2,400 research outputs found

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    A fault-tolerant photovoltaic integrated shunt active power filter with a 27-level inverter

    Get PDF
    This paper introduces a fault-tolerant shunt active power filter (SAPF). The novility in of this work is that it poposes a solutions to increase the reliability of shunt active power filter to maintain its operation under a single-phase open-circuit fault in the SAPF. This will increase the reliability of the whole power system. The SAPF is composed of a 4-leg 27-level inverter based on asymmetric cascaded H-bridge topology. If an open-circuit fault is introduced to the operation of the SAPF, a special control technique will be implemented and the redundant leg of the SAPF will be activated. The fault-tolerant SAPF can do many tasks under healthy operating conditions and post and open circuit fault depending on the state of charge (SOC) of the batteries. It can mitigate harmonics in the power system, improve power factor in the system by injecting reactive power, and inject real power to the system. The proposed SAPF is tested and simulated in MATLAB/Simulink and the results have shown a significant improvement in total harmonics distortion (THD) of the source current from 13.9% to 3.9% under the normal operating condition and from 42% to 8.4% post and open circuit fault

    The application of encapsulation material stability data to photovoltaic module life assessment

    Get PDF
    For any piece of hardware that degrades when subject to environmental and application stresses, the route or sequence that describes the degradation process may be summarized in terms of six key words: LOADS, RESPONSE, CHANGE, DAMAGE, FAILURE, and PENALTY. Applied to photovoltaic modules, these six factors form the core outline of an expanded failure analysis matrix for unifying and integrating relevant material degradation data and analyses. An important feature of this approach is the deliberate differentiation between factors such as CHANGE, DAMAGE, and FAILURE. The application of this outline to materials degradation research facilitates the distinction between quantifying material property changes and quantifying module damage or power loss with their economic consequences. The approach recommended for relating material stability data to photovoltaic module life is to use the degree of DAMAGE to (1) optical coupling, (2) encapsulant package integrity, (3) PV circuit integrity or (4) electrical isolation as the quantitative criterion for assessing module potential service life rather than simply using module power loss

    International Space Station Spacecraft Charging Hazards: Hazard Identification, Management, and Control Methodologies, with Possible Applications to Human Spaceflight Beyond LEO

    Get PDF
    In this paper, we present an overview of how the International Space Station (ISS) safety engineering methodology directed to controlling extravehicular activity (EVA) crew electrical shock hazards, caused by ISS spacecraft charging, has evolved over the past 25+ years. Long-term measurements of ISS charging severity and frequency-of-occurrence, combined with detailed probabilistic analysis of EVA electric shock- circuit completion, led to a change in hazard control methodology. The requirement for two-fault tolerant EVA shock hazard control during all EVAs was replaced with a less operationally burdensome and risky EVA shock hazard detection and warning process. The applicability of event probability-based detection-and- warning processes to human spaceflight charging hazard control beyond low-earth orbit (LEO) is also considered

    Implementation of a Cascade Fault Tolerant Control and Fault Diagnosis Design for a Modular Power Supply

    Get PDF
    The main objective of this research work was to develop reliable and intelligent power sources for the future. To achieve this objective, a modular stand-alone solar energy-based direct current (DC) power supply was designed and implemented. The converter topology used is a two-stage interleaved boost converter, which is monitored in closed loop. The diagnosis method is based on analytic redundancy relations (ARRs) deduced from the bond graph (BG) model, which can be used to detect the failures of power switches, sensors, and discrete components such as the output capacitor. The proposed supervision scheme including a passive fault-tolerant cascade proportional integral sliding mode control (PI-SMC) for the two-stage boost converter connected to a solar panel is suitable for real applications. Most model-based diagnosis approaches for power converters typically deal with open circuit and short circuit faults, but the proposed method offers the advantage of detecting the failures of other vital components. Practical experiments on a newly designed and constructed prototype, along with simulations under PSIM software, confirm the efficiency of the control scheme and the successful recovery of a faulty stage by manual isolation. In future work, the automation of this reconfiguration task could be based on the successful simulation results of the diagnosis method.This research was funded by the Tunisian Ministry of Higher Education and Scientific Research

    TROUBLE 3: A fault diagnostic expert system for Space Station Freedom's power system

    Get PDF
    Designing Space Station Freedom has given NASA many opportunities to develop expert systems that automate onboard operations of space based systems. One such development, TROUBLE 3, an expert system that was designed to automate the fault diagnostics of Space Station Freedom's electric power system is described. TROUBLE 3's design is complicated by the fact that Space Station Freedom's power system is evolving and changing. TROUBLE 3 has to be made flexible enough to handle changes with minimal changes to the program. Three types of expert systems were studied: rule-based, set-covering, and model-based. A set-covering approach was selected for TROUBLE 3 because if offered the needed flexibility that was missing from the other approaches. With this flexibility, TROUBLE 3 is not limited to Space Station Freedom applications, it can easily be adapted to handle any diagnostic system

    Study of multi-megawatt technology needs for photovoltaic space power systems. Volume 1: Executive summary

    Get PDF
    Possible missions requiring multimegawatt photovoltaic space power systems in the 1990's time frame and associated power system technology needs are examined. The following concepts for photovoltaic power approaches are considered: planar arrays, concentrating arrays, hybrid systems using Rankine engines, thermophotovoltaic and AC/DC power management approaches, battery, fuel cell, flywheel energy storage, and interactions with the electrical ion engine injection and stationkeeping system. The levels of modularity for efficient, safe, constructable, serviceable, and cost effective system design are analyzed, and the benefits of alternate approaches developed. Both manned low Earth orbit and unmanned geosynchronous Earth orbit applications were examined for technological development. Technology developments applicable to power systems which appear to have benefits independent of the absolute power level are suggested

    Study of the performance of fault-tolerant multi-level inverter included in shunt active power filter

    Get PDF
    Nowadays, the large number of shunt active power filters (SAPF) is installed in many grid networks to eliminate the source currents harmonics and enhance power quality. These filters are installed in different places according to the filtration requirements. The connection between SAPF and grid network has a negative effect during the open-circuit fault of the insulated gate bipolar transistor (IGBT) switch of the SAPF. This paper proposes the application of the new diagnostic method based on the trigonometric circle and mean value variations techniques to the early detection and precise location of the open-circuit fault of the IGBT switches, and the inclusion of the modified reconfigurable inverter topology to allow the perfect continuity of the filter currents, and improve the diagnostic of the open-circuit fault. A single-sided amplitude spectrum technique (SSAS) is applied on the source currents to get the THDi% value. The obtained simulation results prove, the great success of the proposed diagnostic method, the ability of the modified reconfigurable inverter to be adapted to the grid network, the short response time between the diagnosis and the reconfiguration process is about 7 ms which is very sufficient to guarantee the rapid continuity of the shunt active power filter

    Effect of Sensors on the Reliability and Control Performance of Power Circuits in the Web of Things (WoT)

    Get PDF
    In order to realize a true WoT environment, a reliable power circuit is required to ensure interconnections among a range of WoT devices. This paper presents research on sensors and their effects on the reliability and response characteristics of power circuits in WoT devices. The presented research can be used in various power circuit applications, such as energy harvesting interfaces, photovoltaic systems, and battery management systems for the WoT devices. As power circuits rely on the feedback from voltage/current sensors, the system performance is likely to be affected by the sensor failure rates, sensor dynamic characteristics, and their interface circuits. This study investigated how the operational availability of the power circuits is affected by the sensor failure rates by performing a quantitative reliability analysis. In the analysis process, this paper also includes the effects of various reconstruction and estimation techniques used in power processing circuits (e.g., energy harvesting circuits and photovoltaic systems). This paper also reports how the transient control performance of power circuits is affected by sensor interface circuits. With the frequency domain stability analysis and circuit simulation, it was verified that the interface circuit dynamics may affect the transient response characteristics of power circuits. The verification results in this paper showed that the reliability and control performance of the power circuits can be affected by the sensor types, fault tolerant approaches against sensor failures, and the response characteristics of the sensor interfaces. The analysis results were also verified by experiments using a power circuit prototype.This work was supported by the 2013 Yeungnam University Research Grant
    corecore