1,001 research outputs found

    Designing LU-QR hybrid solvers for performance and stability

    Get PDF
    Abstract—This paper introduces hybrid LU-QR algorithms for solving dense linear systems of the form Ax = b. Throughout a matrix factorization, these algorithms dynamically alternate LU with local pivoting and QR elimination steps, based upon some robustness criterion. LU elimination steps can be very efficiently parallelized, and are twice as cheap in terms of floatingpoint operations, as QR steps. However, LU steps are not necessarily stable, while QR steps are always stable. The hybrid algorithms execute a QR step when a robustness criterion detects some risk for instability, and they execute an LU step otherwise. Ideally, the choice between LU and QR steps must have a small computational overhead and must provide a satisfactory level of stability with as few QR steps as possible. In this paper, we introduce several robustness criteria and we establish upper bounds on the growth factor of the norm of the updated matrix incurred by each of these criteria. In addition, we describe the implementation of the hybrid algorithms through an extension of the PaRSEC software to allow for dynamic choices during execution. Finally, we analyze both stability and performance results compared to state-of-the-art linear solvers on parallel distributed multicore platforms. I

    A GPU-based Transient Stability Simulation using Runge-Kutta Integration Algorithm

    Get PDF
    Graphics processing units (GPU) have been investigated to release the computational capability in various scientific applications. Recent research shows that prudential consideration needs to be given to take the advantages of GPUs while avoiding the deficiency. In this paper, the impact of GPU acceleration to implicit integrators and explicit integrators in transient stability is investigated. It is illustrated that implicit integrators, although more numerical stable than explicit ones, are not suitable for GPU acceleration. As a tradeoff between numerical stability and efficiency, an explicit 4th order Runge-Kutta integration algorithm is implemented for transient stability simulation based on hybrid CPU-GPU architecture. The differential equations of dynamic components are evaluated in GPU, while the linear network equations are solved in CPU using sparse direct solver. Simulation on IEEE 22-bus power system with 6 generators is reported to validate the feasibility of the proposed method.published_or_final_versio

    Mixed-Precision Numerical Linear Algebra Algorithms: Integer Arithmetic Based LU Factorization and Iterative Refinement for Hermitian Eigenvalue Problem

    Get PDF
    Mixed-precision algorithms are a class of algorithms that uses low precision in part of the algorithm in order to save time and energy with less accurate computation and communication. These algorithms usually utilize iterative refinement processes to improve the approximate solution obtained from low precision to the accuracy we desire from doing all the computation in high precision. Due to the demand of deep learning applications, there are hardware developments offering different low-precision formats including half precision (FP16), Bfloat16 and integer operations for quantized integers, which uses integers with a shared scalar to represent a set of equally spaced numbers. As new hardware architectures focus on bringing performance in these formats, the mixed-precision algorithms have more potential leverage on them and outmatch traditional fixed-precision algorithms. This dissertation consists of two articles. In the first article, we adapt one of the most fundamental algorithms in numerical linear algebra---LU factorization with partial pivoting--- to use integer arithmetic. With the goal of obtaining a low accuracy factorization as the preconditioner of generalized minimal residual (GMRES) to solve systems of linear equations, the LU factorization is adapted to use two different fixed-point formats for matrices L and U. A left-looking variant is also proposed for matrices with unbounded column growth. Finally, GMRES iterative refinement has shown that it can work on matrices with condition numbers up to 10000 with the algorithm that uses int16 as input and int32 accumulator for the update step. The second article targets symmetric and Hermitian eigenvalue problems. In this section we revisit the SICE algorithm from Dongarra et al. By applying the Sherman-Morrison formula on the diagonally-shifted tridiagonal systems, we propose an updated SICE-SM algorithm. By incorporating the latest two-stage algorithms from the PLASMA and MAGMA software libraries for numerical linear algebra, we achieved up to 3.6x speedup using the mixed-precision eigensolver with the blocked SICE-SM algorithm for iterative refinement when compared with full double complex precision solvers for the cases with a portion of eigenvalues and eigenvectors requested

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also

    Analytical Methods for Structured Matrix Computations

    Get PDF
    The design of fast algorithms is not only about achieving faster speeds but also about retaining the ability to control the error and numerical stability. This is crucial to the reliability of computed numerical solutions. This dissertation studies topics related to structured matrix computations with an emphasis on their numerical analysis aspects and algorithms. The methods discussed here are all based on rich analytical results that are mathematically justified. In chapter 2, we present a series of comprehensive error analyses to an analytical matrix compression method and it serves as a theoretical explanation of the proxy point method. These results are also important instructions on optimizing the performance. In chapter 3, we propose a non-Hermitian eigensolver by combining HSS matrix techniques with a contour-integral based method. Moreover, probabilistic analysis enables further acceleration of the method in addition to manipulating the HSS representation algebraically. An application of the HSS matrix is discussed in chapter 4 where we design a structured preconditioner for linear systems generated by AIIM. We improve the numerical stability for the matrix-free HSS construction process and make some additional modifications tailored to this particular problem

    Batched Linear Algebra Problems on GPU Accelerators

    Get PDF
    The emergence of multicore and heterogeneous architectures requires many linear algebra algorithms to be redesigned to take advantage of the accelerators, such as GPUs. A particularly challenging class of problems, arising in numerous applications, involves the use of linear algebra operations on many small-sized matrices. The size of these matrices is usually the same, up to a few hundred. The number of them can be thousands, even millions. Compared to large matrix problems with more data parallel computation that are well suited on GPUs, the challenges of small matrix problems lie in the low computing intensity, the large sequential operation fractions, and the big PCI-E overhead. These challenges entail redesigning the algorithms instead of merely porting the current LAPACK algorithms. We consider two classes of problems. The first is linear systems with one-sided factorizations (LU, QR, and Cholesky) and their solver, forward and backward substitution. The second is a two-sided Householder bi-diagonalization. They are challenging to develop and are highly demanded in applications. Our main efforts focus on the same-sized problems. Variable-sized problems are also considered, though to a lesser extent. Our contributions can be summarized as follows. First, we formulated a batched linear algebra framework to solve many data-parallel, small-sized problems/tasks. Second, we redesigned a set of fundamental linear algebra algorithms for high- performance, batched execution on GPU accelerators. Third, we designed batched BLAS (Basic Linear Algebra Subprograms) and proposed innovative optimization techniques for high-performance computation. Fourth, we illustrated the batched methodology on real-world applications as in the case of scaling a CFD application up to 4096 nodes on the Titan supercomputer at Oak Ridge National Laboratory (ORNL). Finally, we demonstrated the power, energy and time efficiency of using accelerators as compared to CPUs. Our solutions achieved large speedups and high energy efficiency compared to related routines in CUBLAS on NVIDIA GPUs and MKL on Intel Sandy-Bridge multicore CPUs. The modern accelerators are all Single-Instruction Multiple-Thread (SIMT) architectures. Our solutions and methods are based on NVIDIA GPUs and can be extended to other accelerators, such as the Intel Xeon Phi and AMD GPUs based on OpenCL

    A carbuncle cure for the Harten-Lax-van Leer contact (HLLC) scheme using a novel velocity-based sensor

    Get PDF
    AbstractA hybrid numerical flux scheme is proposed by adapting the carbuncle-free modified Harten-Lax-van Leer contact (HLLCM) scheme to smoothly revert to the Harten-Lax-van Leer contact (HLLC) scheme in regions of shear. This hybrid scheme, referred to as the HLLCT scheme, employs a novel, velocity-based shear sensor. In contrast to the non-local pressure-based shock sensors often used in carbuncle cures, the proposed shear sensor can be computed in a localized manner meaning that the HLLCT scheme can be easily introduced into existing codes without having to implement additional data structures. Through numerical experiments, it is shown that the HLLCT scheme is able to resolve shear layers accurately without succumbing to the shock instability.</jats:p

    Novel Monte Carlo Methods for Large-Scale Linear Algebra Operations

    Get PDF
    Linear algebra operations play an important role in scientific computing and data analysis. With increasing data volume and complexity in the Big Data era, linear algebra operations are important tools to process massive datasets. On one hand, the advent of modern high-performance computing architectures with increasing computing power has greatly enhanced our capability to deal with a large volume of data. One the other hand, many classical, deterministic numerical linear algebra algorithms have difficulty to scale to handle large data sets. Monte Carlo methods, which are based on statistical sampling, exhibit many attractive properties in dealing with large volume of datasets, including fast approximated results, memory efficiency, reduced data accesses, natural parallelism, and inherent fault tolerance. In this dissertation, we present new Monte Carlo methods to accommodate a set of fundamental and ubiquitous large-scale linear algebra operations, including solving large-scale linear systems, constructing low-rank matrix approximation, and approximating the extreme eigenvalues/ eigenvectors, across modern distributed and parallel computing architectures. First of all, we revisit the classical Ulam-von Neumann Monte Carlo algorithm and derive the necessary and sufficient condition for its convergence. To support a broad family of linear systems, we develop Krylov subspace Monte Carlo solvers that go beyond the use of Neumann series. New algorithms used in the Krylov subspace Monte Carlo solvers include (1) a Breakdown-Free Block Conjugate Gradient algorithm to address the potential rank deficiency problem occurred in block Krylov subspace methods; (2) a Block Conjugate Gradient for Least Squares algorithm to stably approximate the least squares solutions of general linear systems; (3) a BCGLS algorithm with deflation to gain convergence acceleration; and (4) a Monte Carlo Generalized Minimal Residual algorithm based on sampling matrix-vector products to provide fast approximation of solutions. Secondly, we design a rank-revealing randomized Singular Value Decomposition (R3SVD) algorithm for adaptively constructing low-rank matrix approximations to satisfy application-specific accuracy. Thirdly, we study the block power method on Markov Chain Monte Carlo transition matrices and find that the convergence is actually depending on the number of independent vectors in the block. Correspondingly, we develop a sliding window power method to find stationary distribution, which has demonstrated success in modeling stochastic luminal Calcium release site. Fourthly, we take advantage of hybrid CPU-GPU computing platforms to accelerate the performance of the Breakdown-Free Block Conjugate Gradient algorithm and the randomized Singular Value Decomposition algorithm. Finally, we design a Gaussian variant of Freivalds’ algorithm to efficiently verify the correctness of matrix-matrix multiplication while avoiding undetectable fault patterns encountered in deterministic algorithms
    • …
    corecore