
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2004

The Java CoG kit grid desktop : a simple and central approach to The Java CoG kit grid desktop : a simple and central approach to

grid computing using the graphical desktop paradigm. grid computing using the graphical desktop paradigm.

Pankaj R. Sahasrabudhe 1980-
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Sahasrabudhe, Pankaj R. 1980-, "The Java CoG kit grid desktop : a simple and central approach to grid
computing using the graphical desktop paradigm." (2004). Electronic Theses and Dissertations. Paper
1247.
https://doi.org/10.18297/etd/1247

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/1247
mailto:thinkir@louisville.edu

THE JAVA COG KIT GRID DESKTOP:
A SIMPLE AND CENTRAL APPROACH TO GRID COMPUTING

USING THE GRAPHICAL DESKTOP PARADIGM

By

Pankaj R. Sahasrabudhe
B.S., University of Louisville, 2003

A Thesis
Submitted to the Faculty of the

University of Louisville
Speed Scientific School

as Partial Fulfillment of the Requirements
for the Professional Degree

MASTER OF ENGINEERING

Department of Computer Engineering and Computer Science
University of Louisville

December 2004

The submitted manuscript has in part received funding from the Java CoG Kit, under
the supervision of Dr. Gregor von Laszewski, and created by the University of Chicago
as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-
ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf ofthe Government.

An update to this thesis in the form of a technical report will be available at the end of
January, 2005. The report will include more information about the Java CoG Kit and the
Grid Desktop, and will be made available through http://www.cogkit.org or by contacting
Gregor von Laszewski (gregor@mcs.anl.gov). Any work presented in this thesis should be
referred through the technical report only.

THE JAVA COG KIT GRID DESKTOP:
A SIMPLE AND CENTRAL APPROACH TO GRID COMPUTING

USING THE GRAPHICAL DESKTOP PARADIGM

Submitted By: _________ _
Pankaj R. Sahasrabudhe

B.S., University of Louisville, 2003

A Thesis Approved on

6th December, 2004

by the Following Thesis Committee:

Dr. Rammohan Ragade, CECS Dept., Thesis Director

Dr. Gregor von Laszewski, Argonne National Laboratory

Dr. Anup Kumar, CECS Dept.

Dr. Larry Tyler, ME Dept.

Dr. Eric Rouchka, CECS Dept.

11

TABLE OF CONTENTS

APPROVAL PAGE ii

ACKNOWLEDGEMENTS v

ABSTRACT vii

NOMENCLATURE viii

LIST OF TABLES ix

LIST OF FIGURES xi

I INTRODUCTION 1
A Grid Computing . 1
B An Evaluation . . 7
C Overview of Project . 10

II RELATED WORK 12
A Overview 12
B Grid Middleware 13

B.1 The Globus Project 15
B.2 Legion. 16
B.3 Condor 17
BA myGrid 18
B.5 The Java CoG Kit . 18

C Workflows.......... 19
D Portals 20

D.1 Desktop Environments 22
D.2 Feature Comparison .. 23

III THE JAVA COG KIT GRID DESKTOP 26
A Overview 26
B Design 28

B.1 Drag and Drop 29
B.2 Internal Frames 30

III

B.3 Icons
BA Basis-Set Interfaces
B.5 Dynamic Form Panel (DFP)
B.6 Desktop Toolbar ..
B.7 Desktop Utilities ..
B.8 Desktop Preferences

C Implementation.......
C.1 Underlying Components
C.2 Prerequisites......
C.3 Launching
CA Grid Command Manager Preferences
C.5 Icons
C.6 CoG Top Log Frame. . ..
C.7 Grid Monitor Frame ...

D Evaluation and Future Extensions.
D.1 Limitations
D.2 Maintainance...
D.3 Future Extensions.

IV CONCLUSION

REFERENCES

APPENDIX A

APPENDIXB

VITA

IV

31
32
34
36
36
37
37
38
40
41
41
42
44
44
45
45
46
46

49

50

59

62

65

ACKNOWLEDGEMENTS

This thesis would not have been possible without the support and encouragement I

received from several people. First of all, I am thankful to my advisor Dr. Rammohan

Ragade for accepting me as his student and supporting my wish to pursue a thesis research

appointment at the Argonne National Laboratory. His constant encouragement, persistence,

and advice have become the source of my ambitions. He is truly a great advisor, professor,

and an asset for our department. I am glad I heeded his advice.

Next, I want to thank Dr. Gregor von Laszewski who was my advisor at the Argonne

National Laboratory. Words fall short to describe his contribution towards this thesis and

also my personal development. I thank him for letting me pursue this project as part of the

Java CoG kit group, and believing in my ability from the beginning. He has not only been

a great mentor but a constant source of encouragement, strength and energy combined with

an over achieving work ethic. Under his guidance, I have learned invaluabe skills which

will help me throughout my career.

I would like to thank Dr. Anup Kumar, Dr. Larry Tyler and Dr. Eric Rouchka for being

part of my committee. I acknowledge Dr. Kumar's guidance during initial discussions

regarding thesis research topics. His advice was crucial for my decision to pursue a Grid

Computing research. I appreciate all the efforts Dr. Tyler has taken to be a great mentor

and a teacher. I am also grateful to Dr. Rouchka for guiding me with issues regarding

bioinformatics.

Invaluable input was given by all the members of the Java CoG Kit group, especially

Kaizar Amin and Mike Hategan. Having several discussions with them helped me better

understand the Java CoG Kit and its role in Grid Computing. They also offered countless

advice on many programming aspects of this thesis. I sincerely thank both of them for all

v

their efforts. I also thank all members of the Summer 2004 REU Program, namely, Robert

Winch for his technical guidance, Matt Bone, Mike Sosonkin, and Nithya Vijayakumar for

their help and support.

I cannot forget Mr. Ron Lile at the University of Louisville for his invaluable advice

and guidance prior to my arrival at Argonne. He is an excellent mentor and a constant

source of moral support. While working for him at the University, I have gained many

skills that helped me successfully complete this thesis. I thank him deeply.

Also, I would like to acknowledge the emotional support I received from several of my

friends both in Louisville, KY and Chicago, IL, notably Prachi Hote, Ashwin Cholpadi,

Padmini Jayaraman, Rashmita Sahoo and Nanda Sreenivasan.

And last but most important of all, I would like to express my deepest love and respect

for my parents, my brother, my sister-in-law and other family members for their constant

encouragement, support and guidance. I want to thank my brother for introducing me to

the world of Grid Computing and encouraging me to pursue a masters thesis. I thank my

parents as they have always been there and believed in me in times when I did not. I feel I

am blessed because they all are part of my life.

VI

ABSTRACT

Grid Computing is evolving as a service based, flexible and secure resource sharing

environment. Currently, with the help of Grid middleware toolkits, Grids are exposing

their services through programming models and command line interfaces, requiring much

technical knowledge of the backend Grid systems. Grid portals also exist, but fall short on

integrating with native environments and maintaining a uniform user interface from portal

to portal. In order to gain wider acceptance within the large and less technical oriented

user communities, we need a homogeneous graphical user environment that supports the

challenging task of providing Grid users an easy to use, seamless and transparent interface

requiring minimal user participation.

Motivated by the needs of these users, we are presenting the Grid Desktop based on

the popularity of the graphical desktop paradigms such as KDE and Windows XP. The

Java CoG Kit Grid Desktop is a user centric workspace that enhances the normal oper­

ating system desktop paradigm by interlacing Grid concepts and leveraging commodity

technologies like Java. The Grid Desktop contributes to the Java CoG Kit architecture and

delivers Ubiquitous computing through the Java CoG Kit abstractions, portability through

XML and Java Web start technologies, and a simple user interface by following the vastly

popular desktop patterns such as drag-n-drop.

Vll

Abbreviation

API

CoG Kit

GGF

GRAM

GT

GT2

GT3

GT4

HCI

HTTP

IT

MDS

OS

RSL

PSE

VO

NOMENCLATURE

Tenn

Application Programming Interface

Commodity Grid Toolkit

Global Grid Forum

Grid Resource Allocation and Management

Globus Toolkit

Globus Toolkit 2.0

Globus Toolkit 3.0

Globus Toolkit 4.0

Human Computer Interaction

Hyper Text Transfer Protocol

Infonnation Technology

Monitoring and Discovering Service

Operating System

Resource Specification Language

Problem Solving Environment

Virtual Organization

V111

LIST OF TABLES

I Desktop Paradigm Comparison .. 25

lX

LIST OF FIGURES

Virtual Organizations [1]. 4

2 Simplified Grid Security Concepts [2]. 6

3 Grid Mangement [2]. 7

4 Grid Security [2]. · . 8

5 Thesis Project Integrals 8

6 A Simple Classification Of Grid Activities [2] 11

7 Collocation Of Grid Desktop Related Components . 12

8 Grid Middleware Overview [1] 13

9 Grid Middleware Layers [3] . 14

10 Grid Task Management [1] 14

11 Grid Services [1] · 15

12 Java CoG Kit 4 Overview [4] 19

13 Flow History [5] . 20

14 Portal [2] 21

15 Portal Comparison [6] . 24

16 Architecture of the Java CoG Kit [4] 27

17 Active Icon State Graph [3] 27

18 Desktop Package · 28

19 Simplified Desktop UML Diagram 29

x

20 Action Proxy Framework 35

21 Dynamic Form Panel (DFP) Framework 36

22 Desktop Preferences Simplified. 37

23 Desktop Preferences Schema 37

24 Desktop Overview . 38

25 Add Icon Menu . . 43

26 Action Icon States . 44

27 CoGTop Log Frame. 44

28 Grid Monitor Frame . 45

Xl

I. INTRODUCTION

Grid Computing is a methodology to address extremely large compute intensive applica­

tion needs. Although the infrastructure is being developed, most users are experiencing

difficulty using the corresponding set ups due to unfamiliar and heterogeneous user in­

terface environments. To address these issues, the Grid Desktop research initiative was

organized by the Java CoG Kit group [7, 8] at Argonne National Laboratory [9], investigat­

ing a collaboration of three evolving concepts, namely: Grid Computing, Problem Solving

Environments (PSE), and Human-Computer Interaction (HCI).

This section provides a brief introduction and a relation between the three main con­

cepts. Later, an evaluation is presented based on those concepts, followed by the motivation

behind this research project.

A. Grid Computing

Heraclites, an ancient Greek orator, is credited to saying that the only thing constant is

change. Notably, throughout history a small set of these changes have lead to some large

scale evolutions. For example, the invention of the steam engine in 1712 and later the tele­

graph in 1836 are considered to be key innovations that drove the industrial revolutions.

More recently in 1948, the invention of the transistor opened the information age we live in

today, replacing inefficient vacuum tube technologies and forever changing the way elec­

tronics impact our lives. Similarly, it is predicted that Grid Computing will have the same,

if not greater, effect for this world and forever revolutionize every aspect of Information

Technology [10] and its vast networked technologies like bioinformatics, finance, physics,

1

chemistry, and business, to just name a few.

So, what exactly is Grid Computing? What is its motivation? How is it being applied

today? How will it shape our future? Before we address these questions, let us explore a

scenario from the near future where Grid Computing technologies prevail.

Grid Scenario: John is about to leave for work. As he approaches his car in the morning,

he feels nauseated and feverish. Looking at the watch showing 9:05 am, he realizes that

he cannot fall sick and miss his important business appointment in the morning. Once

in the car he quickly pulls out his cell phone, places his finger on the Red Cross button,

and waits for his medical diagnosis. The button is equipped with a blood sampling probe

which extracts a sample of his blood and sends the information to a medical facility nearby.

Based on the sample, the computer system at the facility starts diagnosing his blood while

retrieving his medical history from his physicians office. At 9:06 am, a notification is sent

to his cell phone stating his sickness, the possible causes, and that his medication is being

prepared. In the meantime, a computation is started based on his diagnosis and medical

records to design a customized drug, which within minutes is sent to his pharmacy. On

his way to work John stops by his pharmacy to pick up his drug and sign the credit card

payment receipt.

Does this sound hard to believe? The scenario might sound far fetched at present, but

emerging Grid Computing technologies hold a promising drive to satisfy every aspect of

this scenario.

Grid Computing is defined as an infrastructure that allows for flexible, secure, coor­

dinated resource sharing among dynamic collections of individuals, resources, and orga­

nizations [11]. Parallel to the above scenario, the cell phone, computer systems, and the

pharmacy create a virtual organization that securely exchanges medical information and

provides the user with a complete and reliable medical service. The user was not aware of

how, when, and what happened in order to obtain his diagnosis and the customized drug

2

to cure his sickness. While in the background, massive computing power was consumed

to quickly formulate the structure of his drug based on his current diagnosis and medical

history; a data link was established between the nearby medical facility and his physicians'

office in order to transfer personal medical files; the drug manufacturing specifications were

transferred to a reliable pharmacy before the person arrived to collect it. All these trans­

actions had to be secure, reliable, distributed, involving a heterogeneous set of resources

while preserving information integrity. Any loss or tampering of drug information could

result in deadly symptoms.

It is clear that without an infrastructure, distributed tasks would be impossible to co­

ordinate. As pointed out in [12], "An infrastructure is a technology that we can take for

granted when performing our activities. The road system enables us to travel by car; the

international banking system allows us to transfer funds across borders; and the Internet

allows us to communicate with virtually any electronic device." Luckily, Grid Computing

technology infrastructure is being developed under the auspices of the Global Grid Forum

(GGF), which is an international community-initiated forum of individual researchers and

practitioners working on various facets of Grids [2]. The GGF oversees all Grid related

activities including applications, development, and community relations (see Figure 6). In­

dustry leaders like IBM, Sun and Intel are joining hands with the major research centers

and academic institutions to standardize protocols and services used by grid resources.

Knowing the distributed nature of Grid Computing and its focus on sharing resources

among organizations, we introduce the notion of a Virtual Organization (VO). As noted in

[11] the resource sharing, necessarily, is "highly controlled, with resource providers and

consumers defining clearly and carefully just what is shared, who is allowed to share, and

the conditions under which sharing occurs" A set of individuals and/or institutions defined

by such sharing rules form what we call a Virtual Organization (VO) (see Figure 1).

Reflecting back to the Grid Scenario, a VO was formed consisting of the pharmacy,

3

patient and the hospital. Each operated only in their allowed authentication modes. For

example, the pharmacy could not access the patient data directly, it was handed the infor­

mation by a delegated authority like a hospital.

The enabling factor for VO's is the underlying Grid architecture consisting offive layers

[13]. Each layer builds on top of the other, creating a chain of interoperability between

heterogeneous resources. They are similar to the layers in computer architecture which

progress from hardware layer to application layer. The following is a summary of Grid

layers largely based on the text explained in [11].

voe

I = Institution or Organization

VO = Virtual Organization

Figure 1: Virtual Organizations [1].

Fabric This layer provides the interface to the local hardware including computational

resources, storage systems, catalogs, network and sensors, making it the most basic

layer. As resources get more and more distributed this layer plays a key role in

maintaining standard protocols to access heterogeneous resources.

Connectivity Defines core communication and authentication protocols required for Grid­

specific network transactions to and from the Fabric layer. Communication require­

ments include transport, routing, and naming and are mostly based on the TCP/IP

protocol. The authentication protocols build on communication services to provide

4

cryptographically secure mechanisms for verifying the identity of users and resources

and include the following features (see Figure 2).

Single sign on Users must be able to "log on" to multiple resources once without

needing user intervention.

Delegation A user must be able to grant access to a program on that user's behalf,

so the program can access authorized resources according to the users authen­

tication.

Integration with various local security solutions Local security infrastructure must

be compatible with Grid security solutions. Realistically, the Grid security so­

lutions should not force to replace existing local security solutions, but instead

provide the mapping required.

User-based trust relationships If a user is authenticated to use multiple resources,

that user should not have to deal with security administrators from those multi­

ple sites every time the sites are accessed.

Resource This layer builds on the connectivity layer communication and authentication

protocols to define protocols for the secure negotiation, initiation, monitoring, con­

trol, accounting, and payment of sharing operations on individual resources. Re­

source layer is only concerned with individual resources and ignores issues regarding

distributed management of resources as this is handled by the Collective layer.

Collective Collective layer is responsible to manage multiple distributed Resource layers,

offering co-allocation, directory, monitofJlng, data replication, software discovery,

scheduling and brokering services implementing a wide variety of sharing behaviors

without placing new requirements on the resources being shared.

5

Application This is the final layer that consists of user applications used in the VO, which

in turn could use sophisticated software development kits like the Java CoG Kit [7].

Accessconuol
through. authentication
and authorization

c ..
Secure communication
through encryption
and nOli-repudiat ion

Community"
authcrization
through. delegation

Figure 2: Simplified Grid Security Concepts [2].

In essence, the Grid architecture combines security management with general Grid

management entities like tasks, data, communities and services (see Figure 3). A good

summary of these issues are explained in [2]. Essentially, Grid management oversees inter-

actions between socio-political entities and the Information Technology (IT) infrastructure.

Analogous to the Grid Scenario, this reflects managing which medical data can be shared

among the pharmacy, hospital, physicians' office, and the patient, which usually transitions

from less access to more, as the patient has the rights to view all his medical data, and the

pharmacy only deals with data it is presented.

At the core of Grid management lies security issues like authentication, authorization,

encryption, and nonrepudiation. According to [2], which states:

Authentication is the verification of the identity of an entity within the Grid. Though

this is commonly associated only with identification of a Grid user, the Grid also requires

authentication of resources and services provided as part of the Grid.

6

Authorization deals with the verification of an action an entity can perform after au­

thentication was successfully performed. Thus, policies must be established to determine

the capabilities of allowed actions. A typical example is of a batch queue that allows user

A to use a resource between 3 and 4 o'clock, but user B to use between 5 to 6 o'clock. In

general, policies determine who can do what, when, and at which resource.

Encryption provides a mechanism for protecting the confidentiality of messages in tran­

sit between two peers.

Nonrepudiation prohibits resource gateways to arbitrarily deny that it granted a resource

reservation.

Figure 3: Grid Mangement [2].

These security issues extend security concepts like Single sign on, Delegation, Com­

munity authorization and Secure Execution of the Collective Grid architecture layer, com­

pleting the circle of grid security requirements (see Figures 2 and 4).

B. An Evaluation

The previous section introduced the basic concl~pts of Grid Computing. In this section

we evaluate where Grid Computing stands today and examine room for possible improve­

ments. Later, we conclude this section with factors motivating this thesis project. To begin

with, we note that Grids can be classified into two parts. One part that provides func-

7

tionality supported through its association with Problem Solving Environment (PSE), and

the other part providing usability through association with Human Computer Interaction

(HCI) (see Figure 5). In the following section we relate these two research fields to Grid

Computing, starting first with PSE.

Everyday eBay [14] is enabling sellers with surplus resources to connect with the poten­

tial buyers having demand for those resources. The eBay web-portal is essentially solving

community problems by providing a link between the resource voltage, in turn classifying

eBay as a user centric PSE. Although the field of PSE is relatively new and difficult to sum-

marize, the pioneers defined it as "a computer system that provides all the computational

facilities necessary to solve a target class of problems", and further PSEs "use the language

of the target class of problems, so users can run them without specialized knowledge of the

Figure 4: Grid Security [2].

~-~"-~l

I Grid CompUiting J
l ~

I
r"O"- ""~l"", __ ~_~ ___ "".~,

Human Computer Interaction (HCI) I Problem Sohling Environment (PSE) I
'~I i'
~~rastructure) (" Resources -J Portals

r l Applications

Figure 5: Thesis Project Integrals

8

underlying computer hardware or software" [15]. Essentially, a PSE serves as a mediator

between the user and the problem, providing all necessary tools to solve a problem effi­

ciently without distracting the user with unnecessary complexities [16]. A few examples of

existing PSEs are Grid Computing through spread sheets [17], Netsolve - distributed math­

ematical solver [18, 19] and Grid enabled PSE [20]. Even cluster computing infrastructures

like Beowulf [21] and Mosix [22] can loosely be considered a PSE, as they provide a com­

putational problem solving sandbox. Similarly, Grid Computing can be considered a multi

faceted PSE as it connects resources and communities [23] and solve a variety of prob­

lems defined by the participating VOs. A Grid PSE even has the ability to combine several

heterogeneous PSEs into a single collaborative PSE. But Grid Computing, as implemented

today, cannot fully be considered as a PSE as there is no single homogeneous environment

that provides all problem solving tools. This research project attempts to tackle this issue

by providing a user centric PSE providing all necessary tools to interact with Grids and

also enhance use experience by following several aspects of HCI, as described below.

HCI [24] is a research field concentrated on creating a system that is easy to learn

and easy to use [25]. Through development of new paradigms as mentioned in [26, 27],

the systems comply with common HCI goals. For example, several desktop paradigms

have been developed to support the underlying system with an easy to use user interface

[28, 29, 30, 31]. Are Grids today taking similar efforts to support the HCI goals? If not,

what can we do to achieve these goals? Currently, HCl goals are being addressed but there

is great room for improvement. For instance, in order to complete a task, the average Grid

user has to interact with multiple user interface environments like command-line interfaces

and programming models, requiring technical knowledge of the backend Grid systems.

Grid portals exist, but fall short on providing the same user interface from portal to portal.

The portals also have difficulty integrating with native OS patterns like drag-and-drop,

which boost usability. In order to gain wider acceptance within the large and less technical

9

user communities, we need a homogeneous graphical user environment that supports the

challenging task of providing Grid users an easy to use, seamless and transparent interface

requiring minimal user participation. This is the core motivation for this project, and an

overview is presented in the next section.

C. Overview of Project

The goal of this project is to address common HCl goals [32] along with PSE requirements

in providing a functional user interface that provides seamless Grid functionality. We in­

troduce the desktop paradigm called "Java CoG Kit Grid Desktop", similar to Windows

and KDE, and that is easy to learn, easy to use, and integrates Grid activities into existing

Operating System (OS) environments. The Grid Desktop delivers ubiquitous computing

through the Java CoG Kit abstractions, portability through XML and Java Web start tech­

nologies, and a simple user interface by following the vastly popular desktop patterns such

as drag-and-drop. Because "Without users there can be no Grid" [33], we must provide

users the usability they need to fully exercise Grid functionality.

10

......

......
J

Astra Ph~SI('S

Particle Fhyslcs:

Structural BlOlo€,y

Geo Phy~jcs

/

AppilcOItlons

"///

LegIon

//
Globu~

I

1
Python CoG Klt

JSP CoG Kit

Web S~nnce$

Java CoG Kit

Gnd

DevelofCJI\ent

/

'~,

'" Compute S~rvlces

Nlnf

~ ,

\
Globil\ GridForUN

Ported

'"

Hot01lge

Punch

COfflf'lumtc)

/ ',,-

'"
\

NASAIPG

UK Gnd

ASi1'l/PaclflcGrid

Industry

Figure 6: A Simple Classification Of Grid Activities: community activities, development tools and applications [2].

II. RELATED WORK

A. Overview

This section provides an overview of existing work that either resembles or complements

the Java CoG Kit Grid Desktop and its components. As noted in the previous section, Grid

Computing encompasses several aspects of Problem Solving Environments (PSE) and Hu-

man Computer Interaction (HCI). This creates a vast structure of contributing communities

and organizations in an effort to coordinate resources using standard, open, general-purpose

protocols and interfaces delivering nontrivial qualities of service [34]. Several sources

[35, 36] are dedicated to inform Grid communities with news and information about latest

Grid developments. Thus, covering all related concepts would not be necessary and we

shall only explore concepts directly related to the Java CoG Kit Grid Desktop.

The Java CoG Kit Grid Desktop is a desktop paradigm similar to KDE, MAC OS and

Windows that consist of a toolbar, icons, frames, and menus supporting common desk-

top patterns like drag-n-drop independent of the underlying OS. To be able to utilize this

paradigm in the context of Grid Computing, we rely on underlying middleware and work-

flow components, which in tum execute the application tasks (see Figure 7).

Oesldop Environment (Portal)

Figure 7: Collocation Of Grid Desktop Related Components

12

In the following sections we explore relevant middleware, workflows, and portals, fol­

lowed by a feature comparison to summarize the key points presented in this section.

B. Grid Middleware

As defined in [1] middleware consists of protocols, data structures, and objects that can be

accessed through convenient APls and classes (see Figure 8). Essentially they bond the

applications to the underlying Grid complexities [37] (see Figure 9), proving their effec­

tiveness through smaller projects like eMinerals [38] to larger projects like the Terra Grid.

Middleware technologies have increasingly become a service based architecture by accept­

ing the Open Grid Services Architecture (OGSA) [39] providing elementary Grid services

like job execution services, information services, file transfer services, and security ser-

vices.

I Componenm J [~.~;c.s : F
L Schem:] ~~

Middleware

Protocols ~

Figure 8: Grid Middleware Overview [1]

The elementary Grid services are mostly used during synchronous Grid interactions. To

suffice the asynchronous nature of Grids, the middlewares are striving to develop advanced

Grid services such as File Management, Task Management, and Information Management

services. File Management services provide the ability to dynamically adapt to changing

network conditions, and fault situations, taking care of transfers for the users without their

intervention. Task Management services help users manage large number of tasks, which

13

Application

1r
Abstraction-based Interaction

Technology and Protocol Details

Backend Grid Infrastructure (common Globus Toolkit)

Figure 9: Grid Middleware Layers [3]

entitles management of distributed elementary Grid services (see Figure 10). And Informa-

tion Management Services manage and monitor Grid resources supporting administrative

efforts.

Grid Task
Management

Figure 10: Grid Task Management [1]

Middleware is an important component of the Grid Desktop as it ties the Grid function-

ality to the user interface. In the following sections we shall examine few of these relevant

middlewares.

14

,,_ /: R,,'''. \ '" '"' 'j ~"

(4) bind
'Requester '>..-------.;.: Provider I

--
(1) describe

Figure 11: Grid Services [1]

B.I The Globus Project

The Globus project [40] has contributed in several ways to the Grid community. Essen­

tially all major Grid projects are being built on protocols and services provided by it [41].

We can classifY these contributions into five major areas [1]. First, conducting research on

Grid-related issues such as resource management, security, information services, data man-

agement, and application development environments. Second, development of the open

source Globus Toolkit making it the de-facto industry implementation of the Grid proto­

cols. Third, assisting and building large-scale testbeds for scientists and engineers. Fourth,

collaboration with large number of application oriented efforts that develop large-scale

Grid-enabled applications with scientists and engineers. And finally, contribution through

community activities that include educational outreach and participation in the Global Grid

Forum to define Grid standards.

The Globus Toolkit started by providing just APls, but has evolved to provide protocols

and services like Metacomputing Directory Service (MDS) [42], Grid Resource Allocation

and Management (GRAM) [43], and their integration with commodity toolkits like the

Java CoG Kit [44]. The toolkit can be divided into Security, Communication, Information,

Resource Management, Data Management and Data Grid features, as explained below.

Security in Globus Toolkit is built around the Grid Security Infrastructure (GSI) which

15

uses public key cryptography as the basis for its functionality. It enables key security

services such as mutual authentication, confidential communication, delegation, and single

sign-on [1]. Other services rely on this infrastructure for secure distributed communication.

Globus also provides portals to acquire the certificates used to authorize Grid access [45].

The GlobusIO API handles the communication within the toolkit. Services like TCP,

UDP, IP multicast, and file lIO with support for security, asynchronous communication,

and quality of service are provided [1]. A Grid File Transfer Protocol [46] is also presented

to perform file transfers over Grid resources. Through the MPICH-G2 [47], support for

MPI across distributed resources is also acquired.

Information about the Grid is handled through the MDS using Lightweight Directory

Access Protocol (LDAP). Resource Management is delegated to the local resource alloca­

tion services [1]. Data Management is supported by integrating GSI protocols with existing

HTTP and FTP services. Data Grids are provided through replica catalog services by al­

lowing copying of the most relevant portions of a data set to local storage for faster access

[1].

Many community applications are extending the Globus Toolkit to enhance and opti­

mize the middleware to suit their needs. The IBM Grid initiative is one such example [48]

that provides integration with Websphere and other e-Business technologies.

B.2 Legion

Legion was developed at the University of Virginia, and is now part of the Avaki corpora­

tion [49]. A comparison between Legion and the previously mentioned Globus is presented

in [50]. The goal of Legion is to support parallelism in application code while managing

the complexities of the physical systems for the user, and schedule distributed processes

on available and appropriate resources while providing the illusion of working on a sin­

gle, virtual machine [1]. Legion provides advanced services like automatic installation of

16

binaries, secure and shared virtual file system that spans all the machines in a Legion sys­

tem, strong PKI-based authentication, flexible access control for user objects, and support

of legacy codes execution and their use in parameter space studies [1]. Much of Legion's

architecture is based on an object model where each entity in the Grid is represented as an

active object that responds to member function invocations from other objects. To support

this framework, Legion provides several core objects, such as compute resources, persistent

storage, binding objects that map global to local process IDs, and implementation objects

that allow the execution of machine code [1]. Legion follows standard message format and

high-level protocols for these object interactions, but does not restrict the programming

language or the communications protocol. Users can extend core Legion objects to define

their own objects, making it scalable and flexible.

B.3 Condor

Condor [51] is a specialized job and resource management system for compute intensive

jobs that provides job management mechanism, scheduling policy, priority scheme, re­

source monitoring, and resource management [52]. Condor maintains a pool of computers

while using a centralized broker to distribute jobs based on load information or through

preferences set by the jobs to be executed. The proper resources are found through the

ClassAds mechanism of Condor that allows each computer in the pool to advertise the

resources which it controls and publish them in a central information service. Any work­

station in the Condor pool may be called by the broker to compute, and thus Condor has

the ability to delegate interactive use of the workstation to the console users. Check point­

ing and migration of jobs to other host machines is also supported. Condor is also making

efforts to comply with other middleware's like Globus [52] to enable larger collections of

resources that span across multiple domains.

17

B.4 myGrid

myGrid is a middleware specifically designed for bioinformatitians. It supports resource

discovery, workflow enactment and distributed query processing [53]. Currently, myGrid

is being developed to conform to the OGSA [39] standards and support a service based grid

architecture that can be divided into three categories: services that perform experiments,

services that discover and manage metadata, and services which collaborate with other e­

Science initiatives. First of these services provide necessary access to bioinformatics tools

like NCB! BLAST [54], WU BLAST [55], and the complete EMBOSS [56] application

suite containing several analysis packages. Workflow Enactment and distributed database

queries are also included through these services. The discovery and management services

provide interface to the UDDI [57] that registers services together with metadata about their

location, ownership, version, cost, quality of service, and security [53]. The collaborative

e-Science offers services dealing with notification, personalization and provenance [53].

An example myGrid application can be noted in [58].

B.5 The Java CoG Kit

Currently, the Globus project provides elementary Grid middleware services without ex­

tensive support for commodity technologies used by Grid developers. Commodity pro­

gramming environments like [59] try to resolve this issue by providing tools and APIs but

do not solve the problem completely. In a mission to irradicate this issue, the Commodity

Grid project [60] is creating Commodity Grid Toolkits (CoG Kits) that define mappings

and-interfaces between Grid services and the particular commodity frameworks of interest,

including Java, Python, CORBA, Perl, Web Services, .NET, and JXTA [61]. The Java CoG

Kit is one such implementation which reimplements the Globus protocols in Java and pro­

vides advanced services currently not available in the Globus Toolkit. The Java CoG Kit is

also a framework for designing computing portals [1] and has proven itself to become an in-

18

tegral part ofGT3 along with several projects at major organizations like CERN, DOE and

NSF. Notably, it also won the "Best Poster Award" at the 2004 Super Computing Confer­

ence [62]. Because the Java CoG Kit holds these features, it best serves as the middleware

of choice for this project. An overview of the Java CoG Kit is depicted in Figure 12, and a

comprehensive manual is available online [4].

Dorumentation i

r" '~Webpage,
Wiki

:~~
Manual

essential part of
GT3.02
GT3.2, GT3.2.1
GT3.9.x, GT4.0

\ JavaCoGKitv4 !
.1........ '

Source Community

"

Task mfanag~ .. m .•... oo t ~ ... _. ". _._
", CoG Workflow _1
:: GridDesktop

(G;;;;Shell

Figure 12: Java CoG Kit 4 Overview [4]

C. Workflows

Workflows are the operational aspects of a work procedure containing a collection of tasks

with or without dependencies. Figure 13 depicts a good overview of how workflow com­

plexity increases as systems transition from a single user to Grid communities. Several

workflow tools exist that can create, monitor, and manage individual tasks [63, 64, 65, 66,

67, 68, 69, 70, 71, 72, 73]. A complete online survey providing up to date information

pertaining to workflow activity can be found at the Indiana University Extreme labs site

[74]. Relative to the Java CoG Kit Karajan workflow tool, these workflows provide just the

basic functionalities. The Karajan workflow (successor of GridAnt [5]) provides extensive

19

support by defining a combination of distributed parallel and sequential tasks, supporting

the Grid security features and services, and providing a sophisticated visual workflow edi­

tor. The Grid Desktop benefits from the Java CoG Kit framework and its Karajan workflow

system as they provide a well rounded package of functionality and usability, satisfying

PSE and HCI goals.

C'omp[ex'z:r
Knowledge
Peer

'-ntuai and
QuaId)' and
Collaborative

Dlstnbuted and
Htcl'arclucal

Data 3ml
Process

Batch ~
P1P.

~conhOl
Dlstnblrted

SUlgle Mamfi:amc: Yedol ParaDel Meta Gnd PlP

~_r ____ C_:Ol_np_l~JU}luter Computer _______

~;"i;,rJ"~'"l~" C'OllJ.t'liP':g Pt:rrep!{;

Figure 13: Flow History [5]

D. Portals

The Java CoG Kit Grid desktop is a portal. A Portal being a community service with a

single point of entry to an integrated system providing access to information, data, ap-

plications, and services [75], addressing common HC! and PSE issues mentioned earlier.

The term Portal can be refined depending on the environment. For example a Web Portal

accesses information through Web browsers using several Web-based commodity technolo-

gies like HTTP and CGI. Similarly, Grid portals, like the Grid Desktop, can be defined as

a specialized portal to access information, data, services and applications residing on Grid

resources. Grid portals may contain heterogeneous types of portals in an effort to address

advanced HC! issues. Several attempts are being made to integrate Grid portal concepts

20

into existing user desktop environments and providing users instant access to Grids without

additional knowledge. These attempts and several other relevant Grid portals are presented

in this section.

Portal

.. -' / "-... .
[nllmnal1011

",d

Figure 14: Portal [2]

Grid portals may have varying user interfaces but all have proven to be simple and ef­

fective Grid environments [76]. They mostly vary as they are created using different portal

generators like Web portal generation toolkits similar to JetSpeed [77]. Other portal toolkits

like Portal Construction Toolkit for the Grid (PCT4G) [78], Legion Grid portal [79], lini­

based Portal Augmenting Grids (JiPANG) [80] and Grid Speed [81] provide pre-packaged

Grid portal creation frameworks for faster time to market. Several specilized portals also

exist. For example, in the bioinformatics domain we have Bio Portal [82], Proteome An-

notation Portal [83], Bioinformatics portal [84], BioBar [85], Helmholtz Network [86] and

Hembase portal [87] providing a mixture of information and Grid access portals. In ad­

dition several organizations, like The Open Grid Computing Environment (OGCE) [88]

assist Grid projects in providing user interfaces and environments, including portals.

Let us briefly review a few popular Grid portals. The UNICORE (UNiform Interface to

COmputing REsources) [89] portal provides a simple access to the Grid including work­

flow management, job submission, job monitoring, and job control as part of a single client.

Similarly, HotPage [90] is a portal that provides a collective view of a distributed set of

21

computing resources while providing simple resource management and query services.

Additionally, HotPage supports the Globus services and enables users to access and ma­

nipulate files and data to submit, monitor, and delete jobs. Also, the Talisman [91] portal

has successfully provided portal interfaces for the myGrid bioinformatics middleware men­

tioned earlier, supporting workflow and information queries for the Grid.

Aside from providing Web based portals, several stand alone application portals are

also available. One of which is the Java based Entrada Project [92] which is a light-weight

application hosting framework geared to help make Grid resources easier to access and

use. Several similar tools exist like the CoG Box [93] and Generic GUI Generator for

the Grid (GuiGen) [94]. Also, applications like the @Home project [95, 96, 97] provide

simple portals accessing compute cycles on public Grids through simple "screen saver"

type executables.

D.l Desktop Environments

All portals mentioned earlier are accessed through external applications, like Web browsers

and application launchers, forcing users to use environments not directly associated with

the OS. This may not always provide a homogeneous interface and additionally require the

user to learn new skills complying with changing environments. We can solve this issue by

integrating Grid functionality within the desktop paradigm itself. We have several options,

one being to extend existing desktop environments like Windows [28], Mac OS, and Sun

Desktop [29]. But they provide proprietary implementations of the desktop paradigms, and

make it harder to extend and freely support Grid enabled functionalities. Alternatively, we

could extend publicly available desktop technologies like KDE [98] and Zesktop [99] but

would restrict users to use a specific OS. One of these attempts can be found through the

Grenade project [100], which attempts to integrate job submission service into the KDE

desktop.

22

There is need for a portable desktop paradigm that retains its user interface indepen­

dent of the underlying OS. The Migrating Desktop [101] attempts to provide this imple­

mentation, but is specific to the Cross Grid and would require overhead to comply with

other Grid infrastructures. The Java CoG Kit Grid desktop provides the optimal solution to

this problem by building on the Java CoG Kit abstractions, which supports multiple Grid

infrastructures, and by creating a portable implementation of the desktop paradigm that

essentially creates a virtual OS interface conforming to a uniform look and feel. We shall

now compare these options in the next section.

D.2 Feature Comparison

In this section we relate Grid portal technologies. As depicted in Figure 15 which compares

usability (y-axis), functionality (x-axis) and availability (oval size) of several Grid portal

classes. The usability encompasses all user driven aspects of the interface, addressing

questions like does the portal have support for drag-n-drop, icons, frames, and other HCI

aspects. The portal functionality quantifies support for various Grid systems like Globus,

Condor, UNICORE, etc. And availability quantifies the approximate number of unique

implementations per portal class.

In summary, although the Java CoG Kit Grid Desktop is far from replicating the well

established proprietary desktop systems, it does provide a convincing solution for average

Grid users who need Grid functionality quickly without learning new paradigms. The Java

CoG Kit Grid Desktop is the first such implementation to leverage the desktop paradigm

and apply it towards Grid Computing. Other projects like the Grenade project and the

Migrating Desktop, emerged later in an attempt to provide a desktop paradigm on specific

systems. The Grenade project currently only supports basic Grid services on KDE desktops

and plans to support others like Redhat, Debian, and Windows. Similarly, the Migrating

Desktop is designed to use with the Cross Grid infrastructure, and would require overhead

23

..c
ro
(J)

::J

Java CoG Kit

Functionality

Desktop
Environments

Java CoG
Kit Grid
Desktop

L:'= Programming
'C~mOdeIS (APls)

Figure 15: Portal Comparison [6]

to comply with a wide range of Grid systems. None of them support the wide range of

underlying Grid architectures like the Java CoG Kit Grid Desktop. A summary is provided

in Table D.2.

24

N
Vl

Name

Windows
Sun Desktop
Mac OS
CDE
Zesktop

KDE
Clemantis
Jdistro

Jesktop

Grenade Desktop
Migrating Desktop
Java CoG Kit Grid
Desktop

Table I: Desktop Paradigm Comparison

Type Release(User base

Proprietary Yes High
Proprietary Yes Moderate
Proprietary Yes High
Proprietary Yes High
Proprietary No Low

Open Src Yes High
Open Src Yes Low
Open Src Yes Moderate

Open Src Yes Low

Academic/Open Src No Low
Academic/Open Src Yes Low
Academic/Open Src Yes Low

Usability Grid Single
nmc- OS
tional- depen-
ity dent

High None Yes
High None No
Very High None Yes
High None Yes
Moderate None No

High Low No
Low None No
Moderate None No
High
Low None No

Low Moderat Yes
Low Low No
Moderate High No

III. THE JAVA COG KIT GRID DESKTOP

In the previous sections we established the basics of Grid Computing, motivated the need

for a Grid Desktop, and explored related technologies. In this section we present an

overview of the Grid Desktop architecture.

A. Overview

The Grid Desktop is part of the Java CoG Kit's Gridfaces module, which serves as an

abstract interface connecting underlying Grid services with the applications (see Figure

16). The Gridfaces module contains several utilities and GUI applications like the Grid

Shell and the Grid Directory Browser, which are accessible from the Grid Desktop and as

stand alone applications. Additionaly, using the Java Beans technology, the Java CoG Kit

plans to support a Grid Integrated Development Environment (IDE) for faster application

development providing out of the box Grid enabled components.

Leveraging Java technologies and the Java CoG Kit, the Grid Desktop provides a well

rounded user workspace that is easy to use and dynamic, containing basic desktop com­

ponents like menubars, toolbars and icons. In addition the Grid Desktop icons support

drag-n-drop and active state notifications that follow the state graph depicted in Figure 17.

Please note that the following sections are part of the Java CoG Kit 4 manual [4].

26

Gridfaces Layer (SWING, Portals)

Data and Task Management Layer IWnr!<'flnINH

CoG Abstraction Layer (Tasks, Graphs, Queues, ...)

Figure 16: Architecture of the Java CoG '

Unsubmitted

Failed Completed

Figure 17: Active Icon State Graph

27

Development

Gl
::!.
C.

o
m

B. Design

In this section we present the abstract desktop architecture for the Java CoG Kit Grid Desk­

top. It resides in the Java CoG Kit Gridface package and extends the much general Desktop

interface from the Gridface/interfaces package. Together they form the package hierarchy

depicted in Figure 18.

f1:1 desktop
Ii' dnd

1+; frames
Lt.: icons
:;:: interfaces

if listener
1+ panels
[+: toolbar

It uti!

itl AbstractDesktop.java
[±' Abstr actDesktopContainer. java
;+ GridDesktopContainer, java

it: GridDesktoplmpl. java

Figure 18: Desktop Package

The following summarizes the desktop package, linking relevant sub-packages to later

sections.

dnd package provides the drag-n-drop support for the desktop icons (Section B.l);

frames provides the abstractions for creating desktop internal frames (Section B.2);

icons provides the desktop icon abstractions and its mouse listener (Section B.3);

interfaces provides the basis-set interfaces used by the desktop (Section BA);

listener contains the mouse listener class for the desktop;

panels contains the Dynamic Form Panel (DFP) framework (Section B.5);

toolbar contains implementation for the desktop toolbar (Section B.6); and

util contains utility and supporting classes used by the desktop (Section B.7).

28

The desktop package contains two abstract classes along with their Grid enabled extend-

ing classes. One of the abstractions, the AbstractDesktopContainer, extends the JFrame

class from Java and contains the menu bar, DesktopToolBarlmpl and the desktop itself.

The second abstraction, AbstractDesktop, extends the JDesktopPane class from Java and

provides the abstract implementation for basic actions like adding and removing icons, and

saving desktop state to a XML file. An overview of this architecture is presented in Figure

19.

D .. ,klflf}b:«'f'<lIFr
9 a.ne

Figure 19: Simplified Desktop UML Diagram

B.1 Drag and Drop

Modem desktop paradigms have introduced the ability to drag and drop elements onto

each other, provoking logical behaviors. For example, dragging and dropping a file on

an executable might provoke the executable to open the dropped file. The Grid Desktop

applies similar behaviors in the context of Grid Computing through two classes contained

in the dnd sub-package.

The DesktopTransferHandler class extends the TransferHandler class from Java. It is

the main class for handling drag and drop between icons, making full use of the Action

Proxy Framework (APF)(see Section BA). The DesktopTransferHandler divides the drag

and drop actions into three stages. First stage prepares the drag icons by wrapping them

29

in a DesktoplconTransferable object having a DesktopJconGroup class flavor. The Desk­

topJconGroup class is contained in the icons sub-package (see Section B.3), and is the only

flavor currently supported for inter desktop drag and drop. Once the transfer object is cre­

ated the DesktopTransferHandler checks to see if the dragged over object supports the drop

by delegating to the underlying APF. If the APF approves the drop then the DesktopTrans­

ferHandler again delegates the import drop action to the APF. In essence, by leveraging

the APF the DesktopTransferHandler class serves as an abstract drag and drop handler for

current Grid Desktop implementation and its future extensions.

The DesktopTransferHandler class also supports drag and drop between native OS

icons and the Grid Desktop. Currently only two native icon flavors are supported, one is

the List flavor used by Linux systems, and the other being String flavor used by Microsoft

Windows systems. These native OS icons are added to the desktop by simply dragging

them to the Grid Desktop.

B.2 Internal Frames

The Grid Desktop supports internal frames through the DesktoplnternalFramelmpl class

which extends the JlnternalFrame class from Java. The DesktoplnternalFramelmpl class

implements the DesktoplnternalFrame interface which specifies default desktop internal

frame attributes and constants. The desktop internal frame content can be any object that

extends the Component class from Java. In essence, supporting a wide variety of visual

components and containers already existing in Java like JTable and JPanel. The JPanel con­

tainer is used more often as it is light-weight and very flexible. Additionally, the Desktopln­

ternalFrameListener class contained inside the frames/listener package, provides standard

implementation for internal frame events like closing and opening. A couple of specialized

internal frames are implemented for the Grid Desktop and are mentioned in Sections C.6

and C.7.

30

B.3 Icons

Desktop icons are the most basic element for user interaction within the Grid Desktop.

They provide the ability to invoke internal frames, launch native OS applications, and sup­

port drag and drop between other icons. Much of the abstract icon behavior is captured in

the AbstractIcon class, which also provide access to the basic icon attributes like icon text

and image location. These attributes can be edited through the Properties action of the icon

configurable popup.

Each desktop icon is associated with an icon type. To begin with, the abstract desktop

architecture provides the NATIVE and SYSTEM icon type. The NATIVE icon type is

assigned to icons that invoke native OS applications from the icon, and the SYSTEM icon

type is reserved for preconfigured un-editable icons. More icon types can also be added,

as seen in the next section which adds Grid enabled icon types. Both the NATIVE and

the SYSTEM icon types are implemented in the GenericIconlmpl class, which extends the

AbtractIcon class. All basic icon attributes can be edited through the icon Properties popup

action, which opens a Properties dialog frame for all except the un-editable SYSTEM icons.

The NATIVE icon Properties dialog frame is organized into two sections, bottom sec­

tion for "Basic Icon Properties" (from Abstractlcon) and the top section for "Generic Icon

Properties" (from GenericIconlmp/). As NATIVE icons can execute native OS executables,

there is a text field to specify executable name and its arguments as part of the "Generic

Icon Properties". Similarly, the "Basic Icon Properties" contains text fields for icon text,

icon image location and icon type. The iconimageURI field specifies the icon image loca­

tion inside the Java CoG Kit resources module. The string NATIVE_URI is shown inside the

iconimageURI field if the icon is a native OS icon. The field AppClass specifies which class

to execute in the desktop internal frame. For example one could putjavax.swing.JButton in

the AppClass field and specify the string, testing, inside the AppClassArgs. If after saving

31

these icon properties this icon was executed by dlouble clicking, it would open a desktop in­

ternal frame containing a JButton with the text testing. Please note that the double clicking

action of the NATIVE icons gives preference to the native OS executable specified in the

"Generic Icon Properties" field over launching the application class specified in the "Basic

Icon Properties" text field. The previous button example launched a JButton through its

constructors. The checkbox UseMainMethod if checked launches the AppClass through its

main method passing the string arguments specified in AppClassArgs. This can be used to

launch external visual Java applications.

Also contained in this package is the DesktoplconGroup class which is a multiple icon

data structure. It is used as a data flavor during drag and drop providing basic icon group

methods like sorting by icon type, and retrieving all icon types from icon group.

B.4 Basis-Set Interfaces

The Access interfaces reside in the interfaces module of the desktop package. They form

the Basis-set interfaces used by all other classes to communicate. They follow a very

simple naming convention, Access followed by the entity being accessed. For example the

Accesslcons interface provides method definitions needed to access icon related actions

like adding and removing icons from a container like a desktop. Similarly, AccessClose

allows a uniform interface to call when a component is being destroyed, like closing the

desktop or an internal component. The following is a listing of the interfaces.

AccessActionProxy used by CoGTop,Desktoplcon,DesktopToolBar interfaces to partici-

pate in the Action Proxy Framework (APF) (see Subsection B.4)

AccessAttributes used by the AttributesHolder class in the desktop/uti! package to provide

uniform access to a attribute holder data structure.

AccessClose called by the CoGTop interface and other Gridface modules like Directory­

Browser and SheliPanel before closing.

32

AccessDesktop used by the GridCommandManager and the DesktopToolBar interface

along with the GCMLoggerTable and the CoGLogFrame class to maintain the current

desktop object reference. Since many visual components are burried within several

other components, this interface provides a simple way to access the desktop.

AccesslconProperties used by the DesktopJcon interface to access basic Icon properties

like icon text and icon id.

Accesslcons used by the CoG Top interface to provide uniform icon access methods like

add and remove icon. These methods apply to visual containers like the desktop.

AccesslmageOverlay used by the AbstractJcon class to enable active icon image overlays.

AccessPopup used by the CoGTop and the DesktopJcon interface and the GCMLoggerTable

class to enable mouse popup for those elements.

AccessPreferences used by CoGTop, DesktopJcon and DesktopToolBar interfaces andAb­

stractDesktopContainer, AttributesHolder and ObjectPair classes to enable loading

and saving desktop element attributes to and from XML file.

AccessPropertiesPanel used by the DesktopJcon interface to access the desktop element

properties panel, like the icon properties dialog panel.

AccessSaveChanges used by the DesktoplnternalFrame interface and the AbstractDesk­

top Container class to enable or disable user notifications before closing visual con­

tainers like the internal frames and the desktop frame.

AccessToolBar used by the CoGTop interface and the AbstractDesktopContainer class to

provide uniform access to the desktop toolbar.

33

Action Proxy Framework

In addition to the Access interfaces, the desktop interfaces also include the Action Proxy

Framework (APF) interfaces. The APF assist drag-n-drop and other mouse events for the

desktop. It abstracts user actions and delegates responsibility for those actions to the im­

plementing classes, providing a flexible user interaction framework. The APF is strongly

embedded in the DesktopTransferHandler class, which handles all drag-n-drop related ac­

tivities (see Section B.1). Currently, the APF supports three actions, two related to drag­

n-drop and one for handling the mouse click event. The CanlmportActionProxy and the

ImportDataActionProxy interfaces are used by the DesktopTransferHandler to first check

if the APF component can accept the drag-n-drop before delegating the drop action. For

example, both the desktop and the desktop icons are APF components which implement

both CanlmportActionProxy and the ImportDataActionProxy interfaces. When user drags

an icon the DesktopTransferHandler checks to see if the dragged over component supports

that drag by invoking the CanlmportActionPro)(y interface, if it does not then the user is

visually notified. If the component being dragged over does support the drop then the

ImportDataActionProxy is called for that drop component to complete the drag-n-drop ac­

tion. The drag-n-drop APF framework is currently being used by the desktop, icons, and

the toolbar. Similarly, the MouseActionProxy enables delegation to a mouse click event.

This feature is used by the icons to detect mouse clicks on top of the icons. The UML class

diagram for this framework is depicted in Figure 20.

B.5 Dynamic Form Panel (DFP)

The Dynamic Form Panel (DFP) framework extends the FormPanel interface providing a

quick and simple visual form creation methodology. The DFP dynamically invokes speci­

fied get methods on an underlying object to retril~ve string values, which then are rendered

inside the form panel and presented to the user. Once the user confirms changes in the form

34

l~"~'~_~~-~<<AcceS$ActionF'roxy»~~-,~
1

~esktoPTrllnsfert~

Figure 20: Action Proxy Framework

text fields, the DFP invokes set methods to transition form changes to the underlying ob­

ject. Through the FormPanelSet class, the DFP has the ability to perfonn these set and get

methods on several underlying objects with different set and get method calls. The desktop

icons use the DFP to control icon attributes through the icon properties panel.

Suppose using the DFP we want to edit the name property of an object of class Sim­

pleObject containing methods: getName and setName. Invoking the following code within

the SimpleObject we would use the DFP in the following manner.

SimpleFormPanel sfp = new SimpleFormPanel("SimpieObject Properties");
ArrayList keys = new ArrayListO;
keys.add("'Name");
sfp.load(keys, this); to invoke

Once the user confirms the changes through the DFP text fields we invoke the following

to transport fonn changes to the underlying SimpleObject.

sfp.exportO;

Figure 21 depicts the DFP framework.

35

Figure 21: Dynamic Form Panel (DFP) Framework

B.6 Desktop Toolbar

The DesktopToolBarlmpl class implements the DesktopToolBar interface. The toolbar

serves as a docking station for icons, in addition to being the default SYSTEM icon con­

tainer. The toolbar state can be saved through the desktop preferences as defined in Section

B.8.

B.7 Desktop Utilities

Several utility classes are provided by the uti! sub-package.

AttributesHolder class is used by the desktop icons to access dynamic icon attributes.

ObjectPair is used to store a pair of objects. The Grid Desktop uses this to store the

application class name and the related object used to invoke desktop internal frames.

DesktopProperties extends the java. util.Properties class to provide a central management

of desktop properties including desktop preferences as explained in Section B.8.

DesktopUtilities is a static class providing implementation for simple desktop tasks like

converting a List object to a String.

36

B.S Desktop Preferences

The Grid Desktop can save and load icon properties to an XML file using the java. uti/.Preferences

package, enabling desktop users to port workspace from one system to another (see Figure

22). The desktop icons being saved can be situated either on the desktop or the toolbar,

as the responsibility of saving preferences is delegated through the AccessPreferences in­

terface. The Desktop Preferences schema format is outlined in Figure 23, and a sample

desktop XML file is provided in the Appendix.

Figure 22: Desktop Preferences Simplified

Figure 23: Desktop Preferences Schema

C. Implementation

The Grid Desktop, also referred to as CoGTop, is a user centric grid workspace that ex­

tends the abstract desktop framework. Its origins can be traced to the time when even

the term Grid was not yet invented [102, 103, 104]. The Grid Desktop bundles modules

already available in the Java CoG Kit into a single easy to use, persistent, and portable

workspace. In addition, the Grid Desktop provides several Grid centric icon types like

37

JOB_SUBMISSION, JOB_SPECIFICATION and SERVICE. Also, native OS RSL files

specifYing RSL specifications [105] can be placed on to the Grid Desktop, and later dropped

on a JOB_SUBMISSION or a JOB_SPECIFICATION icon type to invoke a job submission

on a service. All icon properties are edited through their properties form.

Figure 24 depicts a screen shot of the desktop anotated with labels of a subset of desktop

components.

Figure 24: Desktop Overview

C.I Underlying Components

The Java CoG Kit Grid Desktop relies on several underlying components and modules. The

following is a list of components in order of dependency, starting with the Grid Desktop to

the underlying Grid environment.

38

• Grid Desktop

• GridFaces

• Grid Command Manager (GCM)

• Java CoG Kit Karajan Workflow

• Java CoG Kit Abstractions

• Grid environment (Globus, Condor, etc.)

As the Grid Desktop is part of the Grid/aces module, it incorporates the Grid Shell and

the Directory Browser component as part of the desktop. The Grid Shell component pro­

vides a shell environment, similar to UNIX shells, that functions over Grid systems. Users

of the Grid Shell can perform many basic and advanced Grid functions like file operations

and file transfers. The Directory Browser is a similar component with an enhanced visual

interface. It looks and functions a lot like the Microsoft Windows Explorer, supporting

drag-n-drop offiles and directories between Grid systems. More information can be found

about these and other Gridface components in the Java CoG Kit 4 manual [4].

The core of every Gridface element, including the desktop, is a single Grid Command

Manager (GCM) that controls all Grid related activity between the Gridface components

and the rest of the Java CoG Kit. Every job submission, file transfer, and file operation task

is initiated through the AccessGCM interface and tracked by the GCM throughout its life

cycle. The GCM monitor table is provided to visualize these Grid activities, as explained

in Section C.7.

The Java CoG Kit Karajan visual workflow editor can be invoked as an internal desktop

frame, adding a fully functional and highly sophisticated workflow system into the desktop

that can handle larger coordinated tasks. The core Java CoG Kit module is the abstractions

module, which provides a seamless interface for Grid activities that stays homogeneous

39

despite of the underlying Grid systems. This hides Grid system complexities from the

application user, who can then spend time on more important activities. The abstractions

module is the core module for all Grid Desktop activities requiring Grid actions. More

information about the Karajan system and the Java CoG Kit abstractions can be accessed

through the Java CoG Kit manual [4].

C.2 Prerequisites

Before starting the Grid Desktop the user must make sure the network connection is active

and can connect to the Grid. In addition, follow the procedures as explained in [4] to set up

the Java CoG Kit. In case the Grid is behind a firewall, use VPN to connect to the internal

network by following these steps. Note that if you reconfigure the network settings from

within the desktop, you must restart the Grid Desktop for the changes to take effect.

1. Log in to VPN

2. After establishing the connection run the Java CoG Kit setup component and re-probe

the CoG properties IP address to match the VPN connection IP address.

I > cog-setup

Once the connection is validated to the Grid, make sure the .globus directory is there in

user home directory path. Failing to have this directory in its proper path will keep the Grid

Desktop from starting. Inside the .globus directory the desktop configuration file exists,

called desktop.properties.

I $HOME/.globus/desktop.properties

In this file, one can specify several desktop attributes used to start the Grid Desktop.

desktopfile specifies where the default desktop preferences file is located.

40

maxwidth specifies maximum width for the desktop, fitting all icons and internal frames

accordingly.

maxheight specifies maximum height for the desktop, fitting all icons and internal frames

accordingly.

If a desktop.properties file does not exist, then a default file will be created using the

DesktopProperties utility class. In it the desktop file attribute will point towards .globusldesk­

topldesktop.xml, which will be created if not present. Also the maxwidth and maxheight

will be set to the maximum dimensions of the current screen size.

An example desktop.properties file is given below.

#Java CoG Kit Desktop Configuration File
#2004-11-01 14:52:28
desktopfile=C:\ Documents and Settings \pankaj\ .globus \ desktop \ desktop.xml
maxwidth=1024
maxheight= 768

C.3 LaunChing

The Grid Desktop is launched by executing

I > cog-desktop

The usage instructions for starting the desktop are provided by the Java CoG Kit manual

page available in Appendix IV.

C.4 Grid Command Manager Preferences

Adding to the XML export function from the abstract desktop framework, the Grid Desktop

also partially supports exporting GCM tasks and task graphs to a XML file. The idea is to

save on going Grid tasks to be started at a later time. This functionality was developed by

another team member, and is not thoroughly tested through the desktop. It is recommended

to wait for future Java CoG Kit releases to use this functionality.

41

C.S Icons

Building on the abstract desktop framework, the Grid Desktop adds three more icon types.

Both the abstract desktop framework and Grid Desktop icon types are summarized below.

JOB_SPECIFICATION is based on the RSL specification, where the executable, work­

ing remote directory, standard input and standard output can be specified. This icon

type should be dropped on a SERVICE icon to execute the specification on that ser­

VIce.

JOB_SUBMISSION contains a complete description of a job, including service contact

andjob specification information. This icon type is capable of executing jobs through

its popup and its properties frame. Similar to the JOB_SPECIFICATION icon type,

this icon type can also be dropped on a SERVICE icon to execute tasks. The job

output can be viewed through the Grid Monitor Frame or by double clicking the

icon, once task is completed.

SERVICE contains service contact information and accepts drag and drop from both

JOB_SPECIFICATION and JOB_SUBMISSION icons, initiating job submissions

specified in the service contact.

NATIVE represents a native file, which can be executed by double clicking. This icon is

also created by dropping a native Operating System file onto the desktop.

SYSTEM Represent preconfigured icons like the Directory Browser and Grid Shell. These

icons cannot be added or edited from both the desktop or the preferences XML file.

These icons can be added to the desktop interactively, just like other popular desktop

environments. Right click on the desktop and navigate to "Add icon" menu and select the

icon type to add to the desktop.

42

Figure 25: Add Icon Menu

Once added, the individual icon properties can be configured by following to the "Prop-

erties" menu item contained in each icon popup. For convenience sake, the SERVICE icon

and JOB_SPECIFICATION icons can access the properties frame by double-clicking the

icon also.

All Grid icons support drag-n-drop, and also provide flexibility to accept or reject

drops depending on specific icon type pairs. For instance a SERVICE icon cannot be

dropped on to NATIVE icons, as intuitively it does not make sense. On the other hand,

a JOB_SUBMISSION icon can be dropped on to a SERVICE but not on a NATIVE icon.

This relation is specified through a Boolean matrix, which is part of the Gridlconlmpl class .

. booleanOO canlmportMatrix = {
II[SERVICE,JOB_SUBMISSION,JOB_SPECIFICATIONj (Drop Icon)
{false,false,false}, IISERVICE (Drag Icon)

};

{true,true,false}, IIJOB_SUBMISSION (Drag Icon)
{true,false,true}, IIJOB_S PECIFICATION (Drag Icon)
{false,true,true} IINATIVE - RSL FILE(Drag Icon)

JOB_SUBMISSION and JOB_SPECIFICATION are active icons, meaning their job

status is reflected visually through their icon image. A visual tour of the icon image over-

lays and their meanings follow.

Submitting a job through the icons can be done in two ways. First, by dragging

and dropping a JOB_SUBMISSION ora JOB_SPECIFICATION icon onto a SERVICE

icon. Second, by directly executing the JOB_SUBMISSION icon through the icon popup

"Run Task" method or by using the "Execute" button in the JOB_SUBMISSION proper-

43

C~e\ed
Un-submitted Submitted

Failed

Figure 26: Action Icon States

ties frame. A SERVICE icon is not necessary for JOB_SUBMISSION icons as they also

contain service contact information.

C.6 CoG Top Log Frame

The Desktop Log frame logs all desktop activity .to a scrollable text area. The logs being

displayed can be controlled by setting a higher or lower Log Level. This can be done

through the Desktop Log frame menu bar. The log can also be exported to a fi Ie using the

"Save Log" action from the Log frame menu bar. This will save all log activity regardless

of the current Log Level. Additionally, the "Clear" log action clears all log information

from the frame.

fOI command: um:cog- l09921l633899 to: Submitted
for command: urn:cog- l099113633899 to: Acti¥t
fCI command: urn:cog-l099173633895 to: Comp!e1ed

O"r--

Figure 27: CoGTop Log Frame

C.7 Grid Monitor Frame

The Grid Monitor frame displays Grid task data in a table that includes status, job exe­

cutable name, directory location, job submit time and job completion time. It also includes

44

additional featnres such as viewing job output and job errors by clicking the respectable

buttons displayed in the monitor frame, or by hovering the mouse over the respected but­

tons in the table.

Each row in the table represents a Grid Command, and currently supports canceling in­

dividual commands by invoking cancel action through row right click popup. Other actions

such as Grid Command suspend, resume and remove will be added in futnre releases as the

GCM does not fully support them yet.

Figure 28: Grid Monitor Frame

D. Evaluation and Future Extensions

Thus far we have seen how the Grid Desktop functions both as a desktop paradigm and as

a Grid portal. In this section we shall evaluate the Grid Desktop by noting its limitations,

recognizing its maintainance issues and providing possible future extensions.

D.l Limitations

The Grid Desktop tries to simulate popular desktop paradigms like Windows and KDE.

Both of which have been in developement for several years, involving several man hours

and careful planning. Although they provide a good implementation for the desktop paradigm,

they do not provide any support for Grid enabled environments. Grid Desktop attempts to

balance both desktop paradigm and Grid requirements into a single, portable, and homoge­

neous system. While achieving these goals the Grid Desktop contains a few limitations.

Usability The Grid Desktop does not offer all attributes of the desktop paradigm like

startup services, network services and a wide range of internal applications. Though

45

it does provide active icons and drag-n-drop patterns.

Memory The Grid Desktop runs inside the Java Virtual Memory (JVM) and depends on

memory specifications of the local system. If the Grid Desktop submits hundreds

of jobs and monitors them through the Grid monitor table, the JVM might reach its

capacity, causing a performance deficiency. These limitations are reserved for future

research which may test the performance quantitatively, and address issues regarding

scalabili ty.

Grid functionality The Grid Desktop is ultimately limited to offer Grid functionality pro­

vided by the Java CoG Kit abstractions. If the Java CoG Kit abstractions were to

break, the Grid Desktop would also follow.

Grid Command Manager (GCM) When the Grid Desktop interacts with Grid Environ­

ments it goes through the GCM. It should be noted that the GCM component was

not fully developed at the time the Grid Desktop was implemented. Thus, poten­

tially several Grid functionality issues like task suspend, resume, and checkpoint, are

limited.

D.2 Maintainance

As part of the Java CoG Kit Bugzilla system [106], the Grid Desktop maintains a bug

listing that can be viewed and updated by community members. This enables a wide range

of testing, support, feedback, and documentation opportunities. The Bugzilla system is also

accessible from one of the Grid Desktop SYSTEM icons on the toolbar. This is provided

to give community users instant access to bug reporting.

D.3 Future Extensions

Possible Grid Desktop extensions can be classified into two categories: enhancements and

Grid functionality additions. In this section we shall examine only the extensions con-

46

tributed by the author, while other extensions can be viewed through the Java CoG Kit

Bugzilla system [106]. The enhancements could be summarized as the following.

• Dynamically resize desktop size once started. This will help during projector presen­

tations, which could require a smaller resolution.

• Integrate the Access Grid software into the Grid Desktop.

• Enhance Directory Browser user experience by caching contents.

• For the CoG Log window, add font colors for different log levels.

• Send email notifications once a Grid icon has changed its status.

• Be able to visually select an icon image through icon properties panel.

• Be able to select and group multiple icons on the desktop.

• Provide an active desktop wallpaper similar to the IBM Ambient active desktop [107]

• Port desktop gridface to handheld devices like PDA and Cell phones [108].

• Enhance the view for the GCM Log table by providing views like Table-Tree which

can also show collapsable task graphs.

Grid functionalities can be summarized as the following.

• Ability to save and load menu bar, menu items and internal frames as part of the

Desktop Preferences.

• The GCM needs to be developed to support save and load task status data as part of

the Desktop Preferences.

• The desktopproperties file should be modifiable from the Java CoG Kit setup, to

centralize the Java CoG Kit configurations.

47

• Support for multiple desktops.

All ofthe above enhancements and functionalities are good additions, but the most sig­

nicant Grid Desktop addition would be the ability to close the desktop completely without

suspending or canceling any active jobs. Currently, the Grid Desktop works on a syn­

chronous Grid environment that requires fault free connection to the Grid, but if the con­

nection is lost, the Grid Desktop breaks and looses all active and suspended jobs. Once this

functionality is added to the Java CoG Kit abstractions, the Grid Desktop can leverage a

fully functional, portable, and fault tolerant Grid interface.

In addition to the above suggesstions we could also explore tailoring Grid Desktop to

provide built in tools for several Grid related problems like Data Mining, Bioinformatics,

Finance, Homeland security, Astronomy, etc. This would bring an appeal for the Grid

Desktop to the novice Grid users originating from a wide range of scientific studies.

48

IV. CONCLUSION

In conclusion, the Java CoG Kit Grid Desktop has contributed in three ways to the Grid

Community. First by developing a simple and easy to use Grid interface replicating the

widely popular desktop paradigms like Windows and KDE. Unlike several Grid desktop

paradigms which emerged later, the Java CoG Kit Grid Desktop provides a unique, flexible,

and functional interface for a wide range of underlying Grid technologies, addressing sev­

eral Human Computer Interaction (HCI) and Problem Solving Environment (PSE) issues.

In tum, serving both the novice and advanced Grid users by enabling single drag-n-drop

Grid task submissions and also advanced workflow task submissions through the Karajan

engine. Along with the implementation, the Grid Desktop also provides documentation as

part of the Java CoG Kit manual [4], which serves as a guide for using the desktop and

noting future extensions. The infrastructure for continuing development is very important,

especially when part of the widely popular Java CoG Kit open source project. Finally, the

Grid Desktop addresses maintainance issues through the Java CoG Kit Bugzilla system.

Here through community feedback, the developers and users sustain dialogues on both

problems and enhancements for the Grid Desktop.

49

REFERENCES

[1] G. von Laszewski and K. Amin, Grid Middleware. Wiley, 2004, ch.
Chapter 5 in Middleware for Commnications, pp. 109-130. [Online]. Available:
http://www.mcs.anl.gov/~ gregor/papers/vonLaszewski --grid-middleware. pdf

[2] G. von Laszewski and P. Wagstrom, Tools and Environments for Parallel
and Distributed Computing, ser. Series on Parallel and Distributed Computing.
Wiley, 2004, ch. Gestalt of the Grid, pp. 149-187. [Online]. Available:
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gestaIt.pdf

[3] K. Amin, G. von Laszewski, R. A. Ali, O. Rana, and D. Walker, "An Abstraction
Model for a Grid Execution Framework," Euromicro Journal of Systems Architec­
ture, 2004, accepted for publication.

[4] G. von Laszewski, "The Java CoG Kit 4.0a User Manual," Argonne National
Laboratory, Mathematics and Computer Science Division, 9700 S. Cass Ave,
Argonne, IL 60439, U.S.A., MCS Technical Memorandum ANLIMCS-TM-259,
Oct. 142004. [Online]. Available: http://www.cogkit.org/doc/cog-manual-4-0-a.pdf

[5] K. Amin, M. Hategan, G. von Laszewski, N. J. Zaluzec, S. Hampton, and
A. Rossi, "GridAnt: A Client-Controllable Grid Workflow System," in 37th
Hawai'i International Conference on System Science, Island of Hawaii, Big
Island, 5-8 Jan. 2004. [Online]. Available: http://www.mcs.anl.gov/~gregor/papers/
vonLaszewski--gridant-hics.pdf

[6] "Mike Hategan and Gregor von Laszewski, personal communication."

[7] "Commodity Grid Kits," Web Page. [Online]. Available: http://www.cogkits.org

[8] G. von Laszewski, M. W. Bone, 1. Fatima, M. Sosonkin, R. Winch, N. N.
Vijayakumar, P. Sahasrabudhe, K. Amin, M. Hateganl, J. DiCarlo, and D. Angulo,
"Towards the development of a bioinformatics grid desktop," Mathematics and
Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue,
Argonne, IL 60439, U.S.A., Preprint ANLlMCS-ANLlMCS-Pl189-0804, Aug.
2004, in partial fulfillment of the REU 2004 Site on Grid Computing and
Bioinformatics. [Online]. Available: http://www.cogkit.org

50

[9] "Argonne National Laboratory - Pioneering Science and Technology," Web Page.
[Online]. Available: http://www.anl.gov

[10] A. Abbas and A. Abbas, Grid Computing: A Practical Guide to Technology and
Applications. Charles River Media, Inc., 2003.

[11] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid:
Enabling Scalable Virtual Organizations," International Journal of Supercomputing
Applications, vol. 15, no. 3, 2002. [Online]. Available: http://www.globus.org/
research/papers/anatomy. pdf

[12] I. Foster, "The Grid: A New Infrastructure for 21st Century Science,"
Physics Today, vol. 55, no. 22, p. 42, 2002. [Online]. Available: http:
/ /www.aip.org/pt/vol-55/iss-2/p42.html

[13] H. Casanova, "Distributed computing research issues in grid computing," SIGACT
News, vol. 33, no. 3,pp. 50-70,2002.

[14] "Ebay Online Auction," Web Page. [Online]. Available: http://www.ebay.com

[15] E. Gallopoulos, E. Houstis, and 1. R. Rice, "Computer as Thinker/Doer: Problem­
Solving Environments for Computational Science," IEEE Comput. Sci. Eng., vol. 1,
no.2,pp. 11-23, 1994.

[16] 1. R. Rice and R. F. Boisvert, "From Scientific Software Libraries to Problem­
Solving Environments," IEEE Comput. Sci. Eng., vol. 3, no. 3, pp. 44-53, 1996.

[17] D. Abramson, J. Dongarra, E. Meek, P. Roe, and Z. Shi, "Simplified Grid Comput­
ing through Spreadsheets and NetSolve," in Proceedings of the High Performance
Computing and Grid in Asia Pacific Region, Seventh International Conference on
(HPCAsia'04). IEEE Computer Society, 2004, pp. 19-24.

[18] H. Casanova and 1. Dongarra, "NetSolve: A Network Server for Solving Computa­
tional Science Problems," International Journal of Supercomputer Applications and
High Performance Computing, vol. 11, no. 3, pp. 212-223, 1997.

[19] "Netsolve Web Page," 2001. [Online]. Available: http://www.cs.utk.edu/netsolve

[20] Y. Kim, I. Ra, B. Kim, S. Hariri, and H. W. Park, "A Grid-enabled Adaptive
Problem-Solving Environment ," in 2nd European Across Grids Conference
(AxGrids 2004) Proceedings, Nicosia, Cyprus, 28 Jan.-30 Jan. 2004. [Online].
Available: http://grid.ucy.ac.cy/axgrids04/ AxGrids/papers/EOO-555793154.pdf

[21] D. Becker and P. Merkey, "The Beowulf Project," http://www.beowulf.org/, 2002.
[Online]. Available: http://www.beowulf.org/

51

[22] A. Barak, "The Mosix Homepage," Web Page, 2002. [Online]. Available:
http://www.mosix.org/

[23] G. von Laszewski, 1. Foster, 1. Gawor, P. Lane, N. Rehn, and M. Russell, "Designing
Grid-based Problem Solving Environments and Portals," in 34th Hawaiian
International Conference on System Science, Maui, Hawaii, 3-6 Jan. 200 1. [Online].
Available: http://www. mcs .anl.gov I~ gregor/papers/vonLaszewski --cog -pse-final.
pdf

[24] "HCI Bibliography: Human-Computer Interaction I User Interface Usability," Web
Page. [Online]. Available: http://www.hcibib.org/

[25] 1. Preece, Y. Rogers, H. Sharp, and D. Benyon, Human-Computer Interaction.
Addison-Wesley Longman Ltd., 1994.

[26] A. K. Noor, "Computing technology: frontiers and beyond," pp. 1-23,2002.

[27] 1. George Chin, L. R. Leung, K. Schuchardt, and D. Gracio, "New paradigms in
problem solving environments for scientific computing," in Proceedings of the 7th
international conference on Intelligent user inteJ1aces. ACM Press, 2002, pp. 39-
46.

[28] M. Corporation, The Micorsoft Windows User Experience. Redmond, WA: Mi­
crosoft Press, 1999.

[29] "Sun Java Desktop System," Web Page. [Online]. Available: http://wwws.sun.coml
software/javadesktopsystem

[30] "Open Group - Desktop Technologies," Web Page. [Online]. Available: http:
Ilwww.opengroup.org/desktop/

[31] C. D. Group, Common Desktop Environment i.O. Addison-Wesley Longman Pub­
lishing Co., Inc., 1995.

[32] A. Dix, J. Finlay, G. Abowd, and R. Beale, Human-Computer interaction, 2nd ed.
Hillsdale, NJ: Prentice Hall, 1998.

[33] 1. M. Schopf and B. Nitzberg, "Grids: The Top Ten Questions," Scientific
Programming, vol. 10, no. 2, pp. 103-111, August 2002. [Online]. Available:
http://www-unix.mcs.anl.gov/~schopf/Pubs/topten.final.pdf

[34] 1. Foster, "What is the Grid? A Three Point Checklist ," 22 July 2002. [Online].
Available: http://www.gridtoday.coml02/0722!l 00 136.html

[35] "GRIDtoday: Daily News and Information For The Global Grid Community," Web
Page. [Online]. Available: http://www.gridtoday.comigridtoday.html

52

[36] "Grid Computing Info Centre (GRID Infoware)," Web Page. [Online]. Available:
http://www.gridcomputing.com!

[37] O. F. Rana, A. Shaikhali, and G. von Laszewski, Grid Computing: A Practical Guide
to Technology and Applications. Hingham, MA: Charles River Media, 2003, ch.
Creating and Managing Grid Services, pp. 189-223.

[38] M. Calleja, L. Blanshard, C. C. Richard Bruin, A. Thandavan, R. Tyer, P. Wilson,
V. Alexandrov, R. 1. Allen, J. Brodholt, M. T. Dove, W. Emmerich, and K. K.
van Dam, "Grid tool integration within the eMinerals project," in Proceedings of
the UK e-Science All Hands Meeting 2004, Nottingham, UK, 31 Aug.-3 Sept.
2004, pp. 812-817. [Online]. Available: http://www.allhands.org.uklproceedings/
proceedings/proceedings. pdf

[39] I. Foster, C. Kesselman, 1. Nick, and S. Tuecke, "The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integra­
tion," http://www.globus.org/researchlpapers/ogsa.pdf, February 2002. [Online].
Available: http://www.globus.org/research/papers/ogsa.pdf

[40] "The Globus Project," Web Page. [Online]. Available: http://www.globus.org

[41] I. Foster, "Internet Computing and the Emerging Grid," Nature, 7 Dec. 2000.
[Online]. Available: http://esc.dl.ac.uklStarterKit/nature.html

[42] "The Monitoring and Discovery Service," Web Page. [Online]. Available:
http://www.globus.org/mds

[43] "GRAM Job Manager Reference Manual."

[44] "Java CoG Kit," Web Page. [Online]. Available: http://www.globus.org/cog/

[45] "Globus: Acquiring User and Host GSI Certificates," Web Page. [Online].
Available: http://www.globus.org/security/vl.lIcerts.html

[46] "The GridFTP Protocol and Software," Web Page. [Online]. Available: http:
/ /www.globus.org/datagrid/gridftp.html

[47] N. Karonis, "MPICH-G2 Web Page," Web Page, 2001. [Online]. Available:
http://www.hpclab.niu.edu/mpi/

[48] "IBM Grid Computing," Web Page. [Online]. Available: http://www-1.ibm.com!
gridl

[49] B. S. White, M. Walker, M. Humphrey, and A. Grimshaw, "LegionFS: A Secure
and Scalable File System Support Cross-Domain High Performance Applications,"
in Proceedings of Supercomputing 2001, Denver, Colorado, USA, November 2001.
[Online]. Available: http://legion. virginia.edulpapers/SC200 1.pdf

53

[50] A. S. Grimshaw, M. A. Humphrey, and A. Natrajan, "A philosophical and technical
comparison of Legion and Globus," IBM J Res. Dev., vol. 48, no. 2, pp. 233-254,
2004.

[51] "Condor: High Throughput Computing," Web Page. [Online]. Available:
http://www.cs.wisc.edu/condor/

[52] D. Thain, T. Tannenbaum, and M. Linvy, Grid Computing: Making the Global In­
frastructure a Reality. John Wiley, 2003, no. ISBN:0-470-853 19-0, ch. Condor and
the Grid.

[53] R. D. Stevens, A. J. Robinson, and C. A. Goble, "myGrid: personalised
bioinformatics on the information grid," Bioinformatics, vol. 19, pp. 302-304, Feb.
2003. [Online]. Available: http://www.mygrid.org.uk/

[54] "The National Center for Biotechnology Information (NCB!) BLAST," Web Page.
[Online]. Available: http://www.ncbi.nlm.nih.gov/BLAST/

[55] "Washington University BLAST," Web Page. [Online]. Available: http://blast.wustl.
edu

[56] "European Molecular Biology Open Source Software Suite (EMBOSS) Homepage,"
Web Page. [Online]. Available: http://www.hgmp.rnrc.ac.uk/Software/EMBOSS/

[57] "Universal Description, Discovery and Integration of Business for the Web," Web
Page. [Online]. Available: http://www.uddi.org/

[58] R. Stevens, H. Tipney, C. Wroe, T. Oinn, M. Senger, P. Lord, C. Goble,
A. Brass, and M. Tassabehjib, "Genome Science performed with e-Science
Tools," in Proceedings of the UK e-Science All Hands Meeting 2004,
Nottingham, UK, 31 Aug.-3 Sept. 2004, pp. 768-775. [Online]. Available:
http://www.allhands.org. uk/proceedings/proceedings/proceedings. pdf

[59] R. V. van Nieuwpoort, 1. Maassen, R. Hofman, T. Kielmann, and H. E. Bal, "Ibis:
an efficient Java-based grid programming environment," in Proceedings of the 2002
joint ACM-ISCOPE conference on Java Grande. ACM Press, 2002, pp. 18-27.

[60] "The Commodity Grid Project," Web Page. [Online]. Available: http://www.globus.
org/cog

[61] G. von Laszewski, 1. Foster, 1. Gawor, W. Smith, and S. Tuecke, "CoG Kits:
A Bridge between Commodity Distributed Computing and High-Performance
Grids," in ACM Java Grande 2000 Conference, San Francisco, CA, 3-5 June
2000, pp. 97-106. [Online]. Available: http://www.mcs.anl.gov/~gregor/papers/

vonLaszewski--cog-final.pdf

54

[62] "Super Computing 2004 Conference," November 2004. [Online]. Available:
http://www.sc-conference.org/sc2004

[63] W. MD and L. M., "BioMOBY: an open source biological web services proposal,"
BriefBioinform, vol. 3, pp. 331-341, Dec. 2002.

[64] R. Grim, , and M. ter Linden, "GridAssist Technical Whitepaper," Dutch Space,
Tech. Rep., nov 2004. [Online]. Available: http://tphon.dutchspace.nllgrease/public/
GridAssisL whitepaper _technicaL.finaLl.O-2004 _October _(web).pdf

[65] 1. Brown, C. Ferner, T. Hudson, A. Stapleton, R. Vetter, A. Martin, 1. Martin,
A. Rawls, B. Shipman, and M. Wood, "GridNexus: A Grid Services Scientific
Workflow System," Nov. 2004, to be published. [Online]. Available: http:
Iitorvalds. bearlabs. uncw. edu/~awr8543/gridnexusl _fi les/IPDPS2005GridN exus. pdf

[66] "The Taverna Project," Web Page. [Online]. Available: http://taverna.sourceforge.net

[67] "Freeflou Project," Web Page. [Online]. Available: http://freefluo.sourceforge.net

[68] M. Chagoyen, M. Kurul, P. De-Alarcn, J. Carazo, and A. Gupta, "Designing and ex-
ecuting scientific workflows with a programmable integrator," Bioinformatics, 2004,
to be published.

[69] P. M, Y. I, and A. RB., "Modelling biological processes using workflow and Petri
Net models." Bioinformatics, vol. 18, pp. 825-837, June 2002.

[70] "BioGrid Japan," Web Page. [Online]. Available: http://www.biogrid.jp/e/
research_work! gro 1 I guidelindex.html

[71] N. NF, C. M, F. RW, K. H, T. SW, V. J, and M. MA., "Protege-2000: An
Open-source Ontology-development and Knowledge-acquisition Environment."
Proc AMIA Symp, p. 953, 2003, processing on PubMed. [Online]. Available:
http://protege.stanford.edul

[72] "Genome Annotation Pipeline (iGAP," Web Page, sandiego SuperComputing
Center. [Online]. Available: http://eol.sdsc.edu:8080/eollindex.jsp

[73] de Knikker R, G. Y, L. JL, K. AK, Y. KY, C. DW, and C. KH., "A web services
choreography scenario for interoperating bioinformatics applications." BMC Bioin­
formatics, vol. 5, p. 25, Mar. 2004.

[74] A. Slominski and G. von Laszewski, "Scientific Workflows Survey," Web Page,
2004. [Online]. Available: http://www.extreme.indiana.edulswf-survey/

[75] G. von Laszewski, 1. Gawor, S. Krishnan, and K. Jackson, Grid Computing:
Making the Global Infrastructure a Reality, ser. Communications Networking
and Distributed Systems. Wiley, 2003, ch. Commodity Grid Kits - Middleware

55

for Building Grid Computing Environments, pp. 639~656. [Online]. Available:
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid2002book.pdf

[76] M. Thompson, 1. G. Schmidt, and P. M. Dew, "White Rose Grid Portals:
Practice and Experience," in Proceedings of the UK e-Science All Hands Meeting
2004, Nottingham, UK, 31 Aug.-3 Sept. 2004, pp. 952~955. [Online]. Available:
http://www.allhands.org. uk/proceedings/proceedings/proceedings. pdf

[77] "The Jetspeed Webpage," Web page. [Online]. Available: http://jakarta.apache.org/
jetspeed/

[78] "Portal Construction Toolkit for the Grid (PCT4G)," Web Page, cCGrid2003,
IEEE/ACM International Symposium on cluster computing and the Grid. [Online].
Available: http://ccgrid2003.apgrid.org/online_posters/posters/024.pdf

[79] A. Natrajan, A. Nguyen-Tuong, M. Humphrey, and A. Grimshaw, "The Legion Grid
Portal," in Grid Computing ~ Grid 2001, ser. Lecture Notes in Computer Science,
vol. 2242, ACM, IEEE. Denver, Colorado: Springer-Verlag, Heidelberg, Germany,
November 2001. [Online]. Available: http://legion.virginia.eduipapers/HPCS01.pdf

[80] T. Suzumura, S. Matsuoka, and H. Nakada, "A Jini-based computing portal system,"
in Proceedings of the 2001 ACMIIEEE conference on Supercomputing (CDROM).
ACM Press, 2001, pp. 24~24.

[81] "GridS peed: Grid Application Portal Generator," Web Page, tokyo Institute of
Technology. [Online]. Available: http://spam.sdsc.edu:8080/gridspeed/index.jsp/

[82] "BioPortal," Web Page, academia Sinica Computing Centre, Taipei, Taiwan.
[Online]. Available: http://big.pcf.sinica.edu. twl

[83] "Grid Portal Interface for Interactive Use and Monitoring of High-Throughput
Proteome Annotation," Web Page. [Online]. Available: http://matsu-www.is.titech.
ac.jp/paperlsuzumura/LSGW -EOL_GRIDPORTAL.final.pdfl

[84] "Bioinformatics Portal using OGSA," Web Page. [Online]. Available: http:
I Intu-cg.ntu.edu.sg/Grid_competitionireport/ grid-6. pdf

[85] "Biobar," Web Page. [Online]. Available: http://biobar.mozdev.org

[86] C. T. et aI., "The Helmholtz Network for Bioinformatics: an integrative web portal
for bioinformatics resources." Bioinformatics, vol. 20, pp. 268~270, Jan. 2004.

[87] G. SH, L. YT, B. GG, and M. JL., "Hembase: browser and genome portal for hema­
tology and erythroid biology." Nucleic Acids Res, vol. 32, pp. 572-574, Jan. 2004.

[88] "Open Grid Computing Environments," Web Page. [Online]. Available: http:
/Iwww.ogce.org

56

[89] "Unicore," Web Page. [Online]. Available: http://www.unicore.de/

[90] "NPACI HotPage," Web Page, 2001. [Online]. Available: https://hotpage.npaci.edu/

[91] O. TM., "Talisman-rapid application development for the grid." Bioinformatics,
vol. 19, pp. 212-214, 2003. [Online]. Available: http://talisman.sourceforge.neti

[92] "Entrada," Web Page. [Online]. Available: http://www-unix.mcs.anl.gov/~gose/

entrada/

[93] "The CogBox," Web Page. [Online]. Available: http://www.extreme.indiana.edul
~btemko/cogboX/index.html

[94] A. Reinefeld, F. Schintke, and G. Din, "GuiGen: a toolset for cn~ating customized
interfaces for grid user communities," Future Gener. Comput. Syst., vol. 18, no. 8,
pp.l075-1084,2002.

[95] "SETI@Home," Web Page, Feb. 2002. [Online]. Available: http://setiathome.ssl.
berekeley.edul

[96] "Folding@Home Distributed Computing," Web Page. [Online].. Available: http:
/ /www.stanford.edu/group/pandegroup/folding/

[97] "FightAIDS@Home," Web Page. [Online]. Available: http://fightaidsathome.
scripps.edul

[98] "KDE desktop," Web Page. [Online]. Available: http://www.kde.org

[99] "ZerahStar Zesktop," Web Page. [Online]. Available: http://www.zerahstar.com/

[100] M. Foster, D. Hanlon, J. MacLaren, J. Marsh, S. Pettifer, and S. Pickles,
"Grid-Enabled Desktop Environments: The GRENADE Project," in Proceedings
of the UK e-Science All Hands Meeting 2004, Nottingham, UK, 31 Aug.-3 Sept.
2004, pp. 912-919. [Online]. Available: http://www.allhands.org.uk/proceedings/
proceedings/proceedings. pdf

[101] "Migrating Desktop and Roaming Access," Web page, Poznan Supercomputing
and Networking Center,Poznan, Poland, April 2004. [Online]. Available:
http://www.man.poznan.pl/coe/ documentslMigratingJ)esktop_ WP. pdf

[102] G. von Laszewski, M. Seablom, M. Makivic, P. Lyster, and S. Ranka, "Design
Issues for the Parallelization of an Optimal Interpolation Algorithm," in Coming
of Age, Proceedings of the 4th Workshop on the Use of Parallel Processing
in Atmospheric Science, G.-R. Hoffman and N. Kreitz, Eds., European Centre
for Medium Weather Forecast. Reading, UK: World Scientific, 21-25 Nov.
1994, pp. 290-302. [Online]. Available: http://www.mcs.anl.gov/~gregor/papers/

vonLaszewski94-4dda-design. pdf

57

[103] G. von Laszewski, "A Loosely Coupled Metacomputer: Cooperating Job
Submissions Across Multiple Supercomputing Sites," Concurrency, Experience,
and Practice, vol. 11, no. 5, pp. 933-948, Dec. 1999, (The initial version of this
paper was available in 1996). [Online]. Available: http://www.mcs.anl.gov/~gregor/
papers/vonLaszewski --CooperatingJobs. ps

[104] G. von Laszewski, I. Foster, J. Gawor, and P. Lane, "A Java Commodity Grid
Kit," Concurrency and Computation: Practice and Experience, vol. 13, no. 8-9,
pp. 643-662, 200 1. [Online]. Available: http://www.mcs.anl.gov/~gregor/papers/

vonLaszewski--cog-cpe-final.pdf

[105] "Resource Specification Language," Web Page, 2002,
http://www.globus.org/ gram! gramJsLparameters. html.

[106] T. G. Project, "The Java CoG Kit Bug List," Web Page, 2004. [On-
line]. Available: http://bugzilla.globus.org/globus/buglist.cgi?shorLdesc_type=
allwordssubstr&shorLdesc=&product=Java+CoG+Kit

[107] "Ambient Sametime Active Desktop," Web Page. [Online]. Available: http:
//www-128.ibm.com!developerworks/lotus/library/article/ambientST/

[108] S. P. Nee and R. S. Kalawsky, "Developing a Roaming PDA-Based Interface
for a Steering Client for OGSI::Lite using .Net: Practical Lessons Learned," in
Proceedings of the UK e-Science All Hands Meeting 2004, Nottingham, UK,
31 Aug.-3 Sept. 2004, pp. 587-592. [Online]. Available: http://www.allhands.org.
uk/proceedings/proceedings/proceedings. pdf

58

APPENDIX A

Sample Desktop Preferences XML File

<?xml version="1.0" encoding="UTF·8"?>

<!DOCTYPE preferences SYSTEM 'http://java.sun.com/dtd/preferences.dtd'>

<preferences EXTERNALJ<ML_VERSION="1.0">
<root type="user">

<map I>
<node name="Desktop_1 __ 1 099111886827">

<map>
<entry key="frame.title" value="New Desktop" I>
<entry key="frame.class"
value="org.globus.cog.gridface.impl.desktop.GridDesktopContainer" I>

<entry key="frame.width" value="924" I>
<entry key="frame.height" value="661" I>
<entry key="frame.x" value="50" I>
<entry key="frame.y" value="57" I>
<entry key="icon.count" value="1" I>

</map>
<node name="icons">

<map I>
<node name="ICONJD_15">

<map>
<entry key="icon.name" value="/binfdate" I>
<entry key="icon.x" value="8" I>
<entry key="icon.y" value="6"'>
<entry key="icon.type"
value="org.globus.cog.gridface.impl.desktop
.icons.Gridlconlmpl:JOB_SPECIFICATION" I>

<entry key="icon.imageURI" value="images/32x32/co/jobspecicon.png" I>
<entry key="icon.launchStaticMain" value="false" I>
<entry key="#ATTRIB:directory" value="/tmp" I>
<entry key="#ATTRIB:stderror" value="errorFile" I>
<entry key="#ATTRIB:executable" value="/bin/date" I>
<entry key="#ATTRIB:batchjob" value="false" I>
<entry key="#ATTRIB:localexecutable" value="false" I>
<entry key="#ATTRIB:redirected" value="true" I>
<entry key="#ATTRIB:stdoutput" value="outputFile" I>

<lmap>
</node>

</node>

59

<node name="toolbar">
<map I>
<node name="Systemlcons">

<map>
<entry key="WARNING"
value="Systemlcons SECTION SHOULD NOT BE EDITED,
IT IS READ ONLY" I>

<imap>
<node name="ICONJD_10">

<map>
<entry key="icon.name" value="Shell Panel" I>
<entry key="icon.x" value="2" I>
<entry key="icon.y" value="34" I>
<entry key="icon.type"
value="org.globus.cog,gridface.impl.
desktop,icons.Genericiconlmpl:System" I>

<entry key="icon.imageURI" value="images/32x32/co/terminal.png" I>
<entry key="App_Container _class"
value="org.globus,cog.gridface.impl.shell.SheIIPanellmpI" I>

<entry key="icon.launchStaticMain" value="false" I>
</map>
<node name="App_Container _class_args">

<map>
<entry key="ArgO"
value="org.globus.cog.gridface,interfaces.GridCommandManager" I>

<entry key="ValueO" value="NOT A_STRING" I>
</map>

</node>
</node>
<node name="ICON-'D_11">

<map>
<entry key="icon.name" value="Java CoG Kit: Simple GridFTP Queue" I>
<entry key="icon.x" value="2" />
<entry key="icon.y" value="66" />
<entry key="icon.type"
value="org.globus,cog.gridface.impl.
desktop. icons. Genericlconlmpl :System" I>

<entry key="icon.imageUR!" value="images/32x32/co/fileshare.png" I>
<entry key="AppContainer class"
value="org.globus,cog.gridface.impl.gftpanel.GridFTPPanellmpl" />

<entry key="icon.launchStaticMain" value="false" />
</map>
<node name="App_Container _class_args">

<map>
<entry key="ArgO" value="java.lang.String" I>

60

<entry key="ValueO" value="wiggum.mcs.anl.gov" I>
<entry key="Arg1" value="java.lang.String" I>
<entry key="Value1" value="2811" I>
<entry key="Arg2" value="java.lang.String·' I>
<entry key="Value2" value="/home/pankaj/imageTest.jpg" I>
<entry key="Arg3" value="java.lang.String" I>
<entry key="Value3" value="wiggum.mcs.anl.gov" I>
<entry key="Arg4" value="java.lang.String" I>
<entry key="Value4" value="2811" I>
<entry key="Arg5" value="java.lang.String" I>
<entry key="Value5" value="/home/pankaj/test/imageTest.jpg" I>

<Imap>
</node>

</node>
</node>

</node>
</node>

</root>
</preferences>

NOTE: The icon count only reflects non system icons.

61

APPENDIXB

Desktop Command Line Usage

NAME

cog-desktop - Starts the Java CoG Kit Grid Desktop component

SYNOPIS

cog-desktop [-h] I [- ffile] [-mxw integer] [-mxh integer]
[-ns] [-np] [-es]

DESCRIPTION

The Grid Desktop, also refered to as CoGTop, is a user
centric grid workspace that functions and looks much like
the popular Windows or KDE desktops. It bundles Grid
functionalities already available in the Java CoG Kit into
a single easy to use, persistent, and portable workspace
that supports several desktop patterns like drag-n-drop.
Additionally, we have added specialized desktop icons to
represent RSL specifications that can be placed on to the
Grid Desktop, and later droped on a job submission or a
job specification icon to invoke a job submission on a
service. All icons are able to edit their properties
through their properties form.

The state of the Grid Desktop can be saved into an XML
file. At restart it loads from its previous state.

Much like other desktop environments, the Grid Desktop also
contains a tool bar, menu bars and internal frames.

OPTIONS

[(-help I -h)]
displays usage

[(-file I -f) <file>]
XML file containing Desktop Icon State.
NOTE: Will override any other desktop state file
arguments

[(-maxwidth I -mxw) <integer>]

62

Maximum width for desktop. Used when starting desktop from
different resolution monitor.

[(-maxheight I -mxh) <integer>]
Maximum height for desktop. Used when starting desktop from
different resolution monitor.

[(-no-save I -ns)]
If present, the desktop will not prompt the user
before closing. This is a handy debug flag for a
quicker desktop exit.

[(-no-proxy I -np)]
Do not check for Grid Proxy on start up.
Although, the user has the ability to regenerate
proxy through the desktop.

[(-empty-state I -es)]
By pass loading from desktop file specified in
.globus/desktop.properties, creating an empty desktop.
System icons such as Shell and Directory Browser are still
loaded.

EXAMPLES

1) To start the desktop from a previously saved state
in file mydesktop.xml and ignore the default desktop file
specified in .globus/desktop.properties, use the command

./cog-desktop -f mydesktop.xml

2) To load a desktop that is empty, does not check for proxy
on startup and also does not confirm desktop exit, use the
command

./cog-desktop -ns -np -es

3) To load a desktop with a specified resolution of 800 pixels
wide and 600 pixels high .

./cog-desktop -maxwidth 800 -maxheight 600

TO DO

Add Grid Command Manager checkpoint information to the desktop

63

state file. Currently it is stored in a seperate file.

SEE ALSO

visual-grid-proxy-init, karajan-gui.txt

64

VITA

NAME
Pankaj R. Sahasrabudhe

DATE OF BIRTH
12/07/80

EDUCATION

1998-2003 Bachelors in Computer Science and Engineering at the University of
Louisville. GPA: 3.7/4.0. Passing with Summa Cum Laude.

EXPERIENCE

6/14/2004 12/03/2004 Argonne National Laboratory (ANL), Argonne, IL
Graduate thesis research appointment.

8/14/2000 8/14/2004 University of Louisville, Louisville, KY
System administrator.

112112002 5/03/2002 ExxonMobil Corporation, Houston, TX
Software Developer (Java, Visual Basic).

112001 512001 Structural Dynamics Research Corporation, Milford, OH
Software Developer (C, C++, CGI, Perl), Tester.

112000 5/2000 Structural Dynamics Research Corporation, Milford, OH
Software Tester.

ACTIVITIES

• Indian Students Association of Louisville -
Founder, President, Web Master, 2000-2004.

• Association for Computing Machinery (ACM) - Vice-President, 2001.

• Department of Homeland Security,
University of Louisville - member, 2004.

• Triangle Fraternity - Chapter Historian, 2001.

• Primerica Financial Services (member ofCitigroup)­
Independent Business, 2004.

• Student Ambassador for Speed School of Engineering,
University of Louisville - 2003.

65

• Speed School of Engineering Student Council,
University of Louisville - Public Relations Committee, 2003.

• Student Linux Users group (S+LUG),
University of Louisville - 2000-present.

• National Public Radio (NPR) - member, 2004.

PROFESSIONAL MEMBERSHIPS

• Upsilon Pi Epsilon Computing and Information discipline honor society,
2003-present.

• Tau Beta Pi honor society, 200 I-present.

• Phi Eta Sigma honor society, 2000-present.

• Golden Key honor society, 200l-present.

HONORS

• Super Computing 2004 Best Poster Award,
"Next Generation of the Java CoG Kit".

• Association for Computing Machinery (ACM),
University of Louisville chapter, "Most Contributing Student" award, 2001.

• The National Dean's List, 1998-2000.

66

	The Java CoG kit grid desktop : a simple and central approach to grid computing using the graphical desktop paradigm.
	Recommended Citation

	tmp.1423685735.pdf.CFj2v

