
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

8-2018

Analytical Methods for Structured Matrix Computations Analytical Methods for Structured Matrix Computations

Xin Ye
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation Recommended Citation
Ye, Xin, "Analytical Methods for Structured Matrix Computations" (2018). Open Access Dissertations.
2108.
https://docs.lib.purdue.edu/open_access_dissertations/2108

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F2108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/2108?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F2108&utm_medium=PDF&utm_campaign=PDFCoverPages

ANALYTICAL METHODS FOR STRUCTURED MATRIX COMPUTATIONS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Xin Ye

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Jianlin Xia, Chair

Department of Mathematics

Dr. Venkataramanan Balakrishnan

School of Electrical and Computer Engineering

Dr. David F. Gleich

Department of Computer Science

Dr. Jie Shen

Department of Mathematics

Approved by:

Dr. David Goldberg

Associate Head for Graduate Studies

iii

To my parents

who are always caring and supportive

iv

ACKNOWLEDGMENTS

Writing a long acknowledgment is completely non-characteristic for me for the

following two reasons: firstly, I have always hated to do non-scientific writing since

I ever started to learn writing; secondly, I’m unwilling to express my own emotions

except happy to anyone. But writing a thesis will happen only once in a life time, so

why not?

The summer of 2013 surely marks a giant leap of my life, some major changes have

happened at that moment: being a undergraduate student majoring in Economics

versus pursuing a Ph.D. in Mathematics, having been living in my home city and

speaking my native tongue for 22 years versus starting a new life in another side of

the planet and learning a completely new language. I believe that anyone shares a

similar experience with me will feel the same, the five-year journey will not be possible

without the help and company of my mentors, colleagues, families and friends.

First of all, I would like to acknowledge all the fundings during my Ph.D. study.

The department of Mathematics is continuously supporting everyone with teaching

assistantship whenever we need it, seven semesters of research assistantship were

provided by Prof. Jianlin Xia and Prof. Venkataramanan Balakrishnan in School of

Electrical and Computer Engineering. The last year was supported by a dissertation

fellowship from Purdue Research Foundation. I’ve also received some travel supports

from Duke University, SIAM and IMA.

I would like to express my deep gratitude to Prof. Jianlin Xia, my Ph.D. advisor,

for his guidance not only on mathematics and research but also many aspects of my

life outside of academia. He led me into the world of numerical linear algebra and

continues to encourage me whenever I feel hesitant, I’m always so inspired by his

passionate and meticulous attitude towards his work.

v

I’ve always enjoyed taking courses with Prof. David Gleigh, Prof. Ahmed Sameh

and Prof. Steven Bell, we also had many discussions on various topics outside of class

which helped me broaden my view and make connections between different areas in

Mathematics. Prof. Raymond H. Chan and Prof. Venkataramanan Balakrishnan

collaborated with me and provided many helpful advises that eventually leads to my

first major published work. I would also like to thank Prof. Jie Shen for being my

thesis committee member.

My academic big brothers Yuanzhe Xi, Xiao Liu and Zixin Xin all played impor-

tant roles especially during the first few months when I joined the group, I lost count

of how many times I interrupted you and sought for help. For Yue Zhao, Jian Zhai,

Ling Xu, Qinfeng Li and Difeng Cai, we all started our graduate study at the same

time and we would often get together and chat about everything during the first two

years we were here. Frankie Chan and Joan Ponce merit a special mention, they kept

sharing news, gossips and internet memes with me which is the sole reason I could

improve my spoken English so quickly, as for introducing you to hot pot, you are

welcome.

Jiawei Zhou and Tianshuo Zhang are without doubt the two most important

friends outside of the department, we’ve almost lived together for the entirety of

our Ph.D. lives. They are good roommates, good cooks, good gamers and all these

make our apartment at Beau Jardin 20–8 more like a home than only a place for

sleep. Ruibo Wang, Xinyu Kong and I became friends when we were around 12,

it’s a miracle that we are only 80 miles from each other after traveling such a long

distance from our hometown to midwest US. We were able to visit each other very

often and later I attended their wedding as the best man. There are still many more

names that I don’t have enough space to list here, but I believe our friendships will

be remembered and cherished forever.

Last, but definitely not the least, is my parents. They made me who I am today,

a person with enough intelligence to know the world and, most importantly, a good

vi

heart to treat others. The appreciation to them is beyond any words can express, I’m

so happy I can share this memorable moment of my life with you.

vii

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xii

1 INTRODUCTION . 1

2 ANALYTICAL COMPRESSION VIA PROXY POINT SELECTION AND
CONTOUR INTEGRATION . 4
2.1 Introduction . 4
2.2 Analytical compression . 7

2.2.1 The derivation via Cauchy integral formula 8
2.2.2 Approximation error analysis 11
2.2.3 Block-wise error and practical issue 18

2.3 Hybrid method . 24
2.3.1 Review of SRRQR factorization and ID 25
2.3.2 Hybrid strategy and error analysis 26

2.4 Conclusions . 29

3 FAST CONTOUR-INTEGRAL EIGENSOLVER FOR NON-HERMITIAN
MATRICES . 31
3.1 Introduction . 31
3.2 Analysis of quadrature rules for filter function design 36
3.3 Low-accuracy matrix approximation for fast eigenvalue counts 43

3.3.1 Motivations . 43
3.3.2 Reliability of eigenvalue count with low-accuracy matrix ap-

proximation . 45
3.4 Our fast contour-integral eigensolver 52

3.4.1 Review of the non-Hermitian FEAST algorithm 53
3.4.2 Fast contour-integral eigensolver 54
3.4.3 Applications and initial search region 65

3.5 Numerical experiments . 68
3.6 Conclusions . 73

4 EFFECTIVE MATRIX-FREE PRECONDITIONING FOR THE AUGMENTED
IMMERSED INTERFACE METHOD . 76
4.1 Introduction . 76

viii

Page

4.2 Features of the Schur complement systems in AIIM and motivation for
the work . 81
4.2.1 Finite difference method for elliptic problems with singular source

terms . 81
4.2.2 AIIM for Helmholtz/Poisson equations on irregular domains . . 83
4.2.3 Features of the Schur complement systems and challenges in

GMRES solutions . 85
4.3 Matrix-free preconditioning techniques for AIIM 89

4.3.1 Rank structures . 89
4.3.2 Matrix-free structured preconditioning via randomized sampling 90
4.3.3 Efficiency and effectiveness . 99

4.4 Preconditioning AIIM for different applications and generalizations . 100
4.4.1 Preconditioning individual Schur complements in various appli-

cations . 100
4.4.2 Comprehensive simulation in terms of a free boundary problem 111
4.4.3 Generalizations . 115

4.5 Conclusions . 115

5 Conclusions and future work . 117

REFERENCES . 119

A COPYRIGHT INFORMATION . 128

VITA . 130

ix

LIST OF TABLES

Table Page

3.1 Bounds for the probability of miscounting the number of eigenvalues inside
Cγ (z) by α or more, where n = 1600, ρ = 4000. 51

˜3.2 Eigenvalue counts of A and A inside some circles Cγ (z), where A is a
Cauchy-like matrix corresponding to n = 1600 in Example 1 below, τ is
the relative tolerance in a randomized HSS construction, and r is the HSS
rank. 52

3.3 ˜ ˜Costs of the precomputations for A and the factorization update for A − µI.57

3.4 Computation costs of some basic operations, where r is the HSS rank of A. 63

3.5 Example 1. Accuracies of the eigenvalue solution. 71

3.6 Example 2. Detailed times for the matrix with n = 6, 400 in Figure 3.4,
depending on whether the acceleration strategies are used or not. 73

3.7 ˜Example 2. HSS ranks of A in the two stages of FastEig. 73

3.8 Example 2. Accuracies of the eigenvalue solution. 74

4.1 Properties of A, including the corresponding mesh size for the entire domain.102

4.2 Summary of the convergence of GMRES without preconditioning and with
our structured Preconditioner I, where τ is around 0.1 ∼ 0.8 in constructing
the preconditioner. 103

4.3 Convergence of preconditioned GMRES for the problem ‘Traction’ at
time t = 0.5. 107

4.4 Convergence of preconditioned GMRES for the problem ‘Traction’ at
times t = 0 and 0.5 with different µ values. 108

4.5 Convergence of GMRES with our Preconditioner II for the problem ‘Mix Irregular’
in Table 4.1. 110

4.6 Comparison of the entire simulation for the free boundary problem (4.17)–
(4.19) with GMRES and preconditioned GMRES for different mesh sizes. 114

4.7 Comparison of the numbers of iterations at all the stages k for the iteration
(4.21). 115

x

LIST OF FIGURES

Figure Page

2.1 Points x and y, curve Γ and circle C(0; R) 8

2.2 The upper path represents the original interaction k(x, y), the lower path
represents the approximation kN (x, y) through the proxy surface Γ. 10

2.3 For d = 1, the exact F-norm relative error compared with its upper bound
for different γ and N . 22

2.4 For d = 2 and 3, compare EN (γ) with the indicator EN
0 (γ) for l = 1, 2 and 3.23

3.1 log10 |φ̃
0(z)| on the [−4, 4] × [−4, 4] mesh obtained with the Trapezoidal

rule and the Gauss-Legendre rule. 42

3.2 The annulus region Aγ,δ(z) (shaded area) related to a circle Cγ (z), where
the outer disk Dρ(0) is where all the eigenvalues are located. 47

3.3 Example 1. Clock times of FastEig for finding all the eigenvalues. 70

3.4 Example 2. Clock times of FastEig for finding all the eigenvalues, where
“shifted” means structured linear solution with shifted factorization up-
date, and “adaptive accuracy” means using low-accuracy HSS approxi-
mation for the eigenvalue count and high accuracy approximation for the
later eigenvalue solution. 72

3.5 Example 2. Eigenvalue distribution and quadsection process for finding
the eigenvalues of the matrix with n = 800. 74

4.1 Convergence of restarted GMRES without preconditioning for (4.8) from
AIIM for solving the Navier-Stokes equations with a traction boundary
condition in Section 4.4.1.1, where N = 680, the mesh size is 240 × 240,

||Ag−b||2and γ2 = is the relative residual. 88||b||2

4.2 The first 30 singular values of A(1 : N
2 ,

N
2 + 1 : N) for the Schur comple-

ment A from AIIM for solving the Navier-Stokes equations with a traction
boundary condition in Section 4.4.1.1, where N = 680 and the mesh size
is 240 × 240. 88

4.3 Costs for precomputing or constructing the preconditioner (including HSS
construction and ULV factorization) and applying the preconditioner (HSS
solution), and the storage for the preconditioner. 106

xi

Figure Page

4.4 Convergence of non-restarted GMRES without preconditioning and with
our structured preconditioning for the 680 × 680 Schur complement A
(corresponding to Figure 4.1) from a 240 × 240 mesh. 107

4.5 An illustration of the free boundary problem (4.17)–(4.19) in [66], where
Γ1 is a free boundary and Γ2 is fixed. 111

A.1 Selected parts from the Journal Publishing Agreement 128

https://4.17)�(4.19

xii

ABSTRACT

Ye, Xin Ph.D., Purdue University, August 2018. Analytical Methods for Structured
Matrix Computations. Major Professor: Jianlin Xia.

The design of fast algorithms is not only about achieving faster speeds but also

about retaining the ability to control the error and numerical stability. This is crucial

to the reliability of computed numerical solutions. This dissertation studies top-

ics related to structured matrix computations with an emphasis on their numerical

analysis aspects and algorithms. The methods discussed here are all based on rich

analytical results that are mathematically justified. In chapter 2, we present a se-

ries of comprehensive error analyses to an analytical matrix compression method and

it serves as a theoretical explanation of the proxy point method. These results are

also important instructions on optimizing the performance. In chapter 3, we propose

a non-Hermitian eigensolver by combining HSS matrix techniques with a contour-

integral based method. Moreover, probabilistic analysis enables further acceleration

of the method in addition to manipulating the HSS representation algebraically. An

application of the HSS matrix is discussed in chapter 4 where we design a struc-

tured preconditioner for linear systems generated by AIIM. We improve the numeri-

cal stability for the matrix-free HSS construction process and make some additional

modifications tailored to this particular problem.

1

1. INTRODUCTION

Matrix computation always serve as a core component of computational mathemat-

ics, as matrices can represent the discretization of a real world continuous problem.

In the current “big data” age, there has been an urgent need for large scale compu-

tational tools to keep up with the rapid development of computation hardwares and

the increasing amount of data collected.

This dissertation is built around computational methods for structured matrices

which has been an active research area in numerical linear algebra and matrix com-

putation in the last two decades. Generally speaking, the core idea behind this class

of methods is the ability to explore low-rankness of certain matrices or submatrices.

The discussion on this low rank feature is two-fold.

The theoretical aspect of why certain matrices admit low rank representations.

This is mostly motivated by physical backgrounds governed by certain mathematical

equations when performing real world simulations. The matrices being considered

carry more information than just a list of numbers arranged in a rectangle man-

ner. Depending on the type of problems in consideration, the analysis may require

knowledges from partial differential equations (PDEs), integral equations, or matrix

analysis tools. Being able to identify all the rank patterns is extremely important for

designing effective solvers for a specific problem.

The computational aspect of how to utilize this property to produce fast and stable

algorithms. Sophisticated algorithms are all based on the simple fact that when a

dense or large sparse matrix is compressed into a low rank form, the computation

tasks associated with it will generally have lower computational costs, memory, and

storage usages. Various hierarchical matrix representations are developed, and they

result in many fast and superfast solvers. In addition to achieving faster speeds,

people also discuss their numerical stability and parallel performance.

2

Many effective and fast algorithms have been developed and successfully applied

to a variety of problems. They meet the need for finding numerical solutions with

limited resources. The situation now reaches a point where many different algorithms

have similar computational efficiency, so in addition to getting lower cost, more efforts

have been made to stabilize the algorithms and achieve better accuracy. This requires

rigorous mathematical proofs. With these analytical results we know exactly what

will happen numerically when our algorithms are applied and the computed solutions

can then be more reliably used for other purposes.

Among the many different hierarchical representations such as H, H2 , fast mul-

tipole (FMM), sequentially semiseparable (SSS) and hierarchically off-diagonal low-

rank (HODLR), we will work with hierarchically semiseparable (HSS) matrices in this

work. Compared with its competitors, the HSS representation is noted to be a 1D

structure. It thus has limited application when used alone, but this can be overcome

by adding other layers of structures on top of HSS to obtain a more complex and

general purpose structure such as multi-layer hierarchical (MHS) structures. With

this one limitation comes several unique features. Firstly, HSS admits a ULV-type

factorization which can be used for direct solution of linear systems. The solution

process follows a binary tree associated with the HSS matrix hierarchically instead

of column-by-column or block-by-block sequentially; secondly, all related algorithms

have proven numerical stability which guarantees the quality of the computed solu-

tion.

We start with discussions in chapter 2 on low rank approximation of a matrix

which is the foundation of any rank-structured techniques. As a key component of

the HSS construction process, we rely heavily on the speed and error of the compres-

sion process. We will propose an analytical compression method based on contour

integration and proxy point selection. All discussions on the algorithm design are

accompanied by error analysis results. In particular, our analysis can serve as the

missing theoretical explanation of the widely used proxy point method. The theo-

3

ries developed here are well align with heuristics observed by many previous related

works.

In chapter 3, we develop a non-Hermitian eigensolver based on HSS algorithms and

a contour-integral eigensolver. The core idea of a contour-integral eigensolver is the

implicit use of a filter function to only maintain the desired spectrum information.

We will first consider the filter design problem by examining the decay properties

for different quadrature rules. Two acceleration techniques are applied. The first

one is more straightforward and is done by HSS factorization update. The second

one is by noticing that in the quadsection stage of the eigensolver, a low accuracy

representation already gives good enough estimation for the eigenvalue count. We

also provide theoretical justification to this strategy by analyzing the probability for

miscounting.

In chapter 4, we present an application to preconditioning the linear systems

resulting from the augmented immersed interface method (AIIM). We bring several

improvements to the matrix-free HSS construction algorithm tailored to this specific

problem. The generic matrix-free HSS construction algorithm is also updated with

much better numerical stability by completely avoiding the use of pseudoinverse.

Conclusion remarks and some future works are discussed in chapter 5.

4

2. ANALYTICAL COMPRESSION VIA PROXY POINT

SELECTION AND CONTOUR INTEGRATION

The content in this chapter is from a preprint under preparation [124]: X. Ye, J.

Xia, and L. Ying, Analytical compression via proxy point selection and contour

integration, to be submitted, 2018.

2.1 Introduction

In this chapter, we focus on the low-rank approximations of kernel matrices: those

generated by a kernel function k(x, y) and two sets of points X = {xj }m and Y = j=1

{yj }n This type of problem frequently arises in a wide range of computationalj=1.

tasks, e.g., in numerical solution to PDEs where an operator or the Green’s function

acts as the kernel and the points are from the discretization method of the domain,

or in machine learning where there are a covariance function and a set of data points.

Especially when rank-structured techniques such as H [42], H2 [43] and HSS [12,117]

are applied, low-rank approximations are computed throughout the structured matrix

construction, whether or not the chosen technique can successfully solve the problem

relies heavily on the quality and efficiency of such low-rank approximation.

As is proven by the famous Eckhart-Young theorem, the best low-rank approxi-

mation is given by the truncated singular value decomposition (SVD), but too much

computation cost has to be paid for this optimal solution. The SVD approach can be

categorized into the algebraic compression method, other popular algorithms also falls

into this category are strong rank-revealing QR factorization (SRRQR) [39], strong

rank-revealing LU factorization (SRRLU) [83], interpolative decomposition (ID) [15]

and spectrum-revealing Cholesky factorization (SRCH) [121]. These generic methods

work well for all matrices but the costs are all greater or equal to O(mnr) with r be-

5

ing the target rank, when integrated into the structured matrix construction process

they all result to at least quadratic costs with respect to the problem size thus are

still not suitable for modern large-scale applications.

A remedy to the algebraic methods is the introduction of randomization. The

most general such approach [26] is done by randomized sampling on the rows or

columns of the matrix with certain weight, the selected submatrix can capture the

majority of the actions in the original matrix with very low failure probability; when a

fast matrix-vector product scheme is available, column or row spaces information can

be also extracted from the product in a matrix-free fashion [37,46,78,121]. With the

assumption that each entries of the matrix can be accessed in O(1) cost or the mat-vec

can be conducted in less than O(mn) cost, randomized methods generally bring down

the compression cost to at most O((m+n)r) with some possible polylogarithmic term

in m or n.

Not like the purely algebraic methods which focus on the desired row or column

subspaces, a series of analytical compression methods is developed based on entry-wise

approximation with the appreciation of certain form of the kernel function k(x, y).

The low-rank approximation of the matrix is a direct result of a degenerate approxi-

mation to the function that separates the variables:

rX
k(x, y) ≈ αj φj (x)ψj (y) (2.1)

j=1

where {φj } and {ψj } are appropriate basis functions and {αj } are coefficients indepen-

dent of x or y. The fast multipole method (FMM) [36] falls into this category where

the degenerate approximation is obtained by multipole expansion, others forms of ap-

proximation can also be generated by using spherical harmonic basis functions [99],

Fourier transform with Poisson’s formula [2, 76], Laplace transform with Cauchy in-

tegral formula [60], Chebyshev interpolation [24] and Taylor expansion [11], various

other polynomial basis functions are also discussed in [86].

One typical downside of the purely analytical approach is that usually the basis

{φj } and {ψj } are of different form compared to the kernel function k(x, y), as a result,

6

none of the factors in the low-rank approximation will inherit the same structure of

the original matrix while a structure preserving compression is proven to be beneficial

to structured matrix technique, e.g. in [73, 120].

Recently, a new class of compression methods called proxy point methods tailored

for kernel matrices have been developed and are receiving more and more attentions

due to their exceptional simplicity and reliability, some discussion can be found in

[24, 79, 122, 126, 127] when dealing with different kernels and different geometries of

points. While the methods vary from one to another, they all share the same basic

idea and can be summarized in algorithm 1, all the details are omitted here and will

be discussed later in section 2.3. Note that an explicit degenerate form eq. (2.1) is not

needed and the algorithm only requires kernel function evaluation when forming the

matrix KX,Z in line 2, this feature enables some classical methods to be applicable

to more general cases, examples include the recursive skeletonization [47, 79, 82] and

kernel independent FMM [80, 126,127].

Algorithm 1 Basic proxy point method
Input: k(x, y), X, Y

Output: low-rank approximation KX,Y ≈ UV

1: Pick proxy surface Γ and a set of proxy points Z ⊂ Γ

2: Form and compress KX,Z ≈ Û V̂

3: Set U = Û and obtain V according to V̂

Compared to their great successes on various applications in practice, results from

the theoretical aspect are still lacking in the literature. Potential theory [55, Chapter

6] can be used to explain the choice of proxy surface Γ in line 1 when dealing with

PDE kernels (k(x, y) is the fundamental solution of some PDE), little is known about

the approximation error introduced by picking proxy points Z and then combining

with an algebraic compression in line 2.

Our work here focuses on the kernel

1
k(x, y) = (2.2)

(x − y)d

�

7

where d ∈ Z+ , x, y ∈ C and x =6 y, we will propose our own variant of the analytical

method for this problem based on contour integration and conduct a systematical

analysis on different types of approximation error. Our main contribution contains

two major pieces:

(i) In section 2.2, we rationalize the use of proxy points Z and present an ex-

plicit approximation error bound associated with it, then we discuss the optimal

choice for Z based on the analysis results.

(ii) In section 2.3, the above technique is then incorporated into a hybrid method

like algorithm 1 and the corresponding compound error analysis is also pre-

sented.

Some notations we use frequently in the paper are listed here:

• Intergers m, n, N denote the sizes of sets X, Y and Z, respectively;

¯• C(a; γ), D(a; γ) and D(a; γ) denote the circle, open disk and closed disk with

center a ∈ C and radius γ > 0, respectively;

• A(a; γ1, γ2) = {z : γ1 < |z − a| < γ2} (0 < γ1 < γ2) is a open annulus region;

• for a function in small letter, the corresponding capital letter means a matrix

generated by this function, e.g., for the kernel function k(x, y) and two sets of

points X = {xj }m and Y = {yj }jn
=1, K

X,Y represents a matrix of size m × nj=1

where the (i, j) entry is k(xi, yj);

• the operation denotes entry-wise multiplication of two matrices.

2.2 Analytical compression

In this section, we will introduce the analytical approximation method and the

main analysis results.

8

We will follow the convention to call set X = {xj }m the target points andj=1

Y = {yj }n the source points. Note that the kernel function eq. (2.2) is transla-j=1

tion invariant, i.e., k(x − z, y − z) = k(x, y) for any x 6= y and z ∈ C, the target

points can be moved to be clustered around the origin without loss of any generality.

To be more specific, unless otherwise stated in the context, we will always assume

X ⊂ D(0; γ1) and Y ⊂ A(0; γ2, γ3) where the radii satisfy 0 < γ1 < γ2 < γ3.

2.2.1 The derivation via Cauchy integral formula

Let x ∈ X and y ∈ Y be any two points, draw a Jordan curve Γ that encloses

x while excludes y and let R > 0 be large enough so that the circle C(0; R) encloses

both Γ and y; see fig. 2.1.

Figure 2.1. Points x and y, curve Γ and circle C(0; R)

Define the domain ΩR to be the open region inside of C(0; R) and outside of Γ, then

the boundary ∂ΩR consists of C(0; R) and −Γ (curve Γ with negative direction). Now

consider the function f(z) := k(x, z) on the bounded closed domain Ω̄
R = ΩR ∪ ∂ΩR,

���� ���� ���� ����

9

¯the only singularity of f(z) is at z = x ∈/ ΩR, thus it’s analytic (or holomorphic) on

Ω̄R and by the Cauchy integral formula [98] we get Z
1 f(z)

k(x, y) =f(y) = dz
2πi z − yZ ∂ΩR Z (2.3)

1 k(x, z) 1 k(x, z)
= dz − dz,
2πi C(0;R) z − y 2πi Γ z − y

note that Z
k(x, z) 1 2πR

dz ≤ 2πR · max ≤
z − y z∈C(0;R) (z − y)(x − z)d (R − |x|)d(R − |y|)C(0;R)

and the right-hand side goes to zero when R →∞, thus Z
k(x, z)

lim dz = 0.
R→∞ z − yC(0;R)

Since eq. (2.3) holds for any large enough R as long as C(0; R) encloses Γ and y, by

taking the limit on it for R →∞, the first term vanishes and (2.3) becomes the key

formula for our entry-wise approximation Z
1 k(x, z)

k(x, y) = dz. (2.4)
2πi Γ y − z

Remark 2.2.1 This result is very similar to the Cauchy integral formula except that

the point y under consideration is outside of the contour Γ in the integral and it might

be possible to generalize the original formula to obtain a more general conclusion that

implies what we get here, but, nonetheless, we will give our own short proof since it’s

not a trivial result.

To approximate the above contour integration, pick an N -point quadrature rule

{(zj , ωj)}Nj=1 on Γ where Z = {zj }N ⊂ Γ is the set of quadrature points and {ωj}N
j=1 j=1

is the corresponding quadrature weight. Denoted by kN (x, y) the approximation

induced by such a numerical integration, then

X X1
N

k(x, zj)
N

ωj
kN (x, y) = ωj = k(x, zj) ,

2πi y − zj 2πi(y − zj)j=1 j=1

10

define wN (zj, y) = ωj /2πi(y − zj) (since ωj can be viewed as a function in zj and N)

and we get
NX

kN (x, y) = k(x, zj)wN (zj , y) = Kx,Z WN
Z,y . (2.5)

j=1

As shown above, we have separated the two variables x and y in k(x, y) by the

approximation and it acts just like the degenerate approximation eq. (2.1) but with

one additional property: the basis functions {φj } in this case is {k(·, zj)}, the exact

same kernel with the original entry k(x, y) that is being approximated. This alone

already gives an intuitive explanation of the use of proxy surface: the interaction

between x and y can be well approximated by interaction between x and some proxy

points Z, the weight function wN is used to make them equivalent (in terms of com-

puting potential, this is to place equivalent charges on the proxy surface). A pictorial

illustration is shown in fig. 2.2.

Figure 2.2. The upper path represents the original interaction k(x, y),
the lower path represents the approximation kN (x, y) through the proxy
surface Γ.

11

2.2.2 Approximation error analysis

Although the approximation eq. (2.5) holds for any proxy surface Γ satisfying the

given conditions and for any quadrature rule, we still need to make specific choice

in order to obtain a more practical error bound. Firstly, we will assume the proxy

surface Γ = C(0; γ) to be a circle, this is the most popular choice in related works

and is also consistent with our assumption on the geometry of X and Y at the start

of section 2.2. For now, the proxy surface Γ is only assumed to be between X and

Y , i.e., γ1 < γ < γ2, we will come back to discuss more on this matter later in this

section. Secondly, the quadrature is chosen to be the composite trapezoidal rule, in

particular we pick � �
2πij 2πizj

zj = γ exp and ωj = , j = 1, 2, . . . , N. (2.6)
N N

This choice can be justified by noting that trapezoidal rule converges exponentially

fast if applied to a periodic integrand [103], in our case it is a contour integral, our

results later also align with this knowledge. Moreover, if no specific direction is more

important that others, trapezoidal rule performs uniformly well on all directions of

the complex plane C; some related discussions on this issue can be found in [53,123].

As a result of the above assumptions, the weight function wN in eq. (2.5) becomes

1 z
wN (z, y) = , y 6= z,

N y − z

also we define g(z) = 1/(z − 1) as a complex function for z ∈ C and z 6= 1 or a real

function for z ∈ R and z > 1 depending on the context. In the following proposition,

we derive an analytical expression for the low-rank approximation and it’s error.

Proposition 2.2.1 For x 6= 0, let kN (x, y) be defined in eq. (2.5) and quadrature is

the composite trapezoidal rule eq. (2.6), then " #� � d−1 � �X (y − x)j dj
kN (x, y) = k(x, y) 1 + g (y/γ)N + g (γ/x)N (2.7)

jj! dx
j=0

12

and the relative approximation error is

kN (x, y) − k(x, y)
εN (x, y) :=

k(x, y)
d−1 (2.8)� � X dj � �

N (y − x)j N = g (y/γ) + g (γ/x) .
jj! dx

j=0

First we need the following lemma in the proof of the above results.

Lemma 2.2.1 Let {zj }N be the points defined in eq. (2.6), thenj=1

XN
zj NγN

= (2.9)
zN − γN

j=1
z − zj

holds for all z ∈ C − {zj }N
j=1.

Proof We will state without proving the following result that is used in this proof: ⎧ ⎪N ⎨X Nγp, if p is a multiple of N,
zp = (2.10)j ⎪⎩j=1 0, otherwise.

Suppose |z| < γ so |z/zj | < 1 for any j = 1, 2, . . . , N , then

N N N ∞ � �l ∞ NX X XX X Xzj 1 z
= − = − = − z l z −l

z − zj 1 − z/zj zj
j

j=1 j=1 j=1 l=0 l=0 j=1

∞X
sN Nγ−sN = − z (apply eq. (2.10), only l = sN terms are left)

s=0
∞ � N �sX z N NγN

= −N = − = .
γN 1 − zN /γN zN − γN

s=0

Similarly we can also prove it when |z| > γ using the fact that |zj /z| < 1. At last,

since both sides of eq. (2.9) are analytic functions on C − {zj }N and they agreej=1

on |z| =6 γ, by continuity, they must also agree on |z| = γ and z ∈/ {zj }N which j=1

completes the proof.

13

Proof [Proof of proposition 2.2.1] We prove this proposition by induction on d.

Consider the case when d = 1, substituting eq. (2.6) into eq. (2.5) yields

XN NX1 zj
kN (x, y) = k(x, zj)wN (zj , y) =

N (x − zj)(y − zj)j=1 j=1 X X1
N

x − y 1
N
(x − zj) − (y − zj)

= zj = zj
N(x − y) (x − zj)(y − zj) N(x − y) (x − zj)(y − zj)j=1 j=1!X X1

N
zj

N
zj

= −
N(x − y) y − zj x − zjj=1 j=1� �

1 NγN NγN

= − (apply theorem 2.2.1)
N(x − y) yN − γN xN − γN � �
1 γN γN

= −
x − y yN − γN xN − γN h � � � �i1

= 1 + g (y/γ)N + g (γ/x)N ,
x − y

thus eq. (2.7) holds for d = 1.

Now suppose eq. (2.7) is true for d = l for some l ∈ Z and l ≥ 1, equating eq. (2.5)

and eq. (2.7) and plug in k(x, y) explicitly we get

X " � � X dj � �# N
1 1 N

l−1
(y − x)j N wN (zj, y) = 1 + g (y/γ) + g (γ/x) .

(x − zj)l (x − y)l j! dxj
j=1 j=0

We are to take the derivative on both sides of eq. (2.7) with respect to x, note that

d 1 l
= −

(x − z)l+1dx (x − z)l

for z = y or z = zj (j = 1, 2, · · · , N), so !
NXd 1

LHS = −l wN (zj , y)
dx

j=1
(x − zj)l+1

and " #
l−1 �� � X �d −l N (y − x)j dj NRHS = 1 + g (y/γ) + g (γ/x)

dx (x − y)l+1
j=0

j! dxj

l−1 l−1
"X dj+1 � � X (y − x)j−1 dj � �# (y − x)j N N+ g (γ/x) − g (γ/x)

j+1 j(x − y)l j! dx (j − 1)! dx
j=0 j=1

1

��� ���
�����

�����

14

" #
l−1 �� � X �−l N (y − x)j dj N = 1 + g (y/γ) + g (γ/x)

(x − y)l+1 jj! dx
j=0 � �1 (y − x)l−1 dl N+ g (γ/x) (all terms cancel except for j = l − 1)

(x − y)l (l − 1)! dxl " #� � l � �−l N
X (y − x)j dj N = 1 + g (y/γ) + g (γ/x) ,

(x − y)l+1 jj! dx
j=0

the above two equations yield

NX 1
wN (zj , y) =

(x − zj)l+1
j=1 " #� � l � �1 N

X (y − x)j dj N1 + g (y/γ) + g (γ/x) ,
(x − y)l+1 jj! dx

j=0

thus eq. (2.7) holds for d = l + 1.

By induction, eq. (2.7) is proved for any d ≥ 1. The relative approximation error

eq. (2.8) can be easily derived using this result.

With this analytical expression we can give the first upper bound for the approx-

imation error with this contour integral technique.

Theorem 2.2.2 With all assumptions in proposition 2.2.1, there exists an N1 > 0

such that for any N > N1, the approximation error eq. (2.8) is bounded by

� � � �
|εN (x, y)| ≤ g |y/γ|N + Cg |γ/x|N (2.11)

where C is a constant depends on N , d and |y/x|.

Proof Since � �
N 1 �

g (y/γ) = ≤
1

= g |y/γ|N
�
,

|(y/γ)N − 1| |y/γ|N − 1

we only need to prove

d−1 � �X (y − x)j dj N � �
g (γ/x) ≤ Cg |γ/x|N (2.12)

jj! dx
j=0

⎪⎪⎪⎪
⎪⎪⎪⎪

15

for some constant C. When d = 1, it’s easy to verify that the above inequality holds

for C = 1 and any N . Thus now we only consider the case when d ≥ 2.

Note that for any l ≥ 1 � � h � � � �id lNl N l N l+1 N g (γ/x) = g (γ/x) + g (γ/x) , (2.13)
dx x

here gl denotes function g raise to power l, hence the derivatives appear in eq. (2.12)

all have the following form

dl � � X � �l+1
N (l) j N1

g (γ/x) = α g (γ/x) (2.14)jdxl xl
j=1

where αj
(l)
(1 ≤ l ≤ d − 1, 1 ≤ j ≤ l + 1) are constants.

We claim that when N > d and for any 1 ≤ l ≤ d − 1, there exits constants c(l)

dependent on d so that |α(l)| ≤ c(l)N l for all 1 ≤ j ≤ l + 1, this is proved by inductionj

on l. When l = 1, we see from eq. (2.13) that � � h � � � �id NN N 2 N g (γ/x) = g (γ/x) + g (γ/x) ,
dx x

(1) (1) (1)so α1 = α2 = N and there exists c = 1 that satisfies the claim. Suppose the

claim holds for l = s where 1 ≤ s ≤ d − 2 (additionally assume d > 2 otherwise the

proof for the claim is already finished), then

ds+1 � � s+1 � �!Xd 1N (s) j N g (γ/x) = α g (γ/x)
dxs+1 xs jdx

j=1

s+1 s+1X � � X h � � � �i s (s) j N 1 (s) jN j N j+1 N = − α g (γ/x) + α g (γ/x) + g (γ/x)
xs+1 j xs j x

j=1 j=1

1
� � � s+1 � � � �X

(s) N (s) (s) j N = (N − s)α g (γ/x) + (jN − s)α + N(j − 1)α g (γ/x)
xs+1 1 j j−1 � j=2 ��

(s) s+2 N + N(s + 1)α (γ/x) ,s+1g

thus the coefficients satisfy the following recurrence relation ⎧
(N − s)α1

(s)
, j = 1,⎪⎨

(s+1) (s) (s)αj = (jN − s)αj + N(j − 1)αj−1, 2 ≤ j ≤ s + 1, ⎪ (s)⎩N(s + 1)α j = s + 2.s+1,

�����
�����

�����
�����

�����
�����

16

We can pick c(s+1) = (2d + 1)c(s) and prove |α(s+1)| ≤ c(s+1)N s+1 with the above j

relations, the claim holds for l = s + 1 and this finishes the induction.

Now we go back to prove eq. (2.12), substitute eq. (2.14) into it we get

d−1 � � d−1 j+1 � �X (y − x)j dj X (y − x)j X1N (j) l N
j
g (γ/x) =

j
αl g (γ/x)

j! dx j! x
j=0 j=0 l=1

d−1 j+1X (|y/x| − 1)j X
(j) � �

≤ |α | · g l |γ/x|N (2.15)
j! l

j=0 l=1

d−1 j+1X X �(|y/x| − 1)j �
(j)N j l≤ c g |γ/x|N .

j!
j=0 l=1 � �

When |γ/x|N > 3 so that g |γ/x|N < 1/2, we get for any j,

j+1X � � � �
g l |γ/x|N ≤ 2g |γ/x|N .

l=1

Continue on eq. (2.15), for N > N1 := max{d, log 3/ log |γ/x|},

d−1 � � d−1X (y − x)j dj � � X (|y/x| − 1)j (j)N jg (γ/x)N ≤ g |γ/x|N · 2 c ,
j! dxj j!

j=0 j=0

thus eq. (2.12) holds for

Xd−1
(|y/x| − 1)j (j)N jC = 2 c (2.16)

j!
j=0

which is a constant only depends on N , d and |y/x|.

(0) (j)Remark 2.2.2 We can set c = 1 and c = (2d + 1)j−1 for 1 ≤ j ≤ d −

1 base on the above proof, so the constant C is a low order polynomial in N , d

and |y/x|. Another minor issue is we defined N1 = max{d, log 3/ log |γ/x|} which

is depend on γ, we can drop this dependency by enforcing γ1 to be slightly larger

than |x|, then log 3/ log |γ/x| ≤ log 3/ log |γ1/x| and so we can instead set N1 =

max{d, log 3/ log |γ1/x|}, this is crucial in deriving our next result.

The last remaining piece of the error analysis is focused on the radius γ of the

proxy surface Γ which is the only variable in eq. (2.11). Although the upper bound

17

eq. (2.11) always decays exponentially as N increases, different choice of γ can result

to significant difference in magnitude on its actual value for a fixed N . This is

summarized in the following proposition.

Theorem 2.2.3 With all assumptions in theorem 2.2.2, if the upper bound eq. (2.11)

is viewed as a real function in γ on the interval (|x|, |y|), then there exists N2 > 0

such that if N > N2,

1. the function has a unique minimizer γ∗ , � �
2. the minimum decays as O |y/x|−N/2 .

Proof This is equivalent to consider the real function

1 C
h(t) = +

b/t − 1 t/a − 1

on t ∈ (a, b) where a = |x|N , b = |y|N and C is defined in eq. (2.16). The derivative

of the function is

(b − aC)t2 + 2ab(C − 1)t + ab(a − bC)
h0(t) = ,

(t − a)2(t − b)2

now consider the numerator p(t) = (b−aC)t2 +2ab(C −1)t+ab(a−bC) on the closed

interval [a, b], it is a quadratic function in t with the following properties:

• the coefficient of the second order term is � �
b − aC = |x|N |y/x|N − C ,

as discussed in remark 2.2.2, for any N > N1 ≥ d, C is low order polynomial in

N and |y/x|, there must be some N2 > N1 such that |y/x|N > C holds for any

N > N2 and thus b − aC > 0;

• the discriminant is Δ = 4abC(a − b)2 > 0;

• when evaluated at t = a and t = b, the function gives

p(a) = −aC(a − b)2 < 0,

p(b) = b(a − b)2 > 0.

� �

18

All the above combined indicates that p(t) has one root t0 ∈ (a, b) and h0(t) < 0 on
√

t ∈ (a, t0) and h0(t) > 0 on t ∈ (t0, b), thus γ∗ = N
t0 is the unique minimizer of the

upper bound eq. (2.11).

To prove the second part of the theorem, we compute explicitly the root t0 by

solving h0(t) = 0 (or p(t) = 0) so that
√

−ab(C − 1) + (b − a) abC
t0 =

b − aC

and then substitute into h(t) to get

2
p
Cb/a + (C + 1) 2

√
C|y/x|N/2 + (C + 1) � �

h(t0) = = ∼ O |y/x|−N/2 ,
b/a − 1 |y/x|N − 1

the computation is purely tedious algebra thus is omitted here.

Remark 2.2.3 The requirements for picking N2 are N2 > N1 and |y/x|N2 > C,

hence N2 is a constant only depends on d and |y/x| and, again, is independent of γ.

The minimizer γ∗ is in the interval (|a|, |b|) which is slightly larger than (γ1, γ2), for

now let’s suppose we don’t care γ∗ is inside the interval (γ1, γ2) or not, then similar

to previous discussions, γ∗ is only dependent on N , d and |y/x|.

2.2.3 Block-wise error and practical issue

The analyses in section 2.2.2 can be seen as the entry-wise approximation error

estimate for a matrix block if each entries in it is approximated by the same method

in section 2.2.1, thus now we shift our attention to the block-wise counterparts.

Apply the approximation to each entries of the matrix KX,Y , then eq. (2.5) to-

gether with the approximation error term eq. (2.8) give the form of the low-rank

approximation

KX,Y = KX,Y + KX,Y EX,Y = KX,Z W X,Y + KX,Y EX,Y (2.17)N N N N

where entries of EX,Y satisfy the bound eq. (2.11). Note that by replacing |x| andN

|y| with γ1 and γ2 in eq. (2.11), respectively, the upper bound is no longer associated

19

with a single source-target combination (xi, yj) ∈ X × Y and is instead uniform for

all points in X and Y . This immediately leads to a corollary regarding the block-wise

approximation error, the proof is omitted.

Corollary 2.2.4 With all assumptions in theorem 2.2.2 and γ ∈ (γ1, γ2), the F-norm

relative approximation error is bounded by

kKX,Y − KX,Y kF � � � �
N ≤ g (γ2/γ)

N + Cg (γ/γ1)
N (2.18)

kKX,Y kF

where C is as defined in eq. (2.16) with |y/x| replaced by γ2/γ1.

Similarly, theorem 2.2.3 can also be adopted to a block version by conducting the

same analysis on the upper bound eq. (2.18), we will not state this result here and

instead only give the following corollary which is a direct extension regarding the

(numerical) rank of kernel matrix.

Corollary 2.2.5 The numerical rank of the kernel matrix KX,Y is

� �
KX,Y rank = O (log(1/ε)/ log(γ2/γ1))

given any relative tolerance 0 < ε < 1.

Remark 2.2.4 To achieve certain accuracy by this analytical compression method,

the number of quadrature nodes N depends only on the ratio between γ2 and γ1, i.e.,

the separation of the two sets, while the number of points in X or Y has no effect on

the low-rank compression error. This analysis is consistent with the conclusions in

the FMM context [11, 99].

When the number of quadrature nodes N is fixed, we always want to pick γ that

gives the smallest approximation error so we can simply set γ = γ∗ and this choice

is justified by the omitted block version of theorem 2.2.3. But we only know the

existence of such an optimal choice, not its value since there is no explicit expression

in the theorem. Now we will discuss how to obtain γ∗ or at least a good approximation

of γ∗ in practice.

20

2.2.3.1 When d = 1

In this case, many equations will have nice, analytical expressions so that we are

able to draw much stronger conclusions compared to those for the general case in

section 2.2.2.

As shown in proposition 2.2.1 for d = 1, the approximation error has this explicit

expression � � � �
εN (x, y) = g (γ/x)N + g (y/γ)N

and hence � � � �
|εN (x, y)| ≤ g |γ/x|N + g |y/γ|N .

A version of the results in theorems 2.2.2 and 2.2.3 is summarized below.

Proposition 2.2.2 When d = 1, for any N > 0 and γ ∈ (γ1, γ2), the block-wise

approximation error is bounded by

kKX,Y − KX,Y kF � � � �
N ≤ g (γ/γ1)

N + g (γ2/γ)
N . (2.19)

kKX,Y kF

If viewed as a function in γ, this upper bound has a unique minimizer γ∗ =
√
γ1γ2 � �

and the optimal upper bound is 2g (γ2/γ1)N/2 .

Proof The approximation error eq. (2.19) is an extension of the entry-wise error,

simply replace |x| and |y| by γ1 and γ2, respectively, and apply to each entries of the

matrix KX,Y . Then

� � � � 1 1
g (γ/γ1)

N + g (γ2/γ)
N = +

(γ/γ1)N − 1 (γ2/γ)N − 1� �
(γ/γ1)

N + (γ2/γ)
N − 2

=
(γ2/γ1)N + 1 − ((γ/γ1)N + (γ2/γ)N)

(γ2/γ1)
N − 1

= −1 + ,
(γ2/γ1)N + 1 − ((γ/γ1)N + (γ2/γ)N)

note that (γ/γ1)N +(γ2/γ)
N ≥ 2(γ2/γ1)N/2 and equality is reached when γ∗ =

√
γ1γ2, � � √

thus the upper bound reaches its minimum 2g (γ2/γ1)N/2 at γ∗ = γ1γ2.

21

Now we show a simple numerical example to illustrate the theoretical results in

this section. We set m = 200, n = 300, γ1 = 0.5, γ2 = 2 and γ3 = 5, the points in

X and Y are uniformly chosen from their corresponding regions and are plotted in

fig. 2.3(a). In fig. 2.3(b), we fix the number of quadrature nodes to be N = 20 and let

γ vary from 0.55 to 1.9, both lines are of V-shape and the exact relative error reaches

its minimum near the optimal radius we picked at γ∗ =
√
γ1γ2 = 1; in fig. 2.3(c), we

fix γ to be at its optimal γ∗ = 1 while let N vary from 6 to 29, both the exact error

and its bound decay exponentially when N increases; the two vertical dashed line in

the two graphs correspond to the optimal case, the proxy points Z at their optimal

positions are plotted in fig. 2.3(a).

2.2.3.2 When d > 1

In this case, unfortunately we are unable to derive an explicit formula for γ∗ and

the optimal upper bound for the approximation error as in section 2.2.3.1, but we can

still utilize the theoretical bound eq. (2.18) to approximate γ∗ in practice to achieve

better approximation error.

As was discussed in remark 2.2.3, the optimal γ∗ ∈ (γ1, γ2) is only dependent on

N , d and γ2/γ1 (replacing |y/x| in the entry-wise analysis) and, most importantly, is

independent of the number of points in X and Y and their distribution. This feature

motivates the idea to pick X0 ⊂ D(0; γ1) and Y0 ⊂ A(0; γ2, γ3), then for any fixed N

and d we would expect the following two quantities

kKX0,Y0 − KX0,Y0 kF kKX,Y − KX,Y kF
E0 N N

N (γ) := and EN (γ) := (2.20)
kKX0,Y0 kF kKX,Y kF

to have similar behavior when γ varies in (γ1, γ2), hence EN
0 (γ) can be used as an

indicator of the exact approximation error EN (γ) when they are viewed as a function
X0,Y0in γ. Note that KX0,Y0 and KN are computable through eq. (2.2) and eq. (2.5),

respectively, thus EN
0 (γ) can be computed explicitly and the cost is extremely small

if |X0| � |X| and |Y0| � |Y |.

22

-5 0 5

-5

0

5

(a) Sets X, Y and proxy points Z at their optimal positions

0.5 1 1.5 2
10

-8

10
-6

10
-4

10
-2

10
0

5 10 15 20 25 30

N

10
-10

10
-5

10
0

(b) varying proxy surface radius γ (c) varying quadrature number N

Figure 2.3. For d = 1, the exact F-norm relative error compared with its
upper bound for different γ and N .

Here we show another numerical test. Consider d = 2, 3 and the two sets X and

Y are the same as in fig. 2.3(a), N is fixed at N = 30. We set l = |X0| = |Y0| to be

1, 2 or 3, more specifically, X0 is uniformly distributed on the circle C(0; γ1) and we

make sure x = γ1 ∈ C is always in X0, likewise for Y0. This way of picking X0 and Y0

on the boundaries of X and Y , respectively, corresponds to the worst case scenario

23

0
Nof any error bounds developed before, so that E (γ) is more likely to capture the

behavior of EN (γ).

0.5 1 1.5 2

10
-8

10
-6

10
-4

10
-2

10
0

1.06 1.08 1.1

1.5

2

2.5

3

10
-8

(a) d = 2 (b) d = 2, zoom in at critical point

0.5 1 1.5 2

10
-5

10
0

1.1 1.12 1.14 1.16 1.18 1.2

1

1.5

2

2.5

10
-7

(c) d = 3 (d) d = 3, zoom in at critical point

Figure 2.4. For d = 2 and 3, compare EN (γ) with the indicator E0
N (γ) for

l = 1, 2 and 3.

We can see from figs. 2.4(a) and 2.4(c) that, E0
N (γ) already gives a good estimate of

the behavior of EN (γ) for both cases when d = 2 or 3. Then in figs. 2.4(b) and 2.4(d)

we plot E0
N (γ) for l = 1, 2, 3 and zoom in at around the minimum since they almost

coincide with each other when moving away from this interval, this indicates that

24

setting l = 1 suffices in practice and we won’t gain much by increasing l and paying

more computation cost.

To conclude the above discussion, for any given d > 1, N and γ2/γ1, let X0 =

minimization problem on the interval (γ1, γ2) and γ∗ is set to be the minimizer of it.

0{ }γ and the function Econstruct2 N{γ1} and Y0 = (γ) in eq. (2.20), then solve the

0instead solve for the minimizer of log (Ereason, we can N

0Remark 2.2.5 EN(γ) is a non-linear smooth function in γ on (γ1, γ2), for stability

(γ)).

In most of the hierarchical matrix techniques, a prespecified separation parameter

or admissible condition is used to determine the compressibility of certain submatrix.

In the case of kernel matrices, this separation parameter is characterized by the ratio

γ2/γ1 thus the radius combination {γ1, γ2} will be shared by all submatrices that need

to be compressed, which also means the process of approximating the optimal value

γ∗ only needs to be run once. We are trading very little pre-computation cost with

much better compression accuracy. We summarize the overall strategy for picking γ∗

in algorithm 2.

2.3 Hybrid method

In most of the applications, the purely analytical approach like the one introduced

in section 2.2 is not used on its own, it is usually combined with another algebraic

step to further compress the matrix, the resulting algorithm is called a hybrid method.

In this section, we will analyze in details of the proxy point method algorithm 1 which

falls in the class of hybrid method, theoretical background and error estimation will

be provided.

�

25

Algorithm 2 Approximating the optimal radius γ
Input: γ1, γ2, d, τ (given compression tolerance)

Output: γ∗ , N

1: if d = 1 then

2: Set γ∗ =
√
γ1γ2 �

3: Compute N with 2g (γ2/γ1)N/2 = τ . error bound in proposition 2.2.2

4: else

5: Initialize N = 0 and ε = 1 . ε is the computed error

6: while ε > τ do

7: N ← N + 10 . increase N when accuracy is not enough

8: Form the function EN
0 (γ) . by eq. (2.20)

9: Minimize log (EN
0 (γ)) to get γ∗ and set ε = EN

0 (γ∗)

10: end while

11: end if

2.3.1 Review of SRRQR factorization and ID

For matrix A of size m × n and a target rank r ≤ max(m, n), the interpolative

decomposition (ID) [15] is A ≈ UA|J where the column basis U has the form ⎛⎝ I
⎞⎠U = P (2.21)

E

and P is a permutation matrix, I is a r × r identity matrix and E is an (m − r) × r

residual matrix, the row basis A|J is a submatrix of A with selected rows in the index

set J and |J | = r. When ID is applied to a kernel matrix KX,Y , the index set J

˜corresponds to a subset of X denoted by X and is referred to as the representative

X,Y points of X, then the compression can be written as KX,Y ≈ UK ˜
.

Although the column basis U is not orthogonal, the numerical stability of such a

factorization is guaranteed if the ID is obtained by SRRQR in the sense that entries

of E can be bounded by a constant f ≥ 1, typically the process costs O(mnr) if f is

26

√
set to be a small constant larger then 1 or small power in n, e.g., 2 or n; see [39]

for details.

2.3.2 Hybrid strategy and error analysis

When the column size n of the kernel matrix KX,Y is too large, directly applying

the ID is prohibitively expensive. We can introduce an analytical compression step

via contour integration (abbreviated as CI) at the start to greatly reduce the cost,

this hybrid strategy is summarized as follows:

KX,Y X,Y = KX,Z W Z,Y (by CI on KX,Y)≈ KN N (2.22)

X,Z W Z,Y (by ID on KX,Z)≈ UK
˜

N (2.23)

X,Y X,Y X,Y).= UKN
˜ ≈ UK

˜
(by CI on K

˜
(2.24)

Note that eqs. (2.22) and (2.24) are done analytically with no cost, the only actual

computation needed in this process is to form KX,Z and apply ID to it in eq. (2.23)

which is bounded by O(mN)+ O(mNr) = O(mNr). As we have discussed before, N

is only a constant independent of m and n and, furthermore, is much smaller than the

column size n, thus the hybrid method is extremely efficient compared to applying

ID on the original kernel matrix.

An obvious similarity between the above hybrid method and the proxy point

method algorithm 1 can be observed, the contour Γ and the quadrature nodes Z

in eqs. (2.4) and (2.5) correspond to the proxy surface and proxy points in line 1,

this fact helps to explain the connection between the bases of KX,Y and KX,Z . In

eq. (2.23) which corresponds to line 2, the algebraic compression with a structure-

˜preserving method ID enables us to reuse the factors U and X in the final low-rank

approximation without any additional computation cost. At last in line 3, there is

also an implicit analytical compression step as shown in eq. (2.24).

The next theorem concerns the approximation error for our variant of the hybrid

method with CI and ID.

27

Theorem 2.3.1 The kernel function is as defined in eq. (2.2), sets X, Y satisfy the

assumptions at the beginning of section 2.2, the N proxy points Z are at the optimal

positions according to the discussions in section 2.2.3 and the compression error τCI

is defined by eq. (2.18) when γ = γ∗ , the relative tolerance (in F-norm) used in ID is

τID and the constant in SRRQR is f > 1 and the compression rank is r < N , then

a rank-r approximation of the kernel matrix KX,Y by the hybrid method eqs. (2.22)

to (2.24) satisfies

kKX,Y − UKX,Y kF ≤ (CCIτCI + CIDτID) kKX,Y kF
˜

(2.25)

where s
CCI = 1 +

p (m − r)(γ2 − γ1)2d

r + (m − r)rf 2 1 −
m(γ1 + γ3)2d

,

γ∗(γ1 + γ3)d

CID = .
(γ2 − γ∗)(γ∗ − γ1)d

Proof Note that

˜kKX,Y − UKX,Y kF

kF + kKX,Y ˜≤ kKX,Y − KX,Y X,Y kFN N − UK

X,Y X,Y − KX,Y X,Y X,Y ≤ kKX,Y − K kF + kUkF kK
˜ ˜ kF + kK − UK

˜ kF (2.26)
N N N N

≤ kKX,Y − KX,Y ˜ X,Y˜X,Y − KN kF + kUkF kK N kF +

kKX,Z − UKX,Z kF kW
˜ Z,Y

N kF ,

now we will derive upper bounds for the three terms in the last line separately.

For the first term, it’s CI applied on the original kernel matrix so directly we have

kKX,Y − KX,Y ≤ τCIkKX,Y kF .N kF (2.27)

For the second term,

kUkF = P

⎛⎝ I
⎞⎠ =

⎛⎝ I
⎞⎠ ≤

p
r + (m − r)rf2

E E
F F

and similar to eq. (2.27)

˜
N
˜ ≤ τCIkK

˜X,Y − KX,Y X,Y kF ,kK kF

28

note that entries of KX,Y satisfy

1 1 ≤ |k(x, y)| ≤
(γ1 + γ3)d (γ2 − γ1)d

hence
˜ X,Y k2X,Y k2 kKX\ ˜kK F F = 1 −

kKX,Y k2 kKX,Y k2
F F

(m − r)n
(γ1+

1
γ3)2d (m − r)(γ2 − γ1)2d

≤ 1 − 1 = 1 − ,
mn m(γ1 + γ3)2d

(γ2−γ1)2d

then the second term can be bounded with

X,Y − KX,Y kUkF kK
˜

N
˜ kF s p (m − r)(γ2 − γ1)2d

kKX,Y kF .≤ τCI r + (m − r)rf2 1 − (2.28)
m(γ1 + γ3)2d

For the third term, KX,Z is approximated by ID so

kKX,Z − UKX,Z kF ≤ τIDkKX,Z kF ,
˜

also notice that entries of KX,Z and WN
Z,Y are bounded by

1 γ∗

|k(x, z)| ≤ and |wN (z, y)| ≤ ,
(γ∗ − γ1)d N(γ2 − γ∗)

respectively, hence r√ γ∗ γ∗ n kW Z,Y
N kF ≤ Nn =

N(γ2 − γ∗) N γ2 − γ∗

and
kKX,Z k2 mN 1

(γ∗−γ1)2d N (γ1 + γ3)2d
F ≤ = ,

kKX,Y k2 1 mn n (γ∗ − γ1)2d
F (γ1+γ3)2d

thus the third term is bounded by

X,Z kF kW Z,Y
N kF N kFkKX,Z − UK

˜ ≤ τIDkKX,Z kF kW Z,Y r r
n γ∗ N (γ1 + γ3)d

kKX,Y kF≤ τID (2.29)N γ2 − γ∗ n (γ∗ − γ1)d

γ∗(γ1 + γ3)d

kKX,Y kF .≤ τID
(γ2 − γ∗)(γ∗ − γ1)d

At last, the error bound eq. (2.25) is obtained by substituting eqs. (2.27) to (2.29)

into eq. (2.26).

29

Remark 2.3.1 Once the annulus region A(0; γ2, γ3) is fixed, source points Y are

completely irrelevant to the hybrid method on both algorithm and error analysis parts.

˜The basis U and representative points X can be obtained with only target points X,

then they can be applied to KX,Y 0 with arbitrary Y 0 ⊂ A(0; γ2, γ3) and still achieve

the same compression accuracy. Although γ3 > 0 is needed so that Y is on a bounded

domain in order to derive a theoretical error bound, we believe such an limitation is

not needed in practice. The analytical compression tends to be more accurate when a

source point y and a target point x moves far away from each other.

Remark 2.3.2 Usually the constant governing the numerical stability in the SRRQR

factorization is set to be f = 2 so that the algorithm produces basis with enough

stability and won’t take exponential time to run. In this case, the two constants in
√

eq. (2.25) scale roughly as CCI ∼ O(m) and CID ∼ O(1). The error τCI introduced

by analytical compression seems more sensitive than τID by the algebraic part. As a

result, to achieve a desired accuracy in the hybrid method, one should ask for higher

accuracy in the analytical step.

2.4 Conclusions

In this chapter, we have discussed an analytical compression method based on

Cauchy integral and numerical quadrature. Several novel analysis results are pre-

sented regarding the approximation error introduced by this process, we also analyzed

strategies on picking proxy points for optimal performance. The method is then com-

bined with an algebraic compression step ID to produce a hybrid compression method

that usually referred to as proxy point method, the theories developed here serve as

an intuitive as well as mathematical explanation of the effective of such a method.

There are two immediate follow-ups on this work in the future. Our compression

method can be applied to HSS construction for Cauchy-like matrices and Toeplitz

matrices, by further exploiting the structure in the matrices, we can potentially reduce

the HSS construction cost to be lower than linear which can greatly reduce the overall

30

computation cost for solving linear systems. We are also interested in extending the

analysis to more kernels and higher dimensionality so that the framework proposed

here become a general purpose method for more applications.

31

3. FAST CONTOUR-INTEGRAL EIGENSOLVER FOR

NON-HERMITIAN MATRICES

The content in this chapter is from a published paper [123]: X. Ye, J. Xia, Ray-

mond H. Chan, S. Cauley, and V. Balakrishnan, A fast contour-integral

eigensolver for non-Hermitian matrices, SIAM J. Matrix Anal. Appl., 38 (2017), pp.

1268–1297. A permission letter from SIAM can be found in appendix A.

3.1 Introduction

In this chapter, we consider the eigenvalue solution for a non-Hermitian matrix

A:

Ax = λx, A ∈ Cn×n , (3.1)

where λ ∈ C is an eigenvalue and x is the corresponding eigenvector. We study a

type of contour-integral eigensolvers and propose a series of acceleration techniques.

We suppose an eigenvalue decomposition of A exists:

A = XΛX−1 , (3.2)

where Λ = diag(λ1, λ2, . . . , λn) is a diagonal matrix for the eigenvalues, and X =

(x1, x2, . . . , xn) is the eigenvector matrix.

Classical methods for solving (3.1) include power iterations, inverse iterations,

and QR iterations. The main operations involve matrix-vector multiplications, linear

system solutions, or QR factorizations. In QR iterations, A is usually first reduced

to an upper Hessenberg form.

Recently, a class of contour-integral based eigensolvers have been developed to find

a partial spectrum. They have some very appealing features, such as the robustness

in terms of convergence rates, the natural accommodation of eigenvalue multiplicity,

32

and the nice scalability. In [94, 95], the Sakurai-Sugiura (SS) method is proposed to

reduce a generalized eigenvalue problem to a smaller one with Hankel matrices, and

later in [96] a stable version called CIRR is introduced by combining the contour-

integral technique with the Rayleigh-Ritz procedure. The FEAST algorithm is first

proposed in [90] for Hermitian matrices, where a spectral projector is constructed via

the integration of the resolvent of a matrix, followed by projected subspace iterations.

Some non-Hermitian FEAST methods can be found in [53, 57, 100, 125]. Contour-

integral eigensolvers utilize a filter function, whose quality is a key factor of the

effectiveness of the eigenvalue solutions. Rational filter functions are discussed in [41,

101]. Other types of filter functions can be obtained via the solution of optimization

or least-squares problems [104, 110].

The basic idea of the FEAST algorithm is as follows. Suppose λi, i = 1, 2, . . . , s ≤

n are all the eigenvalues inside a Jordan curve Γ on the complex plane. Consider the

contour integral Z √1 1
φ(z) = dµ, z ∈/ Γ, i = −1. (3.3)

2πi Γ µ − z

A spectral projector to the desired eigenspace span{x1, x2, . . . , xs} is constructed

based on Cauchy’s residue theorem [98] in complex analysis: Z Z
Φ ≡ φ(A) =

1
(µI − A)−1dµ =

1
(µI − XΛX−1)−1dµ (3.4)

2πi 2πiΓ ⎛Γ ⎞� Z �
= X

1
(µI − Λ)−1dν X−1 = X ⎝ Is ⎠X−1 .

2πi Γ 0

In practice, the spectral projector Φ is not explicitly formed. Instead, the basis of

the eigenspace can be extracted with randomization, where the product of Φ and an

appropriately chosen random matrix Y is computed: Z
Z = ΦY =

1
(µI − A)−1Y dµ. (3.5)

2πi Γ

This needs to evaluate the contour integral, which is done by numerical quadratures.

In the process, linear systems are solved for (µI − A)−1Y . After Z is evaluated, it is

33

used as starting vectors in projected subspace iterations to compute the desired eigen-

pairs. The accuracy of the quadrature approximation is essential to the convergence

rate of the subspace iterations.

In the FEAST algorithm and other contour-integral eigensolvers, it needs an es-

timate of the number of eigenvalues of A inside Γ, denoted #Λ(A, Γ), which is some-

times assumed to be known in advance. Some estimation methods have been proposed

in [85, 94,125] based on stochastic strategies.

In both the eigenvalue count and the projected subspace iterations, it needs to

evaluate the numerical quadrature by solving linear systems with multiple shifts µI

and multiple right-hand sides. This poses challenges to both direct and iterative

linear solvers. For example, direct solvers are suitable for multiple right-hand sides,

but each additional shift typically requires a new factorization. If A is a general dense

matrix, each factorization costs O(n3) flops. The total eigenvalue solution cost may

be quite high, depending on the number of eigenvalues desired and the accuracy.

Here, we seek to design a fast contour-integral eigensolver. There are three major

tasks. (1) One task is to analyze some numerical quadrature rules for the design of

filter functions and understand their quality. This helps us choose an appropriate

quadrature with justified optimality for the contour integration. (2) The next task is

to show why some low-accuracy approximations can be used to quickly and reliably

count the eigenvalues inside Γ. Both deterministic and probabilistic justifications are

included. (3) The third task is to present a fast algorithm to find selected or all

eigenpairs of A based on the analysis and a type of fast shifted factorizations. Some

tools to use include structured matrices and shifted structured factorization update.

The matrices we consider include some rank structured ones and more general cases.

Previously, for non-Hermitian rank-structured eigenvalue problems, fast QR iterations

are designed for special cases such as companion matrices [9, 14, 21, 105]. Here, we

consider more general cases.

Our first task is to perform some analysis on the quality of some commonly used

quadrature rules for approximating (3.3). The quadrature approximation is expected

34

to be not too far away from 1 for z inside Γ and not too close to Γ, and to decay

quickly for z outside and away from Γ. Existing FEAST algorithms usually use the

Gauss-Legendre rule [57,90,125], though recent numerical observations find that the

Trapezoidal rule may be preferable [100, 104]. Here, we analytically show that the

Trapezoidal rule is much superior in the sense that it yields quadrature approxima-

tions with nearly optimal decay outside the unit circle (as the mapped contour Γ) in

the complex plane. Thus, the Trapezoidal rule will be used in our eigensolver. We

would like to mention that interesting analysis has been performed for approximating

the operator exponent by contour integration of the matrix resolvent [29], where an

exponentially convergent sinc quadrature rule is proposed and is also applicable to

other common kernel functions such as 1/|x − y| and log |x − y| [45].

The next task is to show the feasibility of using low-accuracy matrix approxima-

tions for the quick and reliable estimate of #Λ(A, Γ). The eigenvalue count involves

quadrature approximations similar to (3.5) and needs linear solutions with multiple

shifts and multiple right-hand sides. Certain low-accuracy matrix approximations

with fast solutions enable us to quickly estimate #Λ(A, Γ), as long as the count is

unchanged or remains close. We show that, when Γ is not too close to the eigenvalues

˜inside it, A can be approximated by a matrix A with a low accuracy so that the

eigenvalue count remains the same (#Λ(A, Γ) = #Λ(A,˜ Γ)). The farther away Γ is

˜from the eigenvalues, the lower the approximation accuracy of A is allowed to be.

On the other hand, if there are eigenvalues close to Γ, we use probabilistic methods

to justify the reliability of #Λ(A,˜ Γ). We show that, for some situations, with high

probabilities, the eigenvalue count is off by only a very small number α. Roughly

speaking, the probability of miscounting the eigenvalues by α decays exponentially

with α. This is sufficient for us since we do not need the count to be exact.

˜Our choice of A is based on rank structured forms, since it is convenient to con-

trol the approximation accuracy and also quick to perform structured direct solutions

with multiple right-hand sides and even multiple shifts. (Note that the approxima-

tion analysis for the eigenvalue count is not restricted to rank structured forms.) The

35

rank structured forms involve low-rank approximations of some off-diagonal blocks.

Examples of such forms include H [42], H2 [10, 43], and hierarchically semiseparable

(HSS) [12, 117] representations. For matrices with small off-diagonal ranks or nu-

merical ranks, fast direct solvers exist. Such matrices widely appear in numerical

computations, such as polynomial root finding, Toeplitz problems, and some dis-

cretized problems. Here, even if A itself is not rank structured, we may still use a

˜rank structured approximation A to quickly count the eigenvalues.

Our third task is then to design a fast contour-integral eigensolver for rank struc-

tured A and even more general cases. This is based on fast factorizations of rank

structured approximations, as well as fast factorization update with varying shifts for

the quadrature evaluations. We will adaptively choose the approximation accuracy

to balance the efficiency and the accuracy. Previously, for Hermitian HSS matrices,

a shifted structured LDL factorization update is designed [7, 113]. Here, we further

show that, even for non-Hermitian HSS matrices, we can still update the factorization

for varying shifts so as to save nearly 40% of the factorization cost for each shift.

To find the eigenvalues inside a search region, our eigensolver recursively parti-

tions the region into subregions, until the number of eigenvalues inside each subregion

is smaller than a threshold k. This process can be organized into a quadtree. For sub-

regions corresponding to the leaf nodes, we then increase the approximation accuracy

of Ã and switch to projected subspace iterations. The shifted structured factorization

update can benefit both the eigenvalue count and the subspace iteration. The saving

in the eigenvalue count is especially significant, since the count is done for each in-

termediate subregion or each node of the quadtree and the subspace iteration is done

just for the leaf nodes. Additionally, deflation is incorporated into the eigensolver.

In particular, if A itself is rank structured and has maximum off-diagonal rank or

numerical rank r, we show that the optimal threshold for the eigenvalue count in the

leaf level subregions is k = O(r). This minimizes the total complexity for finding all

the eigenpairs, which is O(rn2) + O(r2n) under a modest assumption.

36

Various applications are then discussed. We also discuss the choice of the initial

search region. Numerical tests are done for some problems. We can clearly see the

benefits of shifted factorization update and low-accuracy matrix approximation. The

cost for the eigenvalue counts has been reduced to a very small portion of the total.

The outline of the remaining presentation is as follows. In Section 3.2, we show

our analysis of the quadrature rules for the filter function design. The idea of low-

accuracy matrix approximations for the eigenvalue count is given in Section 3.3. Our

fast contour-integral eigensolver is presented in Section 3.4. Section 3.5 gives the

numerical experiments to illustrate the efficiency and accuracy.

The following notation is used throughout the paper:

• Cγ (z) denotes the circle centered at z with radius γ;

• Dγ (z) denotes the open disk centered at z with radius γ;

• Aγ,δ(z) = {ω ∈ C : γ − δ < |ω − z| < γ + δ} is the open annulus region centered

at z with outer radius γ + δ and inner radius γ − δ.

3.2 Analysis of quadrature rules for filter function design

In contour-integral eigensolvers, the quality of the quadrature approximation is

critical for the accuracy of the eigenvalue computation. Here, we first perform analysis

on some quadrature rules so as to choose an appropriate one for (3.3) and (3.5).

If the contour Γ has a parametrization Γ = {h(t) : t ∈ [a, b)}, then (3.3) becomes Z
1 b h0(t)

φ(z) = dt. (3.6)
2πi a h(t) − z

A q-point quadrature rule can be used to approximate φ(z) by the filter function

q

˜ 1 X h0(tj)
φ(z) = wj , (3.7)

2πi
j=1

h(tj) − z

where tj ’s and wj ’s are the quadrature nodes and weights, respectively.

37

We focus on the case when Γ is a circle Cγ (z0). Specifically when Cγ (z0) is the unit

circle C1(0), write φ(z) in (3.3) and (3.6) as φ0(z) and write φ̃(z) in (3.7) as φ̃
0(z).

Then φ(z) can be transformed directly into φ0(z) by Z Z
1 1 1 γ

φ(z) = dµ = dν
2πi Cγ (z0) µ − z 2πi C1(0) z0 + γν − z Z � �
1 1 z − z0

= dν = φ0 .
2πi ν − (z − z0)/γ γC1(0)

˜Thus, it is sufficient to focus only on φ0(z) and its approximation φ0(z). Let the

parametrization of the unit circle C1(0) be h(t) = eiπt , −1 ≤ t < 1. Then Z 1 iπt 1 e
φ0(z) = dt, (3.8)

iπt − z2 e−1
q qX iπtj X1 e 1 wj zj

φ̃
0(z) = wj iπtj

≡ , (3.9)
2 e − z 2 zj − z

j=1 j=1

where zj ’s are the mapped quadrature nodes on C1(0):

iπtjzj = e , j = 1, 2, . . . , q. (3.10)

Rewrite (3.9) as a rational form

Yf(z)
q

φ̃
0(z) ≡ with g(z) = (z − zj), (3.11)

g(z)
j=1

where g(z) is a polynomial of degree dg ≡ q and with roots zj , j = 1, 2, . . . , q, and

f(z) is a polynomial uniquely determined by the choice of the quadrature rule (tj ’s

and wj ’s). The degree df of f(z) satisfies 0 ≤ df ≤ q − 1. For φ̃
0(z) to be a good

approximation of the exact function φ0(z), we would expect:

• |φ̃
0(z)| is not too far away from 1 when z is inside C1(0) and not too close to

zj ’s;

• |φ̃
0(z)| decays fast when z is outside C1(0) and moves away from it.

The following proposition indicates that the first criterion is always satisfied when

an interpolatory quadrature is used.

38

Proposition 3.2.1 For z ∈ C and φ̃
0(z) in (3.9) resulting from any interpolatory

quadrature rule applied to (3.8),

˜• φ0(0) = 1;

• |φ̃
0(z)| > 1 when |z| < 1;

2

• |φ̃
0(z)| < 1

δ when |zj − z| > δ > 0, j = 1, 2, . . . , q.

P
Proof For any interpolatory quadrature rule, the weights {wj }q satisfy q wj = j=1 j=1

2. Then directly from (3.9), we get

X X1
q
wj zj 1

q

φ̃
0(0) = = wj = 1.

2 zj 2
j=1 j=1

When |z| < 1, we have

q � �� � X1 1 wj zj wj zj
Re(φ̃

0(z)) = φ̃
0(z) + φ̃

0(z) = +
2 4

j=1
zj − z zj − z X X1

q
zj (zj − z) + zj (zj − z) 1

q
2 − (zj z + zj z)

= wj = wj .
4 (zj − z)(zj − z) 4 1 + |z|2 − (zj z + zj z)j=1 j=1

Note that zj z + zj z ∈ R and |zj z + zj z| ≤ 2|z| < 1 + |z|2 < 2. Then,

X X1
q

2 − (zj z + zj z) 1
q

1
Re(φ̃

0(z)) > wj = wj = .
4 2 − (zj z + zj z) 4 2

j=1 j=1

This yields |φ̃
0(z)| ≥ Re(φ̃

0(z)) > 1/2.

Finally, when |zj − z| > δ > 0, j = 1, 2, . . . , q,

X1 q
wj 1 |φ̃

0(z)| < = .
2 δ δ

j=1

The proposition means, if z is inside D1(0), then |φ̃
0(z)| has a lower bound 1/2. It

also has an upper bound 1/δ for z not within a distance δ of any mapped quadrature

point zj . If z is too close to any zj , then it is possible for |φ̃
0(z)| to be large. This

can also be observed from Figure 3.1 below.

39

We then study the decay property of |φ̃
0(z)|. From the rational form (3.11), we

can see that |φ̃
0(z)| decays as O(|z|df −dg) for |z| > 1. This means, the smaller the

degree df is, the faster |φ̃
0(z)| decays outside C1(0) and thus the better the quadrature

approximation is. The next theorem compares two popular quadrature rules: the

Trapezoidal rule and the Gauss-Legendre quadrature, in terms of the degree df .

Theorem 3.2.1 For φ̃
0(z) in (3.9)–(3.11), the degree df of f(z) satisfies:

2(j−1) 21. If the Trapezoidal rule is used, where tj = −1 +
q and wj =

q , then

df = 0 (in fact, f(z) = (−1)q+1).

That is, the Trapezoidal rule gives the optimal df .

2. If the Gauss-Legendre quadrature is used, where {tj }q are the roots of thej=1

Legendre polynomial of degree q and {wj }q are the corresponding weights,j=1

then

df ≥ 1.

Proof Comparing (3.9) and (3.11) yields

qX Y1
f(z) = − wj zj (z − zi).

2
j=1 i=6 j

Let the coefficient of the term zq−k in f(z) be Cq−k for 1 ≤ k ≤ q, which has the

following form: X(−1)k

Cq−k = (wi1 + wi2 + · · · + wik)zi1 zi2 · · · zik . (3.12)
2

1≤i1<i2<···<ik≤q

For the Trapezoidal rule, the mapped quadrature nodes zj in (3.10) satisfy

q iπqtj iπ(2j−2−q)zj = e = e = (−1)q, 1 ≤ j ≤ q.

Hence, zj ’s are the roots of zq − (−1)q, so that

g(z) = zq − (−1)q. (3.13)

https://3.9)�(3.11

40

Since all the weights wj are equal, (3.12) can be simplified as h X i
Cq−k =

k
(−1)k zi1 zi2 · · · zik , 1 ≤ k ≤ q.

q
1≤i1<i2<···<ik≤q

Note that the part in parenthesis in the above equation is the coefficient of the term

q−kz in the polynomial g(z) in (3.11) and also in (3.13). Thus,

Cq−k = 0, 1 ≤ k ≤ q − 1, C0 = (−1)q+1 .

Therefore, f(z) = (−1)q+1 and df = 0.

For the Gauss-Legendre quadrature, we prove the result by contradiction. Suppose

df = 0. Some well-known properties of the Gauss-Legendre quadrature are

qX
tj = 0, tj + tq+1−j = 0, wj = wq+1−j , 1 ≤ j ≤ q, (3.14)

j=1

where we assume t1 < t2 < · · · < tq. As a result, the mapped nodes satisfy

qY
zj = 1, zj zq+1−j = 1, 1 ≤ j ≤ q. (3.15)

j=1

Define Sk = {(i1, i2, . . . , ik) : 1 ≤ i1 < i2 < · · · < ik ≤ q} to be the set of index

sequences of the summation in (3.12). Then for any 1 ≤ k ≤ q − 1, the two sets Sk

and Sq−k have a one-to-one correspondence in the sense that, for any sequence σ ∈ Sk,

there is a unique sequence β ∈ Sq−k such that σ ∪ β = {1, 2, . . . , q} and σ ∩ β = ∅.

Therefore, for any 1 ≤ k ≤ q − 1, similar to (3.12), X(−1)q−k

Ck = (wi1 + wi2 + · · · + wiq−k)zi1 zi2 · · · ziq−k . 2
(i1,i2,...,iq−k)∈Sq−k

We can then use (3.14) and (3.15) to get X(−1)q−k 1
Ck = (2 − (wi1 + wi2 + · · · + wik))2 zi1 zi2 · · · zik(i1,i2,...,ik)∈Sk X(−1)q−k

= (2 − (wq+1−i1 + · · · + wq+1−ik))zq+1−i1 · · · zq+1−ik2
(i1,i2,...,ik)∈Sk X(−1)q−k

= (2 − (wi1 + wi2 + · · · + wik))zi1 zi2 · · · zik2
(i1,i2,...,ik)∈Sk

41

� �X
= (−1)q−k zi1 zi2 · · · zik

(i1,i2,...,ik)∈Sk� �X(−1)q−k

− (wi1 + wi2 + · · · + wik)zi1 zi2 · · · zik2
(i1,i2,...,ik)∈Sk� �X

= (−1)q−k zi1 zi2 · · · zik − (−1)q−2kCq−k.
(i1,i2,...,ik)∈Sk

By assumption, we have Ck = 0, Cq−k = 0 for 1 ≤ k ≤ q − 1, so X
zi1 zi2 · · · zik = 0, 1 ≤ k ≤ q − 1.

(i1,i2,...,ik)∈Sk Qq zjThe above equation together with j=1 = 1 indicate that zj in (3.10) must be

roots of the polynomial zq + (−1)q. Thus, the roots of Legendre polynomial must be

2j − 1
tj = −1 + , j = 1, 2, . . . , q.

q

This is clearly a contradiction, and hence df ≥ 1.

˜This theorem indicates that the filter function φ0(z) from the Trapezoidal rule

decays as

|φ̃
0(z)| ∼ O(|z|−q) for large |z|,

Thus, the Trapezoidal rule yields nearly optimal decay. The decay in the Gauss-

Legendre case is at best O(|C1||z|1−q), where
qX

C1 = (1 + wj) cos(πtj).
j=1

It can be verified numerically, though not analytically yet, that |C1| is not small and

actually increases when q increases.

To illustrate the decay, we plot |φ̃
0(z)| from the two quadrature rules with q = 8

and 16 in Figure 3.1. Outside C1(0), |φ̃
0(z)| decays quickly when |z| increases, and

moreover, the Trapezoidal rule yields much faster decay than the Gauss-Legendre

quadrature. For q = 8, |φ̃
0(z)| from the Trapezoidal rule is about two orders of

magnitude smaller at the corners of the mesh (with |z| not even very large). For

q = 16, this difference increases to over four orders of magnitude.

42

Theorem 3.2.1 and Figure 3.1 also align with the numerical observations in [100,

104]. In [104], an optimization method is used to design filter functions, and in the

unit circle case, the best filter function is observed to be precisely the one obtained

by applying the Trapezoidal rule. Our analysis provides a theoretical justification.

(a) 8-point Trapezoidal rule (b) 8-point Gauss-Legendre

(c) 16-point Trapezoidal rule (d) 16-point Gauss-Legendre

Figure 3.1. log10 |φ̃
0(z)| on the [−4, 4] × [−4, 4] mesh obtained with the

Trapezoidal rule and the Gauss-Legendre rule.

Therefore, unlike in [57, 90, 125], our eigensolver below uses the Trapezoidal rule

to evaluate (3.5) in both the eigenvalue counts and the subspace iterations.

43

3.3 Low-accuracy matrix approximation for fast eigenvalue counts

3.3.1 Motivations

In contour-integral eigensolvers, it usually requires to know the eigenvalue count

#Λ(A, Γ) inside a contour Γ in advance. In our eigensolver in the next section, we may

need to estimate eigenvalue counts for many subregions, so it is essential to quickly

perform the estimation. Some methods to estimate eigenvalue counts have been

proposed in [28, 85, 94, 125] based on stochastic evaluations of the rank or trace [50]

of Φ in (3.4). The basic idea is as follows.

According to (3.4), the trace and also the rank of Φ give the exact eigenvalue count

#Λ(A, Γ). To estimate the trace, we can pick a small number of random vectors to

form an n×m matrix Y , and compute Y T ΦY = Y T Z, where Z looks like (3.5). Then

#Λ(A, Γ) ≡ trace(Φ) ≈
1
trace(Y T Z). (3.16)

m

Theoretically, a small number m can lead to a high probability of accurate estimation.

However, since Z in (3.5) is approximated by numerical quadratures, m may not be

too small. We can start from a very small m and gradually include more random

vectors in Y until a reliable estimate is reached.

In the eigenvalue counts with quadrature approximations, it needs to solve linear

systems for µI −A with multiple shifts µI, multiple right-hand sides, and for possibly

many contours, which amounts to a significant computational cost. However, notice

the following important aspects:

1. Since we are just interested in the eigenvalue count (at this stage) instead of

the precise eigenvalues, as long as the eigenvalues are not too close to Γ, a small

perturbation to A does not alter the eigenvalue count.

2. Moreover, in our eigensolver, we will quadsect a search region containing the

eigenvalues and only need to know whether the eigenvalue count inside each

subregion is much larger than a threshold k or not. Thus, the eigenvalue count

does not even have to be very accurate.

44

As a result, we can use a matrix Ã that approximates A and satisfies the following

two requirements:

1. #Λ(A,˜ Γ) ≈ #Λ(A, Γ) and it is convenient to control how accurately Ã approx-

imates A;

2. #Λ(A,˜ Γ) can be quickly estimated, i.e., the linear systems with multiple shifts

and right-hand sides in the quadrature approximation of (3.5) (with A replaced

˜by A) can be quickly solved.

A natural tool that satisfies both requirements is the rank structure, which allows

fast direct factorizations. (Note that the fundamental approximation analysis for

the eigenvalue count in this section is not restricted to rank structured forms.) In

particular, HSS type methods is a convenient algebraic tool with systematic error

control, stability analysis, and fast factorizations. In the next section, we will further

show the feasibility of updating the factorization for multiple shifts. More general

H-matrix representations may be used to accommodate even broader applications,

though it is not clear how to perform fast factorization updates for varying shifts.

Before justifying the reliability of our low-accuracy matrix approximation for fast

eigenvalue counts, we briefly review HSS representations. The reader is referred

˜to [12, 117] for more details. An HSS matrix A can be recursively bipartitioned

following a postordered binary tree T (called HSS tree) with nodes i = 1, 2, . . . , t,

Ã. ⎞⎠ ⎛⎝
where t is the root. Initially, let Dt For any nonleaf node i of T , the partition

V TDc1 Uc1 Bc1 c2

=

of Di looks like Di , where c1 and c2 are the children of=
V TUc2 Bc2 c1

Dc2 ⎞⎠ ⎛⎝ ⎞⎠ ⎛⎝
i. Here, the off-diagonal basis matrices U, V

Uc2 Rc2 Vc2 Wc2

generators that define Ã. The block row or column corresponding to Di but excluding

Di is called an HSS block. The HSS matrix has l levels of partition if the HSS tree T

has l levels, where the root is at level 0 and the leaves are at level l. The maximum

rank (or numerical rank) of all the HSS blocks at all the levels is called the HSS rank.

also satisfy a nested property: Ui =

Uc1 Rc1 Vc1 Wc1
Vi All such matrices D, U, V, R, W, B are called HSS=, .

45

A matrix is rank structured if all its off-diagonal blocks have small ranks or nu-

merical ranks. That is, the singular values of the off-diagonal blocks decay quickly.

Here to be more specific, by saying a matrix is rank structured, we mean it can be

accurately approximated by a compact HSS form.

3.3.2 Reliability of eigenvalue count with low-accuracy matrix approxi-

mation

In our eigensolver, we will use an HSS form Ã to approximate A. To see how such

an approximation perturbs the eigenvalues, we give following lemma that extends a

Hermitian version in [107].

˜Lemma 3.3.1 Suppose A has simple eigenvalues, and A is an l-level HSS approxi-

mation to A in (3.2), so that each off-diagonal block UiBiVj
T of Ã approximates the

corresponding block in A to an accuracy τ which is sufficiently small. Let λ be a

simple eigenvalue of A, then there exists an eigenvalue λ̃ of Ã such that

|λ − λ̃| ≤ κ(λ)lτ + O((lτ)2), (3.17)

where κ(λ) is the 2-norm condition number of λ.

The lemma follows directly from the HSS approximation error kA−Ãk2 ≤ lτ [107]

and standard eigenvalue perturbation analysis [4, 19].

Throughout this section, we will assume that all eigenvalues λi of A are simple

and the perturbation to the matrix is sufficiently small, so as to identify a one-to-

˜one correspondence between the eigenvalues of A and those of its approximation A.

More specifically, Lemma 3.3.1 indicates that for any eigenvalue λi, there must be a

perturbed eigenvalue λ̃ within a disk centered at λi and with radius κ(λi)lτ +O((lτ)2).

λ̃ is unique if this disk is isolated from all the other such disks which yields the desired

one-to-one correspondence, we can guarantee this by enforcing the following sufficient

condition:
1

κlτ˜ + O((lτ)2) ≤ min |λi − λj |, (3.18)
2 1≤i,j≤n,i6=j

46

where κ̃ is a sharp upper bound for all κ(λi). In more general cases when any ap-

˜proximation A is used, the following analogous condition is assumed:

1
κ̃kA − Ãk + O(kA − Ãk2) ≤ min |λi − λj |. (3.19)

2 1≤i,j≤n,i 6=j

˜The following theorem shows when A can be used to obtain the exact eigenvalue

count inside Cγ (z), and also gives a necessary condition for the eigenvalue count to be

off by a certain number. We assume the perturbations to the eigenvalues are strictly

bounded by δ, which is related to the perturbation in the matrix according to the

discussions above.

˜Theorem 3.3.2 Suppose A has simple eigenvalues λ with |λ| < ρ, A is an approx-

imation to A satisfying (3.19), and any eigenvalue λ of A and the corresponding

eigenvalue λ̃ of Ã satisfy

|λ − λ̃| < δ < γ < ρ. (3.20)

1. If A has no eigenvalue inside Aγ,δ(z), then

#Λ(A, Cγ (z)) = #Λ(A,˜ Cγ (z)).

2. If |#Λ(A, Cγ (z)) − #Λ(A,˜ Cγ (z))| ≥ α for an integer α > 0, then there must be

at least α eigenvalues of A inside Aγ,δ(z).

Proof Figure 3.2 can be used to assist in the understanding of the results and proof.

The first statement can be shown as follows. Since no eigenvalue of A lies inside

Aγ,δ(z), any eigenvalue λ satisfies |λ − z| ≥ γ + δ or |λ − z| ≤ γ − δ. If |λ − z| ≥ γ + δ,

according to (3.20),

|λ̃ − z| = |λ − z − (λ − λ̃)| ≥ |λ − z| − |λ − λ̃| > γ + δ − δ = γ.

Thus, λ̃ is outside Cγ (z), just like λ. If |λ − z| ≤ γ − δ, then

|λ̃ − z| = |λ̃ − λ + λ − z| ≤ |λ̃ − λ| + |λ − z| < δ + γ − δ = γ.

47

z0

Figure 3.2. The annulus region Aγ,δ(z) (shaded area) related to a circle
Cγ (z), where the outer disk Dρ(0) is where all the eigenvalues are located.

Thus, λ̃ is inside Cγ (z), just like λ. That is, λ and λ̃ must be both inside or outside

˜Cγ (z). Then A and A have the same number of eigenvalues inside Cγ (z), and the first

statement holds.

We then show the second statement by contradiction. Suppose there are less than

α eigenvalues of A inside Aγ,δ(z). If #Λ(A, Cγ (z)) ≥ #Λ(A,˜ Cγ (z)), let n1 be the

number of eigenvalues of A satisfying |λ − z| ≤ γ − δ. Then #Λ(A, Cγ (z)) < n1 + α.

Also according to the proof above, #Λ(A,˜ Cγ (z)) ≥ n1. Thus,

|#Λ(A, Cγ (z)) − #Λ(A,˜ Cγ (z))| = #Λ(A, Cγ (z)) − #Λ(A,˜ Cγ (z)) < n1 + α − n1 = α.

Thus, we get a contradiction. Similarly, if #Λ(A, Cγ (z)) < #Λ(A,˜ Cγ (z)), let n1 be the

˜number of eigenvalues of A satisfying |λ̃ − z| ≤ γ − δ. Then #Λ(A,˜ Cγ (z)) < n1 + α,

#Λ(A, Cγ (z)) ≥ n1, and we similarly get #Λ(A,˜ Cγ (z)) − #Λ(A, Cγ (z)) < α and thus

a contradiction.

˜Theorem 3.3.2 means, if the contour is not too close to the eigenvalues, then A

can be used to obtain the exact eigenvalue count. The farther away the contour is

from the eigenvalues, the lower accuracy of Ã can be used. This is especially effective

˜if the eigenvalues are scattered. On the other hand, if the eigenvalue count with A is

48

off by α or more, then there must be at least α eigenvalues within a distance δ of the

contour. We then use probabilistic methods to study the error in the count based on

the relation between the eigenvalues and Aγ,δ(z).

Lemma 3.3.3 Suppose the eigenvalues λ of A are uniformly i.i.d. in Dρ(0). Then

for any fixed z ∈ C and γ, δ ∈ (0, ρ), the probability for any λ to lie inside Aγ,δ(z)

satisfies
4δ max(γ, δ)

Pr{λ ∈ Aγ,δ(z)} ≤ P ≡ . (3.21)
ρ2

Proof The probability density function for λ has the form ψ(λ̂) =

If γ ≥ δ,

⎧⎪⎨ ⎪⎩
1 |λ̂| < ρ,

πρ2 ,

0, |λ̂| ≥ ρ.

Z
π(γ + δ)2 − π(γ − δ)2 4δγ

ψ(λ̂)dλ̂ = =Pr{λ ∈ Aγ,δ(z)} ≤ .
πρ2 ρ2

γ−δ<|λ̂−z|<γ+δ

If γ < δ, Z
π(γ + δ)2 4δ2

ψ(λ̂)dλ̂ = <Pr{λ ∈ Aγ,δ(z)} ≤ .
|λ̂−z|<γ+δ πρ2 ρ2

The result holds in both cases. (Note that the bounds may highly overestimate the

probability when Aγ,δ(z) is not fully inside Dρ(0).)

Lemma 3.3.3 gives a probability bound for λ to fall inside Aγ,δ(z) when the eigen-

values are random and uniformly distributed in Dρ(0). Thus, if A is approximated by

Ã as in Theorem 3.3.2, then the probability of incorrectly counting λ for #Λ(A, Cγ (z))

˜is at most P . If A is an HSS approximation as in Lemma 3.3.1, δ can be chosen to

be a strict upper bound for the error in (3.17).

In addition, Lemma 3.3.3 means that, the larger ρ is or the smaller δ and γ are,

the less likely λ falls inside Aγ,δ(z). In particular, later in our eigensolver, since the

search region is recursively partitioned into smaller ones, γ gets smaller along the

partition and so does the probability P . This combined with Theorem 3.3.2 means

˜that it is more likely to get reliable eigenvalue counts based on A.

49

Lemma 3.3.3 assumes the circle Cγ (z) is fixed and the eigenvalues are random.

We can also assume an eigenvalue λ is fixed and Cγ (z) is random, and study the

probability of Aγ,δ(z) to include λ.

Lemma 3.3.4 Suppose λ is a fixed point in the complex plane, z is uniformly i.i.d. in

Dρ(0), γ is random and uniformly distributed on (0, ρ), and z and γ are independent.

Then for any δ ∈ (0, ρ), � �3
δ 1 δ

Pr{λ ∈ Aγ,δ(z)} < 2 + .
ρ 3 ρ ⎧ ⎪1⎨

ρ , 0 < γ̂ < ρ,
Proof The probability density function for γ has the form ϕ(γ̂) = ⎪⎩0, otherwise.

By the law of total probability, Z ρ

Pr{λ ∈ Aγ,δ(z)} = Pr{λ ∈ Aγ,δ(z) | γ = γ̂}ϕ(γ̂)dγ̂ Z δ
0 Z ρ1 1

= Pr{|z − λ| < γ̂ + δ}dγ̂ + Pr{γ̂ − δ < |λ − z| < γ̂ + δ}dγ̂.
ρ ρ0 δ

Similarly to the proof of Lemma 3.3.3, we can get

(γ̂ + δ)2 4δγ̂
Pr{|z − λ| < γ̂ + δ} ≤ , Pr{γ̂ − δ < |λ − z| < γ̂ + δ} ≤ .

ρ2 ρ2

Thus, Z Z � �3
1 δ (γ̂ + δ)2 1 ρ 4δγ̂ δ 1 δ

Pr{λ ∈ Aγ,δ(z)} ≤ dγ̂ + dγ̂ = 2 + .
ρ 0 ρ2 ρ δ ρ2 ρ 3 ρ

We then give the probability for miscounting #Λ(A, Cγ (z)) when the eigenvalues

˜of A are random and A is approximated by an HSS form A.

˜Theorem 3.3.5 Suppose the eigenvalues of A are uniformly i.i.d. in Dρ(0), and A

is an l-level HSS approximation to A as in Lemma 3.3.1 and satisfies (3.18). Also,

suppose δ < ρ is a strict upper bound for the right-hand side in (3.17) for all the

50

eigenvalues. Let P be given in (3.21). Then for any integer α ≥ nP and any fixed

z ∈ C and γ ∈ (0, ρ), � �
(α + 1) n

Pr{|#Λ(A, Cγ (z)) − #Λ(A,˜ Cγ (z))| ≥ α} ≤ Pα(1 − P)n−α+1 .
α+1−(n+1)P α

(3.22)

Proof According to Theorem 3.3.2,

Pr{|#Λ(A, Cγ (z)) − #Λ(A,˜ Cγ (z))| ≥ α} (3.23)

≤ Pr{there are at least α eigenvalues of A in Aγ,δ(z)}.

Now from Lemmas 3.3.1 and 3.3.3, the eigenvalues satisfy

Pr{λ ∈ Aγ,δ(z)} ≡ Pb ≤ P. (3.24)

Let ŷ be the number of eigenvalues inside Aγ,δ(z). Since the eigenvalues are i.i.d.,

ŷ has a binomial distribution with parameters Pb and n. Also, let y be a binomial

random variable with parameters P and n. Thus, (3.23) and (3.24) yield

Pr{|#Λ(A, Cγ (z)) − #Λ(A,˜ Cγ (z))| ≥ α} ≤ Pr{ŷ ≥ α} ≤ Pr{y ≥ α}.

Since α ≥ nP , by [54, Proposition 1], the tail probability of the binomial random

variable y is bounded by � �
(α + 1)(1 − P) n

Pr{y ≥ α} ≤ Pα(1 − P)n−α .
α + 1 − (n + 1)P α

The result then follows.

The theorem can be understood as follows. Due to the term Pα , roughly speaking,

the probability of miscounting the eigenvalues by α decays exponentially with α for

reasonably small P . Thus, the probability is very small even for modest α. This is

sufficient for us since we only need an estimate of the count.

To give an idea of this probability bound in (3.22), we show it with different

eigenvalue perturbation errors δ. See Table 3.1, where the parameters correspond to

51

Table 3.1.
Bounds for the probability of miscounting the number of eigenvalues inside
Cγ (z) by α or more, where n = 1600, ρ = 4000.

γ δ
Bound for Pr{|#Λ(A, Cγ (z)) − #Λ(Ã, Cγ (z))| ≥ α}

α = 1 α = 2 α = 3 α = 4 α = 5

1e − 1

100 1e − 2

1e − 3

3.99e − 3 7.97e − 6 1.06e − 8 1.06e − 11 8.45e − 15

4.00e − 4 7.99e − 8 1.06e − 11 1.06e − 15 8.48e − 20

4.00e − 5 7.99e − 10 1.06e − 14 1.06e − 19 8.48e − 25

1e − 1

1000 1e − 2

1e − 3

3.92e − 2 7.79e − 4 1.03e − 5 1.03e − 7 8.20e − 10

3.99e − 3 7.97e − 6 1.06e − 8 1.06e − 11 8.45e − 15

3.99e − 4 7.99e − 8 1.06e − 11 1.06e − 15 8.48e − 20

a matrix in Example 1 below. Clearly, even though δ is not very small, the probability

of miscounting the number of eigenvalues by α > 2 is extremely low. When α slightly

increases and/or δ decreases, the probability decreases rapidly.

We would also like to mention that Theorem 3.3.5 is still a very conservative

estimate. For example, consider A to be the matrix with size n = 1600 in Example

˜1 below. Let A be an HSS approximation obtained with a relative tolerance τ =

10−1 , 10−2 , . . . , 10−5 . We run the eigenvalue counts for 100 randomly selected circles.

For 57 of the cases, we get the exact counts for all these τ ’s. For the other cases,

#Λ(A, Cγ (z0)) and #Λ(A,˜ Cγ (z0)) differ by a very small number with τ = 10−1 or 10−2 .

With smaller τ , exact counts are obtained for almost all the cases. Table 3.2 shows

some of the results.

Table 3.2 also shows the HSS ranks r. Note that when τ reduces from 10−1 to

10−4 (and all the counts then become exact), the HSS rank increases from r = 4 to

r = 11. Since HSS factorization and solution have asymptotic complexities O(r2n)

and O(rn) [117], respectively, using τ = 10−1 makes the factorization about 7.6 times

52

Table 3.2.
˜Eigenvalue counts of A and A inside some circles Cγ (z), where A is a

Cauchy-like matrix corresponding to n = 1600 in Example 1 below, τ is
the relative tolerance in a randomized HSS construction, and r is the HSS
rank.

z γ #Λ(A, Cγ (z))

|#Λ(A, Cγ (z)) − #Λ(Ã, Cγ (z))|

τ =10−1 10−2 10−3 10−4 10−5

r = 4 7 9 11 14

976.8517 − 596.6716i

122.4701 + 395.7090i

−250.9437 + 91.2499i

−1029.6903 − 1599.1273i

1646.1010 + 2850.7448i

−493.2565 + 1022.0571i

115.6055 − 2472.7009i

−1014.5968 + 1995.9028i

660.5523 + 507.5861i

109.5545

221.7331

395.2032

986.0082

1315.6815

1526.3885

2063.6158

3004.7346

3954.0531

2

42

147

127

10

865

400

1220

1596

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

2 0 0 0 0

1 0 0 0 0

0 0 0 0 0

faster and the solution about 2.8 times faster than using τ = 10−4 . For examples

where the HSS ranks are higher, the difference is even bigger. See Example 2 below.

This clearly demonstrates the benefit of low-accuracy matrix approximations for the

eigenvalue count.

3.4 Our fast contour-integral eigensolver

In this section, we show the design of our fast contour-integral eigensolver for

finding a partial spectrum or the full spectrum of A. We will start from an initial

contour that encloses the desired eigenvalues, and then repeatedly quadsect the search

53

region into smaller subregions. When the total number of desired eigenvalues is

large, a significant amount of efforts is to make sure each subregion includes no

more than a certain number of eigenvalues. Before a contour gets very close to the

eigenvalues, the discussions in the previous section indicate that we can use low-

accuracy approximations to A to obtain a reliable count of the eigenvalues enclosed

by the contour.

We first briefly review the non-Hermitian FEAST algorithm, and then discuss our

fast eigensolver based on several strategies for accelerating the FEAST algorithm.

3.4.1 Review of the non-Hermitian FEAST algorithm

The basic procedure of the FEAST algorithm for non-Hermitian matrices is as fol-

lows [53,57,90,100,125]. Consider the case when Γ in (3.4) is a circle Cγ (z0). The ma-

trix Z in (3.5) is used to extract an approximation to the eigenspace span{x1, x2, . . . , xs}.

Φ in (3.4) can be approximated by numerical integration:

X eΦ = 1 q

wj (zj − z0)(zj I − A)−1 ,
2

j=1

z0 + γeiπtjwhere zj = , j = 1, 2, . . . , q are the mapped quadrature nodes on Cγ (z0).

Then Z can be approximated by

q qX X e eZ = ΦY =
1

wj (zj − z0)(zj I − A)−1Y ≡
1

cjSj , (3.25)
2 2

j=1 j=1

where cj = wj (zj − z0) and Sj ’s are solutions to the shifted linear systems

(zj I − A)Sj = Y, j = 1, 2, . . . , q. (3.26)

Solve the linear systems and evaluate Ze, which is used to compute the desired eigen-

pairs in Rayleigh-Ritz iterations. This is summarized in Algorithm 3.

In steps 2–3 of Algorithm 3, it is sufficient for convergence when the initial sub-

space size ŝ is not smaller than the actual eigenvalue count. To ensure a good overall

convergence rate, it is preferable to make ŝ a little larger than the actual eigenvalue

54

Algorithm 3 Basic FEAST algorithm with projected subspace iteration [90, 125]
Input : A, Cγ (z0) (contour)

Output : (Λb, Xb) (eigenvalues inside Cγ (z0) and the corresponding eigenvectors)

1: procedure FEAST

2: ŝ ← upper bound of #Λ(A, Cγ (z0)) . Initial subspace size

3: Y ← n × ŝ Gaussian random matrix

4: cj = wj (zj − z0), j = 1, . . . , q . Weights wj & nodes zj in a quadrature rule

5: repeat

6: Sj ← (zj I − A)−1Y, j = 1, . . . , q . Solving (3.26) P
Ze← 1 q e e7: cj Sj . Evaluating Z = ΦY by (3.25)

2 j=1

8: Qe ← orthonormal basis of Ze . This is important and is added in [125]

9: Â ← QeT AQe . Reduced problem

10: Â = XbΛbXb−1 . Solving the reduced eigenvalue problem

11: Y ← QeXe . Recovery of approximate eigenvectors of A

12: until convergence b13: X ← Y . Convergent approximate eigenvectors of A

14: end procedure

count [41, 90]. In the iterations, after step 11, (Λb, Xb) gives the Ritz pairs of A. It
is easy to identify spurious eigenvalues by either checking whether they are inside Γ

or computing the relative residuals. Discussions on the convergence criteria can be

found in [41, 53,125].

3.4.2 Fast contour-integral eigensolver

Our fast contour-integral eigensolver includes two major stages.

1. Quadsection stage. Start from an initial search region, estimate the number

of eigenvalues inside. If the number is much larger than a given threshold,

quadsect the region into subregions. Then repeat the procedure. This stage

55

involves eigenvalue counts with low-accuracy structured matrix approximations

as discussed in Section 3.3. Fast structured matrix factorization, factorization

update for varying shifts, and fast structured solution will be used.

2. Subspace iteration stage. In the subregions generated by the previous stage,

apply projected subspace iteration as in the FEAST algorithm, where structured

accelerations for the matrix factorizations and linear solutions also apply if A

is rank structured.

We focus on rank structured A, and adaptively control the accuracy of its HSS

˜approximation A. Lower accuracies are used for the eigenvalue count, and higher

accuracies are used for the eigenvalue solution. For convenience, our discussions are

based on search regions enclosed by circles.

3.4.2.1 Structured factorization update for varying shfits

Both the quadsection stage and the subspace iteration stage involve solutions of

linear systems of the following form for multiple shifts µI:

(µI − Ã)S̃ = Y. (3.27)

˜We precompute a ULV factorization for the HSS matrix A with the algorithms in

2 ˜[12, 117, 120] and it costs O(r n) flops, where r is the HSS rank of A. Then for each

shifted matrix µI − Ã, we can update the ULV factorization, and the ULV factors are

used to solve (3.27). If µ is set to be zj in (3.26), we can get an approximation to Sj .

This shifted ULV factorization is an extension of the Hermitian version in [113].

˜Suppose the HSS generators of A are Di, Ui, Vi, Ri,Wi, Bi as defined in Section 3.3.1.

We briefly outline the ULV factorization procedure for Ã in [12,117] without justifica-

tion, and then show which steps can be updated to quickly get the factors of µI − Ã.

˜For notational convenience, we present the update for A − µI.

56

First, for a leaf node i of the HSS tree, compute a QR factorization

0
⎛⎝ ⎞⎠Ui = Qi , (3.28)

Ũi

and apply QT
i to the block row on the left. This needs to modify Di as ⎛⎝ ˜ ˜Di;1,1 Di;1,2

⎞⎠˜ = QTDi i Di ≡ , (3.29)
˜ ˜Di;2,1 Di;2,2

D̃i;2,2where the partition is done so that is a square matrix with the same row size

˜as Ui.

˜Second, perform an LQ factorization of the first block row of Di: ����
0 Pi = ˜ ˜ ,Li;1,1 Di;1,1 Di;1,2

and apply Pi
T to the corresponding block column on the right. This needs to update

D̃i and Vi (with conformable partitions):

D̃
iP T

i ≡

⎛⎝Li;1,1 0
⎞⎠ ⎛⎝ V̂i ⎞⎠, PiVi ≡ .

˜Li;2,1 Li;2,2 Vi

Then Li;1,1 can be eliminated, which corresponds to the elimination of node i.

Similarly, eliminate the sibling node j of i. The parent node then becomes a new leaf

corresponding to D, U, V generators ⎛⎝ Li;2,2

⎞⎠ ⎛⎝ ŨiRi

⎞⎠ ⎛⎝ ṼiWi

⎞⎠ ˜ Ṽ TUiBi j
(3.30), , ,

Ũ
j Bj Ṽ

i
T Lj;2,2 Ũ

j Rj Ṽ
j Wj

respectively. We can then repeat the steps on the parent node.

Ã − µI is considered, a significant amount ofNow, when the shifted HSS matrix

computations can be saved:

˜• No HSS construction is need for A − µI, since all the generators remain the

same except the Di generators which just need to be shifted as:

Di ← Di − µI.

57

• In the ULV factorization, (3.28) remains unchanged.

• (3.29) can be quickly updated as

D̃
i ← D̃

i − µQT
i .

This avoids a dense block multiplication.

• In (3.30), the following multiplications remain unchanged:

Ũ
iBi, Ũ

iRi, Ũ
j Bj , Ũ

j Rj . (3.31)

Thus, the entire HSS construction cost and part of the ULV factorization cost are

saved. The steps (3.28), (3.29), and (3.31) can be precomputed. For convenience,

we call these operations the pre-shift factorization. The remain operations are to be

done for each shift µI in a post-shift factorization. Assuming the leaf level diagonal

block size is 2r as often used [117], then the costs for the precomputations and the

update are given in Table 3.3. Clearly, for each shift µI, we save about 40% of the

HSS factorization cost (which is 116 r2n [114, Section 4.2]).
3

Table 3.3.
˜ ˜Costs of the precomputations for A and the factorization update for A −

µI.

Precomputations

Construction Pre-shift factorization

Factorization update

(Post-shift factorization)

Flops 2 46 2≈ O(r n) ∼ O(rn2) r n
3

70 2r n
3

A similar precomputation strategy can also be applied when a type of structure-

preserving HSS construction in [120] is used. The corresponding pre-shift factorization

2 58 2cost is 6r n, which is about 30% of the total factorization cost
3 r n [120, Section

3.6]. The algorithm is similar to that of the one mentioned above is thus omitted.

58

3.4.2.2 Fast eigenvalue count

To count the eigenvalues inside a circle Cγ (z0), we choose a random matrix Y with

a small column size m and evaluate Ze just like in (3.25). Then (3.16) becomes

#Λ(A, Cγ (z0)) ≈
1
trace(Y T Ze). (3.32)

m

As in [125], we can start from m that is very small and gradually increase it. The

algorithm stops if the estimate converges to a number s smaller than a prespecified

threshold k or if the estimate is much larger than k. The selection of k will be

discussed in Section 3.4.2.4 based on an optimality condition. In addition, we may

even use a power method similar to [37] to improve the quality of this estimator.

˜As discussed in Section 3.3, we use a low-accuracy HSS approximation A ≈ A e ˜to evaluate Z in (3.32). A may be constructed directly with an algorithm in [117]

or via randomization [120]. The randomized HSS construction is used here. It is

especially attractive when A can be quickly applied to vectors. In the construction,

we first compute the product of A and a skinny random matrix (with column size

equal to r plus a small constant). This product is adaptively modified to yield the

product of each off-diagonal block and a certain random matrix, so as to apply ran-

domized compression to produce the relevant basis matrices. The details can be

found in [120, Section 3.3 and Algorithm 1]. The cost of this construction is O(r2n)

plus the cost for matrix-vector multiplications. The matrix-vector multiplication cost

ranges from O(rn) to O(rn2). The cost of O(rn2) is the most general case when the

construction is performed directly on a dense matrix A. Sometimes when A results

from discretization of certain kernels, then an analytical construction can be done

quickly [11].

The shifted factorization update in the previous subsection is then applied to

Ã. This leads to the fast eigenvalue count method in Algorithm 4. Following the

discussions in Section 3.2, the Trapezoidal rule is used for the numerical integration.

In addition, Section 3.3 also means that we can use a smaller number of quadrature

points in the eigenvalue counts than in the later subspace iterations.

59

Algorithm 4 Fast eigenvalue count

1: procedure s = EigCount(A,˜ Cγ (z0), k)

˜Input : HSS factors of A (from precomputations); Cγ (z0) (contour); k (threshold

for eigenvalue count)

Output : s ≈ #Λ(A, Cγ (z0)) if #Λ(A, Cγ (z0)) is not much larger than k

2: m ← a small integer . Initial number of random vectors

3: Y ← n × m random matrix

4: t ← 0 . Total trace

5: cj = wj (zj − z0), j = 1, . . . , q . Weights wj & nodes zj in Trapezoidal rule

6: Update the HSS factors of Ã to get those of zj I − A,˜ j = 1, . . . , q

7: repeat . Adaptive estimate of the eigenvalue count

8: Sj ← (zj I − Ã)−1Y, j = 1, . . . , q . HSS ULV solution P
9: Ze← 1 q cj Sj , t ← t + trace(Y T Ze)

2 j=1

10: s ←
m
t . Current-step estimate of the eigenvalue count

11: if s remains the same for some consecutive steps then

12: Return . Estimate count is identified

13: else . Attaching one extra vector a time; multiple may be attached

14: Y ← random vector

15: m ← m + 1

16: end if

17: until s is much larger than k . Further partitioning of the region is needed

18: end procedure

3.4.2.3 Structured FEAST eigenvalue solution with deflation

For a subregion, if the approximate eigenvalue count s is smaller than or near the

threshold k, we then solve for the eigenpairs with a structured FEAST algorithm. The

˜FEAST Algorithm 3 can be accelerated with a high-accuracy HSS approximation A

to A. Similarly to Algorithm 4, the factorizations and solutions can be performed in

60

HSS forms. In particular, the structured factorization update for varying shifts can

greatly save the cost. Moreover, the matrix-vector multiplications needed to form

the reduced problem (step 10 of Algorithm 5) can also be performed quickly in HSS

forms.

In practice, due to different convergence rates of the eigenpairs in the subspace

iteration, a deflation technique called locking [51,93] is often used to save some com-

putation costs. Those eigenpairs that have already converged to a desired accuracy

can be locked and excluded from later iterations. This structured FEAST algorithm

with deflation is summarized in Algorithm 5.

3.4.2.4 Algorithm for all eigenpairs, complexity, and optimal threshold

for subregion eigenvalue count

To find a large number of eigenpairs or even all the eigenpairs of A, we recursively

partition the search region into smaller subregions until each target subregion contains

no more than k eigenvalues, where k is the eigenvalue count threshold. The structured

FEAST algorithm is then applied to each target subregion to find the eigenpairs.

Discussion on the initial search region will be given in Section 3.4.3. For conve-

nience, we assume all the intermediate search regions are squares. (In practice, de-

pending on the actual problem, the regions may be made more flexible and more pre-

cise.) For each square, we estimate the number of eigenvalues based on #Λ(A,˜ Cγ (z0))

in Algorithm 4, where Cγ (z0) is the smallest circle that encloses the square. Since the

area of Dγ (z0) is about 1.57 times the area of the square, this gives an intuitive way

of choosing the column size in step 5 of Algorithm 5, which is suggested in [41, 90]

to be around 1.5 times the actual eigenvalue count. In practice, Algorithm 5 may

then find eigenvalues belonging to neighbor subregions (squares). In this case, we can

deflate those eigenvalues when the neighbor subregions are visited.

The complete algorithm of our fast eigensolver is summarized in Algorithm 6,

where we assume A can be approximated accurately by an HSS form in step 14. Then

61

Algorithm 5 Structured FEAST eigenvalue solution with subspace iteration and de-

flation

1: procedure [Λb, Xb] = SFEAST(A,˜ Cγ (z0), k̃)

˜Input : HSS factors of A (high-accuracy approximation of A); Cγ (z0) (contour);

s (eigenvalue count)

Output : (Λb , Xb) (eigenvalues inside Cγ (z0) and the corresponding eigenvectors)

2: cj = wj (zj − z0), j = 1, . . . , q . Weights wj & nodes zj in Trapezoidal rule

3: Update the HSS factors of Ã to get those of zj I − A,˜ j = 1, . . . , q b b b b4: Λ ← ∅, X ← ∅, Q ← ∅ . Q: convergent eigenspace

5: Y ← n × (3
2 s) random matrix

. More than s columns used for faster convergence

6: repeat

7: Sj ← (zj I − Ã)−1Y, j = 1, . . . , q . HSS ULV solution P qZe← 1 e e ˜8: j=1 cj Sj . Approximating Z = ΦY in (3.25) based on A
2

9: Q ← basis of Ze orthonormalized with respect to Qb
10: Â ← QT AQ . Reduced problem via HSS matrix-vector multiplication

11: Â = XeΛeXe−1 . Solving the reduced eigenvalue problem

12: Y ← QXe . Recovery of approximate eigenvectors of A

13: (Λb 1 Λb 2) ← Λb . Partition with convergent eigenvalues in Λb 1

14: (Y1 Y2) ← Y . Partition with convergent eigenvectors in Y1

15: (Q1 Q2) ← Q . Partition with convergent eigenspace in Q1

16: Λb ← diag(Λb, Λb 1), Xb ← (Xb X1), Qb ← (Qb Q1)

17: Y ← Y2

18: until convergence

19: end procedure

the low-accuracy HSS approximation in step 3 can be simply obtained by appropriate

truncations.

62

Algorithm 6 Fast structured non-Hermitian contour-integral eigensolver

1: procedure [Λ, X] = FastEig(A,˜ Γ, k)

Input : A (explicit or implicit via matrix-vector multiplications); Γ (contour that

encloses desired eigenvalues); k (threshold for subregion eigenvalue count)

Output : (Λ, X) (partial or full spectrum of A)

. 2D Quadsection stage

2: Push the initial search region enclosed by Γ onto a stack S

˜3: A ≈ A . Low-accuracy HSS construction for A and ULV factorization

4: while S =6 ∅ do

5: Pop a subregion Ri from S

6: Find the smallest circle Cγ (z0) that encloses Ri

7: si = EigCount(A,˜ Cγ (z0), k) . Algorithm 4

8: if k̃
i ≤ k then . No further quadsection is needed

9: Mark Ri as a target subregion

10: else

11: Quadsect Ri into 4 subregions and push the subregions onto S

12: end if

13: end while

. Eigenpair solution stage

˜14: A ≈ A . High-accuracy HSS construction for A and ULV factorization

15: Λ ← ∅, X ← ∅

16: for each target subregion Ri do

17: [Λb, Xb] = SFEAST(A,˜ Ri, si) . Algorithm 5 (with minor modifications) b b18: Λ ← diag(Λ, Λ), X ← (X X)

19: end for

20: end procedure

63

We now analyze the asymptotic complexity of Algorithm 6 for finding all the

eigenpairs of a matrix A with maximum off-diagonal (numerical) rank r, and also

decide the optimal threshold k. Due to the nature of quadsection, a quadtree can be

used to organize the process. Each node of the tree represents a subregion, and the

leaf nodes represent the target subregions with roughly k eigenvalues or less. Note

that this tree may be unbalanced.

Due to the independence of the computations for non-overlapping subregions, the

complexity is directly related to the number of nodes in the quadtree. Without loss

of generality, suppose each leaf of the tree corresponds to a subregion with about k

eigenvalues, so that the tree has O(n
k
) leaves and also O(n

k
) nodes. (This modest

assumption just eliminates extreme cases where the eigenvalues are highly clustered

so that the tree has too many empty nodes. In fact, as long as each node is nonempty,

the quadtree has at most n leaves and the asymptotic complexity count would remain

about the same for small r.) The computation costs of some basic operations are listed

in Table 3.4.

Table 3.4.
Computation costs of some basic operations, where r is the HSS rank of
A.

Operation Flops

HSS construction 2Up to O(r n)

ULV factorization/post-shift factorization update 2O(r n)

HSS solution O(rn)

HSS matrix-vector multiplication O(rn)

Orthonormalization (QR factorization) of a tall n × k matrix O(k2n)

In the quadsection stage, the eigenvalue count Algorithm 4 is performed for every

node of the quadtree. The HSS construction cost will be counted in the eigenvalue

solution stage since the low-accuracy HSS approximation can be obtained from trun-

64

cation. We count the costs associated with each node. A smaller HSS rank (r̃ ≤ r)

is used in the low-accuracy HSS approximation, and the pre-shift ULV factorization

costs ξ1,0 = O(r̃2n). The post-shift factorization update costs

ξ1,1 = O(qr̃2 n) = O(r̃ 2 n),

where q is the number of quadrature nodes and is small (see Section 3.2). Approxi-

mating (3.25) needs to solve m systems and to add q solution matrices, where m is

in (3.32). The cost is

ξ1,2 = O(qm˜ rmn).rn) + (q − 1)mn = O(˜

All the trace computations for (3.32) cost ξ1,3 = O(m2n). Thus, the total cost for the

quadsection stage is � �� � 2 2 2 2 2n ˜ n rn m nr m˜
ξ1 = ξ1,0 + O (ξ1,1 + ξ1,2 + ξ1,3) = O + O() + O()

k k k k�
2 2 �

= O
r̃ n

+ O(r̃n 2) + O(kn2),
k

where we have relaxed m to be k, although m may be actually a very small constant

and much smaller than k.

In the second stage, we use Algorithm 5 to solve for the eigenpairs in the subregions

associated with all the leaves of the quadtree. A high-accuracy HSS approximation

and the pre-shift ULV factorization cost no more than ξ2,0 = O(rn2) + O(r2n) in the

precomputation. We then count the costs associated with each leaf. Similar to the

above, the post-shift factorization update costs

ξ2,1 = O(qr 2 n) = O(r 2 n).

The linear system solutions for the quadrature approximation costs

ξ2,2 = β [O(qkrn) + (q − 1)kn] = O(rkn),

where β is the number of iterations and is assumed to be bounded since it is usually

small. Getting the orthonormal basis costs ξ2,3 = O(k2n). Forming the reduced

ˆmatrix A via HSS matrix-vector multiplications costs

ξ2,4 = β[O(rkn) + O(k2 n)] = O(rkn) + O(k2 n).

65

Solving the reduced eigenvalue problem and recovering the eigenvectors of A costs

ξ2,5 = β[O(k3) + O(k2 n)] = O(k3) + O(k2 n).

The cost for this stage is then � �� � 2 2n r n
ξ2 = ξ2,0 + O (ξ2,1 + · · · + ξ2,5) = O + O(rn 2) + O(kn2) + O(k2 n).

k k

Therefore, due to r̃ ≤ r, the total computation cost is �
2 2 � r n

ξ = ξ1 + ξ2 = O(rn 2) + [O(k2 n) + O(kn2)] + O . (3.33)
k

We can then use this to decide the optimal threshold k that minimizes ξ.

Theorem 3.4.1 If A has HSS rank r, then the optimal eigenvalue count threshold

for the subregions in Algorithm 6 is k = O(r), and the optimal cost of the algorithm

to find all eigenpairs of A is

ξ = O(rn 2) + O(r 2 n). (3.34) � �
r nProof In (3.33), the term O(k2n)+O(kn2) increases with k, and the term O
2

k

2

decreases with k. Clearly, the minimum of ξ is achieved when k = O(r).

In addition, the backward stability of relevant HSS construction and factorization

algorithms has been studied in [111,112].

3.4.3 Applications and initial search region

3.4.3.1 Applications and extensions

Our fast contour-integral eigensolver has a wide range of applications. One cate-

gory of matrices is rank structured A, and selected examples include:

• Banded matrices, where the HSS rank r is the bandwidth and the HSS form

can be obtained on the fly. If the bandwidth is finite, the cost (3.34) to find all

66

the eigenpairs is ξ = O(n2). Non-Hermitian banded eigenvalue problems arise

in many computations and applications. For example, tridiagonal eigenvalue

solution is needed in some non-Hermitian eigensolvers that reduce more general

matrices (such as complex symmetric ones) to tridiagonal forms. Banded non-

Hermitian eigenvalue problems also appear in the study of some 1D PDEs and

in sparse neural networks [1].

• Companion matrices, where the HSS rank is r = 2 and the HSS form can be

directly written out. Companion eignenvalue solution is usually used to find

the roots of univariate polynomial roots. Our algorithm can achieve the same

asymptotic complexity O(n2) as other fast QR-type companion eigensolvers

(e.g., [14]). However, since the companion matrix has more delicate structures

that are not fully utilized here, the actual cost is likely higher than that in [14].

On the other hand, the scalability is likely better due to the partitioning of the

search region into independent subregions.

• Toeplitz matrices, which in Fourier space have HSS ranks r = O(log n) and the

HSS construction costs O(n log2 n) [120]. The cost (3.34) is ξ = O(n2 log n).

Toeplitz eigenvalue problems are often involved in the studies of time series,

wave phenomena in periodic lattices, quantum spin chains, and many other

physics and engineering problems [16, 18,25,52,84].

• Some kernel functions (e.g., 1/|x − y| and log |x − y|) discretized on 1D curves,

where r = O(log n) and the HSS construction costs O(n log n) [11]. The cost

(3.34) is ξ = O(n2 log n). Related problems appear in the studies of radial basis

functions and integral kernels, in data science areas such as spectral clustering

and kernel principal component analysis [97], and in some physics areas such as

entanglement theory [56].

For the last two examples, a much smaller HSS rank r̃ may be used for the

eigenvalue counts. In addition, the matrix-vector multiplication needed in forming

67

the reduced eigenvalue problem can also be quickly conducted using FFTs or the fast

multipole method (FMM) [36].

Another category is A with slowly decaying off-diagonal singular values, where a

low-accuracy compact HSS approximation can be used to accelerate the eigenvalue

count. Examples include some discretized kernel functions in two dimensions. Po-

tential applications of our methods also include more general matrices where the

eigenvalues are roughly uniformly distributed, so that a low-accuracy matrix approx-

imation has a high probability of reliably counting the eigenvalues.

For some cases, extensions and modifications can be made to accommodate ad-

ditional matrix properties. For some structured sparse problems [115, 116], we may

extend our eigensolver by replacing the HSS methods by structured sparse factoriza-

tions, where low-accuracy HSS approximations are used for the intermediate fill-in.

This is particularly effective for discretized elliptic PDEs. For cases such as those

with tensor product structures, the structured approximation and factorization costs

may be significantly reduced. See [30, 33] for some examples, where the structured

approximation cost is sublinear in n. For such cases, when n is large, it may be

more practical to use our method to extract selected eigenvalues. Tensor structured

methods for the eigenvalue solution of these problems can be found in [44].

We can also adopt the eigensolver to extract certain specific types of eigenvalues,

such as the real ones. This will be useful in applications such as control. The search

for eigenvalues is then restricted to the real line. More effective filter functions can

be designed by setting the contour close to the interval, e.g., with a flat ellipse [41].

3.4.3.2 Determining the initial search region

When Algorithm 6 is used to find the entire spectrum, it requires an initial search

region. There are many strategies to obtain the region, such as the estimation of the

spectral radius and the study of inclusion regions for the field of values. Depending

on specific applications, efficient and effective estimations may be available. Here, we

 ���� ���� ���� ���� ���� ���� ���� ����

68

just briefly mention the most basic and general method based on the spectral radius.

To estimate the spectral radius, we may use the Gershgorin theorem, an estimate of

certain matrix norms, or the following well-known result.

Lemma 3.4.2 Let ρ be the spectral radius of A ∈ Cn×n and k · k be a consistent

matrix norm. Then ρ = limj→∞ kAjk1/j .

For A with fast matrix-vector multiplications, we may choose an appropriate j

and estimate kAj k1 using Hager’s method or a randomized Hager’s method [37].

For some matrices, it may be quick to find ||A||1 exactly. For example, if A is a

Toeplitz matrix, let u be its first column and vT be its first row. We can compute

c1 = ||u||1, ci = ci−1 − |un−i+2| + |vi|, i = 2, . . . , n.

Then ||A||1 = max |ci|.

If A is a companion matrix, other than the bound from ||A||1, we can find a nearly

optimal bound on the eigenvalues based on a result for the roots of a polynomial P
p(λ) = n

i=0 aiλ
i (an =6 0) [27]: !

1/2 1/(n−1) 1/n
an−1 an−2 a1 a0|λ| ≤ 2 max , , . . . , , .
an an an 2an

3.5 Numerical experiments

Now, we show the performance of our fast eigensolver (FastEig Algorithm 6) for

some test examples. In order to observe how the complexity depends on the ma-

trix size n, we use quadsection to find all the eigenpairs and report the total clock

time. The structure-preserving HSS construction and the corresponding shifted fac-

torization schemes mentioned at the end of Section 3.4.2.1 are used. Since our eigen-

solver uses structured direct linear solutions in the intermediate computations, some

comparisons are performed with structured direct solutions without our acceleration

techniques for one example. (Standard dense direct solvers are obviously much slower

69

and are thus not compared.) It will demonstrate the benefits of the shifted structured

factorization update and the eigenvalue count with low-accuracy HSS approximations.

The maximum number of subspace iterations is set to be 10. We report several

different accuracy measurements:

|λi−λ̃i|• ei = : relative error, where λ̃
i is the computed eigenvalue and the eigen-|λi|

value returned by the Intel MKL subroutine ZGEEV is treated as the exact

eigenvalue λi;
√P

|λi−λ̃i|2

• ê = √
n Pi=1

n : relative error as used in [107];
n |λi|2

i=1

kAx̃i−λ̃ix̃ik2• ri = : relative residual, where x̃i is the computed eigenvector; kAx̃ik2+kλ̃ix̃ik2

kAx̃i−λ̃ix̃ik2• r̂i = : relative residual as used in [38].
nkAk2

• mean(·): geometric mean.

The algorithm is implemented in (sequential) Fortran using the Intel Math Kernel

Library (MKL) and Intel Fortran compiler. All the tests are done on an Intel Xeon-

E5 processor with 64 GB memory on Purdue’s computing cluster Conte. In the first

example, we also compare the performance of our eigensolver with the Intel MKL

subroutine ZGEEV, which is based on QR iterations.

Example 1. First, consider a Cauchy-like matrix A of the form

uivj
Aij = ,

si − tj

(2j+1)πi/nwhere si = e2iπi/n and tj = e are located on the unit circle, and {ui}n andi=1

{vj}n are random.j=1

The matrix is related to the discretization of G(s, t) =
s−
1
t and is known to be

rank structured. Table 3.2 above includes the HSS ranks for one matrix size. That

table already shows how low-accuracy HSS approximation can be used to reliably

estimate the eigenvalue counts.

70

According to FMM, the maximum off-diagonal numerical rank is O(log n). The

complexity of the eigensolver is then expected to be O(n2 log n). In the test, we let the

matrix size n range from 1, 600 to 25, 600. We use relative tolerance τ1 = 10−1 for the

HSS compression in the quadsection stage and τ2 = 10−8 in the eigenvalue solution

stage. The clock times are reported in Figure 3.3 for reaching modest accuracies in

Table 3.5, and are compared with the runtimes of the Intel MKL subroutine ZGEEV.

Two reference lines for O(n2 log n) and O(n3) are also included. We can see that the

CPU times are roughly consistent with the complexity analysis. In fact, the slope

for the plot of FastEig is significantly lower. The crossover point between these two

algorithms for this particular test can also be observed.

n

1600 3200 6400 12800 25600

T
im

e
 (

s
)

101

102

103

104

105

ZGEEV

FastEig

O(n
3
)

O(n
2
log(n))

Figure 3.3. Example 1. Clock times of FastEig for finding all the eigen-
values.

Example 2. Next, consider A to be a discretized matrix from the Foldy-Lax

formulation for studying scattering effects due to multiple point scatters [23,58]. Let

1, if i = j,
Aij =

−G(si, tj)σj , otherwise,

⎧⎨ ⎩

71

Table 3.5.
Example 1. Accuracies of the eigenvalue solution.

n 1, 600 3, 200 6, 400 12, 800 25, 600

max(ei) 1.59e−7 9.47e−7 9.56e−7 9.99e−7 9.82e−7

mean(ei) 1.87e−9 2.08e−9 1.99e−9 3.08e−9 7.63e−9

ê 3.96e−12 1.79e−10 1.83e−9 7.67e−10 1.58e−9

max(ri) 2.27e−7 2.63e−5 3.00e−5 2.89e−5 2.99e−5

mean(ri) 1.89e−8 2.45e−8 2.79e−8 3.39e−8 5.46e−8

max(r̂i) 6.35e−11 2.91e−8 1.69e−7 7.85e−8 4.52e−8

mean(r̂i) 1.13e−11 7.04e−12 4.43e−12 2.74e−12 2.12e−12

where σj ’s are the scattering coefficients, and G(s, t) is the Green’s function of the

3D Helmholtz equation:

iω|s−t|e
G(s, t) = , s 6= t. (3.35)

4π|s − t|

Here, ω = 4π and σj is random in (0, 1), as used in [3].

If the problem is discretized on one dimensional meshes, we observe performance

similar to that in the previous example. Thus, we only consider A resulting from

the discretization of (3.35) on M × N regular meshes with equidistance h = 0.1 in

each direction. The matrix has order n = MN . Here, we fix M = 20 and let N

increase from 80 to 1, 280. We use a rank bound 40 in the quadsection stage and

a relative tolerance τ = 10−8 in the eigenvalue solution stage. In this case, the off-

diagonal ranks are much higher than in the pervious example, so that our acceleration

strategies make a significant difference.

Since our eigensolver involves direct linear solutions, we give some comparisons

with different structured direct solution methods, depending on whether to use shifted

factorization update in the linear solutions and/or low-accuracy approximation for

72

the eigenvalue count. The costs are given in Figure 3.4. We can observe the overall

complexity of O(n2 log n). We can also see how the acceleration strategies help to

improve the performance. In particular, we show in Table 3.6 the detailed time for

one of the matrices. The shifted factorization update accelerates both the quadsection

stage and the subspace iteration stage. By using low-accuracy HSS approximations

for the eigenvalue count, the cost of the quadsection stage becomes significantly lower.

1600 3200 6400 12800 25600

n

10 1

10 2

10 3

10 4

10 5

T
im

e
 (

s
)

O(n 2 log n)
No shift, high accuracy

No shift, adaptive accuracy

Shifted, high accuracy

FastEig (shifted, adaptive accuracy)

ZGEEV

Figure 3.4. Example 2. Clock times of FastEig for finding all the eigenval-
ues, where “shifted” means structured linear solution with shifted factor-
ization update, and “adaptive accuracy” means using low-accuracy HSS
approximation for the eigenvalue count and high accuracy approximation
for the later eigenvalue solution.

The benefit of the low-accuracy HSS approximation can also be seen from another

˜aspect. Table 3.7 lists the HSS ranks of A used in the two stages of FastEig. A small

rank in the eigenvalue counts leads to significant savings.

The accuracies of the eigenpairs are given in Table 3.8. In addition, Figure 3.5

illustrates how the quadsection of the search region is performed.

73

Table 3.6.
Example 2. Detailed times for the matrix with n = 6, 400 in Figure 3.4,
depending on whether the acceleration strategies are used or not.

Shifted factorization

update

Eigenvalue count with

low-accuracy HSS

Quadsection

stage

Subspace iteration

stage

7

7

3

3

7

3

7

3

1.30e3

7.40e2

1.27e3

6.84e2

1.89e3

1.88e3

1.70e3

1.72e3

Table 3.7.
˜Example 2. HSS ranks of A in the two stages of FastEig.

n (matrix size) 1, 600 3, 200 6, 400 12, 800 25, 600

Quadsection/eigenvalue count stage

Subspace iteration stage

40

118

40

227

40

253

40

297

40

360

3.6 Conclusions

In this chapter, we have designed a fast contour-integral eigensolver based on a

series of analytical and computational techniques. We show that the Trapezoidal rule

is an ideal quadrature for constructing filter functions in contour-integral eigenvalue

solutions. This is based on the study of the decay away from the unit circle. We then

provide a strategy to use low-accuracy matrix approximations to achieve reliable

eigenvalue counts. Such counts are either exact or only off by a small number with

low probabilities under some assumptions. Probability estimates are given. In the

eigenvalue count algorithm and the FEAST algorithm, rank structured methods are

used to accelerate the computations, especially the factorization update for varying

74

Table 3.8.
Example 2. Accuracies of the eigenvalue solution.

n (matrix size) 1, 600 3, 200 6, 400 12, 800 25, 600

max(ei) 3.27e−8 7.58e−6 3.77e−7 9.61e−6 9.58e−6

mean(ei) 3.31e−10 5.06e−10 6.13e−10 6.95e−10 7.20e−10

ê 1.16e−12 2.23e−11 3.27e−9 1.71e−9 4.09e−10

max(ri) 4.82e−8 1.32e−7 4.23e−7 7.69e−5 9.00e−5

mean(ri) 4.78e−9 1.07e−8 1.74e−8 2.44e−8 4.61e−8

max(r̂i) 1.20e−11 1.09e−8 3.04e−8 3.34e−8 8.26e−9

mean(r̂i) 1.22e−12 1.11e−12 6.09e−13 3.36e−13 2.63e−13

-2 -1 0 1 2

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Figure 3.5. Example 2. Eigenvalue distribution and quadsection process
for finding the eigenvalues of the matrix with n = 800.

shifts. The eigensolver may be used to find a large number of eigenvalues or the

full spectrum in a quadsection framework, where we derive an optimal threshold for

75

the number of eigenvalues within each subregion. The eigensolver has nearly O(n2)

complexity for rank structured matrices, and some strategies can also benefit more

general matrices. Due to the nice scalability of both contour-integral eigensolvers

and HSS methods, our algorithms have a great potential to be parallelized. We plan

to produce a scalable implementation. We are also in the process of extending the

methods to more general matrix classes and matrices with clustered eigenvalues.

76

4. EFFECTIVE MATRIX-FREE PRECONDITIONING

FOR THE AUGMENTED IMMERSED INTERFACE

METHOD

The content in this chapter is from a published paper [119]: J. Xia, Z. Li, and

X. Ye, Effective matrix-free preconditioning for the augmented immersed interface

method, J. Comput. Phys., 303 (2015), pp. 295–312. Additional copyright informa-

tion is provided in appendix A.

4.1 Introduction

In recent years, the augmented immersed interface method (AIIM) has been shown

to be very effective for the solution of many interface problems and problems on

irregular domains. The method is first developed for elliptic interface problems with

discontinuous and piecewise constant coefficients [61]. Later, the idea is extended

to moving interface problems on irregular domains [69] and incompressible Stokes

equations with discontinuous viscosities [63]. We refer the readers to [62] for more

information about AIIM.

Augmented strategies can be naturally used to design efficient and accurate al-

gorithms based on existing fast solvers. As an example, for incompressible Stokes

equations with a discontinuous viscosity across the interface, the discontinuous pres-

sure and velocity can be decoupled by augmented strategies. The immersed interface

method can then be applied conveniently with a fast Poisson solver in the iterative

solution of the Schur complement system.

In augmented strategies, a large linear system is formed for the approximate so-

lution u to the original problem together with an augmented variable g (which may

77

be a vector) of co-dimension one. Eliminating the block corresponding to u from

the coefficient matrix yields a Schur complement system for g, which is often much

smaller compared with u. Finding g can then make it convenient to solve for u.

Thus, it is critical to quickly solve the Schur complement system, which can be

done via direct or iterative solvers. Direct solvers can be used for some applications

when the Schur complement matrix A is a constant matrix, for example, for a fixed

interface or boundary. If A is not a constant matrix, typically for free boundary

and moving interface problems, efficient iterative solvers may be preferred. Iterative

solvers such as GMRES [92] do not require the explicit formation of the Schur com-

plement matrix A, and are thus often used. In addition, the solution often needs just

modest accuracies, and iterative methods make it convenient to control the accuracy

and the cost. Iterative solvers only need the product of A and vectors. This is usually

done as follows. First, assume g is available and solve the original problem for an

approximate solution u. Next, use the approximate solution to compute the residual

and thus the matrix-vector product.

AIIM can be considered as a generalized boundary integral method without ex-

plicitly using Green functions. The augmented variable can be considered as a source

term. If the system behaves like an integral equation of the first kind, then GMRES

converges slowly in general as described in several applications in this paper. For

these applications, effective preconditioners are then needed.

Our work here is initially motivated by the application of AIIM to Navier-Stokes

equations with a traction boundary condition. Explicit numerical tests indicate that,

for some applications, the condition number of the Schur complement matrix A is of

size O(1), and ||AT A − AAT ||2 is also very small. Nevertheless, GMRES still either

takes too many steps to converge or simply stalls. Finding a preconditioner that can

greatly improve the convergence of GMRES and is easy to apply becomes crucial for

augmented methods.

However, there are some substantial difficulties in constructing suitable precon-

ditioners. In fact, it may be difficult to even obtain a simple preconditioner such as

78

the diagonal of A. The reasons are: (1) A is generally dense and the entries are

not known explicitly in augmented methods, as mentioned above; (2) we can quickly

multiply A and vectors, but not AT and vectors. Preliminary attempts have been

made, such as extracting few columns of A or multiplying A with special vectors,

and then converting the results into a block diagonal preconditioner. The precondi-

tioner may work for a particular problem or right-hand side, but often fails. Thus, it

is necessary to design reliable matrix-free preconditioning techniques based on only

matrix-vector products. Previously, some matrix-free preconditioners are designed

for certain sparse problems and specific applications [6, 17, 32, 75, 102]. The ideas

are to extract partial approximations or to compute incomplete factorizations via

matrix-vector multiplications.

The objective of this work is to construct effective and efficient structured matrix-

free preconditioners solely based on the products of A and vectors. This is achieved

by taking advantage of some new preconditioning techniques introduced in recent

years, such as rank structured preconditioning [22,34,40,59,67,118] and randomized

preconditioning [87, 88].

The idea of rank structured preconditioning is to obtain a preconditioner via the

truncation of the singular values of appropriate off-diagonal blocks. If the off-diagonal

singular values decay quickly (the problem is then said to have a low-rank property),

it is known that this truncation strategy can be used to develop fast approximate

direct solvers. On the other hand, if the off-diagonal singular values are aggressively

truncated regardless of their decay rate, structured preconditioners can be obtained.

The effectiveness is studied for some cases in [67, 118]. Among the most frequently

used rank structures is the hierarchically semiseparable (HSS) form [12, 117]. Unlike

standard dense matrix operations, structured methods in terms of compact HSS forms

can achieve significantly better efficiency. In fact, the factorization and solution of an

HSS matrix need only about O(N) flops and O(N) storage, where N is the matrix

size.

79

In some latest developments, randomized sampling is combined with rank struc-

tures to obtain enhanced flexibility [71, 77, 113, 120]. That is, the construction of

rank structures (e.g., HSS) may potentially use only matrix-vector products instead

of the original matrix itself. The methods in [77,120] use both matrix-vector products

and selected entries of the matrix. The one in [71] is matrix-free, although requiring

slightly more matrix-vector products. In [113], a fully matrix-free and adaptive HSS

construction scheme is developed. It uses an adaptive rank detection strategy in [46]

to dynamically decide the off-diagonal ranks based on a pre-specified accuracy.

However, all the randomized methods in [71, 77, 113, 120] require the products of

both A and AT with vectors if A is nonsymmetric, and are thus not applicable to

AIIM. Here, we seek to precondition A with an improved adaptive matrix-free scheme,

using only the products of A and vectors. Due to the special features of AIIM as

mentioned above, we construct a nearly symmetric HSS approximation H to A via

randomized sampling. In the construction, A replaces AT for the multiplication of

AT and vectors. Thus, the column basis of an off-diagonal block of A obtained by

randomized sampling is used to approximate the row basis of the off-diagonal block

at the symmetric position of A. This enables us to find low-rank approximations

to all the off-diagonal blocks. We explicitly specify a small (O(1)) rank or a low

accuracy in the approximation. The off-diagonal approximations are then combined

with the matrix-vector products to yield approximations of the diagonal blocks. This

is done in a hierarchical fashion so that the overall HSS construction process needs

only O(log N) matrix-vector products.

Several other improvements to the schemes in [71, 113] are made. We replace

half of the randomized sampling by deterministic QR factorizations. We also de-

sign a strategy to reduce the number of matrix multiplications and avoid the use of

pseudoinverses that are both expensive and potentially unstable.

H is then quickly factorized, and the factors are used as a preconditioner. Exist-

ing HSS algorithms are simplified to take advantage of the near symmetry, and the

factorization and the application of the preconditioner have only O(N) complexity

80

and O(N) storage. Since A corresponds to the interface, its size N is much smaller

than the Poisson solution needed to compute a matrix-vector product. Thus, the pre-

conditioning cost is negligible as compared with the matrix-vector multiplication cost

in the iterations. We also provide a simplified preconditioner given by the diagonal

blocks of H that is easier to use and sometimes has comparable performance.

The effectiveness of the preconditioners is discussed in terms of several aspects

of structured and randomized preconditioning, such as the benefits of low-accuracy

rank structured preconditioners in reducing condition numbers. The preconditioners

also share some ideas with the additive preconditioning techniques in [87, 88], where

random low-rank matrices are added to the original matrix to provide effective pre-

conditioners. In addition, since a low-accuracy HSS approximation tends to preserve

well-separated eigenvalues [107], it can bring the eigenvalues together when used as a

preconditioner. Although the convergence of GMRES does not necessarily rely on the

eigenvalue distribution [35, 106], the eigenvalue redistribution provides an empirical

explanation for the preconditioner, as used in practice.

The effectiveness and the efficiency are further demonstrated with a survey of

several important applications, such as Navier-Stokes equations on irregular domains

with traction boundary conditions, an incompressible interface in incompressible flow,

a contact problem of drop spreading, and a mixed boundary problem. For the Schur

complement matrix A in AIIM, GMRES (with restart) generally stalls. Even non-

restarted GMRES barely converges unless the number of iterations reaches nearly N .

However, after our matrix-free preconditioning, GMRES converges quickly. The con-

vergence is also observed to be relatively insensitive to N and some physical param-

eters.

We also give a comprehensive test for a free boundary problem that involves mul-

tiple stages of GMRES solutions within the iterative solution of a nonlinear equation.

The problem involves mixed boundary conditions, and the system behaves like inte-

gral equations of both first and second kinds. With our preconditioner, the overall

performance GMRES solutions for all the stages is significantly improved.

81

The presentation is organized as follows. In Section 4.2, the features of the Schur

complements and the motivation for our work are discussed, together with a brief re-

view of the idea of AIIM. In particular, the linear system with the Schur complement

matrix A is explained in detail, including the fast multiplication of A with vectors

and the formation of the right-hand side. Section 4.3 presents the matrix-free struc-

tured preconditioner and the detailed algorithms, and the effectiveness is discussed.

Section 4.4 lists the applications, summarizes the numerical tests, and discusses the

generalizations. Some conclusions are drawn in Section 4.5.

4.2 Features of the Schur complement systems in AIIM and motivation

for the work

AIIM usually has two discretizations. One is for the governing PDE with the

assumption that the augmented variable is known. The second is for the augmented

equation such as the boundary condition or the interface condition. In this section,

as a preparation for our preconditioning techniques, we use the example of solving a

Poisson equation on an irregular domain in [61,62] to demonstrate the idea of AIIM,

and show the form of the Schur complement A and its multiplication with vectors. We

then discuss some useful features of the Schur complement system. These features are

based on both mathematical and numerical observations, and provide a motivation

for the development of our preconditioners.

4.2.1 Finite difference method for elliptic problems with singular source

terms

In this subsection, we review the discretization of the governing PDE as in [61,62],

assuming the augmented variable is known. Let R = {(x, y), a < x < b, c < y < d}

82

be a rectangular domain. Consider an elliptic interface problem with a specified

boundary condition on ∂R:

Δu = f(x, y), (x, y) ∈ R − ∂Ω,
(4.1)

[u] = w, [un] = v,

where ∂Ω = (x̂(s), ŷ(s)) is a curve or interface within R with a parameter s (such

as the arc-length), [u] is the jump of the solution across the boundary ∂Ω, n is the

unit direction pointing outward of ∂Ω, and [un] = [ru · n] is the jump in the normal

derivative of u across ∂Ω. If w ≡ 0, (4.1) can be rewritten as Peskin’s model [89] Z
Δu = f(x, y) + v(s)δ(x − x̂(s))δ(y − ŷ(s)) ds.

∂Ω

We have a single equation for the entire domain. The second term on the right-hand

side involves the two-dimensional Dirac delta function, which is called a singular

source term or a source distribution along the curve ∂Ω. If w 6= 0, then it is called

a double layer, similar to the derivative of the Dirac delta function, which is again

called a singular source. To solve the equation above numerically, either the immersed

boundary method or the immersed interface method (IIM) can be used. For example,

following the standard five-point finite difference discretization on a uniform mesh,

we can write both methods as

ui−1,j + ui+1,j + ui,j−1 + ui+1,j − 4ui,j
= fij + cij ,

h2

where h is the uniform mesh size, uij ≈ u(xi, yj) is the discrete solution, fij = f(xi, yj),

and cij is the discrete delta function in the immersed boundary method or is chosen to

achieve the second order accuracy in IIM. A matrix-vector form can be conveniently

written for the scheme:

Au = f + Bw + Cv,

where w and v are the discrete forms of w and v, respectively. The matrices B and

C are sparse matrices that are related to the coordinates of grid points in the finite

difference stencil and the boundary information including the first and the second

83

order partial derivatives of ∂Ω. Usually, each row of B or C has 3 ∼ 9 nonzero

entries, depending on the applications.

Here, we assume that we know w and v on a rectangular domain. For AIIM, one of

them is unknown and should be chosen to satisfy a certain kind of interface/boundary

conditions for different applications.

4.2.2 AIIM for Helmholtz/Poisson equations on irregular domains

Now we explain AIIM for the solution of Helmholtz/Poisson equations on an

irregular interior or exterior domain Ω. See [48, 49, 69] for more details. Consider

an Helmholtz/Poisson equation with a linear boundary condition q(u, un) along the

boundary ∂Ω:

Δu − ωu = f(x), x ∈ Ω,

q(u, un) = 0, x ∈ ∂Ω.

In AIIM, Ω is embedded into a rectangle or cube domain R, and ∂Ω becomes an

interface. The PDE and the source term are then extended to the entire domain R

Δu − λu =

⎧⎪⎨ ⎪⎩
as follows:

f, x ∈ Ω,

0, x ∈ R − Ω,

x ∈ ∂Ω.q(u, un) = 0, ⎧⎪⎨ ⎪
⎧⎪⎨ ⎪ [u] [u] = 0,= g,

x ∈ ∂Ω.or ⎩ ⎩[un] = 0, [un] = g,

If g is known, then we can find the solution u with a fast Poisson solver. In the

discrete sense, this can be represented by a matrix-vector equation

Au = f − Bg. (4.2)

To solve the original problem, the augmented variable g is determined so that q(u(g), un(g)) =

0 for u(g) along the boundary/interface ∂Ω. This is the second discretization in AIIM.

One strategy of the discretization is to apply least squares interpolations [61, 62] in

84

terms of u and g at a set of discrete points along ∂Ω, which leads to a matrix-vector

equation

Cu + Dg − q = 0. (4.3)

The residue vector is

R(g) = Cu(g) + Dg − q.

R(g) here has dual meanings. It is not only the regular residual of the linear system

(4.6) below, but is also the measurement of how the boundary condition is satisfied.

u is the solution when R(g) = 0.

Combine (4.2) and (4.3) to get ⎛⎝ A B
⎛⎝ ⎞⎠ u

⎞⎠ =

⎛⎝ f
⎞⎠ .

C D g q

Compute a block LU factorization ⎛⎝ A B
⎞⎠ =

⎛⎝ A
⎛⎝ ⎞⎠ I A−1B

⎞⎠ , (4.4)
C D C I A

where A is the Schur complement

A = D − CA−1B. (4.5)

We can then solve a much smaller system for g:

Ag = b, with b = q − CA−1f . (4.6)

Once we find g, then we solve (4.2) for the solution u. The right-hand side vector b

in (4.6) can be found with the evaluation of −R(g) at g = 0, since

−R(0) = −(Cu(0) + D0 − q) = −(CA−1f − q) = b.

In iterative solutions of (4.6), we need to evaluate the products of A with vectors

g̃. For this purpose, we first solve (4.2) with g replaced by g̃:

Aũ(g̃) = f − Bg̃.

85

Then

Ag̃ = Dg̃ − CA−1Bg̃ = Dg̃ − CA−1(f − Aũ(g̃)) (4.7)

= Dg̃ − Cu(0) + Cũ(g̃) = (Cũ(g̃) + Dg̃) − Cu(0)

= (Cũ(g̃) + Dg̃ − q) − (D0 + Cu(0) − q)

= R(g̃) −R(0).

That is, to compute Ag̃, we can use an interpolation to get the residual for the

boundary condition.

In general, the Schur complement matrix A is nonsymmetric. Even A may be

nonsymmetric, such as in the other applications in this paper. A is generally a dense

matrix since A−1 is. In the boundary integral method, A is close to the discretization

of the second kind integral equation. In the examples presented in this paper, the

matrices A, B, C, and D are not explicitly formed. The matrices C and D are sparse

and rely on the interpolation scheme used to approximate the boundary condition.

There are about 3 ∼ 16 entries each row, depending on the geometry of the boundary

and its neighboring grid points for different applications. C and D are determined

from the interpolation scheme to approximate the boundary condition. Hence, we

generally do not have CT and DT available if the matrices are not formed. Thus in

practice, A is not explicitly available, and the multiplication of AT by vectors is not

convenient.

4.2.3 Features of the Schur complement systems and challenges in GM-

RES solutions

As mentioned above, the Schur complement matrices A in AIIM such as (4.5) are

usually dense and not explicitly formed. On the other hand, A can be multiplied

by vectors quickly with the aid of fast solvers (e.g., Poisson solvers). Thus, iterative

methods such as GMRES are usually used to solve the Schur complement system

Ag = b. (4.8)

86

For the problems we consider, the following features or challenges are often ob-

served.

• For many Schur complement systems resulting from AIIM, GMRES without

preconditioning has difficulty in converging. By saying this, we mean that the

restarted GMRES method stalls or the non-restarted GMRES method converges

only when the number of iterations reaches nearly the size N of A. Sometimes,

this is due to the ill conditioning of A. However, for various cases here, this

happens even if A is well conditioned. Often, the eigenvalues of A are scat-

tered around the origin, which is empirically observed to affect the convergence

of GMRES. The physical background for the slow convergence is as follows.

AIIM can be considered as a generalized boundary integral method without

explicitly using Green functions. The augmented variable can be considered as

a source term. Thus, if the discrete system corresponds to an integral equation

of the second kind, then GMRES can converge quickly. (We refer the readers

to [128] for the relation between an augmented approach and the boundary

integral method.) One such an example is to solve a Poisson equation on an

irregular domain with different boundary conditions. If the system behaves like

an integral equation of the first kind, then GMRES converges slowly in gen-

eral. One such example is to solve a Poisson equation on an irregular domain

with both Dirichlet and Neumann boundary conditions defined along part of

the boundary. Thus, an effective preconditioner is crucial for the convergence

of GMRES.

• A is usually dense and it is costly to form it. (For example, A−1 is involved in

(4.5) for a large sparse matrix A.) In fact, it is not convenient to even extract

its diagonal. Even if we find the diagonal, it may have zero entries and cannot

be used as a preconditioner in a straightforward way.

• Ag̃ can be conveniently computed for a vector g̃. Thus, we may extract few

columns of A or multiply A by certain special vectors (e.g., vector of ones),

87

so as to construct diagonal or block diagonal preconditioners. However, the

preconditioners may be close to singular or may perform poorly.

• AT g̃ cannot be conveniently computed for a vector g̃. (See the end of the

previous subsection.) Thus, even the recent matrix-free direct solution tech-

niques in [71,113] cannot be used to get a preconditioner, since they require the

multiplication of both A and AT by vectors to get an approximation to A.

• In some cases, A is close to be normal or even symmetric.

• The singular values of the off-diagonal blocks of A have reasonable decay. In

some cases, the decay is very fast so that such blocks have small numerical

ranks.

As an example, we consider a 680 × 680 Schur complement A arising from AIIM

for solving the Navier-Stokes equation with a traction boundary condition in Section

4.4.1.1. The mesh size is 240 × 240. Note that the 2-norm condition number of the

matrix is κ2(A) = 10.09, and kA − AT k2 = 0.02, kAT A − AAT k2 = 1.98 × 10−5 .

However, due to the traction boundary condition, restarted GMRES (with 50 inner

iterations) applied to (4.8) fails to converge, as shown in Figure 4.1.

Thus, an effective preconditioner is needed. The diagonal of A contains zero

entries and cannot be conveniently used as a preconditioner, even if we could extract

it. We will seek to find a structured preconditioner. In fact, the off-diagonal blocks of

A have relatively small numerical ranks. In Figure 4.2, we show the singular values

of an N
2 × N

2 off-diagonal block of A. Clearly, the block only has few large singular

values. Thus, we can use a low-rank form to approximate this block to a reasonable

accuracy. Overall, we can approximate A by a rank structured (e.g., HSS) matrix

that can serve as an effective preconditioner. However, this would require either A

explicitly or the multiplication of both A and AT by vectors. In the next section, we

address these issues.

88

0 2 4 6 8 10

x 10
4

0.85

0.9

0.95

1

Number of iterations

γ
2

Figure 4.1. Convergence of restarted GMRES without preconditioning for
(4.8) from AIIM for solving the Navier-Stokes equations with a traction
boundary condition in Section 4.4.1.1, where N = 680, the mesh size is

||Ag−b||2240 × 240, and γ2 = is the relative residual.||b||2

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

Index i of singular values

S
in

g
u
la

r
v
a
lu

e
s
 σ

i

Figure 4.2. The first 30 singular values of A(1 : N
2 ,

N
2 + 1 : N) for the

Schur complement A from AIIM for solving the Navier-Stokes equations
with a traction boundary condition in Section 4.4.1.1, where N = 680 and
the mesh size is 240 × 240.

89

4.3 Matrix-free preconditioning techniques for AIIM

The challenges and the tests in the previous section provide a motivation for this

work. We show a matrix-free scheme that improves those in [71, 120] and produces

a nearly symmetric approximation H to A in a structured form. H will be quickly

factorized and used as a structured preconditioner.

4.3.1 Rank structures

Our preconditioning techniques employ rank structures, or more specifically, HSS

representations [12, 117]. An HSS representation provides a convenient format to

organize the off-diagonal blocks of a matrix H by low-rank forms. H is partitioned

hierarchically, so that the off-diagonal blocks at all the hierarchical levels have low-

rank forms and also share certain common bases. A comprehensive summary of HSS

structures and algorithms can be found in [114]. Here, we briefly review its definition,

with the aid of the following notation:

• H|s×t is a submatrix of H formed by its entries corresponding to the row index

set s and column index set t;

• H|s is a submatrix of H formed by its rows corresponding to the index set s;

• H|:×t is a submatrix of H formed by its columns corresponding to the index set

t.

A general HSS form looks like Dk ≡ H|I×I , where I is the index set {1, 2, . . . , N},

and Dk is defined recursively following a full binary tree T with k nodes labeled as

i = 1, 2, . . . , k in a postorder. Each node i of T is associated with an index set ti such

that

tk = I, ti = tc1 ∪ tc2 , tc1 ∩ tc2 = ∅,

90

where c1 and c2 are the children of a non-leaf node i and c1 < c2 (c1 ordered before

c2). Then for each such i, recursively define

=

⎛⎝ V TDc1 Uc1 Bc1 c2

⎞⎠ =

⎛⎝ Uc1 Rc1

⎞⎠ =

⎛⎝ Vc1 Wc1

⎞⎠Di , Ui , Vi ,
V TUc2 Bc2 c1

Dc2 Uc2 Rc2 Vc2 Wc2

where the matrices Di, Ui, etc. are called the generators that define the HSS form

of H. Also, if we associate each node i of T with the corresponding generators, T

is called an HSS tree. T can be used to conveniently organize the storage of H and

perform HSS operations. The off-diagonal blocks we are interested in are H|ti×(I\ti)
and H|(I\ti)×ti , called HSS block rows and columns, respectively. Ui gives a column

basis for H|ti×(I\ti), and Vi gives a column basis for (H|(I\ti)×ti)
T . For convenience,

assume Ui and Vi have orthonormal columns. In standard HSS computations, the

generators are usually dense. However, particular HSS construction algorithms may

yield generators that have additional internal structures (see, e.g., [115,120]).

Later, we use par(i) and sib(i) to denote the parent and the sibling of i, respec-

tively. Also we say c1 is a left node and c2 is a right one.

4.3.2 Matrix-free structured preconditioning via randomized sampling

HSS preconditioning for symmetric positive definite problems have been discussed

in [118]. Here, our matrices are generally nonsymmetric and indefinite. The primary

idea of our preconditioning techniques is to construct a nearly-symmetric HSS ap-

proximation H to A with an improved matrix-free HSS construction scheme via only

the products of A and vectors. The major components are as follows.

1. For an off-diagonal block of A, use an adaptive randomized sampling method

[46, 113] to find an approximate column basis, and a deterministic method to

find an approximate row basis.

2. In a top-down traversal of the HSS tree, use the products of A and vectors

to obtain hierarchically low-rank approximations to certain off-diagonal blocks.

91

Treat A as a symmetric matrix to approximate the other off-diagonal blocks.

We avoid using pseudoinverses and some matrix multiplications in [71, 113].

3. This further enables us to approximate the diagonal blocks, and we then obtain

a nearly symmetric HSS approximation H to A.

4. Compute a structured ULV-type factorization [12,117] of H. Use the factors as

a preconditioner in a ULV solution scheme.

The detailed improvements over existing similar schemes are elaborated in the

following subsections.

4.3.2.1 Improved randomized compression

Firstly, we explain briefly the adaptive randomized sampling ideas, and show our

improvement to the randomized compression. For an M × N matrix Φ of rank or

numerical rank r, we seek to find a low-rank approximation of the form

Φ ≈ UBV T .

We multiply Φ and random vectors and use adaptive randomized sampling to find U

as in [46, 108]. Then unlike the methods in [46, 71, 108, 113], we do not multiply ΦT

with random vectors when finding V . Furthermore, we do not use pseudoinverses to

find B. These are detailed as follows.

Initially, let X be an M × r̃ Gaussian random matrix, where r̃ is a conservative

estimate of r. Compute the product

Y = ΦX,

and a QR factorization

Y = UỸ . (4.9)

92

U is expected to provide a column basis matrix for Φ when r̃ is close to r. To quickly

estimate how well U(UT Φ) approximates Φ, the following bound can be used with

high probability [46, 108]: r
2 ||Φ − U(UT Φ)||2 ≤ η max (I − UUT)Y |:×j , (4.10)
π j=r̃−d+1,...,r̃ 2

where d is a small integer and η is a real number, and d and η determine the proba-

bility. If the desired accuracy is not reached, more random vectors are used. When

this stops, we obtain the approximate basis matrix U and the rank estimate.

In existing randomized sampling methods, it then usually multiplies ΦT with

random vectors to find V in a similar way. That is, randomized sampling are used

twice to extract both the row and the column basis. Here, instead, we compute

Φ̃ = UT Φ, (4.11)

and then compute an RQ factorization

Φ̃ = BV T . (4.12)

That is, we use randomized sampling only once, but use the deterministic orthogonal

way (4.11)–(4.12) to find V . This is potentially beneficial for the approximation.

Furthermore, (4.12) provides both B and V without the need of pseudoinverses in

[71, 113]. The RQ factorization is generally much faster and much more stable. This

idea is similar to a deterministic compression strategy for HSS construction in [117],

and a parallel implementation is later discussed in [73].

4.3.2.2 Nearly-symmetric matrix-free HSS construction with improve-

ments

We then apply the improved randomized compression to the HSS blocks of A:

Φ = A|ti×(I\ti) or A|(I\ti)×ti , (4.13)

The compression is done hierarchically for all the HSS blocks. Previous attempts to

find accurate HSS approximations to problems with low-rank off-diagonal blocks are

https://4.11)�(4.12

93

made in [71,77,113,120], where the products of both A and AT with random vectors

are needed. As compared with the original matrix-free HSS constructions in [71,113],

the following improvements and modifications are made:

• A nearly-symmetric HSS approximation is constructed. That is, for a node i of

the HSS tree and j = sib(i), Vi ≡ Ui, Wi ≡ Ri, Bj = Bi
T , but the D generators

are nonsymmetric.

• Randomized sampling is only used to find Ui for the left nodes i. To find

Ui for the right nodes i, the deterministic way (4.11)–(4.12) is used instead.

This reduces the number of matrix multiplications, and avoids expensive and

potentially unstable pseudoinverses.

• Specifically for the purpose of preconditioning, a low approximation accuracy

and small r̃ and d are used in (4.10).

The details are as follows. Assume that T is the desired HSS tree. As in [71,113],

the nodes i of T are visited in a top-down way, so as to construct the column bases

˜ ˆhierarchically for the HSS blocks A|ti×(I\ti). For convenience, we use Tl and Tl to

denote the sets of left and right nodes at a level l of T , respectively. Also, let the root

of T be at level 0 and the leaves be at the largest level lmax. For 1 ≤ l ≤ lmax, define S S
˜ ˆtl = ti, tl = tj .

i∈T̃
l j∈T̂

l

Let X be a Gaussian random matrix whose column size is decided via adaptive

˜randomized sampling applied to A|ti×tj for each i ∈ T̃
l. Define X so that

˜ ˜X |̃ = X |̃ , X |̂ = 0. (4.14)tl tl tl

Compute

˜ = AX̃ − ˜Y Z,

where Z̃ is the product of the partially computed HSS form (due to recursion at upper

˜levels) and X, denoted

˜ ˜Z = hssmv(A, X, l − 1).

https://4.11)�(4.12

94

⎞⎠

(Z̃ is 0 if l = 1.) Then compute a QR factorization

˜ ¯ ¯Y |ti = UiSi,

¯where Ui is a column basis matrix for A|ti×tj with j = sib(i).

To find a row basis matrix for A|ti×tj , unlike the methods in [71, 113] that still

ˆuses randomized sampling, we use a deterministic way. Define a matrix X, which is

a zero matrix except for each i ∈ T̃
l,

ˆ ¯X|ti = Ui.

Compute

ˆ ˆY = AX̂ − hssmv(A, X, l − 1).

Then for each right node j at level l, compute a QR factorization

Ŷ |tj = Ū
j B̄

j ,

¯where Uj is a column basis matrix for (A|ti×tj)
T .

¯ B̄T
j .We are then ready to find the generators. If l = 1, simply set Ui ⎛⎝

= Ui, Bi =

Up;1
Otherwise, after j = sib(i) is also visited, let p = par(i) and partition Up as

Up;2

¯ so that Up;1 has the same row size as Ui (assuming i is a left node). Then compute

QR factorizations ����
(¯) = Ui , (¯) = Uj .Ui Up;1 Si Ri Ui Up;2 Sj Rj

Also, set

¯Bi = Sj Bj Si
T .

In comparison, multiple pseudoinverses and a lot more matrix multiplications are

needed in [71]. An improved version is given in [113], but still needs two more ma-

trix multiplications and a pseudoinverse on top of two randomized sampling stages.

Another strategy to avoid the pseudoinverse is later given in [73], and can potentially

95

better reveal the hierarchical structures. However, it needs additional randomized

sampling and matrix-vector multiplications. Here, since our purpose is precondition-

ing, the strategy above is sufficient and preferable.

This process is repeated for the nodes of T in a top-down traversal. After the

leaf level is traversed, approximations to all the HSS blocks are obtained. We can

then approximate all the diagonal blocks A|ti×ti for the leaves i by subtracting the

products of appropriate off-diagonal blocks of A and I = (I, I, . . . , I)T from AI [71].

(Some additional zero columns may be needed for certain block rows of I.) More

specifically,

A|ti×ti ≈ H|ti×ti ≡ AI − hssmv(A, I, lmax).

By now, we have obtained an HSS approximation H to A, where the off-diagonal

blocks have a symmetric pattern, or

H|ti×tj = (H|tj ×ti)
T .

The diagonal blocks Di ≡ H|ti×ti are nonsymmetric. The accuracy of this HSS

approximation may be low, but it suffices for our preconditioning purpose.

4.3.2.3 Nearly-symmetric HSS factorization

At this point, we can quickly factorize the HSS matrix H, and the factors are used

for preconditioning. Since H is nearly symmetric, we use the fast ULV factorization

in [117], with some simplifications to take full advantage of the off-diagonal symmetric

pattern and with some modifications to accommodate the nonsymmetric diagonal

blocks. The basic idea includes the following steps.

˜• Introduce zeros into H|ti×(I\ti) by expanding Ui into an orthogonal matrix Ui

and multiplying Ũ
i to H|ti . This just needs to modify Di as

Di ← Ũ
iDiŨ

i
T .

96

• Partition Di into a block 2 × 2 form

⎛⎝ Di;1,1 Di;1,2

⎞⎠, so that Di;1,1 a square
Di;2,1 Di;2,2

matrix with size equal to the column size of Ui. Partially LU factorize Di:

Di ≡

⎛⎝ Di;1,1 Di;1,2

⎞⎠ =

⎛⎝ Li;1,1

⎛⎝ ⎞⎠ Gi;1,1 Gi;1,2

⎞⎠ ,
Di;2,1 Di;2,2 Li.2,1 I Gi;2,2

where Di;1,1 = Li;1,1Gi;1,1 is the LU factorization of Di;1,1, and Gi;2,2 = Di;2,2 −

Li.2,1Gi;1,2.

• After these steps for two sibling nodes i and j of T are finished, merge the

remaining blocks. Here, this is to simply set ⎛⎝ ⎞⎠Gi;2,2 Bi
Dp ← .

BT
i Gj;2,2

Note that no actual operations are performed. Then we remove i and j from T

to obtain a smaller HSS form, called a reduced HSS matrix [115].

• Repeat the above steps on the reduced HSS matrix.

After the factorization, the ULV factors are a sequence of orthogonal and lower

and upper triangular matrices and are used as a structured preconditioner. The ULV

solution procedure for the preconditioning is similar to that in [117] and is skipped.

4.3.2.4 Algorithm and variation

The details are shown in Algorithm 7, which includes the HSS approximation and

the factorization for constructing the preconditioner.

To make the preconditioner easier to use, we may also use a simplified variation

by forming a block diagonal matrix D from the Di generators:

D = diag(Di|i: leaves of T).

Then factorize D and use the triangular factors as the preconditioner.

To summarize, we have two types of preconditioners:

97

Algorithm 7 Constructing the matrix-free preconditioner
Input: HSS partition, HSS tree T , compression tolerance (and/or rank bound r), and

mat-vec (Schur complement matrix-vector multiplication routine as in (4.7))

Output: HSS factors as a preconditioner

1: procedure mfprec

˜ ˆ2: X ← 0, X ← 0

3: for level l = 1, 2, . . . , lmax do

. Improved nearly-symmetric matrix-free HSS construction

˜4: Construct X as in (4.14) via adaptive randomized sampling

˜ ˜ ˜5: Y ← mat-vec(A, X) − hssmv(A, X, l − 1) . hssmv returns 0 if l = 1

6: for each left node i at level l do

˜ ¯ 7: Y |ti = UiSi . QR factorization

ˆ ¯ 8: X|ti ← Ui

9: end for

ˆ ˆ ˆ10: Y ← mat-vec(A, X) − hssmv(A, X, l − 1)

11: for each right node j at level l do

ˆ ¯ ¯ 12: Y |tj = Uj Bj . QR factorization

13: i ← sib(j)

14: if l = 1 then . i is a child of the root

¯ ¯ B̄T15: Ui ← Ui, Uj ← Uj , Bi ← . U,B generators j

16: else

17: Upar(i) =

⎛⎝ Upar(i);1

⎞⎠
Upar(i);2

¯ . Partition so that Upar(i);1 and Ui have the same row size

18: (¯), (¯)Ui Upar(i);1) = Ui(Si Ri Uj Upar(i);2) = Uj (Sj Rj

. QR factorizations for U, R generators

¯ 19: Bi ← Sj Bj Si
T . B generator

20: end if

. Continue in Algorithm 8

98

Algorithm 8 Constructing the matrix-free preconditioner (continued)
21: end for

22: end for

˜23: Y ← AI − hssmv(A, I, lmax)

24: for each leaf i do

25: Di ← Ỹ |ti . D generator

26: end for

27: for node i = 1, 2, . . . , k do

. ULV factorization to generate the preconditioner

˜28: Ui ← Ui

. Extension of Ui to orthogonal Ũ
i; implicit zero introduction into A|ti×(I\ti)

Di ← Ũ
iDi⎛⎝

ŨT
i . Diagonal block update 29: ⎛⎝ ⎞⎠ ⎞⎠Li;1,1 Gi;1,1 Gi;1,2

Di . Partial LU factorization30: =
Li.2,1 I Gi;2,2

if i is a nonleaf node then
Gc1;2,2 Bc1

⎛⎝ ⎞⎠
31:

32: Di ← . c1, c2: children of i
BT Gc2;2,2c1

33: end if

34: end for

35: end procedure

• Preconditioner I: Structured preconditioner given by the ULV factors of the HSS

approximation H to A;

• Preconditioner II: Block-diagonal preconditioner given by the LU factors of the

block diagonal matrix D formed by the Di generators of H. This preconditioner

is easier to apply, although it may lead to slightly slower convergence.

For convenience, we may simply say that H or D is the preconditioner.

99

4.3.3 Efficiency and effectiveness

The HSS construction costs O(r2N) flops plus the cost to multiply A with O(r log N)

vectors, where r is the maximum numerical rank of the HSS blocks. The factoriza-

tion and the preconditioning costs are O(r2N) and O(rN) flops, respectively. We

may also treat the diagonal blocks as symmetric ones so as to further save the costs.

The storage for the preconditioner is O(rN).

In the preconditioning, we use a low accuracy so that r is a very small integer. The

preconditioning cost at each GMRES iteration is then O(N). This cost is negligible

as compared with the cost of multiplying A and a vector. The reason is that A

corresponds to the interface and has a much smaller size than the entire problem.

See, e.g., (4.4)–(4.5), where the multiplication of A and a vector needs to solve a

Poisson problem represented by A. The matrix A has a size much larger than N .

Just like many other preconditioning techniques, a full analytical justification of

the effectiveness of the preconditioner is not yet available. Especially, the complex

nature of the rank structures makes the analysis a nontrivial issue. However, several

aspects of rank structured approximation and randomized preconditioning are closely

related and give useful heuristical explanations.

1. HSS representations recursively capture the algebraic structure of the discretiza-

tion with the off-diagonal blocks corresponding to the interactions of subdo-

mains. A low-accuracy off-diagonal approximation represents essential basic

information within the subdomain interaction.

2. Keeping few largest off-diagonal singular values in rank structured approxima-

tion tends to have an effect of roughly preserving certain eigenvalues of the orig-

inal matrix [107,113]. In particular, if some eigenvalues are well separated from

the others, then a low-accuracy HSS approximation can give a much more accu-

rate approximation of these eigenvalues. This structured perturbation analysis

is shown in [107]. Therefore, when the HSS approximation is used as a precon-

ditioner, it can potentially help to bring the eigenvalues closer. Although this

100

does not necessarily guarantee the fast convergence of GMRES [35,106], it gives

an empirical way to look into the behavior of the preconditioner.

3. Even if the problem may not have the low-rank property or the off-diagonal sin-

gular values only slowly decay, a structured approximation as a preconditioner

can significantly accelerate the decay of the condition number κ [118], where

the preconditioner is obtained with different numbers of off-diagonal singular

values kept in the approximation.

4. In our preconditioner, multiplications of A by random matrices are used to

approximate the off-diagonal blocks by low-rank forms, which are further used

to approximate the diagonal blocks via matrix addition/subtraction. This is

then similar to the idea of additive preconditioning [87, 88], where random

low-rank matrices are added to the original matrix, which is shown to yield

a well-conditioned preconditioner, and also improves the condition number of

the original matrix.

4.4 Preconditioning AIIM for different applications and generalizations

In this section, we show several important applications where our preconditioning

techniques for AIIM can be applied, particularly for flow problems. Numerical results

are given to demonstrate the effectiveness and efficiency. We focus on the structured

Preconditioner I given at the end of Section 4.3.2, and also briefly show the performance

of Preconditioner II.

4.4.1 Preconditioning individual Schur complements in various applica-

tions

In this subsection, we show the preconditioning of some individual Schur comple-

ments in several applications. In our tests, different types of right-hand sides b are

tried, such as random vectors, products of A and given vectors, and those actually

101

arising in the applications. Similar performance is observed. Thus for convenience in

comparing different methods, we report the results with b to be the products of A

and vectors of all ones. We point out that our preconditioners are not limited to any

specific type of right-hand sides. For convenience, the following notation is used:

• κ2(A): 2-norm condition number of A;

pre• nmv : number of matrix-vector multiplications for computing the preconditioner;

• nit: number of GMRES iterations;

||Ag−b||2• γ2 = : relative residual.||b||2

Before presenting the details of the individual problems, we give the basic proper-

ties of the matrices in Table 4.1, and summarize the convergence results in Table 4.2.

The matrices include both well-conditioned and ill-conditioned ones. We can observe

that, GMRES has difficulty to converge for all the cases. In fact, restarted GMRES

fails to converge for all the cases except one (where it takes 8794 steps to converge

for N = 194). Even non-restarted GMRES needs large numbers of iterations to con-

verge, which are often close to N . On the other hand, preconditioned GMRES with

preour structured preconditioner gives quick convergence for all the cases. Both nmv and

nit are relatively insensitive to the increase of N .

Remark 4.4.1 Since A corresponds to the interface for the augmented variable, the

size N of A is usually not very large. However, the number of variables in the original

problem is much larger. See the mesh size in Table 4.1. Even if A may have a small

size, the multiplication of A by a vector needs the solution of a much larger equation

for A, e.g., with a Poisson solver.

Remark 4.4.2 For time dependent problems and multiple right-hand sides, we may

preuse nmv matrix-vector multiplications in a precomputation to find a preconditioner,

and then apply the preconditioner to multiple time steps and right-hand sides. Thus,

it sometimes makes sense to allow npre to be slightly larger so as to reduce nit. Thismv

would be beneficial in reducing the total number of matrix-vector products.

102

Table 4.1.
Properties of A, including the corresponding mesh size for the entire do-
main.

Problem Mesh N κ2(A) ||A − AT ||2
||A−AT ||2

||A||2
||AT A − AAT ||2

||AT A−AAT ||2

||AT A||2

Traction

60 × 60

120 × 120

240 × 240

480 × 480

176

344

680

1360

9.62

9.48

10.09

13.71

0.02

0.02

0.02

0.02

1.43

1.40

1.41

1.42

2.36 × 10−5

2.23 × 10−5

1.98 × 10−5

1.66 × 10−5

0.10

0.09

0.09

0.08

Inextensible

128 × 128

256 × 256

512 × 512

128

256

512

1.55e5

1.34e7

2.31e6

4.08

8.05

18.65

0.69

0.70

0.51

9.33

39.05

176.85

0.27

0.29

0.13

Contact

128 × 128

256 × 256

512 × 512

182

362

726

6.79e2

9.56e2

4.76e3

1.01

1.02

1.06

1.02

1.03

0.99

0.86

0.86

0.89

0.88

0.87

0.78

Mix Irregular

64 × 64

128 × 128

256 × 256

512 × 512

1024 × 1024

194

274

514

834

1314

3.16e3

3.46e3

1.71e4

2.54e5

8.59e6

1.03

1.26

2.21

3.74

6.91

0.98

0.97

0.99

1.00

1.00

0.91

1.52

4.83

13.91

47.58

0.82

0.89

0.97

0.99

1.00

103

Table 4.2.
Summary of the convergence of GMRES without preconditioning and with
our structured Preconditioner I, where τ is around 0.1 ∼ 0.8 in constructing
the preconditioner.

Problem

GMRES

Restarted

nit (outer; inner) γ2

Non-restarted

nit γ2

Preconditioned GMRES

(Non-restarted)

prenmv nit γ2

91750 (1835; 50) Fail 175 1.43e − 4 63 12 3.73e − 7

Traction
93650 (1873; 50) Fail 343 1.34e − 5 88 11 5.83e − 7

9500 (190; 50) Fail 672 3.11e − 6 85 12 5.14e − 7

3300 (66; 50) Fail 1331 1.71e − 6 106 13 9.01e − 7

Inextensible

55750 (1115; 50)

30200 (604; 50)

100000 (2000; 50)

Fail

Fail

Fail

127

250

492

1.63e − 4

8.91e − 7

4.63e − 7

73

92

110

26

42

68

7.90e − 7

7.96e − 8

2.94e − 7

Contact

49250 (985; 50)

81500 (1630; 50)

3150 (63; 50)

Fail

Fail

Fail

181

361

725

6.98e−6

5.20e−7

1.71e−6

71

83

99

21

30

48

3.47e − 7

5.47e − 7

8.01e − 7

8794 (176; 50) 1.00e−6 118 7.03e−7 68 22 7.82e − 7

14150 (283; 50) Fail 156 8.14e−7 79 39 2.47e − 7

Mix Irregular 95200 (1904; 50) Fail 328 9.48e−7 81 64 7.61e − 7

7300 (146; 50) Fail 633 9.18e−7 102 84 9.60e − 7

33950 (679; 50) Fail 1045 9.36e−7 105 98 9.09e − 7

Remark 4.4.3 The measurements in Table 4.1 only give a partial way to look into the

symmetry/normality of A, and do not necessarily tell the actual symmetry/normality.

In practice, we may not know if A is actually close to symmetric or not. For some

of the examples, the eigenvalues of A are scattered around (say, in a disk) and are

not close to the real axis. In general, the structure of the Schur complement matrix

depends on the application and the representation of the interface. For our test ex-

104

amples, it is hard to tell whether the matrix is eventually close to symmetric or not,

but the preconditioner works well.

Remark 4.4.4 The reasons why we are not reporting results for restarted GMRES

are as follows. First, the numbers of iterations in our tests are usually small. Next,

if restart is used, the convergence is slower than without, depending on the number of

inner iterations. However, in AIIM with preconditioning, it seems preferable to store

a little more intermediate iterates (as in non-restarted GMRES) so as to accelerate

the convergence. This is because the sizes of the original discretized PDEs are much

larger than the sizes of the Schur complement matrices A. It is usually cheap to store

some small intermediate iterates in GMRES, but is costly to compute matrix-vector

products. Therefore, reducing the total number of matrix-vector products is more

crucial (than saving a small amount of storage for the GMRES iterates). Of course,

for large-scale practical computations, we may choose to balance the convergence and

the storage via restart with appropriate numbers of inner iterations.

We then explain the individual applications in Tables 4.1–4.2 and show additional

specific tests in the following subsections.

4.4.1.1 Navier-Stokes equations on irregular domains with open and trac-

tion boundary conditions

This application is one of our motivations to develop the preconditioner. A de-

tailed description of the problem and its solution with AIIM can be found in [68].

Let R be a rectangular domain with an inclusion Ω. Consider the Navier-Stokes

equation � �
∂u

ρ + (u · r)u + rp = µΔu + g, r · u = 0, (4.15)
∂t

x ∈ R \ Ω,

105

where ρ, µ, u, p, and g(x, y, t) are the fluid density, the viscosity, the fluid velocity,

the pressure, and an external forcing term, respectively. There is a traction boundary

condition [72] along the interior boundary ∂Ω:

T ηT n · µ(ru + ru T) · n = p − p̂ − γξ, · µ(ru + ru T) · n = 0, (4.16)

x ∈ ∂Ω,

where ξ is the curvature, γ is the coefficient of the surface tension, η is the unit

tangential direction of the interface, and p̂ is the pressure of the air.

During the numerical solution, the procedure to advance from a time step tk to the

next one tk+1 includes two steps [68]. The first is to solve (4.15) with (4.16) for the

velocity using AIIM. The second is to solve the momentum equation for the pressure

k+1 ≡ ∂u
k+1

p. The augmented variable is q
∂n , which is determined so that uk+1 satisfies

(4.16) with an approximation to pk+1 .

In a specific example, set the boundary ∂Ω to be a particular curve such as a circle

defined by a function ϕ(x, y). Let ϕi,j be the discrete case of ϕ(x, y). A grid point

xij is irregular if

max {ϕi−1,j , ϕi+1,j , ϕij, ϕi,j−1, ϕi,j+1} · min {ϕi−1,j , ϕi+1,j , ϕij , ϕi,j−1, ϕi,j+1} ≤ 0.

The Schur complement system (4.8) for the augmented variable is defined at the

orthogonal projections of such irregular xij on ∂Ω from the outside. If the time step

size Δt = tk+1 − tk is fixed, then so is A.

(4.8) is solved by GMRES with our preconditioning techniques. Preconditioned

GMRES quickly converges. See the results in the row of ‘Traction’ in Table 4.2,

where we use time t = 0 and µ = 0.02. Note that the number of matrix-vector prod-

ucts for constructing the preconditioner and the number of iterations increase very

slowly with N . More specifically, Figure 4.3 shows the costs (excluding the matrix-

vector multiplication which is problem dependent) and the storage. For varying N ,

we use a low accuracy τ = 0.4 and a small off-diagonal rank. Then the construction

of the preconditioner (including the HSS construction and the ULV factorization) and

106

the application of the preconditioner (the ULV solution) both cost about O(N) flops

and need about O(N) storage. Such costs are negligible as compared with even one

matrix-vector product with A, which costs about O(N2 log N).

10
2

10
3

10
2

10
3

10
4

10
5

10
6

N

F
lo

p
s

O(N log N) reference line

Precomputation (HSS construction)

Precomputation (HSS factorization)

Preconditioning (HSS solution)

O(N) reference line

10
2

10
3

10
3

10
4

10
5

N

S
to

ra
g
e
 (

e
n
tr

ie
s
)

O(N) reference line

Preconditioner storage

(i) Costs of the algorithms (ii) Storage for the preconditioner

Figure 4.3. Costs for precomputing or constructing the preconditioner
(including HSS construction and ULV factorization) and applying the pre-
conditioner (HSS solution), and the storage for the preconditioner.

In particular, for the example with N = 680 in Figure 4.1 in Section 4.2.3, the

convergence of preconditioned GMRES is significantly faster than the standard non-

restarted GMRES method. (Note that restarted GMRES simply stalls.) See Figure

4.4. It is also observed that most of the eigenvalues of the preconditioned matrix

cluster around 1.

We also test the problem at time t = 0.5, and the results are given in Table 4.3.

The convergence is very close to that for t = 0 in Table 4.2.

Furthermore, for the example with N = 680, we also test a wide range of µ

values. See Table 4.4. Clearly, at both t = 0 and 0.5, the convergence preconditioned

GMRES is similar for different µ. This illustrates the insensitivity of the convergence

to different time steps and physical parameters.

107

0 100 200 300 400 500 600 700
10

−14

10
−10

10
−6

10
−2

Number of iterations

γ
2

GMRES
Preconditioned GMRES

Figure 4.4. Convergence of non-restarted GMRES without precondition-
ing and with our structured preconditioning for the 680 × 680 Schur com-
plement A (corresponding to Figure 4.1) from a 240 × 240 mesh.

Table 4.3.
Convergence of preconditioned GMRES for the problem ‘Traction’ at
time t = 0.5.

Mesh prenmv nit γ2

60 × 60

120 × 120

240 × 240

480 × 480

63

88

85

106

13

12

11

13

4.29e − 7

6.81e − 7

6.37e − 7

6.53e − 7

4.4.1.2 An extensible interface in an incompressible flow

Then we consider an inverse interface problem, which has a moving interface ∂Ω(t)

in a shear flow within a rectangular domain R [64]. The problem is still modeled by

the Navier-Stokes equation:

∂u
+ u · ru + rp = µ Δu + f(x, t), r · u = 0,

∂t

����

108

Table 4.4.
Convergence of preconditioned GMRES for the problem ‘Traction’ at
times t = 0 and 0.5 with different µ values.

µ
t = 0 t = 0.5

prenmv nit γ2
prenmv nit γ2

2 90 14 5.87e − 7 90 14 5.26e − 7

0.2 88 13 4.04e − 7 88 14 6.13e − 7

0.02 85 12 5.14e − 7 85 11 6.37e − 7

0.002 85 13 3.63e − 7 85 12 6.58e − 7

x ∈ R,

where f(x, t) is the force term. Let η be the tangential direction of ∂Ω(t). The force

term is Z
∂

f(x, t) = (σ(s, t) η(s, t)) δ(x − ω(s, t)) ds,
∂s ∂Ω(t)

where ω(s, t) is a parametric representation of ∂Ω(t), and σ(s, t) is the surface tension.

The force term f(x, t) is also part of the unknown. We need to find f(x, t) such that

the incompressible condition along the tangential direction is also satisfied. σ(s, t) is

chosen as the augmented variable so that

∂u
(rs · u) = · η = 0.∂Ω ∂η ∂Ω

That is, both the length of ∂Ω(t) and the enclosed area remain constant.

For this problem, the number of GMRES iterations is dramatically reduced with

our preconditioner. See the results in the ‘Inextensible’ row in Table 4.2, where

the tests are done at time t = 0 with µ = 20.

109

4.4.1.3 A contact problem of drop spreading

AIIM for modeling a moving contact line problem where a liquid drop spreads

can be found in [65]. Just like in the previous problems, the fluid domain Ω with the

free boundary ∂Ω is extended into a rectangular domain R. The augmented variable

is also the jump of the normal derivative of the velocity along ∂Ω. The performance

of GMRES with our preconditioner is given in the ‘Contact’ row in Table 4.2, where

the time is t = 0.

4.4.1.4 A boundary value problem with mixed boundary conditions on

different parts of the boundary

Another important problem where an effective preconditioner is needed in AIIM

is the Poisson equation with different types of boundary conditions on different parts

of the boundary. As an example, consider the domain Ω enclosed by a half circle

x2 + y2 ≤ 1, x ≥ 0 and the line segment x = 0, −1 ≤ y ≤ 1. Assume we have the

following mixed boundary conditions:

u(x, y) = g1, x 2 + y 2 = 1, x ≥ 0 (Dirichlet),

∂u
= g2, x = 0, −1 ≤ y ≤ 1 (Neumann).

∂n

Ω is extended to the rectangular domain R = [−2, 2]2 , and AIIM is applied to the

problem as explained in Section 4.2. The augmented variable is set to be [∂u] along
∂n

the half circle and [u] along the line segment x = 0, −1 ≤ y ≤ 1. See the line of

‘Mix Irregular’ in Table 4.2 for the performance of our preconditioner.

In particular, we also try Preconditioner II given at the end of Section 4.3.2. See

Table 4.5. We observe satisfactory convergence results too, though slightly slower

than those in Table 4.2.

110

Table 4.5.
Convergence of GMRES with our Preconditioner II for the problem
‘Mix Irregular’ in Table 4.1.

Mesh nit γ2

64 × 64 24 6.59e − 7

128 × 128 38 9.12e − 7

256 × 256 66 4.44e − 7

512 × 512 97 8.34e − 7

1024 × 1024 111 7.88e − 7

��� �� �� �� ��

111

4.4.2 Comprehensive simulation in terms of a free boundary problem

We then show a comprehensive test in terms of a free boundary problem [66],

including all the stages of an entire simulation.

This problem is to determine the position of the crack of certain minimizers. It is

a mixed boundary value problem where we need to find a potential function u(x, y)

and a free boundary Γ1(x, y) such that

Δu = 0 in Ω, (4.17)

u|Γ2 = w, (4.18) h i∂u π 2 2
= 0, c = ru + − ru − , (4.19)

∂ν Γ1 2 Γ1

where ν is the unit normal of Γ1 and c is the curvature of Γ1. The other boundary

Γ2 is fixed, and the Dirichlet boundary condition is defined on Γ2. Note that the

parts of free boundary Γ1 below and above the x-axis are antisymmetric, and the free

boundary has three fixed points: the top (y > 0) corner, the bottom (y > 0) corner,

and the origin ((0, 0)). Figure 4.5 gives an illustration. Additional plots of the final

shape of the boundary can be found in [66].

Figure 4.5. An illustration of the free boundary problem (4.17)–(4.19)
in [66], where Γ1 is a free boundary and Γ2 is fixed.

https://4.17)�(4.19

112

As usual, we use an iterative scheme to solve this free boundary problem. The free

boundary Γ1 can be written as a perturbation to the line (x̂0(t), ŷ0(t)) = (a1t, a2t)

connecting the origin and the top corner, where (a1, a2) is the direction of the line.

Denote the free boundary above the x-axis as (x̂(t), ŷ(t)) = (t, g(t)) with g(0) = 0,

g(d) = 0, where d is the number such that (x̂0(d), ŷ0(d)) is the fixed top corner.

From the analysis in [66], g(t) is the solution to the following non-linear equation

which depends on u(x, y):

00(t)(t2 + g2(t))g tg0(t) − g(t)
= G(t), (4.20)+3 1

(1 + g02(t)) ((t2 + g2)(1 + g02(t)))2 2

where t ∈ (0, d), and

1 � �
G(t) = |∂τ u|2(t, g(t)) − |∂τ u|2(−t, −g(t)) .

π

Here, ∂τ u is the tangential derivative of u(x, y) along the free boundary Γ1. A much

simplified iterative method is proposed in [66] to solve the non-linear equation (4.20):

(t2 + g2(t)) tg0 (t) − gk(t)k 00 k(t) + = Gk(t), (4.21)gk+13 1
(1 + g02

k (t)) 2 02((t2 + g)(1 + g (t)))2 2
k k

where

gk+1(0) = gk+1(d) = 0,

1 � �
Gk(t) = |∂τ uk|2 (t, gk(t)) − |∂τ uk|2 (−t, −gk(t)) ,

π

and (t, gk(t)) defines the boundary of the domain for (4.17)–(4.19) whose solution is

uk. This is much simpler than the Newton iterative method and has fast convergence.

At each stage k of the iteration (4.21), we use the augmented method described in

Section 4.2 to solve the Poisson equation on Ω with Dirichlet and Neumann boundary

conditions on different parts of the boundary. The augmented variable is the jump

in the normal derivative. It is well known that the GMRES converges very slowly

since the system is similar to one using the boundary integral method with integral

equations of both first and second kinds.

https://4.17)�(4.19

113

In the simulation, we show the performance of GMRES as well as the precondi-

tioned one. The initial guess of the free boundary is the line connecting the top-left

corner and the origin. The Dirichlet boundary condition is � � 1sgn(y) 21
(x 2 + y 2)w(x, y) = − x − 0.01. (4.22)2

2

Since multiple stages/iterations (4.21) are involved, the outcome of the previous stage

GMRES iteration is used as the initial estimate of the next stage GMRES iteration.

Thus, unlike the failure in the tests in the previous subsection, here, GMRES con-

verges to modest accuracy after a certain number of steps.

Nevertheless, the preconditioned GMRES method with our preconditioner con-

verges much faster. In Table 4.6, we show the total number of iterations nit for

GMRES at all stages, as well as the total number of matrix-vector multiplications

npre for the preconditioned GMRES method. We construct the preconditionermv + nit

once and use it for all the iterations. The stopping criterion is when the difference in

a certain measurement between two consecutive stages k and k + 1 is smaller than

10−6 . The tolerance for the inner GMRES iterations is also 10−6 . We run the tests

in Fortran on a 2.5 GHz Intel Core i7 Macbook Pro with 16 GB of memory. Both

the total number of GMRES iterations and the total CPU time have been greatly

reduced.

The numbers of GMRES and preconditioned GMRES iterations at each stage k

for the iteration (4.21) is also given in Table 4.7. With preconditioned GMRES, the

solution is not only faster, but also more reliable. In fact, with just GMRES, even

for the small 40 × 40 mesh it takes an unusually large number of iterations. For the

160 × 160 mesh, it even fails to converge to the desired accuracy. However, with

preconditioned GMRES, both the number of iterations (4.21) and the numbers of

interior GMRES iterations are significantly reduced.

114

Table 4.6.
Comparison of the entire simulation for the free boundary problem (4.17)–
(4.19) with GMRES and preconditioned GMRES for different mesh sizes.

Mesh size N
With GMRES With preconditioned GMRES

Total nit Total CPU time (sec) preTotal nmv + nit Total CPU time (sec)

40 × 40 96 1241 3.74e0 150 5.06e−1

80 × 80 114 700 2.90e0 164 7.75e−1

160 × 160 150 8801 7.40e1 180 1.57e0

320 × 320 222 821 2.08e1 183 4.77e0

640 × 640 366 979 9.25e1 211 2.10e1

1280 × 1280 652 951 4.07e2 227 9.20e1

2560 × 2560 1224 937 1.69e3 257 4.75e2

115

Table 4.7.
Comparison of the numbers of iterations at all the stages k for the iteration
(4.21).

Mesh With GMRES With preconditioned GMRES

40 × 40

80 × 80

160 × 160

320 × 320

640 × 640

1280 × 1280

2560 × 2560

77, 79, 83, 73, 77, 81, 78, 77, . . . , 77 (9 times)

70, 70, 70, 70, 70, 70, 70, 70, 70, 70

89, 88, . . . , 88 (99 times) — divergence

83, 82, 82, 82, 82, 82, 82, 82, 82, 82

97, 98, 98, 98, 98, 98, 98, 98, 98, 98

96, 95, 95, 95, 95, 95, 95, 95, 95, 95

97, 94, 94, 94, 93, 93, 93, 93, 93, 93

24, 24, 24, 24, 24

13, 13, 13, 13, 13, 13, 13, 13

13, 17, 17, 17, 17, 17

19, 20, 20, 20, 20, 20

17, 23, 23, 23, 23

24, 34, 34, 34

25, 33, 33

4.4.3 Generalizations

Other than AIIM, the preconditioning techniques can also be useful in other ap-

plications and methods such as saddle point problems, domain decomposition, hybrid

solutions. See, e.g., [8, 31, 91]. In these cases, often a large problem is first solved

by direct methods, and a much smaller Schur complement system corresponding to a

small subdomain or interface is solved with iterative ones.

The matrix-free preconditioning techniques here are also useful for more general

problems where it is difficult to form the matrix A explicitly or to evaluate the

product of AT with vectors. This also includes sparse problems such as the GeneRank

problems in [109] which are nonsymmetric but have symmetric nonzero patterns or

involve other types of symmetry.

4.5 Conclusions

AIIM has significant benefits for the fast and accurate solutions of some interface

problems and problems defined on irregular domains. The efficient application of

AIIM relies on the fast solution of the Schur complement system Ag = b. Since

116

the products of A with vectors can be quickly evaluated, but not the entries of A or

the products of AT with vectors, we propose matrix-free preconditioning techniques

to accelerate the convergence of GMRES. Rank structured techniques are combined

with adaptive randomized sampling. Several improvements to existing randomized

and structured algorithms are made. Various advantages of the preconditioner are

demonstrated, including the flexibility, efficiency, and effectiveness, which are sup-

ported by comprehensive tests on many difficult situations. In our future work, we

would like to analytically study the effectiveness of the preconditioner, at least for

certain simple cases (e.g., with few blocks). We also plan to develop a parallel imple-

mentation for large-scale tests.

117

5. Conclusions and future work

To conclude this dissertation, we have discussed several topics regarding the construc-

tion and application of HSS representation on both theoretical and computational

aspects. On the micro scale of structured matrix computation, we analyzed in de-

tails on our own version of the proxy point method for a class of problems, theorems

regarding different type of approximation errors are presented. On the macro scale,

HSS representation has been used with other algorithms to obtain efficient eigensolver

and preconditioner. Now we will list a couple of possible directions for future works

related to this dissertation as well as other structured matrix techniques.

Chapter 2 is a starting point for a systematic error analysis for proxy point method

in more general case, some settings one commonly encounters in the literature include

1) PDE kernels in 3 dimension, this is mostly seen in simulation of real world physics

phenomenon, and 2) Gaussian or other symmetric positive definite (SPD) kernels with

high dimension date, this is often seen in kernel methods for machine learning. This

is an important part for understanding and controlling the approximation error when

applying the structured matrix algorithms to these problems. The results obtained

in chapter 2 themselves are also useful that it is closely related to Cauchy-like and

Toeplitz systems. Previously we have produced a software package [74] for solving

Toeplitz linear systems, now with the new and more efficient proxy point method as

the main compression subroutine, we will be able to bring an update to the software

for much better performance.

For the eigenvalue problem, the ultimate goal is to get an eigensolver with less

than O(n2) cost for computing all eigenpairs under the assumption that certain rank

structure exists in the matrix. This is not likely to be possible without exploring

the structure in eigenvector matrix like in [107], namely, we need to find a special

permutation or eigenvalue ordering either explicitly or implicitly hidden in certain

118

procedure. Thus more work has to be done on the analysis part before diving into

algorithm design. Specifically for contour-integral based eigensolvers, more investiga-

tions can be made on filter design and quadrature choice as we always need to weigh

between more nodes for faster convergence and less nodes for less computation cost.

Systems arising from high frequency PDE problems are always hard to deal with

as the they lose the low-rank property and many existing structured matrix tech-

niques no longer have approximately linear complexity. Several successful attempts

on this type of problem include high frequency fast multipole (HF-FMM) methods,

some directional methods and butterfly factorization, but they are all concerned with

fast matrix-vector multiplication which is useful for iterative solvers or precondition-

ers. We are interested in a direct solver for such problems, this means a ULV type

factorization and the corresponding solution scheme like the HSS case.

High performance implementation is not mentioned at all in this work, but it is

worth considering when doing real world applications. Structured matrix algorithms

are born with some level of natural parallelism since they are usually associated with

a tree structure, the remaining work is to modify the algorithms if necessary to get

better communication.

REFERENCES

119

REFERENCES

[1] A. Amir, N. Hatano, and D. R. Nelson, Non-Hermitian localization in
biological networks, Phys. Rev. E, 93 (2016), pp. 042310.

[2] C. R. Anderson, An implementation of the fast multipole method without
mltipoles, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 923–947.

[3] G. Bao, K. Huang, P. Li, and H. Zhao, A direct imaging method for
inverse scattering using the generalized Foldy-Lax formulation, Contemp. Math.,
615 (2014), pp. 49–70.

[4] F. Bauer and C. Fike, Norms and exclusion theorems, Numer. Math., 2
(1960), pp. 137–141.

[5] J. B. Bell, P. Colella, and H. M. Glaz, A second-order projection method
for the incompressible Navier-Stokes equations, J. Comput. Phys., 85 (1989), pp.
257–283.

[6] S. Bellavia, J. Gondzio, and B. Morini, A matrix-free preconditioner for
sparse symmetric positive definite systems and least-squares problems, SIAM J.
Sci. Comput., 35 (2013), pp. A192–A211.

[7] P. Benner and T. Mach, Computing all or some eigenvalues of symmetric
Hl-matrices, SIAM J. Sci. Comput., 34-1 (2012), pp. A485–A496.

[8] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point
problems, Acta Numerica, 14 (2005), pp. 1–137.

[9] D. A. Bini, L. Gemignani, and V. Y. Pan, Fast and stable QR eigenvalue
algorithms for generalized companion matrices and secular equations, Numer.
Math., 100 (2005), pp. 373–408.

[10] S. Borm¨ and W. Hackbusch, Data-sparse approximation by adaptive H2-
matrices, Computing, 69 (2002), pp. 1–35.

[11] D. Cai and J. Xia, Bridging the gap between the fast multipole method and
fast stable structured factorizations, preprint, 2016.

[12] S. Chandrasekaran, P. Dewilde, M. Gu, and T. Pals, A fast ULV
decomposition solver for hierarchically semiseparable representations, SIAM J.
Matrix Anal. Appl., 28 (2006), pp. 603–622.

[13] S. Chandrasekaran, M. Gu, X. Sun, J. Xia, and J. Zhu, A superfast
algorithm for Toeplitz systems of linear equations, SIAM J. Matrix Anal. Appl.,
29 (2008), pp. 1247–1266.

120

[14] S. Chandrasekaran, M. Gu, J. Xia, and J. Zhu, A fast QR algorithm for
companion matrices, Oper. Theory Adv. Appl., Birkhauser Basel, 179 (2007),
pp. 111–143.

[15] H. Cheng, Z. Gimbutas, P. G. Martinsson, and V. Rokhlin, On the
compression of low rank matrices, SIAM J. Sci. Comput., 26 (2005), pp. 1389–
1404.

[16] I. Chremmos and G. Fikioris, Spectral asymptotics in one-dimensional pe-
riodic lattices with geometric interaction, SIAM J. Appl. Math., 76 (2016), pp.
950–975.

[17] J. Cullum and M. Tůma, Matrix-free preconditioning using partial matrix
estimation, BIT Numer. Math., 46 (2006), pp. 711–729.

[18] H. Dai, Z. Geary, and L. P. Kadanoff, Asymptotics of eigenvalues and
eigenvectors of Toeplitz matrices, J. Stat. Mech., (2009), pp. P05012.

[19] J. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

[20] A. Dutt, M. Gu, and V. Rokhlin, Fast algorithms for polynomial interpo-
lation, integration, and differentiation, SIAM J. Numer. Anal., 33 (1996), pp.
1689–1711.

[21] Y. Eidelman, I. Gohberg, and V. Olshevsky, The QR iteration method
for Hermitian quasiseparable matrices of an arbitrary order, Linear Alg. Appl.,
404 (2005), pp. 305–324.

[22] B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equa-
tion: Hierarchical matrix representation, Comm. Pure Appl. Math., 64 (2011),
pp. 697–735.

[23] L. Foldy, The multiple scattering of waves, Phys. Rev., 67 (1945), pp. 107–119.

[24] W. Fong and E. Darve, The black-box fast multipole method, J. Comput.
Phys., 228 (2009), pp. 8712–8725.

[25] P. J. Forrester and N. E. Frankel, Applications and generalizations of
Fisher–Hartwig asymptotics, J. Math. Phys., 45 (2004), pp. 2003–2028.

[26] A. Frieze, R. Kannan, and S. Vempala, Fast Monte-Carlo algorithms for
finding low-rank approximations, J. Assoc. Comput. Math., 51 (2004), pp. 1025–
1041.

¨ [27] M. Fujiwara, Uber die obere Schranke des absoluten Betrages der Wurzeln
einer algebraischen Gleichung, Tôhoku Math. J., 10 (1916), pp. 167–171.

[28] Y. Futamura, H. Tadano, and T. Sakurai, Parallel stochastic estimation
method of eigenvalue distribution, JSIAM Letters, 2 (2010), pp. 127–130.

[29] I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij, H-matrix ap-
proximation for the operator exponential with applications, Numer. Math., 92
(2002), pp. 83–111.

121

[30] I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij, Hierarchi-
cal tensor-product approximation to the inverse and related operators for high-
dimensional elliptic problems, Computing, 94 (2005), pp. 131–157.

[31] L. Giraud and A. Haidar, Parallel algebraic hybrid solvers for large 3D
convection-diffusion problems, Numer. Algor., 51 (2009), pp. 151–177.

[32] J. Gondzio, Matrix-free interior point method, Comput. Optim. Appl., 51
(2012), pp. 457–480.

[33] L. Grasedyck, Existence and computation of low kronecker-rank approxima-
tions for large linear systems of tensor product structure, Computing, 72 (2004),
pp. 247–265.

[34] L. Grasedyck, R. Kriemann, and S. Le Borne, Parallel black box H-LU
preconditioning for elliptic boundary value problems, Comput. Visual Sci., 11
(2008), pp. 273–291.

[35] A. Greenbaum, V. Pt´ s, Any nonincreasing convergence ak, and Z. Strakoˇ
curve is possible for GMRES, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 465–
469.

[36] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J.
Comp. Phys., 73 (1987), pp. 325–348.

[37] M. Gu, Subspace iteration randomization and singular value problems, SIAM J.
Sci. Comput., 37 (2015), pp. A1139–A1173.

[38] M. Gu and S. C. Eisenstat, A divide-and-conquer algorithm for the symmet-
ric tridiagonal eigenproblem, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 79–92.

[39] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-
revealing QR factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.

[40] M. Gu, X. S. Li, and P. S. Vassilevski, Direction-preserving and Schur-
monotonic semiseparable approximations of symmetric positive definite matrices,
SIAM. J. Matrix Anal. Appl., 31 (2010), pp. 2650–2664.

[41] S. Güttel, E. Polizzi, P. Tang, and G. Viaud, Zolotarev quadrature rules
and load balancing for the FEAST eigensolver, SIAM J. Sci. Comput., 37 (2015),
pp. 2100–2122.

[42] W. Hackbusch, A Sparse matrix arithmetic based on H-matrices. Part I: in-
troduction to H-matrices, Computing, 62 (1999), pp. 89–108.

[43] W. Hackbusch, B. Khoromskij, and S. Sauter, On H2 matrices, Lectures
on Applied Mathematics, Springer-Verlag, Berlin, 2000, pp. 9–29.

[44] W. Hackbusch, B. Khoromskij, S. Sauter, and E. Tyrtyshnikov, Use
of tensor formats in elliptic eigenvalue problems, Numer. Linear Algebra Appl.,
19 (2012), pp. 133–151.

[45] W. Hackbusch, B. Khoromskij, and E. Tyrtyshnikov, Hierarchical kro-
necker tensor-product approximations, Numer. Math., 13 (2005), pp. 119–156.

122

[46] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with
randomness: probabilistic algorithms for constructing approximate matrix decom-
positions, SIAM Rev., 53 (2011), pp. 217–288.

[47] K. L. Ho and L. Greengard, A fast direct solver for structured linear systems
by recursive skeletonization, SIAM J. Sci. Comput., 34 (2012), pp. A2507–A2532.

[48] T. Hou, Z. Li, S. Osher, and H. Zhao, A hybrid method for moving interface
problems with application to the Hele-Shaw flow, J. Comput. Phys., 134 (1997),
pp. 236–252.

[49] J. Hunter, Z. Li, and H. Zhao, Autophobic spreading of drops, J. Comput.
Phys., 183 (2002), pp. 335–366.

[50] M. F. Hutchinson, A stochastic estimator of the trace of the influence matrix
for laplacian smoothing splines, J. Commun. Statist. Simula., 19 (1990), pp.
433–450.

[51] A. Jennings and W. J. Stewart, A simultaneous iteration algorithm for real
matrices, ACM Trans. of Math. Software, 7 (1981), pp. 184–198.

[52] B.-Q. Jin and V. E. Korepin, Quantum spin chain, Toeplitz determinants
and the Fisher-Hartwig conjecture, J. Stat. Phys., 116 (2004), pp. 79–95.

[53] J. Kestyn, E. Polizzi, and P. Tang, FEAST eigensolver for non-Hermitian
problems, SIAM J. Sci. Comput., 38 (2016), pp. S772–S799.

[54] B. Klar, Bounds on tail probabilities of discrete distributions, Prob. Eng. In-
form. Sci., 14 (2000), pp. 161–171.

[55] K. Kress, Linear integral equations, third edition, Springer, 2014.

[56] J. I. Latorre and A. Riera, A short review on entanglement in quantum
spin systems, J. Phys. A: Math. Theor., 42 (2009), pp. 504002.

[57] S. E. Laux, Solving complex band structure problems with the feast eigenvalue
algorithm, Physical Review B, 86 (2012), pp. 075103.

[58] M. Lax, Multiple scattering of waves, Rev. Mod. Phys., 23 (1951), pp. 287–310.

[59] S. Le Borne and L. Grasedyck, H-matrix preconditioners in convection-
dominated problems, SIAM. J. Matrix Anal. Appl., 27 (2006), pp. 1172–1183.

[60] P.-D. Ltourneau, C. Cecka, and E. Darve, Cauchy Fast Multipole Method
for General Analytic Kernels, SIAM J. Sci. Comput., 36 (2014), pp. A396–A426.

[61] Z. Li, A fast iterative algorithm for elliptic interface problems, SIAM J. Numer.
Anal., 35 (1998), pp. 230–254.

[62] Z. Li and K. Ito, The Immersed Interface Method: Numerical Solutions of
PDEs Involving Interfaces and Irregular Domains, SIAM, 2006.

[63] Z. Li, K. Ito, and M.-C. Lai, An augmented approach for Stokes equations
with a discontinuous viscosity and singular forces, Comput. Fluids, 36 (2007),
pp. 622–635.

123

[64] Z. Li and M.-C. Lai, New finite difference methods based on IIM for inexten-
sible interfaces in incompressible flows, East Asian J. Appl. Math., 1 (2011), pp.
155–171.

[65] Z. Li, M-C. Lai, G. He, and H. Zhao, An augmented method for free bound-
ary problems with moving contact lines, Comput. Fluids, 39 (2010), pp. 1033–
1040.

[66] Z. Li and H. Mikayelyan, Fine numerical analysis of the crack-tip position
for a Mumford-Shah minimizer, 2015, arXiv:1511.07733 [math.NA].

[67] R. Li and Y. Saad, Divide and conquer low-rank preconditioners for symmetric
matrices, SIAM J. Sci. Comput., 35 (2013), pp. A2069–A2095.

[68] Z. Li, L. Xiao, Q. Cai, H. Zhao, and R. Luo, A semi-implicit augmented
IIM for Navier-Stokes equations with open, traction, or free boundary conditions,
J. Comput. Phys., 297 (2015), pp. 182–193.

[69] Z. Li, H. Zhao, and H. Gao, A numerical study of electro-migration voiding
by evolving level set functions on a fixed cartesian grid, J. Comput. Phys., 152
(1999), pp. 281–304.

[70] E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, and M.
Tygert, Randomized algorithms for the low-rank approximation of matrices,
Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 20167–20172.

[71] L. Lin, J. Lu, and L. Ying, Fast construction of hierarchical matrix repre-
sentation from matrix-vector multiplication, J. Comput. Phys., 230 (2011), pp.
4071–4087.

[72] J. Liu, Open and traction boundary conditions for the incompressible Navier-
Stokes equations, J. Comput. Phys., 228 (2009), pp. 7250–7267.

[73] X. Liu, J. Xia, and, M. V. de Hoop, Parallel randomized and matrix-free
direct solvers for large structured dense linear systems, SIAM J. Sci. Comput.,
38 (2016), pp. S508–S538.

[74] X. Liu, Y. Xi, J. Xia, and X. Ye, Superfast and stable Toeplitz linear
and least squares solvers, 2015, https://www.math.purdue.edu/xiaj (accessed
06/20/2018). Version 2.0.

[75] L. Lukšan and Jan Vlček, Efficient tridiagonal preconditioner for the matrix-
free truncated Newton method, Appl. Math. Comput., 235 (2014), pp. 394–407.

[76] J. Makino, Yet another fast multipole method without multipoles–pseudoparticle
multipole method, J. Comput. Phys., 151 (199), pp. 910–920.

[77] P. G. Martinsson, A fast randomized algorithm for computing a hierarchi-
cally semiseparable representation of a matrix, SIAM. J. Matrix Anal. Appl., 32
(2011), pp. 1251–1274.

[78] P.-G. Martinsson, G. Quintana Ort, N. Heavner, and R. van de
Geijn, Householder QR factorization with randomization for column pivoting
(HQRRP), SIAM J. Sci. Comput., 39 (2017), pp. C96–C115.

https://www.math.purdue.edu/xiaj

124

[79] P. G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral
equations in two dimensions, J. Comput. Phys., 205 (2005), pp. 1–23.

[80] P. G. Martinsson and V. Rokhlin, An Accelerated Kernel-Independent Fast
Multipole Method in One Dimension, SIAM J. Sci. Comput., 29 (2007), pp. 1160–
1178.

[81] J. Mason and D. Handscomb, Chebyshev polynomials, Chapman &
Hall/CRC, 2003.

[82] V. Minden, K. L. Ho, A. Damle, and L. Ying, A recursive skeletonization
factorization based on strong admissibility, Multiscale Model. Simul., 15 (2017),
pp. 768–796.

[83] L. Miranian and M. Gu, Strong rank-revealing LU factorizations, Linear Al-
gebra Appl., 367 (2003), pp. 1–16.

[84] R. Movassagh and L. P. Kadanoff, Eigenpairs of Toeplitz and disordered
Toeplitz matrices with a Fisher-Hartwig symbol, J. Stat Phys., 167 (2017), pp.
959–996.

[85] E. Napoli, E. Polizzi, and Y. Saad, Efficient estimation of eigenvalue
counts in an interval, Numer. Linear Algebra Appl., 23 (2016), pp. 674–692.

[86] M. O’Neil and V. Rokhlin, A new class of analysis-based fast transforms,
technical report, 2007.

[87] V. Y. Pan, D. Ivolgin, B. Murphy, R. E. Rosholt, Y. Tang, and X.
Yan, Additive preconditioning for matrix computations, Linear Algebra Appl.,
432 (2010), pp. 1070–1089.

[88] V. Y. Pan and G. Qian, Randomized preprocessing of homogeneous linear
systems of equations, Linear Algebra Appl., 432 (2010), pp. 3272–3318.

[89] C. S. Peskin, The immersed boundary method, Acta Numerica, 11 (2002), pp.
479–517.

[90] E. Polizzi, A density matrix-based algorithm for solving eigenvalue problems,
Phys. Rev. B, 79 (2009), pp. 115112.

[91] E. Polizzi and A. H. Sameh, A parallel hybrid banded system solver: the
SPIKE algorithm, Parallel Comput., 32 (2006), pp. 177–194.

[92] Y. Saad, GMRES: A generalized minimal residual algorithm for solving non-
symmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.

[93] Y. Saad, Numerical methods for large eigenvalue problems, Second Edition,
SIAM, 2011.

[94] T. Sakurai, Y. Futamura, and H. Tadano, Efficient parameter estima-
tion and implementation of a contour integral-based eigensolver, J. Algorithms
Comput. Technol., 7 (2013), pp. 249–270.

[95] T. Sakurai and H. Sugiura, A projection method for generalized eigenvalue
problems using numerical integration, J. Comput. Appl. Math., 159 (2003), pp.
119–128.

125

[96] T. Sakurai and H. Tadano, CIRR: a Rayleigh-Ritz type method with contour
integral for generalized eigenvalue problems, Hokkaido Math. J., 36 (2007), pp.
745–757.

[97] T. Shi, M. Belkin, and B. Yu, Data spectroscopy: Eigenspaces of convolution
operators and clustering, Ann. Statist., 37 (2009), pp. 3960–3984.

[98] E. M. Stein and R. Shakarchi, Complex analysis. Princeton Lectures in
Analysis, II, Princeton University Press, NJ, 2003.

[99] X. Sun and N. P. Pitsianis, A matrix version of the fast multipole method,
SIAM Rev., 43 (2001), pp. 289–300.

[100] P. Tang, J. Kestyn, and E. Polizzi, A new highly parallel non-hermitian
eigensolver, in Proceedings of the High Performance Computing Symposium,
HPC ’14, San Diego, CA, USA, 2014, Society for Computer Simulation Interna-
tional, pp. 1:1–1:9.

[101] P. Tang and E. Polizzi, FEAST as a subspace iteration eigensolver acceler-
ated be approximate spectral projection, SIAM J. Matrix Anal. Appl., 35 (2014),
pp. 354–390.

[102] J. D. Tebbens and M. Tůma, Preconditioner updates for solving sequences
of linear systems in matrix-free environment, Numer. Linear Algebra Appl., 17
(2010), pp. 997–1019.

[103] L. N. Trefethen and J. A. C. Weideman, The exponentially convergent
trapezoidal rule, SIAM Rev., 56 (2014), pp. 385–458.

[104] M. Van Barel, Designing rational filter functions for solving eigenvalue prob-
lems by contour integration, Linear Algebra Appl., 502 (2016), pp. 346–365.

[105] M. Van Barel, R. Vandebril, P. Van Dooren, and K. Frederix,
Implicit double shift QR-algorithm for companion matrices, Numer. Math., 116
(2010), pp. 177–212.

[106] E. Vecharynski and J. Langou, Any admissible cycle-convergence behavior
is possible for restarted GMRES at its initial cycles, Num. Lin. Algebr. Appl.,
18 (2011), pp. 499–511.

[107] J. Vogel, J. Xia, S. Cauley, and V. Balakrishnan, Superfast divide-
and-conquer method and perturbation analysis for structured eigenvalue solu-
tions, SIAM J. Sci. Comput., 38 (2016), pp. A1358–A1382.

[108] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, A fast random-
ized algorithm for approximation of matrices, Appl. Comput. Harmon. Anal., 25
(2008), pp. 335–366.

[109] G. Wu, W. Xu, Y. Zhang, and Y. Wei, A preconditioned conjugate gradient
algorithm for GeneRank with application to microarray data mining, Data Min.
Knowl. Disc., 26 (2013), pp. 27–56.

[110] Y. Xi and Y. Saad, Computing partial spectra with least-squares rational
filters, SIAM J. Sci. Comput., to appear, (2016).

126

[111] Y. Xi and J. Xia, On the stability of some hierarchical rank structured matrix
algorithms, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1279–1303.

[112] Y. Xi, J. Xia, S. Cauley, and V. Balakrishnan, Superfast and stable
structured solvers for Toeplitz least squares via randomized sampling, SIAM J.
Matrix Anal. Appl., 35 (2014), pp. 44–72.

[113] Y. Xi, J. Xia, and R. H. Chan, A fast randomized eigensolver with structured
LDL factorization update, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 974–996.

[114] J. Xia, On the complexity of some hierarchical structured matrix algorithms,
SIAM J. Matrix Anal. Appl., 33 (2012), pp. 388–410.

[115] J. Xia, Efficient structured multifrontal factorization for general large sparse
matrices, SIAM J. Sci. Comput., 35 (2013), pp. A832–A860.

[116] J. Xia, Randomized sparse direct solvers, SIAM J. Matrix Anal. Appl., 34
(2013), pp. 197–227.

[117] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for
hierarchically semiseparable matrices, Numer. Linear Algebra Appl., 17 (2010),
pp. 953–976.

[118] J. Xia and M. Gu, Robust approximate Cholesky factorization of rank-
structured symmetric positive definite matrices, SIAM J. Matrix Anal. Appl.,
31 (2010), pp. 2899–2920.

[119] J. Xia, Z. Li, and X. Ye, Effective matrix-free preconditioning for the aug-
mented immersed interface method, J. Comput. Phys., 303 (2015), pp. 295–312.

[120] J. Xia, Y. Xi, and M. Gu, A superfast structured solver for Toeplitz linear
systems via randomized sampling, SIAM J. Matrix Anal. Appl., 33 (2012), pp.
837–858.

[121] J. Xiao, M. Gu, and J. Langou, Fast Parallel Randomized QR with Column
Pivoting Algorithms for Reliable Low-Rank Matrix Approximations, 2017 IEEE
24th International Conference on High Performance Computing (HiPC), 2017,
pp. 233–242.

[122] X. Xing and E. Chow, An efficient method for block low-rank approximations
for kernel matrix systems, preprint, 2018.

[123] X. Ye, J. Xia, Raymond H. Chan, S. Cauley, and V. Balakrishnan,
A fast contour-integral eigensolver for non-Hermitian matrices, SIAM J. Matrix
Anal. Appl., 38 (2017), pp. 1268–1297.

[124] X. Ye, J. Xia, and L. Ying, Analytical compression via proxy point selection
and contour integration, to be submitted, 2018.

[125] G. Yin, R. H. Chan, and M. Yeung, A FEAST algorithm with oblique pro-
jection for generalized eigenvalue problems, 2015, arXiv:1404.1768v4 [math.NA].

[126] L. Ying, A kernel independent fast multipole algorithm for radial basis func-
tions, J. Comput. Phys., 213 (2006), pp. 451–457.

127

[127] L. Ying, G. Biros, and D. Zorin, A kernel-independent adaptive fast mul-
tipole algorithm in two and three dimensions, J. Comput. Phys., 196 (2004), pp.
591–626.

[128] W.-J. Ying and C. S. Henriquez, A kernel-free boundary integral method
for elliptic boundary value problems, J. Comput. Phy., 227 (2007), pp. 1046–1074.

APPENDIX

128

A. COPYRIGHT INFORMATION

For the content used in chapter 3, attached in the next page is a photocopy of the

permission letter from SIAM for using the paper [123] in this dissertation. Regarding

the paper [119] used in chapter 4, the right for Personal Use is granted by the Journal

Publishing Agreement of Elsevier as shown in fig. A.1, a complete version of which can

be found at https://www.elsevier.com/__data/assets/pdf_file/0004/727600/

JPA_V22_2017_Clean-copy.pdf.

(a) Author Rights

(b) Definition of Personal Use

Figure A.1. Selected parts from the Journal Publishing Agreement

https://www.elsevier.com/__data/assets/pdf_file/0004/727600

129

VITA

130

VITA

Xin Ye received his dual bachelor’s degrees in Economics and Applied Mathematics

from Wuhan University, Wuhan, China in 2013, then he started his Ph.D. study in

Applied Mathematics at Purdue University, West Lafayette, IN, USA, since the fall

of 2014 he has been working with Prof. Jianlin Xia on various research projects in

numerical analysis and numerical linear algebra.

	Analytical Methods for Structured Matrix Computations
	Recommended Citation

