5,121 research outputs found

    Puzzle games: a metaphor for computational thinking

    Get PDF

    The Java CoG kit grid desktop : a simple and central approach to grid computing using the graphical desktop paradigm.

    Get PDF
    Grid computing is evolving as a service based, flexible and secure resource sharing environment. Currently, with the help of Grid middleware toolkits, Grids are exposing their services through programming models and command line interfaces, requiring much technical knowledge of the backend Grid systems. Grid portals also exist, but fall short on integrating with native environments and maintaining a uniform user interface from portal to portal. In order to gain wider acceptance within the large and less technical oriented user communities, we need a homogeneous graphical user environment that supports the challenging task of providing Grid users an easy to use, seamless and transparent interface requiring minimal user participation. Motivated by the needs of these users, we are presenting the Grid Desktop based on the popularity of the graphical desktop paradigms such as KDE and Windows XP. The Java CoG Kit Grid Desktop is a user centric workspace that enhances the normal operating system desktop paradigm by interlacing Grid concepts and leveraging commodity technologies like Java. The Grid Desktop contributes to the Java CoG Kit architecture and delivers ubiquitous computing through the Java CoG Kit abstractions, portability through XML and Java Web start technologies, and a simple user interface by following the vastly popular desktop patterns such as drag-n-drop

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    SIMDAT

    No full text

    HPC Cloud for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges

    Full text link
    High Performance Computing (HPC) clouds are becoming an alternative to on-premise clusters for executing scientific applications and business analytics services. Most research efforts in HPC cloud aim to understand the cost-benefit of moving resource-intensive applications from on-premise environments to public cloud platforms. Industry trends show hybrid environments are the natural path to get the best of the on-premise and cloud resources---steady (and sensitive) workloads can run on on-premise resources and peak demand can leverage remote resources in a pay-as-you-go manner. Nevertheless, there are plenty of questions to be answered in HPC cloud, which range from how to extract the best performance of an unknown underlying platform to what services are essential to make its usage easier. Moreover, the discussion on the right pricing and contractual models to fit small and large users is relevant for the sustainability of HPC clouds. This paper brings a survey and taxonomy of efforts in HPC cloud and a vision on what we believe is ahead of us, including a set of research challenges that, once tackled, can help advance businesses and scientific discoveries. This becomes particularly relevant due to the fast increasing wave of new HPC applications coming from big data and artificial intelligence.Comment: 29 pages, 5 figures, Published in ACM Computing Surveys (CSUR

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape

    The Virginia Tech Computational Grid: A Research Agenda

    Get PDF
    An important goal of grid computing is to apply the rapidly expanding power of distributed computing resources to large-scale multidisciplinary scientic problem solving. Developing a usable computational grid for Virginia Tech is desirable from many perspectives. It leverages distinctive strengths of the university, can help meet the research computing needs of users with the highest demands, and will generate many challenging computer science research questions. By deploying a campus-wide grid and demonstrating its effectiveness for real applications, the Grid Computing Research Group hopes to gain valuable experience and contribute to the grid computing community. This report describes the needs and advantages which characterize the Virginia Tech context with respect to grid computing, and summarizes several current research projects which will meet those needs

    The Management of Manufacturing-Oriented Informatics Systems Using Efficient and Flexible Architectures

    Get PDF
    Industry and in particular the manufacturing-oriented sector has always been researched and innovated as a result of technological progress, diversification and differentiation among consumers' demands. A company that provides to its customers products matching perfectly their demands at competitive prices has a great advantage over its competitors. Manufacturing-oriented information systems are becoming more flexible and configurable and they require integration with the entire organization. This can be done using efficient software architectures that will allow the coexistence between commercial solutions and open source components while sharing computing resources organized in grid infrastructures and under the governance of powerful management tools.Manufacturing-Oriented Informatics Systems, Open Source, Software Architectures, Grid Computing, Web-Based Management Systems

    Making distributed computing infrastructures interoperable and accessible for e-scientists at the level of computational workflows

    Get PDF
    As distributed computing infrastructures evolve, and as their take up by user communities is growing, the importance of making different types of infrastructures based on a heterogeneous set of middleware interoperable is becoming crucial. This PhD submission, based on twenty scientific publications, presents a unique solution to the challenge of the seamless interoperation of distributed computing infrastructures at the level of workflows. The submission investigates workflow level interoperation inside a particular workflow system (intra-workflow interoperation), and also between different workflow solutions (inter-workflow interoperation). In both cases the interoperation of workflow component execution and the feeding of data into these components workflow components are considered. The invented and developed framework enables the execution of legacy applications and grid jobs and services on multiple grid systems, the feeding of data from heterogeneous file and data storage solutions to these workflow components, and the embedding of non-native workflows to a hosting meta-workflow. Moreover, the solution provides a high level user interface that enables e-scientist end-users to conveniently access the interoperable grid solutions without requiring them to study or understand the technical details of the underlying infrastructure. The candidate has also developed an application porting methodology that enables the systematic porting of applications to interoperable and interconnected grid infrastructures, and facilitates the exploitation of the above technical framework

    The Open Grid Computing Environments collaboration: portlets and services for science gateways

    Full text link
    We review the efforts of the Open Grid Computing Environments collaboration. By adopting a general three-tiered architecture based on common standards for portlets and Grid Web services, we can deliver numerous capabilities to science gateways from our diverse constituent efforts. In this paper, we discuss our support for standards-based Grid portlets using the Velocity development environment. Our Grid portlets are based on abstraction layers provided by the Java CoG kit, which hide the differences of different Grid toolkits. Sophisticated services are decoupled from the portal container using Web service strategies. We describe advance information, semantic data, collaboration, and science application services developed by our consortium. Copyright © 2006 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56029/1/1078_ftp.pd
    • …
    corecore