtered dataset, which only included the original data. As shown in Table 2., the prediction 
of the labels performs well with 82.45%–89.40% accuracy (86.34% on average). Considering the clas-
sification in the first validation loop, 139 of 151 defects were predicted correctly, which leads to a recall 
of 92.05%. Additionally, 24 functional parts were predicted as defects. Therefore, 139 out of 163 pre-
dicted defects were true, which reflects the precision measure for the defect parts. The results of the four 
validation loops do not vary much, highlighting that our model adapts well to independent data. 
 

Row ID True  
Positives 

False  
Positives 

True  
Negatives 

False  
Negatives 

Recall Precision Accuracy 

0 127 12 139 24 0.8411 0.9137 
 

1 139 24 127 12 0.9205 0.8528 
 

Overall             0.8808 
0 125 27 124 26 0.8278 0.8224 

 

1 124 26 125 27 0.8212 0.8267 
 

Overall             0.8245 
0 129 22 129 22 0.8543 0.8543 

 

1 129 22 129 22 0.8543 0.8543 
 

Overall             0.8543 
0 133 14 137 18 0.8808 0.9048 

 

1 137 18 133 14 0.9073 0.8839 
 

Overall             0.8940 
Table 2. Label prediction for the enriched dataset (step six) 

Compared with the enriched data set, the original data set shows similar results except for precision (see 
Table 3.). The most conspicuous point is the difference in the precision measure for defect parts, which 
is nearly halved in comparison to the enriched data set. This is caused by the fact that for the first vali-
dation loop the true positives with label ‘1’ were reduced from 139 to 20, but the false positives remain 
stable. While for the enriched data 139 out of 163 predicted defects were correct, for the original data 
set only 20 out of 44 predicted defects are correct, what reflects the identified difference in precision. 
 

Row ID True  
Positives 

False  
Positives 

True  
Negatives 

False  
Negatives 

Recall Precision Accuracy 

0 127 3 20 24 0.8411 0.9769 
 

1 20 24 127 3 0.8696 0.4545 
 

Overall             0.8448 
0 125 6 14 26 0.8278 0.9542 

 

1 14 26 125 6 0.7000 0.3500 
 

Overall             0.8129 
0 129 5 16 22 0.8543 0.9627 

 

1 16 22 129 5 0.7619 0.4211 
 

Overall             0.8430 
0 133 4 18 18 0.8808 0.9708 

 

1 18 18 133 4 0.8182 0.5000 
 

Overall             0.8728 
Table 3. Label prediction for the original dataset (step six) 
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The ROC curve provides an overview of the quality of the classification. While a curve near to the 
diagonal corresponds to a random classification, the ideal curve starts vertically to the upper left corner 
and then continuous horizontally to the right. In addition to the graphical overview, the area under the 
curve can be calculated, which can obtain any value between 0 and 1, where 0.5 equals a random clas-
sification and 1 is a perfect classification. The ROC curves for the label prediction for the enriched and 
the original data set are reported in Figure 5. The ROC curves for our model reach high values of 0.8891–
0.9710. Also, the variation between the enriched and the original data set can be neglected. 

 
Figure 5. ROC curves for the enriched and original datasets 

Our prediction method reaches a high overall accuracy and outperforms the current maintenance ap-
proach for the evaluated component. As described earlier, we evaluated a critical component that might 
lead to machine downtimes but is not contained in routine checks of the machine to prevent false pre-
dictions due to early replacements. This implies that the evaluated component is currently replaced on 
defect and not proactively. Applying our prediction method would, therefore, outperform the current 
approach, since about 86,34% of all defects can be identified in advance instead of replacing the com-
ponent after the defect occurs. 

5 Conclusion and Outlook 
We designed, implemented and evaluated a predictive maintenance method for agricultural machines 
for predicting if a critical component exceeds an estimated prediction horizon, which represents a farm-
ers’ next harvesting period. The prediction method is based on real-world service records and position 
data provided by a large German agricultural service company, resulting in a prediction model that can 
be applied for analyzing incoming data and predicting future defects. We demonstrate that a predictive 
maintenance method in agriculture can be implemented with high accuracy based on service records and 
without sensor data. The evaluation of our prediction method shows that the mean overall accuracy for 
the prediction of defects is 86.34%, even though only few service records (11.48%) of the input data 
contained defects of the analyzed component.  
Based on our results, the contribution of our paper is twofold. From a practitioner’s perspective, on the 
one hand, our prediction method can be applied as the core of a predictive maintenance service. This 
service enables farmers to overcome the critical time of harvesting without a breakdown of agricultural 
machines caused by defect components―of course, it is not possible to predict accidents and human-
caused breakdowns. Therefore, harvesting losses of farmers can be avoided. On the other hand, our 
prediction method allows a service provider to plan resources (i.e., personnel and spare part components) 

area under
curve: 0.9323

area under
curve: 0.9559

area under
curve: 0.9673

area under
curve: 0.9557

area under
curve: 0.8891

area under
curve: 0.9328

area under
curve: 0.9395

area under
curve: 0.9710

Enriched data set:

Original data set:
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proactively and by that provide their maintenance service more efficiently to customers. Our theoretical 
contribution is an exaptation of design knowledge on predictive maintenance from other domains to the 
agricultural sector. We show how this knowledge can be utilized and adapted to deal with special re-
quirements and constraints in the agriculture sector. Furthermore, we present a generalized predictive 
maintenance method consisting of a knowledge-based expert system and a statistical-based approach 
that reaches a high prediction accuracy and can be used as a basis for further research on this topic. On 
the one hand, our method highlights the value of statistical-based methods for the design of predictive 
maintenance approaches for cases with no or limited access to sensor data. On the other hand, our 
method shows the value of using or integrating data from ERP systems for predicting defects.  
Despite the overwhelmingly positive results in the evaluation of our prediction method, our research is 
subject to limitations. One limitation refers to the fact that the predictions made by our method are 
restricted to critical components. Our next step is to predict defects on a machine level. This implies 
differentiating equipment into critical and not critical components, regarding their impact on a machine 
level. For this approach, we need to determine dependencies of components as well as ascertain, if de-
fects of several non-critical components could lead to critical issues when aggregated on a machine 
level. Both have to be considered in the prediction model to minimize faulty predictions and foster 
predictive maintenance services on a machine level. Another limitation is that the proposed method was 
evaluated with data on existing service records. An evaluation for generated future service records was 
not possible due to missing position data. To solve this problem, position data could be recorded by a 
smartphone app for our predictive maintenance service and applied in the prediction method. Even 
though the prediction model performs well, our results are dependent on the available data. On the one 
hand, service records containing similar information are usually available to other companies as well, 
which implies that a generalization of our results is possible to some extent. On the other hand, the 
accuracy of the prediction might vary if applied with different data. Further improvements of our method 
could avoid false predictions, which impede customers’ trust in a service company’s ability to keep 
machines operational. 
In future research, we will include external data sources—such as weather and geological data—to fur-
ther improve the method’s accuracy. By considering weather data when estimating the prediction hori-
zon, we assume to be able to narrow the timeframe for harvesting down to rain-free days. Geological 
data might improve the predictions for specific critical components, which are affected by different 
ground conditions. Since digitalization and standardization of onboard communication are only about 
to start in the agricultural sector, we expect further improvements for our method with the increasing 
availability of real-time machine data. Meanwhile, open data initiatives regarding the whole agricultural 
supply chain are fostered on a governmental level. For instance, the Global Open Data for Agriculture 
and Nutrition initiative (GODAN, www.godan.info)—an open data initiative in the food security sector 
run by the U.S. government, as well as by not-for-profit foundations, e.g. the Open Ag Data Alliance 
(OADA, www.openag.io)—serves to establish a secure data ecosystem for the entire agricultural indus-
try, pursuing the goal of driving innovations to foster sustainable agriculture. 
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