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Abstract A hybrid numerical flux scheme is proposed by adapting the carbuncle-
free modified Harten-Lax-van Leer contact (HLLCM) scheme to smoothly revert to the
Harten-Lax-van Leer contact (HLLC) scheme in regions of shear. This hybrid scheme, re-
ferred to as the HLLCT scheme, employs a novel, velocity-based shear sensor. In contrast
to the non-local pressure-based shock sensors often used in carbuncle cures, the proposed
shear sensor can be computed in a localized manner meaning that the HLLCT scheme
can be easily introduced into existing codes without having to implement additional data
structures. Through numerical experiments, it is shown that the HLLCT scheme is able
to resolve shear layers accurately without succumbing to the shock instability.
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1 Introduction

Simulation of high-speed, compressible flows requires proper design of inviscid numerical
flux functions to capture shock waves, contact discontinuities, and shear layers in a stable and
accurate manner. Grounded in the seminal work of Godunov[1], approximate Riemann solvers
represent the state-of-the-art technique in designing flux functions whereby the inviscid fluxes
are obtained by assuming an approximate solution structure for the Riemann problem across
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a cell interface. One of the simplest and most robust flux schemes is the Harten-Lax-van Leer
(HLL) scheme[2] in which an incomplete two-wave solution structure is assumed. However, this
incompleteness introduces non-physical dissipation of density and tangential momenta which
precludes exact capturing of contact discontinuities and shear waves, resulting in highly diffused
material interfaces and shear layers. Hence, it is unsuitable for use in many practical flow
scenarios such as boundary layer flows[3]. Toro et al.[4] proposed a modification to the HLL
scheme known as the HLL contact (HLLC) scheme[4], which allowed exact capturing of the
contact discontinuities and shear waves. The complete three-wave HLLC scheme has become
one of the most widely used numerical flux schemes owing to its simplicity and accuracy.
However, being a contact-/shear-preserving flux scheme, the HLLC scheme invariably succumbs
to a multi-dimensional shock instability problem.

Quirk[5] presented the first systematic analysis for failings of approximate Riemann solvers,
including the various manifestations of the shock instability problem such as carbuncle phenom-
ena, kinked Mach stems, and odd-even decoupling. He hypothesized that strong, grid-aligned
shocks provide a ‘systematic perturbation’ to the pressure field and shock-unstable flux schemes
feed the pressure perturbations into the density field causing density perturbations to grow
unbounded culminating in the instability. Pandolfi and D’Ambrosio[6], through odd-even de-
coupling analyses, confirmed that flux schemes which account for contact surfaces explicitly are
susceptible to shock instability. Xu and Li[7] mentioned that the shear-preserving ability of flux
schemes provides insufficient dissipation along the shock front which leads to shock instability.

The conventional approach to overcoming the shock instability problem is to introduce
additional dissipation in the vicinity of the shocks, usually by switching to a complementary
shock-stable scheme. There have been several such attempts to hybridize the HLLC scheme in
the recent years[8–12]. With the exception of the work of Huang et al.[11] who used the rotated
Riemann solver formulation[13] with a localized velocity-based sensor, the remaining studies
relied on some form of pressure-based shock sensor computed in a non-localized manner about
the concerned cell interface. Among these studies, the work of Shen et al.[10] is unique and
particularly illuminating. They designed a modified HLLC scheme called HLLCM (where ‘M’
refers to the modification) based on the Rankine-Hugoniot jump conditions which preserves
contact waves but smears shear waves. In this respect, one may view it as a ‘two-and-a-half-
wave’ Riemann solver with shear velocity dissipation across the contact wave. Using matrix
stability analysis[14], they showed that the HLLCM scheme is shock-stable. Then, they proposed
a hybrid HLLC-HLLCM scheme by using a pressure-based shock sensor as mentioned before
and demonstrated the effectiveness of the hybrid scheme for a variety of test cases.

Unlike the more common HLLC-HLL hybrids, the HLLC-HLLCM hybrid scheme uses a
contact-preserving complementary scheme. This presents a unique opportunity to explore a
radically new idea: to deactivate dissipation across shear layers rather than injecting additional
dissipation along shock fronts. In other words, the HLLCM scheme is viewed as the base scheme
which is applied everywhere except near shear layers where the HLLC scheme is used to resolve
the shear layers accurately. The main objective of the present work is to explore the viability
of this approach. In this approach, the role of the sensor now becomes one of determining
regions of shear flow. To this end, a velocity-based sensor is introduced in this paper. This
sensor can be computed in a localized manner as opposed to the non-local shock sensors used
in most of the carbuncle cures reported in past studies[6,8–10,12,15–18]. The paper is organized as
follows. The governing equations and discretization schemes are introduced in Section 2. The
derivations of the HLL, HLLC, and HLLCM approximate Riemann solvers are presented in
Section 3 along with suitable wave-speed estimations. The new localized, velocity-based sensor
is proposed and discussed in Section 4. The results of a variety of numerical experiments are
presented in Section 5. Finally, the concluding remarks are provided in Section 6.
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2 Preliminaries

2.1 Governing equations
The equations governing the dynamics of inviscid gas flow are given as

∂tQ +∇ · F (Q) = 0, (1)

where the state vector Q and flux vector F (Q) are defined by

Q =




ρ
ρu
ρE


 , F (Q) =




ρu
ρuu + pI
ρEu + pu


 , (2)

in which ρ is the gas density, u is the gas velocity, p is the gas pressure, and E is the specific
total energy. The total energy comprises of the internal energy e and the kinetic energy k,
which can be related to the other state variables through the ideal gas equation of state as
follows:

E = e + k =
p

(γ − 1)ρ
+

u · u
2

, (3)

where γ is the ratio of specific heat capacities taken to be 1.4 in the present study.
2.2 Spatial and temporal discretization

In finite volume methodology (FVM), the domain is discretized into non-overlapping cells,
and the solution is obtained in terms of the cell averages. The cell average of a function φ(x)
over the ith cell Ωi is given by

φi ≡ 1
|Ωi|

∫∫∫

Ωi

φ(x)dV, (4)

where |Ωi| refers to the volume of the cell. Applying the averaging operation to Eq. (1) and
transforming the volume integral of the divergence term into a surface integral using the Gauss
theorem, as is customary in FVM, yields an ordinary differential equation (ODE) for Qi as
follows:

1
|Ωi|

∫∫∫

Ωi

(∂tQ +∇ · F (Q))dV = 0 ⇒ dQi

dt
= − 1

|Ωi|
∫∫
©

∂Ωi

F (Q) · dS, (5)

where ∂Ωi refers to the boundary of cell Ωi. For a polyhedral cell, the surface integral on the
right-hand side of Eq. (5) can be approximated as a summation over each of the planar faces
that make up ∂Ωi as follows:

∫∫
©

∂Ωi

F (Q) · dS ≈
∑

f∈∂Ωi

F̂ (Qf,L,Qf,R,nf)Sf . (6)

Note that the physical flux F has been replaced by a numerical flux F̂ in the above approx-
imation. The numerical flux is evaluated at the face centroids using the left- and right-based
interpolated state variables Qf,L and Qf,R. The left (L) and right (R) sides of a face are defined
with respect to the face unit normal vectors nf which point out of Ωi as shown in Fig. 1. Lastly,
Sf is the face surface area.

In the present study, we restrict to the first-order upwind scheme for spatial interpolation
since higher order schemes tend to be less susceptible to shock instability problem[6]. As for
the temporal discretization, the explicit third-order total-variation-diminishing (TVD) Runge-
Kutta scheme[19] was used for transient problems while an implicit matrix-free lower-upper
symmetric Gauss-Seidel (LU-SGS) algorithm[20] was used for steady-state problems. With the
spatial and temporal schemes defined, we turn our attention to the numerical flux function itself
which is the main focus of this paper.
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R

nf

L

Ωi

Fig. 1 FVM applied to cell Ωi, where the black arrows represent the face unit normal vectors nf and
the dotted black line is the cell boundary ∂Ωi

3 Review of HLLC and HLLCM schemes

In the first-order upwind scheme, the variables are assumed to remain constant within each
cell, i.e., no spatial variation within the cell. Hence, a discontinuity arises at each cell interface
f . Godunov[1] put forth the idea of treating each discontinuity as a Riemann problem and
solving this Riemann problem exactly to derive the numerical flux F̂ . Godunov’s method is
expensive for gas dynamics due to the iterative procedure involved in computing the exact
solution structures which may consist of rarefaction fans, contact discontinuities, and shock
waves, depending on the initial condition. Moreover, Godunov’s method itself is not immune to
the shock instability problem. One way to improve the efficiency is to replace the exact solution
structure with an approximate one for which it is simpler to compute the intermediate states
and flux. These are known as approximate Riemann solvers.

The schematic of a general 3-wave approximate Riemann solver is shown in Fig. 2. The
approximate solution structure consists of three waves traveling at speeds sL < s∗ < sR in
the direction normal to the face and two intermediate states QL∗ and QR∗ . For a clearer
understanding of how each flux component is treated by the approximate Riemann solver, the
state vector is written in the following form whereby the momentum equation is decomposed
into the normal and tangential directions:

Q = ρ(1 u v E)T. (7)

sL

F
L*

F
L
=F(Q

L
) F

R
=F(Q

R
)

F
R*

Q
L*

Q
L

Q
R

nf

Q
R*

sR
s*

Fig. 2 Solution structure for a general 3-wave approximate Riemann solver

From hereon, the variables u ≡ u · nf and v = u − unf refer to the normal and tangential
velocities, respectively, with respect to the face normal direction.

The approximate solution is required to obey the following Rankine-Hugoniot (RH) jump
conditions:

FL∗ = F (QL) + sL(QL∗ −QL), (8a)
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FR∗ = F (QR) + sR(QR∗ −QR), (8b)

FR∗ − FL∗ = s∗(QR∗ −QL∗). (8c)

Note that the intermediate fluxes FL∗ and FR∗ need not necessarily be equal to F (QL∗)
and F (QR∗), respectively. Denoting FL = F (QL) and FR = F (QR) for conciseness, the final
numerical flux F̂ is chosen as follows:

F̂ (QL,QR,nf) =





FL, sL > 0,

FL∗ , sL < 0 < s∗,

FR∗ , s∗ < 0 < sR,

FR, sR 6 0.

(9)

The HLLC and HLLCM schemes can be derived by assuming different forms for the inter-
mediate states QL∗ and QR∗ . These assumptions are summarized in Fig. 3.

sL

u
R

ρ
R

p
R

v
R

ρ
L*

v
L*

(a) HLLC

sR
s*

(u*= s*, p*)

nf

ρ
R*

v
R*

u
L

ρ
L

p
L

v
L

sL

u
R

ρ
R

p
R

v
R

ρ
L*

(b) HLLCM

sR
s*

(u*= s*, p*, v*)

nf

ρ
R*

u
L

ρ
L

p
L

v
L

Fig. 3 Assumptions for the intermediate states of the HLLC and HLLCM schemes

The intermediate state for the HLLC scheme[4] is given by

QHLLC
K∗ =

αK

sK − s∗




1
s∗
vK

EK + (s∗ − uK)
(
s∗ +

pK

αK

)


 , (10)

where αK ≡ ρK(sK−uK). Similarly, the intermediate state for the HLLCM scheme[10] is given
as follows:

QHLLCM
K∗ =

αK

sK − s∗

·




1
s∗

αRvR − αLvL

αR − αL

EK + (s∗ − uK)
(
s∗ +

pK

αK

)
+

1
2

(αR ‖vR‖2 − αL ‖vL‖2
αR − αL

− ‖vK‖2
)




. (11)

The intermediate wave-speed s∗ can be obtained through the following closed form expres-
sion:

s∗ =
pL − pR + αRuR − αLuL

αR − αL
. (12)
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Comparing Eqs. (10) and (11), it can be observed that the HLLC and HLLCM schemes
behave identically when vL = vR, i.e., when the flow is locally one-dimensional. The two
schemes differ in their treatment of the intermediate tangential velocity. The HLLCM introduces
artificial dissipation to the intermediate tangential velocity while the HLLC scheme does not.
This shear viscosity improves shock stability, but it also results in highly diffused shear layers.
3.1 Wave-speeds

In order to complete the definition of the flux schemes, the wave-speeds sL and sR are
required. One possible choice proposed by Davis[21] is to compute the wave-speeds based on
the minimum and maximum eigenvalues of the left and right states as follows:

sL = min(uL − cL, uR − cR), sR = max(uL + cL, uR + cR), (13)

where c =
√

γp/ρ is the acoustic speed. Another possible choice recommended by Einfeldt[22]

is to use the eigenvalues of the Roe-averaged state as follows:

sL = min(uL − cL, û− ĉ), sR = max(uR + cR, û + ĉ), (14)

where quantities with overhats (ˆ) refer to the respective Roe-averages. Batten et al.[23] rec-
ommend Eq. (14) for wave-speed estimation since it is less diffusive than Eq. (13) and it returns
the exact shock velocity in the case of an isolated shock. Recently, Liu et al.[24] showed that the
choice of wave-speed plays a significant role in the stability of the flux scheme and demonstrated
that Eq. (13) provides better shock stability compared with Eq. (14). Therefore, Eq. (13) will
be used in this study.

4 Proposed scheme

4.1 Motivation
In the hybrid HLLC-HLLCM scheme proposed by Shen et al.[10], the intermediate states are

defined as
QHybrid

K∗ = wQHLLC
K∗ + (1− w)QHLLCM

K∗ , (15)

where w is a pressure-based switching function defined as follows:

w = min
n∈NBf

(wf , wn), wf =





1,
min(pL, pR)
|pR − pL|+ ε

> 1,

0, otherwise.

(16)

The sensor w must be evaluated in a non-local manner, considering not only the face f but
also all its neighbors. For a structured 2D mesh, the set of neighboring faces to face (i+1/2, j) is
shown in Fig. 4. Such non-local operations are unavoidable for determining regions near shocks,
but they contribute to additional implementation costs. Therefore, it would be convenient to
have a localized sensor instead. This provided the motivation to develop a localized ‘shear
sensor’. Unlike the original hybrid HLLC-HLLCM scheme in which dissipation is introduced
in regions near shocks by switching from the HLLC scheme to the HLLCM scheme, the shear
sensor may be used to eliminate dissipation in regions close to shear layers by switching from
the HLLCM scheme to the HLLC scheme. The construction of such a shear sensor will be
presented next.
4.2 A localized velocity-based shear sensor

The objective is to design a sensor that detects shear layers by using state values from the
immediate neighboring cells of a face. The distinguishing characteristic of a genuine shear layer
is that the streamwise velocity changes more rapidly compared with the cross-stream velocity
across a shear layer. With this idea in mind, a localized shear sensor Θ could take the form

Θ =
|∆u|
‖∆u‖ , (17)
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Ωi, j+1

Ωi+1, j

Ωi, j−1 Ωi+1, j−1

Ωi, j

Ωi+1, j+1

(i, j+  )1
2

(i, j−  )1
2

(i+1, j−  )1
2

(i+1, j+  )
1
2

(i+  , j)
1
2

Fig. 4 Neighboring faces (dotted lines) used in the computation of the pressure-based shock sensor
at a given face (bold line)

where ‘∆’ is the difference operator across the face, i.e., ∆φ ≡ φR−φL. When a face is oriented
parallel to a grid-aligned shear layer exactly as shown in Fig. 5(a), uL = uR = 0. Therefore, the
numerator of Θ vanishes and Θ = 0. Even when the shear layer is not perfectly grid-aligned,
as long as the face is oriented approximately parallel to a shear layer as shown in Fig. 5(b), the
tangential velocity changes much faster than the normal velocity. Hence, it is expected that
|∆u| ¿ ‖∆v‖ < ‖∆u‖ across the face. Under these conditions, the numerator of Θ is much
smaller than its denominator and, as a result, Θ is very small. To minimize the dissipation
across genuine shear layers, the switching parameter w was taken to be

w = 1−
( τ |∆u|
‖∆u‖+ 10−12

)2

, (18)

where the constant τ was set to 0.5 based on numerical experiments. A small number 10−12

was added to the denominator to avoid division by zero.

Shear layer

(a) (b)

uL=uR=0

|∆u|    |∆v|

Shear 
laye

r

<<

Fig. 5 Behavior of normal and tangential velocity differences across (a) grid-aligned and (b) non-
grid-aligned shear waves

Equation (18) performed well for several benchmark problems such as hypersonic flow past
a blunt body[25] and double Mach reflection[26] problems commonly used to assess the shock
stability of flux schemes. However, it was still inadequate in suppressing shock instability in
problems where the instability manifested as odd-even decoupling, e.g., Quirk’s test[5]. To
overcome this deficiency, w was modified slightly by introducing a small reference velocity εu

as follows:

w = 1−
( τ |∆u|+ εu

‖∆u‖+ εu + 10−12

)2

. (19)

We require εu to increase faster than the velocity differences that may arise from numerical
perturbations along a shock and yet remain several orders of magnitude smaller than the velocity
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difference across a genuine shear layer. Furthermore, we also require εu to vanish at grid-aligned
shear layers to preserve them exactly. Based on these considerations, εu was computed as
follows:

εu = min(10 |uL + uR − 2s∗| , 10−4(‖uL‖+ ‖uR‖)). (20)

The rationale behind this modification is as follows. Consider a face oriented parallel to the
shock propagation direction. In the absence of any perturbations, all the properties remain the
same on both sides of the face. Since ∆v = 0, the value of w is irrelevant. However, numerical
perturbations do arise due to various reasons, and it has been found that the shock instability is
linked to perturbations in the shock-normal momentum[27] which is the tangential momentum
component with respect to the face. Hence, suppose that a slight perturbation is introduced
only in the tangential velocity after the flow passes through the shock as shown in Fig. 6(a).
Since pressure is computed based on the difference between the total and kinetic energies (see
Eq. (3)), a pressure difference occurs between the two cells with a lower pressure in the cell with
larger ‖u‖ and a higher pressure in the cell with smaller ‖u‖. With uL = uR = 0 and w = 1
initially, the HLLC scheme is used. The HLLC scheme responds to the pressure difference (but
not the tangential velocity difference which caused it) by inducing a mass flux across the face.
However, the transfer of mass also results in the transfer of tangential momentum (ρvu)∆p

from the high-pressure cell to the low-pressure cell, thereby increasing the tangential velocity
difference. As a result, the pressure perturbation continues to persist, and the process repeats.

The imbalance of pressure on the top and bottom faces of the cell changes the normal
momentum in the cells, causing an increase in εu. As the above-described cycle continues,
εu continues to grow. Recall that εu was designed to increase faster than ‖∆u‖ that arises
from small numerical perturbations. As such, |∆u| , ‖∆u‖ ¿ εu, and w ≈ 0. Consequently, a
tangential momentum flux (ρuv)∆u is activated in the direction opposite to the pressure induced
flux (ρuv)∆p as shown in Fig. 6(b). This tangential momentum flux equalizes the tangential
velocity difference between the cells bringing ∆v to approximately zero which, in turn, dampens
the pressure perturbations and thereby ends the cycle as depicted in Fig. 6(c). In this manner,
the proposed sensor alleviates the shock instability problem.

In contrast to the pressure-based switch, the localized velocity-based shear sensor provides a
continuous blending of the HLLC and HLLCM schemes. This blended scheme will be referred
to as the HLLCT scheme whereby ‘T’ indicates the modifications pertaining to the tangential
momentum.

Shock

(ρvu)∆p

p
0
−∆p

p
0
+∆p

(a) (b) (c)

uL=uR=0

||∆v||≠0⇒|∆p|≠0 ||∆v||=0⇒|∆p|=0

|∆u|=0

Shock Shock

(ρvu)∆p (ρuv)∆v

p
0
−∆p p

0

p
0

p
0
+∆p

|∆u|   ||∆u||< <<εu

Fig. 6 Restoring mechanism of the proposed sensor in regions susceptible to shock instability
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4.3 Matrix stability analysis
Matrix stability analysis is a linear analysis technique introduced by Dumbser et al.[14] to

characterize the shock stability of a numerical flux scheme. The analyses were performed for the
HLLC, HLLCM, and HLLCT schemes, using wave-speed estimates from Eqs. (13) and (14). For
the wave-speed estimates from Eq. (14), the fluxes were linearized about a grid-aligned M = 7
shock initialized on a dimensional 11× 11 uniform Cartesian grid as follows:

(ρ, ux, uy, p) =





(
1, 1, 0,

1
γM2

)
, i < 7,

( (γ + 1)M2

(γ − 1)M2 + 2
,
(γ − 1)M2 + 2

(γ + 1)M2
, 0,

2γM2 − (γ − 1)
(γ + 1)γM2

)
, i > 7.

(21)

On the other hand, as the wave-speed estimates from Eq. (13) do not admit an isolated grid-
aligned shock, the fluxes were linearized about the one-dimensional numerical shock solution
instead, for a truly meaningful analysis. The one-dimensional problem was initialized with
an M = 7 shock using Eq. (21) on a uniform 11-cell grid. Ghost cells were used to prescribe
the boundary conditions. The ghost cell on the left was fixed at the supersonic state while
the pressure and density were updated at the ghost cell on the right using the Dirichlet and
Neumann conditions, respectively. The horizontal velocity at the right ghost cell was updated
to enforce a mass flow rate of unity. The problem was computed using the HLLC scheme until
the density residual dropped below 10−15. Then, the one-dimensional solution was mapped to
the two-dimensional 11× 11 uniform Cartesian grid for the stability analysis. Since the HLLC,
HLLCM, and HLLCT schemes are identical in one-dimension, the same numerical shock solution
was used for all three schemes. The conserved variables Q were perturbed by an amplitude of
±10−6 to approximate the flux gradients. The eigenvalues λ of the flux Jacobian matrices are
plotted in Fig. 7. A flux scheme is deemed unstable if max(Re(λ)) > 0, i.e., if the maximum
real part of any of the eigenvalues is positive.

It can be noticed from the results that all three schemes are unstable when using the wave-
speed estimates from Eq. (14) as evident from the positive values of max(Re(λ)). In comparison,

λ

λ

λ

λ

1

λ

λ

λ

λ

λ

λ

λ

λ

λ λ λ

λ λ λ

Fig. 7 Matrix stability analyses for the HLLC, HLLCM, and HLLCT schemes, using wave-speed
estimates from Eq. (13) (top row) and Eq. (14) (bottom row)
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using wave-speed estimates from Eq. (13) reduces max(Re(λ)) significantly indicating an im-
provement in shock stability. Yet, max(Re(λ)) still remains positive for the HLLC scheme. On
the other hand, with max(Re(λ)) < 0, both the HLLCM and HLLCT schemes are stable when
using wave-speed estimates from Eq. (13).

5 Numerical experiments

In this section, the HLLCT scheme is compared with the HLLC scheme, the hybrid HLLC-
HLLCM scheme with the pressure-based shock sensor (Eq. (27)) and, where shear layers are
concerned, with the HLLCM scheme as well. The comparison is performed only for two-
dimensional test cases since shock instability is multi-dimensional in nature. Moreover, the
behaviors of the HLLC, HLLCM, and HLLCT schemes are identical in one-dimension.
5.1 Shear layers
5.1.1 Contact discontinuity

This problem is a test of a scheme’s ability to preserve a grid-aligned contact discontinuity.
The domain x× y ∈ [0, 1]× [0, 1] was discretized into a uniform 50× 50 grid. The problem was
initialized as follows:

(p, ux) = (1, 0), (ρ, uy) =

{
(10, 1), x < 0.5,

(1,−1), x > 0.5,
(22)

where ux and uy refer to the horizontal and vertical velocity components, respectively. The
Neumann boundary conditions were applied on all sides. The simulations were run for 100
iterations using the implicit solver. ρ and uy profiles along the horizontal line y = 0.5 are
shown in Fig. 8. It can be easily shown from Eqs. (19) and (20) that the shear sensor w = 1
everywhere for this problem. Therefore, the HLLCT scheme reverts to the HLLC scheme and
preserves the isolated contact discontinuity exactly. The HLLCM scheme, on the other hand,
diffuses it. Due to the absence of any pressure difference, the HLLC-HLLCM scheme performed
identically to the HLLC scheme as well and, hence, it is not included in Fig. 8.

ρ

Fig. 8 Density profile for the stationary contact discontinuity problem

5.1.2 Supersonic jet
This problem tests a scheme’s ability in capturing non-grid-aligned shear layers. The domain

x× y ∈ [0, 1]× [0, 1] was discretized into a uniform 200× 200 grid. The problem was initialized
as follows:

(ρ, ux, uy, p) =

{
(0.25, 4, 0, 0.25), y > 0.5,

(1.0, 1.4, 0, 0.5), y 6 0.5.
(23)
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The left boundary was fixed at the initial values while the Neumann boundary condition was
applied to the remaining boundaries. The simulations were run for 1 500 iterations which was
sufficient for the density residuals to drop to 10−12. The final results are plotted in Fig. 9 with
sixteen equispaced velocity magnitude contours from ‖u‖ = 2.45 to ‖u‖ = 3.95. The minimum
value of the shear sensor w (Eq. (19)) over the faces of each cell is plotted in Fig. 9(c) next to
the velocity magnitude contours for the HLLCT scheme.
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Fig. 9 Velocity magnitude contours for the supersonic jet problem (color online)

It is clear that the HLLCT scheme performs on par with the HLLC scheme in capturing the
shear layer while the HLLCM scheme diffuses it. It is immediately obvious that the velocity-
based shear sensor identifies the regions of shear accurately and becomes approximately equal
to one. ρ and ‖u‖ profiles sampled along the vertical line x = 1 are plotted in Fig. 10 for a
more quantitative comparison. This reveals that the performance of the HLLCT scheme is
indistinguishable from that of the HLLC scheme. It is interesting to note that the performance
of the HLLCT scheme is not affected adversely in the regions where w ≈ 0. This is most likely
due to the slow variations in the tangential velocities in those regions.
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Fig. 10 Density and velocity magnitude profiles for the supersonic jet problem

5.1.3 M = 0.2 laminar flow past flat plate
This problem is a more practical case which tests the ability of the scheme in resolving the

viscous boundary layer in an M = 0.2 laminar flow past a flat plate. The problem was computed
on the domain [−0.060 96, 0.304 8]× [0, 0.03] discretized into the non-uniform 64×64 grid shown
in Fig. 11. The grid has been refined in the vertical direction close to the wall to include
approximately 30 cells within the boundary layer region. A stagnation pressure of p0 = 105 Pa
and stagnation temperature of T0 = 300K was specified at the inlet boundary while a static
pressure of p = 97 250 Pa was specified at the outlet boundary. The flat plate was modeled as
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Fig. 11 Grid and boundary conditions for the M = 0.2 laminar flow past the flat plate problem
(color online)

an adiabatic, no-slip wall. The dynamic viscosity was taken to be µ = 1.87×10−5 N·s·m−2, and
the specific heat capacity at constant pressure was taken to be cp = 1 004.5 J·kg−1·K−1. Spatial
discretization was performed using the second-order upwind scheme for the inviscid fluxes and
the second-order central scheme for the viscous fluxes. The problem was computed using the
HLLC, HLLCM, and HLLCT schemes until the density residuals dropped to below 10−6. The
normalized horizontal velocities u/u∞ at the exit plane at x = 0.304 8 m are compared with the
Blasius solution in Fig. 12. It can be seen that, while the HLLCM scheme produces a diffused
boundary layer, the HLLCT scheme resolves the boundary layer as accurately as the HLLC
scheme which matches well with the analytical solution.

8

6

4

2

0 0.2

Blasius solution

HLLC

HLLCM

HLLCT

0.4

u/u
∞

0.6 0.8 1.0

η

Fig. 12 Variation of normalized horizontal velocity u/u∞ with the Blasius parameter η = y
√

xu∞/ν
at the exit plane for the laminar flow past flat plate problem. Note that every fourth point
is plotted for the HLLC and HLLCT schemes for clarity

5.2 Shock instability problems
5.2.1 M = 20 steady shock

This problem involves a two-dimensional steady isolated standing shock. Following the work
of Dumbser et al.[14], the problem was computed on the domain x×y ∈ [0, 1]× [0, 1] discretized
uniformly into a 25× 25 grid. The problem was initialized using Eq. (21) for an M = 20 shock
that is initially located at x = 0.5. Perturbations of the relative order of 10−6 were introduced to
the initial conditions. The left and right boundary conditions were the same as those described
in Subsection 4.3. The top and bottom boundaries were set to be periodic. The problem was
computed using the implicit solver for 10 000 iterations. Fourteen equispaced density contours
from ρ = 1.2 to ρ = 6.4 are plotted in Fig. 13.

The results demonstrate that the HLLCT scheme is able to remain stable for very strong
shocks. Notice that the shock position at x = 0.5 is captured correctly by the HLLCT scheme.
Observing the plot of min(w) in Fig. 13(b), it can be seen that the shear dissipation is the
strongest not at the shock itself but slightly downstream of it around x ≈ 0.65. It is likely that
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Fig. 13 Density contours for the M = 20 steady shock problem (color online)

the numerical perturbations cause the value of εu to become large enough about this location
for the shear dissipation to be activated.
5.2.2 Quirk’s test: odd-even decoupling problem

This classic test proposed by Quirk[5] involves an M = 6 shock propagating along a perturbed
grid. The domain x×y ∈ [0, 800]× [−20, 20] was discretized into a uniform 800×40 mesh. The
horizontal line y = 0 was then perturbed in a sawtooth fashion as follows:

yi =





+ 10−6, i is odd,

− 10−6, i is even.
(24)

The problem was initialized with the shock positioned at x = 5 as follows:

(ρ, ux, uy, p) =

{
(5.268 29, 5.751 74, 0, 41.833 33), x < 5,

(1, 0, 0, 1), x > 5.
(25)

The transient simulation was performed until t = 105 s at which point the shock front
would have propagated to x = 750. The final results are shown in Fig. 14 using twenty-five
equispaced density contours from ρ = 1 to ρ = 5.8. The pressure-based shock sensor (Eq. (16))
and velocity-based shear sensor are plotted below the density contours of the HLLC-HLLCM
and HLLCT schemes, respectively.

While the HLLC scheme breaks down the shock front and produces a prominent carbuncle,
both the HLLC-HLLCM and HLLCT schemes keep it intact. It can be observed from Fig. 14(c)
that shear dissipation is the most active around y = 0 where the grid is perturbed. It is
interesting to note that the region of increased dissipation around y = 0 resembles the shock
instability pattern observed for the HLLC scheme in Fig. 14(a).

The computation was repeated for an M = 20 shock to demonstrate that the choice of
numerical constants in Eq. (20) applies for a wide range of shock strengths. The computation
was performed on the extended domain x× y ∈ [0, 1 500]× [−20, 20] which was discretized into
a uniform 1 500 × 40 mesh. The horizontal line y = 0 was perturbed as before. The problem
was initialized with the shock positioned at x = 5 as follows:

(ρ, ux, uy, p) =

{
(5.925 93, 19.671, 0, 466.5), x < 5,

(1, 0, 0, 1), x > 5.
(26)

The problem was computed until t = 61 s at which point the shock would have propagated
to approximately x = 1 448.5. The final results are shown in Fig. 15 using twenty-six equispaced
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Fig. 14 Density contours for Quirk’s test for M = 6 (color online)

density contours from ρ = 1 to ρ = 6. Once again, the HLLC scheme breaks down the shock
front completely. Interestingly, the HLLC-HLLCM hybrid scheme also becomes susceptible
to the shock instability due to insufficient dissipation behind the shock. It can be seen from
Fig. 15(b) that the pressure-based sensor does not encompass the entire shock. On the other
hand, The HLLCT scheme remains stable and captures the shock front accurately. This test
demonstrates that the choice of the numerical constants used for εu in Eq. (20) is applicable for
a wide range of shock strengths.
5.2.3 Hypersonic flow past blunt body

This problem involves an M∞ = 20 flow past a cylinder. The gridpoints (xi,j , yi,j) were
obtained from the expressions

xi,j =
2xci −

√
4x2

ci − 4(1 + tan2 θj)(c2
i − r2

i )
2(1 + tan2 θj)

, yi,j = −xi,j tan θj , (27)

where θj = 11π
15 (j/J − 0.5), xci = 1.8(I − i)/I, and ri = 1 + 2.4(I − i)/I. The indices i and

j run from 0 to I and 0 to J , respectively. Hence, the grid consists of I × J cells in total. A
10× 200 grid is shown in Fig. 16(a). The problem was computed on a 20× 400 grid to trigger
a prominent carbuncle. The problem was initialized as follows:

(ρ, ux, uy, p) = (1.4, 20, 0, 1). (28)

The initial conditions were applied at the inlet. The reflective boundary condition was
prescribed along the cylinder, and the Neumann boundary conditions were applied at the top
and bottom boundaries. The simulations were run until the density residuals dropped down
to 10−11. The final results are shown in Fig. 16 using fifteen equispaced density contours from
ρ = 1.4 to ρ = 8.4. The pressure-based shock sensor and velocity-based shear sensor are plotted
next to the density contours of the HLLC-HLLCM and HLLCT schemes, respectively.

The HLLC scheme produces a very prominent carbuncle, but the HLLCT scheme is carbuncle-
free similar to the HLLC-HLLCM scheme. It is interesting to note that min(w) remains at
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Fig. 16 Density contours for the M∞ = 20 flow past a cylinder problem (color online)

about 0.75 near the shock for the HLLCT scheme and yet, this is sufficient to suppress the
shock instability in this problem.
5.2.4 Double Mach reflection problem

The double Mach reflection (DMR) problem proposed by Woodward and Colella[26] involves
an M = 10 shock impinging on an inclined ramp to form a system of complex shock reflections.
The DMR problem was solved on a modified computational domain proposed by Vevek et al.[28]

to prevent the formation of numerical artefacts. A coarse mesh of the modified domain is shown
in Fig. 17.

The computational domain consists of a rectangular region x× y ∈ [−1, 3]× [0, 0.6] (shaded
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Ramp

θ °

Fig. 17 Modified computational domain for simulating the DMR problem

region in Fig. 17) that is discretized using uniform Cartesian mesh. Prominent flow features of
the DMR problem are confined to this region. The top side and portion of the bottom side of
the rectangular region are rotated by 30◦ to form the extensions above and below, respectively.
The ramp surface extends from the origin (small circle in Fig. 17) to the right along the bottom
side of the rectangular region. The advantage of this setup is that the oblique shock oriented
at 30◦ to the horizontal ramp lies normal to the boundaries created by the extensions which
allows one to use simple Neumann boundary conditions to track the moving shock exactly.
The reflective boundary conditions are applied along the ramp. The exact pre- and post-shock
conditions

{
(ρ, ux, uy, p)pre = (1.4, 0, 0, 1),

(ρ, ux, uy, p)post = (8,−8.25 cos 30◦, 8.25 sin 30◦, 116.5),
(29)

were prescribed at the right and left boundaries, respectively. The shock was initially positioned
at x = −0.9 and allowed to propagate for t = 0.08 s at which time it would approximately
impinge on the ramp. Next, the region to the left shock is re-initialized with the exact post-
shock conditions given above to eliminate the numerical noise generated as the shock is smeared
on the grid. Then, the simulation is continued for another 0.19 s until t = 0.27 s. The final
results are plotted in Fig. 18 using forty-three equispaced density contours from ρ = 1.4 to
ρ = 22.4. The pressure-based shock sensor and velocity-based shear sensor are plotted below
the density contours of the HLLC-HLLCM and HLLCT schemes, respectively.

The HLLC scheme produces a kinked Mach stem near x = 2.5. While the HLLC-HLLCM
scheme reduces the extent of the kink, it does not eliminate it completely. On the other hand, the
HLLCT scheme removes the kink entirely. Secondly, it is clear from the plot of the shear sensor
in Fig. 18(c) that the value of w is approximately one near the slip lines. Consequently, the
HLLCT scheme behaves like the HLLC scheme and captures the slip lines with little dissipation.
Comparing Figs. 18(b) and 18(d), it can be seen that the HLLCM scheme has destroyed the
roll-up of the primary slip line near the bottom wall while the HLLCT scheme has improved
the resolution of the slip line significantly.
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Fig. 18 Density contours for the DMR problem (color online)

5.2.5 Forward-facing step problem
This problem involves an M∞ = 3 flow impinging on a forward-facing step[29]. The problem

was solved on the domain [x, y] ∈ [0, 3]× [0, 1] discretized uniformly using cells of width ∆x =
∆y = 1/160. The 0.2-unit high step extends to the right from x = 0.6. The problem was
initialized as follows:

(ρ, ux, uy, p) = (1.4, 3, 0, 1). (30)

The left boundary was set to supersonic inflow using the above initial conditions while the
Neumann boundary condition was applied at the right boundary. All other boundaries were
set to be reflective. The special treatment suggested by Woodward and Colella[26] was applied
at the step corner to minimize the effects of the unphysical ‘boundary layer’. The problem was
computed till t = 3 s, and the final results are plotted in Fig. 19, using the forty-one velocity
magnitude contours from ‖u‖ = 0 to ‖u‖ = 4 to show the slip line emanating from the triple
point clearly. The pressure-based shock sensor and velocity-based shear sensor are plotted below
the velocity magnitude contours of the HLLC-HLLCM and HLLCT schemes, respectively.

The HLLC scheme results in instabilities downstream of the normal shock which are elim-
inated by the other three schemes. While the HLLCM scheme diffuses the slip lines issuing
from the triple point almost completely, both the HLLC-HLLCM and HLLCT schemes are
able to capture them well. Observing the plot of min(w) in Fig. 19(d), it is evident that the
shear sensor identifies the slip lines accurately and attains a value close to unity, thus reducing
the dissipation across the slip lines. For a more quantitative comparison, ρ and ‖u‖ profiles
sampled along the vertical line x = 1.25 are plotted in Fig. 20. The results near the slip lines
are plotted in the insets. Interestingly, the HLLCT scheme performs slightly better than the
HLLC-HLLCM scheme as benchmarked against the HLLC scheme. This is mostly likely be-
cause, unlike the pressure-based shock sensor, the velocity-based shear sensor does not vanish
completely around the shock. Therefore, the HLLCT scheme introduces lesser dissipation than
the HLLC-HLLCM scheme. Nevertheless, this is sufficient in eliminating the shock instability.
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Fig. 19 Velocity magnitude contours for the forward-facing step problem (color online)
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Fig. 20 Density and velocity magnitude profiles for the forward-facing step problem

5.3 Computational efficiency

It has been demonstrated thus far that the HLLCT scheme is able to resolve shear layers well
without succumbing to the shock instability problem. However, it is also important to ensure
that the scheme is computationally efficient. In Table 1, a comparison of the computation time
of the different schemes is provided for the two largest problems considered in this study, namely,
the DMR and forward-facing step problems. The computation time has been normalized with
respect to that of the HLLC scheme. It is clear that the HLLCT scheme remains competitive
with the original HLLC scheme. Though the HLLC-HLLCM scheme takes the longest time
amongst the schemes, it is not far behind the others. This shows that, if implemented properly,
shock sensor computation is not necessarily a demanding operation. Its main drawback lies in
introducing it within existing codes which have been designed to compute fluxes in a localized
manner. In this regard, it is straightforward to incorporate the HLLCT scheme in such codes.
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Table 1 Comparison of normalized computation time

Problem HLLC HLLCM HLLC-HLLCM HLLCT

DMR 1.000 0.964 1.011 1.006
Forward-facing step 1.000 0.949 1.016 0.984

6 Conclusions

In conventional carbuncle cures, the HLLC scheme is coupled with a more diffusive, shock-
stable scheme, and the complementary scheme is applied in the vicinity of shocks. This requires
a suitable shock sensor which needs to be computed in a non-local manner, considering all the
neighboring faces to assure the elimination of the shock instability. The contact-preserving
shock-stable HLLCM scheme proposed by Shen et al.[10] presents a unique opportunity to ex-
plore the viability of a different approach to curing the carbuncle problem. Since the HLLCM
scheme introduces spurious dissipation only across shear layers, it was hypothesized that it
might be sufficient to restrict the action of the HLLC scheme to regions of shear and use the
HLLCM scheme everywhere else. To evaluate this hypothesis, a hybrid HLLC-HLLCM scheme
called the HLLCT scheme was designed. The crucial advantage of the HLLCT scheme comes
from a velocity-based shear sensor which can be computed in a localized manner based on the
left and right states only. Numerical experiments on grid-aligned and non-grid-aligned shear
layers show that the HLLCT scheme is able to capture shear layers with as little dissipation as
the HLLC scheme itself, attesting to the effectiveness of the shear sensor. Interestingly, the use
of the non-shear-preserving HLLCM scheme in regions away from shear layers does not seem to
have an adverse effect on the results. More importantly, the HLLCT scheme is also found to be
free from any shock instabilities for a number of classic test cases involving strong grid-aligned
shocks for which the HLLC scheme fails.
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