
Puzzle games: a metaphor for computational thinking

Law, Bobby

Published in:
Proceedings of the 10th European Conference on Games Based Learning

Publication date:
2016

Document Version
Peer reviewed version

Link to publication in ResearchOnline

Citation for published version (Harvard):
Law, B 2016, Puzzle games: a metaphor for computational thinking. in T Connolly & L Boyle (eds), Proceedings
of the 10th European Conference on Games Based Learning. Academic Conferences and Publishing
International Limited, Paisley, pp. 344-353. <http://www.academic-bookshop.com/ourshop/prod_5313859-
ECGBL-2016-Proceedings.html>

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 29. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ResearchOnline@GCU

https://core.ac.uk/display/293881822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchonline.gcu.ac.uk/en/publications/c0e14dfb-8f66-47ad-bd99-3d67dc9fc53a
http://www.academic-bookshop.com/ourshop/prod_5313859-ECGBL-2016-Proceedings.html
http://www.academic-bookshop.com/ourshop/prod_5313859-ECGBL-2016-Proceedings.html

Puzzle Games: A Metaphor for Computational Thinking.

Bobby Law
Glasgow Caledonian University, Glasgow, Scotland
Robert.law@gcu.ac.uk

Abstract: Introductory programming courses often concentrate on teaching students the syntax for a specific
programming language and the relevant constructs for implementing sequence, selection, and iteration. A
necessary component of teaching programming, a fundamental flaw is the omission of a suitable strategy for
teaching students problem solving. The ability to manipulate a programming language from a syntactical
perspective leaves the students with a cursory awareness but does not necessarily mean that given a complex
problem they will have the ability to produce a suitable solution. Thus it is important to embed within the
teaching of introductory programming an integrated approach to problem solving. This can be a challenge
within itself as students are not always receptive to the traditional approach of defining the problem, planning
the solution, coding and testing the program. Present such problems as a paper and pen based exercise,
couple this with the student’s perceptions of these problems as irrelevant and a recipe for lack of engagement
ensues. Teaching introductory programming to Game Software Development students lead to an interesting
observation; while playing various genres of game, when encountering a puzzle, they appeared to consider
their options as if mentally processing a strategy or solution before proceeding. Thus a hypothesis was derived
that the use of cerebral based puzzle games could be used to introduce computational thinking, its four key
techniques and the mapping between these techniques and the basic programming building blocks in a fun
and engaging manner far removed from the traditional approach. Game Software Development students were
already, unwittingly, implementing the techniques of decomposing the problem, identifying patterns,
abstracting out relevant information and developing suitable algorithms to solve the puzzle. This paper will
present the initial research identifying the underlying pedagogical issues associated with the use of game
based learning in respect of computational thinking and the genres of game considered for use and the
pedagogical constructs they exhibit.

Keywords: Game Based Learning, Computational Thinking, Problem Solving, Programming.

1. Introduction

Programming and problem solving are inextricably linked, however, Michaelson (2015) proffers that one of the
“oldest” approaches to learning programming is “Programming language oriented.” A technique of writing
code he likens to hacking which does not scale well.

The use of game based learning and in particular puzzle games helps to reinvigorate the link between problem
solving and programming in a fun way. Hence making the learner realise that programming can be fun and will
provide for a more efficacious and viable learning experience (Cĭsar et al. 2014).

As educators, do we teach students how to contemplate problem solving? Michalewicz & Michalewicz (2008)
suggests not. Michalewicz & Michalewicz (2008) firmly believe that the lack of problem solving skills exhibited
by students “is the consequence of decreasing levels of mathematical sophistication in modern societies.”
Although many different “thinking” strategies have been trialled these have not been rooted in mathematics
and as such do not lend themselves to the solving of problems but rather the discussion of problems
(Michalewicz & Michalewicz 2008).

It would be appropriate at this juncture to define the terminology used within the paper allowing the context
to be set. The following terms will be defined within the subsequent paragraphs: puzzle, computational
thinking, problem solving and algorithm.

Is it possible therefore to define the term puzzle? Unfortunately there appears to be no academic consensus
on the definition of the term puzzle to the point that exercise and problem are used interchangeably with the
term puzzle (Dasgupta et al. 2013). Badger et al. (2012) offers a usable definition of a puzzle as offering a
“significant intellectual challenge.”

mailto:Robert.law@gcu.ac.uk

Wing (2014) defines computational thinking as “the thought processes involved in formulating a problem and
expressing its solution(s) in such a way that a computer—human or machine—can effectively carry out.” The
definition hits upon a key concept that students universally struggle with - the conveying of a solution in a way
that they can ultimately convert into the required coding constructs for a programming language.

No universal academic definition of the term problem solving exists (Gomes & Mendes 2007). For the purposes
of this paper, problem solving will be seen as applying previously learned material to derive a suitable solution
(Gomes & Mendes 2007).

The term algorithm is commonly used within Computer Science education but for the avoidance of doubt it
will be defined as “a step-by-step procedure which, starting with an input instance, produces a suitable
output.” (Edmonds 2008).

2. Literature Review

In this section the paper will examine the concepts of puzzle-based learning, computational thinking, problem
solving and algorithms in relationship to each other and how these concepts can be applied to the teaching of
introductory programming courses.

2.1 Puzzle-based learning

In an educational sense Michalewicz & Michalewicz (2008) suggest that educational puzzles conform to four
principles: generality, simplicity, Eureka moment and entertainment factor. Badger et al. (2012) state that
generality is not unique to puzzles and can also be associated with problems. Interestingly Michalewicz &
Michalewicz (2008) openly admit that not all of the four principles need be met. The two principles that stand
out are the Eureka moment and the entertainment factor. The Eureka moment should offer a sense of
frustration, relief (when the puzzle solution is derived) and reward (Michalewicz & Michalewicz 2008). This is
somewhat akin to the nature of puzzles found in many popular console games. Without some kind of
entertainment factor the puzzle may lose its lustre and thus interest in solving it will wane (Michalewicz &
Michalewicz 2008). Another differentiating feature of a puzzle is the fact that it is self-contained i.e. all the
information required to solve the puzzle is supplied within it (Badger et al. 2012).

Research by Falkner et al. (2010) suggests that leading technology companies see a relationship between
puzzle solving and the ability to solve real world problems. As such they have drawn parallels between the
categories hoped for in students with their associated forms of learning. Figure 1 below illustrates this (Falkner
et al. 2010).

Figure 1: Skills categories and associated forms of learning

Figure 1 shows puzzle based learning offering a solid foundation on which to build and develop further
problem solving skills which will benefit students and employers.

Badger et al. (2012) proffers that solving puzzles and problems help students:

 Learn to take personal responsibility.
 Adopt novel and creative approaches, making choices.
 Develop modelling skills.

 Develop tenacity.
 Practice recognition of cases, reducing problem situations to exercises.

In relation to programming puzzle based learning helps cement the idea that there can be more than one
solution to the puzzle (Badger et al. 2012). Thus more than one way to program a solution, albeit, some
programming solutions will be more efficient than others.

2.2 Computational Thinking

Cheng et al. (2012) make the bold statement that computational thinking is a “fundamental skill” required by
“everyone in the 21st Century.” With this in mind it seems a valuable life skill for all students. Wing (2014)
suggests that computational thinking encompasses “problem formulation” and not just “problem solving”.

Computational Thinking has a number of elements but four can be thought of as its cornerstones:
decomposition, pattern recognition, abstraction and algorithm design (Bitesize n.d.). Decomposition involves
reducing the problem into smaller more manageable chunks; pattern recognition involves looking for trends,
similarities and patterns; abstraction involves removing irrelevant detail and focusing in on the important
points; algorithm design involves creating the step by step rules which when followed will solve the problem.

Figure 2 below presents the idea of the cornerstones and the importance of applying them correctly.

Figure 2 Cornerstones of computational thinking (Bitesize, n.d.)

Kazimoglu et al. (2012) contend that computational thinking with respect to computer science education can
be categorised by five fundamental skills: “problem solving”, “building algorithms”, “debugging”, “simulation”
and “socialisation”. Moursund (2006) believes that computational thinking encompasses the idea of
“modelling and simulation”, both mentally and with the use of a computer.

2.3 Problem Solving

In many instances the graduates produced by Universities may well have many skills but it has been mooted
that they lack experience of problem solving and therefore “little experience in solving ill-structured, open-
ended problems” (Steinemann 2003).

Students learning programming often find themselves in a situation where the problem domain can be too
wide and as such they can be intimidated by the problem. Moursund (2006) observes that a facet of problem
solving is identifying when the problem is too vague and attempting to remove the ambiguity in order to
convert it into a well-defined problem.

Problems can be thought of as straddling two categories: well-structured or ill-structured. Well-structured
problems have a set answer in contrast to ill-structured problems which can have an undefined goal or
inadequate material. Interestingly it has been suggested that ill-structured problems provide the student with

the prospect of using diverse problem solving stratagems (Kiili 2005). One difficulty students encounter when
problem solving is defining the steps required to solve the problem and the order these steps should be placed
to create the solution (Bachu & Bernard 2014). It is noted by Chao (2016) that programmers are required “to
use both problem solving strategies and program development skills”.

2.4 Algorithms

Wing (2014) describes an algorithm as “an abstraction of a process that takes inputs, executes a sequence of
steps, and produces outputs to satisfy a desired goal.” Edmonds (2008) suggests that students find the abstract
thinking involved in the production of algorithms a difficult task emphasising that “code is an implementation
of an algorithm.” Something that is not always clear to students. This view is echoed by Chao (2016) suggesting
that students “lack strategies” for creating algorithms.

Levitin (2005) asserts that the use of puzzles allows the student to apply a level of abstract thinking detached
from any form of programming language and strategies for designing algorithms can be considered as general
problem solving tools.

2.5 Game Based Learning

Game Based Learning is a form of active learning (Bodnar & Clark 2014) and Kiili (2005) states that games
provide a “meaningful framework” for posing problems for students to solve. In fact he suggests that games
are composed of smaller “casually linked problems” the nature of which can vary and that a problem can be
anything that hinders the player before the ultimate goal of completion.

Games can be said to appeal to a wide range of individuals and as such research suggests that they can be
used for teaching programming producing “positive effects on students.” (Kazimoglu et al. 2012) Kazimoglu et
al. (2012) have identified two methods for enabling computational thinking and learning programming:
“learning through the exercise of designing games” and “learning through game-play”.

The use of commercial off the shelf games as a learning vehicle in the classroom is supported by Van Eck
(2006) due to its practicality, however, he warns that there can be drawbacks as this type of material is not
designed as teaching material and an analysis of the chosen game with respect to the content to be taught is
required.

Games also provide a safe place to fail and retry without a fear of any stigma attached to failing in the normal
educational environment hence allowing the student to learn from their mistakes fostering reflection, an
essential part of learning (Bodnar & Clark 2014).

Other contributing factors such as motivation and engagement influence the student’s problem solving
outcomes such that the games being played should offer the student complexity for engagement, autonomy
for decision making and attainable challenges for goal achievement (Eseryel et al. 2014). In particular Ross
(2002) suggests that puzzle based games are good for enhancing both the student’s strategic thinking and
motivation.

2.6 Summary

The literature reviewed certainly points towards a strong case for the inclusion of puzzle based games for the
teaching of programming. It can be concluded that games do provide a good environment for developing
“thinking and problem-solving skills” that will benefit the student and help them “gain in mental maturity.”
(Moursund 2006) Van Eck (2006) makes a valid point when he dispels the idea “that all games are good for all
learners and for all learning outcomes”.

Melero et al. (2011) point towards the use of puzzle games in the teaching of programming suggesting that
code segments can be designed as specific “puzzle pieces” that can be ultimately collated and joined to derive
the solution for a proposed program.

Levitin (2005) states that creativity and problem solving are enhanced through the use of puzzles and that
puzzles generate more interest for the student thus making them engage with the assigned task. It should also

be noted that the definition for Computational Thinking “is defined abstractly at best and covers a wide variety
of skills.” (Kazimoglu et al. 2012)

3. Games

Van Eck (2006) notes three paths that can be traversed when incorporating games into the curriculum. These
are: “have students build games from scratch; have educators and/or developers build educational games
from scratch to teach students; and integrate commercial off-the-shelf (COTS) games” This section will
investigate both the educator/developer educational games and the off-the-shelf games.

3.1 Educator/Developer built Educational Games

This section will consider three games that have been specifically developed as an aid to teaching
programming through the use of problem solving. The games discussed in this section have been chosen based
on their relevance and coverage of programming topics. The criterion used to select the games was based on a
minimum implementation of sequence, selection and iteration and as a secondary consideration a game like
user interface. The games presented are by no means an exhaustive list.

The first example is called CodeCraft (Ventura et al. 2015) The concept behind CodeCraft is to provide the
student with "a fun, dynamic, and engaging game environment" by offering programming puzzles that have
been developed to introduce programming concepts in a staged and measured approach. This is a 3D game
environment based on the premise of using a state machine to program the steps required by the robot to
solve the presented puzzles. CodeCraft provides five levels of progressive difficulty and doesn't assume that
the student has any formal programming knowledge with levels 4 and 5 having multiple solutions. CodeCraft
has been designed to teach students: sequence, selection, iteration, variables, collections and computational
thinking (Ventura et al. 2015).

The interesting aspect of the puzzles is the use of constraints. These constraints are either environmental or
programmatic. Programmatic constraints limit the programming constructs that are available to be used. This
requires the student to be more creative in their use of the available constructs when creating their solution.
The student uses either action-related or sensory actions to allow the robot to interact with its environment
(Ventura et al. 2015).

To solve a puzzle the student uses a state machine interface to connect actions, events and states in an
appropriate sequence. The use of a state machine negates the need to have any previous knowledge of a
programming language thus there is no requirement for the student to be burdened by the programming
language specific syntax. Figure 3 shows an example puzzle and attempted state machine (Ventura et al.
2015).

Figure 3 an example of CodeCraft (Ventura et al. 2015)

From the perspective of computational thinking this system offers a good environment for the student to learn
problem solving while introducing the fundamental building blocks of programming without the student being
encumbered by any specific programming language and its inherent syntax.

Kazimoglu et al. (2012) have produced their own software called Program Your Robot designed to teach
introductory programming constructs based on controlling a robot to solve puzzles while introducing the
programming concepts of sequence, selection, iteration and functions/methods. The authors of this software
see it as a serious game introducing students to "algorithm building, debugging and simulation." The game
consists of the student constructing a "solution algorithm" which will help the Robot reach the designated
point of each platform. In a similar vein to CodeCraft the solution algorithm is built from two categories of
commands: action commands and programming commands. Programming commands are used to implement
the programming constructs of sequence, selection and iteration. An interesting concept introduced in this
version of the game is the ability to "create repeatable patterns" through the use of functions.

Figure 4 below gives an example of the programming learning environment for the game. On the right hand
side of the screen the student has a main method, and two functions. On the left hand side of the screen the
student has the two command categories of action and programming. The student can drag and drop any of
the action and or programming commands to fill the empty slots within the main method or the two functions.
The main method is the primary control mechanism for controlling the robot. When the student has
determined that they are finished building their solution algorithm they can use the Run or Debug buttons
located at the bottom left of the screen to execute their algorithm. The debug button allows the student to
test their algorithm receiving feedback in the form of error/warning messages (Kazimoglu et al. 2012).

As the student progresses through the levels the need to use functions becomes more apparent as the number
of free slots in the main method is not enough to successfully complete the level hence reinforcing the need
for reusable solution algorithms.

Figure 4 Introductory Programming environment Kazimoglu et al. (2012)

As with CodeCraft Program the Robot does not use any explicit programming language or syntax instead
relying on the production of solution algorithms thus aligning well with the concept of computational thinking.
As an aside the game implements a scoring system which attempts to reward the student with more points the
neater their code is.

Like Kazimoglu et al. (2012) Chao (2016) has also developed a game based environment for teaching
introductory programming concepts of sequence, selection, simple iteration and nested iteration which
employs the use of a robot farmer. The premise of this game is to create a set of instructions that will help the
robot navigate the grid avoiding the stones and meeting the objective of picking the flowers for the farmer.

The student uses “instruction cards” which are placed in the relevant cells of the grid to provide the robot with
the necessary instructions to complete its task. The student populates the instruction cards using the
commands from the “instruction library” which can be selected or dragged and dropped in the “Program
Composer” to build a solution. These instruction cards form a “complete computer program” for the robot to
achieve its goal (Chao 2016).

Figure 5 below gives an example of the game showing the positioning of instruction cards indicating the
decomposition of the problem domain into two sub goals.

Figure 5 Example of Programming Learning Environment Chao (2016)

Chao (2016) game environment differs from Kazimoglu et al. (2012) as it shows the student C/C++ like coding
language and syntax and as such this is not as pure an implementation of computational thinking as the
previous examples but it still implements puzzle based learning, problem solving, algorithms and game based
learning.

3.2 Commercial off-the-shelf Games

This section will consider three commercial off-the-shelf games that have been developed as puzzle/logic
games for mass consumption and not for teaching as such. The games discussed in this section have been
chosen based on their relevance and coverage of programming topics. The criterion used to select the games
was based on a minimum implementation of sequence, selection and iteration and as a secondary
consideration a game like user interface. The games presented are by no means an exhaustive list.

One example of a commercial off the shelf game that has a strong emphasis on problem solving is Portal and
its successor Portal 2 as identified by Shute & Wang (2015) highlighting the fact that the game has “goals and
complicated scenarios” requiring the player to discover “new knowledge”. Figure 7 gives an example of the
type of puzzle available in Portal 2 where the cubes are being used to redirect the laser beams.

Portal consists of a series of puzzles where the student is required to warp time and space with portals in order
to solve them. Portals can be placed on a variety of surfaces. As the game progresses various gels are
introduced including Repulsion, Propulsion and Conversion gel. These gels offer the student the ability bounce,
speed up and turn any surface into a portal compatible surface. Two portals are required to solve puzzles and
on completion the student is taken to the next puzzle.

Figure 6 Example of a puzzle in Portal.

Another game in the same vain as Portal is The Talos Principle which is a first person puzzle game which offers
the player a non-linear world in which the player can create their own path through the game making their
own decisions and solving puzzles as they go.

The logic based puzzles present the student with the goal and all the tools needed to get to the goal. The
student is required to determine the steps needed to solve the puzzle and thus achieve the goal. Each puzzles
title indicates its unique setup and offers a hint to its possible solution.

Figure 7 shows the similarity between Portal 2 type puzzles as seen in Figure 6. Here the student must be
careful not to let the red and blue beams intersect when pointing them at the sockets on the wall.

Figure 7 Example of a puzzle in The Talos Principal

Again this type of game offers much in the way of problem solving and computational thinking but may well be
a bit more obtuse when drawing parallels with programming constructs.

The World of Goo is a physics based problem solving game that requires players to solve innovative and
challenging problems (Shute & Kim 2011) requiring the player to use a number of techniques including
problem solving.

Essentially the student is required to complete each level by building structures such as towers and bridges
using Goo balls that are imbued with the laws of physics. A variety of Goo balls are available each with their
own properties and uses. Some of the puzzles can pose quite a cerebral challenge and require precise
execution as such this might dissuade some students from participating fully. Figure 8 shows an example of the
type of puzzles in World of Goo where the player has to construct a tower using the Goo balls to connect the
pipe.

Students apply the basic programming building blocks of sequence, selection and iteration when problem
solving and building a solution in this game hence it does offer a degree of computational thinking but it will
require the teacher to select the puzzle levels wisely as some can be very complicated.

Figure 8 Example of a puzzle World of Goo

Van Eck (2006) suggests that the use of commercial off-the-shelf games can be more cost effective in relation
to both money and time than the other options suggest at the start of section 3. He further suggests that
continued use of commercial games will lead to commercial game makers being cajoled into serious games for
education. As a caveat Van Eck (2006) points to the fact that the use of commercial games not a panacea as
these games are produced first and foremost as entertainment and not to teach thus an analysis of content is
required.

This section has attempted to bring together examples of both educationally derived games directed at the
teaching of programming and commercial off-the-shelf games that could be adapted for use as computational
thinking and problem solving aids.

4. Proposed Work

Teaching games programming to undergraduate students in their second year of study the intention is to have
selected labs that will utilise the best aspects of the aforementioned games as a fun and interesting way to
introduce computational thinking, problem solving and algorithms.

The strategy will be to start with Portal 2 puzzles to engage the student in the aspects of computational
thinking, problem solving and algorithms getting the students to write down the steps taken to solve the
problem. Following on from the use of Portal 2 the intention will be to utilise Kazimoglu et al. (2012) Program
your Robot available at http://www.programyourrobot.org/ which will help reinforce computational thinking,
problem solving and algorithms while enhancing the students ability to debug algorithms.

Gallagher & Prestwich (2013) applied cognitive task analysis to the levels of Portal 2 to determine gameplay
and game design in doing so they developed a cognitive map/decision tree which encompassed a number of
criterion. Three of the criteria are mechanical steps, cognitive steps and affordances. Mechanical steps
involves recording the steps the student took manually or behaviourally to complete the task. Cognitive steps
involves recording the cognitive steps the student undertook to complete the task. Affordances are the
objects, tools and environment the student interacted with to complete the task. Although only a subset of
Gallagher & Prestwich (2013) cognitive map/decision tree they will provide a starting point for formulating an
understanding of the students thought process.

5. Conclusions

From the literature reviewed there seems to be a ground swell of opinion in favour of using puzzles and game
based learning to teach programming at an introductory level. Commercial games such as Portal offer an
engagement value that is sometimes lacking in educational software helping to enhance student thinking,

http://www.programyourrobot.org/

problem solving and algorithm development in a non-educational context such that the student will be actively
learning in a friendly non-judgemental environment.

References

Bachu, E. & Bernard, M., 2014. Visualizing Problem Solving in a Strategy Game for

Teaching Programming. In Proceedings of the International Conference on Frontiers in

Education: Computer Science and Computer Engineering (FECS). p. 1.

Badger, M. et al., 2012. A guide to puzzle-based learning in STEM subjects. University of

Birmingham: National HE STEM Programme.

Bitesize, B., Introduction to Computational Thinking. Available at:

http://www.bbc.co.uk/education/guides/zp92mp3/revision [Accessed April 2, 2016].

Bodnar, C.A. & Clark, R.M., 2014. Exploring the impact game-based learning has on

classroom environment and student engagement within an engineering product design class.

In Proceedings of the Second International Conference on Technological Ecosystems for

Enhancing Multiculturality. pp. 191–196.

Chao, P.-Y., 2016. Exploring students’ computational practice, design and performance of

problem-solving through a visual programming environment. Computers \& Education, 95,

pp.202–215.

Cheng, R., Annetta, L.A. & Vallett, D.B., 2012. Research Framework for Serious

Educational Games: Understanding Computational Thinking in Pasteur’s Quadrant. Journal

of Information Technology and Application in Education, 1(4), pp.143–151.

C̆isar, S.M., Pinter, R. & Cisar, P., 2014. Code hunt—“hunting” to learn programming. In

Computational Intelligence and Informatics (CINTI), 2014 IEEE 15th International

Symposium on. pp. 329–333.

Dasgupta, D., Ferebee, D.M. & Michalewicz, Z., 2013. Applying Puzzle-Based Learning to

Cyber-Security Education. In Proceedings of the 2013 on InfoSecCD ’13: Information

Security Curriculum Development Conference. InfoSecCD ’13. New York, NY, USA: ACM,

pp. 20:20–20:26. Available at: http://doi.acm.org/10.1145/2528908.2528910.

Van Eck, R., 2006. Digital game-based learning: It’s not just the digital natives who are

restless. EDUCAUSE review, 41(2), p.16.

Edmonds, J., 2008. How to think about algorithms, Cambridge University Press.

Eseryel, D. et al., 2014. An Investigation of the Interrelationships between Motivation,

Engagement, and Complex Problem Solving in Game-based Learning. Educational

Technology & Society, 7(3), pp.42–53.

Falkner, N., Sooriamurthi, R. & Michalewicz, Z., 2010. Puzzle-Based Learning for

Engineering and Computer Science. Computer, 43(4), pp.20–28.

Gallagher, P.S. & Prestwich, S., 2013. Cognitive Task Analysis: Analyzing the Cognition of

Gameplay and Game Design.

Gomes, A. & Mendes, A.J., 2007. Problem solving in programming. The Proceedings of

PPIG as a Work in Progress Report, pp.216–228.

Kazimoglu, C. et al., 2012. Learning programming at the computational thinking level via

digital game-play. Procedia Computer Science, 9, pp.522–531.

Kiili, K., 2005. Digital game-based learning: Towards an experiential gaming model . The

Internet and Higher Education , 8(1), pp.13 – 24.

Levitin, A., 2005. Analyze that: puzzles and analysis of algorithms. ACM SIGCSE Bulletin,

37(1), pp.171–175.

Melero, J., Hernández-Leo, D. & Blat, J., 2011. Towards the support of scaffolding in

customizable puzzle-based learning games. In Computational Science and Its Applications

(ICCSA), 2011 International Conference on. pp. 254–257.

Michaelson, G., 2015. Teaching Programming with Computational and Informational

Thinking. Journal of Pedagogic Development, 5(1).

Michalewicz, Z. & Michalewicz, M., 2008. Puzzle-based learning, Hybrid Publishers.

Moursund, D.G., 2006. Introduction to using games in education: A guide for teachers and

parents.

Ross, J.M., 2002. Guiding students through programming puzzles: value and examples of

Java game assignments. ACM SIGCSE Bulletin, 34(4), pp.94–98.

Shute, V.J. & Kim, Y.J., 2011. Does playing the World of Goo facilitate learning. Design

research on learning and thinking in educational settings: Enhancing intellectual growth and

functioning, pp.359–387.

Shute, V.J. & Wang, L., 2015. Measuring problem solving skills in Portal 2. In E-Learning

Systems, Environments and Approaches. Springer, pp. 11–24.

Steinemann, A., 2003. Implementing sustainable development through problem-based

learning: Pedagogy and practice. Journal of Professional Issues in Engineering Education

and Practice, 129(4), pp.216–224.

Ventura, M. et al., 2015. Development of a video game that teaches the fundamentals of

computer programming. In SoutheastCon 2015. pp. 1–5.

Wing, J., 2014. Computational thinking benefits society. Social issues in computing.

