80,541 research outputs found

    Requirements for a Research-oriented IC Design System

    Get PDF
    Computer-aided design techniques for integrated circuits grown in an incremental way, responding to various perceived needs, so that today there are a number of useful programs for logic generation, simulation at various levels, test preparation, artwork generation and analysis (including design rule checking), and interactive graphical editing. While the design of many circuits has benefitted from these programs, when industry wants to produce a high-volume part, the design and layout are done manually, followed by digitizing and perhaps some graphic editing before it is converted to pattern generation format, leading to the often heard statement that computer-aided design of integrated circuits doesn't work. If progress is to be made, it seems clear that the entire design process has to be thought through in basic terms, and much more attention must be paid to the way in which computational techniques can complement the designer's abilities. Currently, it is appropriate to try to characterize the design process in abstract terms, so that implementation and technological biases don't cloud the view of a desired system. In this paper, we briefly describe the conversion of algorithms to masks at a very general level, and then describe several projects at MIT which aim to provide contributions to an integrated design system. It is emphasized that no complete system design exists now at MIT, and that we believe that general design considerations must constantly be tested by building (and rebuilding) the various subcomponents, the structure of which is guided by our view of the overall design process

    Developing and applying an integrated modular design methodology within a SME

    Get PDF
    Modularity within a product can bring advantages to the design process by facilitating enhanced design reuse, reduced lead times, decreased cost and higher levels of quality. While the benefits of modularity are becoming increasingly better known, at present it is usually left to the designers themselves to introduce modularity into products. Studies into modularity have shown that byimplementing 'formal' methods, further benefits can be made in terms of time, cost, quality and performance. Current approaches that have been proposed for the formal development of modular design methodologies fail to accurately represent knowledge that is inherently produced during design projects and fail to consider design from the different viewpoints of the development process. This work, built on previous work on modularity and design for reuse, aims to develop an integrated design methodology that will optimise the modules created through the design process and allow for modularity to be 'built-in' to product development from the initial stages. The methodology andassociated tools have been developed to provide an easy-to-use approach to modularity that has support for design rationales and company knowledge that aid in effective design decision making. The methodology, named GeMoCURE, provides an integrated total solution to modular design based on reuse of proven physical and knowledge modules. Its incremental nature allows for the optimalstructure to be maintained as the design progresses. A special focus has been on the application of this approach for Small to Medium Enterprises (SMEs), which are typically challenged by a lack of design human resources and expertise

    Alaska University Transportation Center 2012 Annual Report

    Get PDF

    Servitization and operations management : a service-dominant logic approach

    Get PDF
    Managing organisational performance in sectors such as equipment provision has become increasingly complex as competition has heightened and firms have felt pressure to add value through the provision of services (Baines et al, 2007; Howard and Caldwell, 2011; Neely et al., 2011). This provision is commonly referred to as the servitization of manufacturing (Vandermerwe & Rada, 1988). By extending the traditional offering of equipment to include service activities however, underlying operational delivery systems and processes have become more complex to manage and co-ordinate. No longer are firms simply making and shipping products; they are now engaged in a more complex world of design and delivery (Neely et al., 2011). This study aims to explore servitization from a value perspective through the lens of Service-Dominant (S-D) logic, and to propose its implications for operations management

    Microelectronics Process Engineering at San Jose State University: A Manufacturing-Oriented Interdisciplinary Degree Program

    Get PDF
    San Jose State University\u27s new interdisciplinary curriculum in Microelectronics Process Engineering is described. This baccalaureate program emphasizes hands-on thin-film fabrication experience, manufacturing methods such as statistical process control, and fundamentals of materials science and semiconductor device physics. Each course of the core laboratory sequence integrates fabrication knowledge with process engineering and manufacturing methods. The curriculum development process relies on clearly defined and detailed program and course learning objectives. We also briefly discuss our strategy of making process engineering experiences accessible for all engineering students through both Lab Module and Statistics Module series

    Two- and Three-dimensional High Performance, Patterned Overlay Multi-chip Module Technology

    Get PDF
    A two- and three-dimensional multi-chip module technology was developed in response to the continuum in demand for increased performance in electronic systems, as well as the desire to reduce the size, weight, and power of space systems. Though developed to satisfy the needs of military programs, such as the Strategic Defense Initiative Organization, the technology, referred to as High Density Interconnect, can also be advantageously exploited for a wide variety of commercial applications, ranging from computer workstations to instrumentation and microwave telecommunications. The robustness of the technology, as well as its high performance, make this generality in application possible. More encouraging is the possibility of this technology for achieving low cost through high volume usage

    A Design Method to Exploit Synergies Between Fiber-Reinforce Composites and Additive Manufactured Processes

    Get PDF
    This paper proposes a design method for devices composed of long fiber-reinforced composites (FRC) and additive manufactured (AM) parts. Both FRC and AM processes have similar application characteristics: suitable for small production volumes, additive in nature, and capable of being highly automated. On the other hand, the classes have distinct characteristics. FRCcomponents tend to be large and of simple shapes, while AM components tend to be small with highly complex geometry. Their combination has the potential for significant synergies, while mitigating their individual limitations. A decision guide is proposed, in the form of a series of questions, to guide the designer to determine if their application is a good candidate for FRC+AM. The decision guide is reformulated into a proposed design process that guides the designer to advantageously benefit from AM and FRC characteristics. The tools are illustrated with an example of a composite pressure vessel with integrated pressure reducer

    Fractal capacitors

    Get PDF
    A linear capacitor structure using fractal geometries is described. This capacitor exploits both lateral and vertical electric fields to increase the capacitance per unit area. Compared to standard parallel-plate capacitors, the parasitic bottom-plate capacitance is reduced. Unlike conventional metal-to-metal capacitors, the capacitance density increases with technology scaling. A classic fractal structure is implemented with 0.6-ÎŒm metal spacing, and a factor of 2.3 increase in the capacitance per unit area is observed. It is shown that capacitance boost factors in excess of ten may be possible as technology continues to scale. A computer-aided-design tool to automatically generate and analyze custom fractal layouts has been developed

    Rational Choice of Machining Tools Using Prediction Procedures

    Get PDF
    Introducing the methods and procedures for predictive analysis into the design process contours of a variety of machining tools (MT) of metal cutting machines is the main aim of this article. A sequence of realization of prediction object (PO) choice as an initial stage of search of perspective designs is offered. Effective in this regard is the "Tree of objectives" apparatus, on the basis of which many ways of improving MT are formed, selecting progressive (reducing the dimension of the problem) at each level of the hierarchy of the constructed graph-tree. The procedure for selecting the prediction method (PM) as a means of generating the forecast data is developed. The task of choosing a method is structured in detail and uses "Information supply"as the main criterion. To this end, assessment scales of choice criteria have been formed, on the basis of which it is possible to evaluate their effectiveness for the PM selection process. The rules forPOcoding are introduced by a three-element information code, including information source classes – static data, expert estimates and patent data. The process of forecasting the MT components by the method of engineering forecasting on the basis of a representative patent fund is realized. The General Definition Table has been built (GDT "Machining tools") and estimates of the prospects of design solutions have been obtained. A fragment of the database of 3D models of promising MT designs in the integrated computer-aided design KOMPAS-3D is proposed
    • 

    corecore