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ABSTRACT

Designing Space Station Freedom has given NASA many opportunities to
develop expert systems that automate onboard operations of space based
systems. This thesis describes one such development, TROUBLE !11, an
expert system that has been designed to automate the fault diagnostics of
Space Station Freedom's electric power system. TROUBLE IIl's design is
complicated by the fact that Space Station Freedom's power system is still
evolving and changing. TROUBLE III had to be made flexible enough to
handle system changes with minimal changes to the program. Three types
of expert systems were studied: rule-based, set-covering and model-based.
A set-covering approach was selected for TROUBLE III because it offered the
needed flexibility that was missing from the other approaches. With this
flexibility, TROUBLE III is not limited to Space Station Freedom applications,
it can easily be adapted to handle any diagnostic system.

INTRODUCTION

As space based systems become larger and more technically advanced, the
need for automating the monitoring of these systems becomes more
apparent. Space Station Freedom has many areas where automation can be
applied that will reduce the number of personnel needed, increase reliability
and speed up response time to faults. One method of automating system
monitoring is to use expert systems.

This thesis describes TROUBLE II! which is a failure cause diagnostic expert

system designed to detect and diagnose failures that have occurred in Space
Station Freedom's power system. TROUBLE ill is currently under



development at NASA Lewis Research Center. It was written using the
commercially available AI shell ART (Automated Reasoning Tool) from
Inference Corporation and resides on a Texas Instruments Explorer II
workstation.

Since September 1984, the design of the electric power system of Space
Station Freedom has changed several times. Design issues include:

• Will generation be solely photovoltaic (DC) or will it be a
combination of photovoltaic (DC) and solar dynamic (AC)?

• Will distribution be 20 KHZ 440V AC, 400 HZ 440V AC or 160V
DC?

Since the design of the power system is still evolving and changing,
TROUBLE III must be flexible enough to handle drastic design changes with
minimal changes to the program.

To accomplish this flexibility, TROUBLE III uses a set-covering technique
instead of the traditional rule-based design. In set-covering, failure
knowledge about the system is stored in a database instead of hard coded
wit__hin_kt_h_et_ules.. TROU_B_LE_I_Ll's ru_!es__are u_ed tQ match_ the detected
symptoms to this stored failure knowledge generating a list of failure
hypotheses and the possible causes for each_ This list of failure hypotheses
is then ranked according to which set of mode-cause pairs are most likely
responsible for the observed condition of the system.

Failure knowledge is obtained by doing a Failure Mode and Effects Analysis
(FMEA) on each component of the power system. Each unique failure mode
- cause pair identified during the FMEA is stored as an object in the failure
knowledge database. As Space StatiOn Freedom's power system evolves
and changes, the rule logic of TROUBLE III is unaffected with only the failure
knowledge needing alteration.

TROUBLE III has been designed to handle fault diagnostics of an evolving
power system. When Space Station Fre_0rfi's power system design is
finalized, TROUBLE ill will be quickly adapted to it. Thiswifla!!ow TROUBLE
I1i to provide the autonomous monitoring of a power system needed by a
space-based system like Space Station Freedom.

DIAGNOSTIC EXPERT SYSTEMS

Many systems, especially electrical power systems, have human operators
that continuously monitor the system and diagnose the system's failures.
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This task becomes increasingly difficult as the system becomes more
complicated making the idea of automating diagnostics with expert systems
highly appealing. Expert systems are computer programs which emulate the
knowledge and reasoning capabilities of a human expert. One requirement
for implementing a successful expert system is to have human experts
available who can solve the problems in their expertise domain. Since
humans already have workable solutions for diagnostic tasks in areas such
as power systems, chemical processes and manufacturing systems, failure
diagnosing large systems is an ideal application for expert systems.

Diagnostic expert systems accept quantitative measurements about the
current state of the system as inputs, change this data into qualitative
knowledge, determine if any failures exist and hypothesize the cause(s) for
those failures. The data acquisition task involves sampling raw
measurements from appropriate equipment located throughout the system
and converting these measurements to appropriate engineering units.
Quantitative state data alone carries no notion of whether or not the system

is performing within its tolerances. Knowing that a device has an output of
115 volts is not very useful to the expert system. This type of data needs to
be compared to operating limits to obtain a qualitative statement like "device
is operating above operating limits". This statement is more useful to the
expert system when it begins reasoning about the current state of the
system. In its most rudimentary form, qualitative knowledge is a single
threshold alarm - something is on or off. At a higher level, it allows for
classifying equipment operating performances as being abnormally low, within
tolerance, abnormally high, etc. As abnormal operations are observed, an
expert system must be able to diagnose what events caused these
abnormalities. To do this, the expert system generates hypotheses about the
cause of the malfunctions. There may be several hypotheses to explain a
single malfunction. Ideally, one wants to selectively generate hypotheses in
a way that limits the number of hypotheses considered but, at the same time,
will generate enough hypotheses to identify the most likely hypothesis is. An
expert system can help the human operator(s) determine the probable cause
for the detected failures by identifying all the possible causes for each failure.
The goal of the diagnostic process is to generate a diagnosis which can
"explain" all of the observations, especially the deviant ones.

Design Techniques

Design techniques used in diagnostic expert systems usually fall into one of
three classifications: Rule-based systems, Model-based systems or Set-
covering systems. Rule-based systems are the most common and are based
on experiential knowledge encoded in specific if-then rules. Model-based
systems contain a simulation of expected behavior. System performance is
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compared to expected performance to detect anomalies. Set-covering
systems are based on the failure knowledge being pre-defined and stored in
a database with general rules matching symptoms to failure data 11.

Rule-Based Systems

Rule-based systems are the best known and most widely used type of expert
systems. The knowledge of an expert in the problem domain is used to
describe possible malfunctions of the system and what conditions must exist
for that malfunction to be present in the system. A series of if-then rules are
then developed that link the current system's conditions to the conditions
described by the expert. Each possible fault or malfunction of the system
has its own rule. If the right conditions exist, the rule concludes an
appropriate failure cause.

All the failure knowledge about the system and the reasoning ability of the
program is hard-coded into the rules. This makes rule-based systems very
domain specific. Seldom can they be generalized for use on a similar
problem. If the system or failure knowledge changes, the programmer must
change all rules affected by these changes as well as adding new rules to
cover any new situations.

Rule-based systems are said to contain shallow or experiential knowledge
about how the system responds to certain conditions rather than deeper
knowledge about how the system actually functions. Since rule-based
systems are based on the knowledge of experts, their reasoning ability is
limited in that they can only detect malfunctions that the experts are aware
of. They cannot make inferences.

Model-Based Systems

In a model-based system the experts develop a system model which predicts
the expected behavior for the system and compare this to the actual
behavior. A fault is considered to be any discrepancy from the modeled
behavior. From the discrepancies between predicted and actual system
behavior, model-based programs can reason about where and why
anomalies occur.

To determine why something has Stopped working, it's Useful to know how
it was supposed to work. Therefore, model-based systems contain
knowledge about the structure and behavior of the system and each
component in the system. This knowledge enables the program to predict
the system's behavior under certain conditions and compare it to its actual
behavior.
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Since the overall task of a model-based system is to use knowledge about
the component's structure and behavior to determine which components
could have produced the anomalies, the following information is neededS:

1) measurements (observations) from the system

2) descriptions of the system's internal structure (including
connections)

3) a description of the behavior of each component.

In model-based systems the large number of ways the system can fail is
reduced to the number of ways in which each component type can fail - a
technically equivalent and more manageable approach. This technique is
strongly component INDEPENDENT. Given a design description of a
component, work can begin on diagnosing the component before it is put
into a system. Since each component has its own model of how it operates,
creating models for new systems is done by simply merging the individual
component models.

Set-Covering

A third type of diagnostic expert system is a set-covering system. A set-
covering system is very similar to a rule-based system except that knowledge
about the system's failure modes is stored in a database instead of being
encoded as rules. Set-covering is more dynamic and powerful than simple
rule-based systems but, like rule-based systems, set-covering systems can
only recognize and react to system conditions that have been predefined by
an expert.

In set-covering, once an abnormal operation has been detected, the
symptoms of the anomaly are matched against the predefined failure modes
to come up with an ordered set of possible explanations. Therefore, it is
imperative that knowledge of all failure modes of a system is available. This
diagnostic knowledge is a collection of known component failures, their
symptoms, and possible causes for the failure.

A set of rules will look at the detected symptoms of the current state of the
system and seek an explanation for them by linking all symptoms to the
failure and failure cause data that can best account for all the observations.

Every time a detected symptom matches the predefined symptom of one of
the failures, a failure hypothesis is created which postulates a failure and its
cause as a possible explanation for the observed abnormalities. Once all
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hypotheses have been generated, the system determines which hypotheses
are the most likely cause(s) for the abnormalities.

The Need for Expert Systems in Space:

As mentioned before, as systems become larger and more complex they
become more and more difficult to monitor and diagnose. On Earth expert
systems are an appealing monitoring alternative or aid to human operators.
Space is no exception. Technology is advancing and the size and
complexity of the systems being put into space is growing. The need for
automated diagnostics is becoming apparent. For example, Skylab had an
8KW power system that required 15 - 20 electrical power specialists for
ground support and a lot of valuable crew time to deal with faults. Space
Station Freedom's power system, with its initial 75 KW power system, has
become so much larger and more technically advanced than Skylab that it
will require hundreds of ground support personal if not automated 12.

Expert systems offer a number of advantages for space bound projects. As
mentioned above, expert systems can reduce the number of airborne and
ground support personnel necessary for safe operation 6. This in turn
reduces the cost of operating such projects as Space Station Freedom.
Reducing the number of personnel aboard is a big advantage since the small
volume of such space craft limits crew size. Therefore, crew time is very
valuable and should not be used to monitor a system that an expert system
could monitor.

, t- :]: 71 17 _ -- _ i:_:-i_-._Z-i 2-_ 771 7--:- : ::= :

Reliability is another advantfige expe_ sysiems offer space bound projects.
In space it is imperative that the power system, life support systems, etc.
remain operable. Therefore, reliable monitoring and diagnosing of these
systems is a necessity. Unlike human operators, expert systems are always
100% focused on their monitoring tasks. Expert systems do not get
distracted, bored or tired 3. They are always alert, operate 24 hours a day,
and react faster than humans; ....

With the complexity and size of new space based systems and the limited
number of available personnel it is appar#nt that there is a need for
automating the diagnosti c and monitoring processes in space. Expert
systems offer many advantages for space based system applications. With
their reliability, responsiveness, and the ability to reduce the number of
airborne and ground support personnel needed, expert systems can
effectively satisfy diagnostic automation needs in space.
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Review of Existing Expert Systems

Expert systems have been developed for a broad range of applications. In
the discussion that follows, only expert systems whose application falls into
one of the three domains related to TROUBLE III will be examined. Since

TROUBLE III is a diagnostic expert system for a space based power system
these domains are: 1) power systems, 2) diagnostics systems and 3) space
based systems.

Expert Systems for Power Systems

In the power domain, expert systems have been developed to handle fault
diagnostics, resource scheduling and contingency screening. Since power
systems' performances are fairly easy for experts to predict, they lend
themselves very nicely to the application of diagnostic expert systems. A
detailed discussion about diagnostic systems for _ based power systems
is deferred to section 2.3.3. What follows is a brief description of two

terrestrial power diagnostic systems: D2 and PERF-EXS.

D2, developed at Carnegie Mellon, is a distributed expert system for fault
diagnosis of a power system 2. D2 uses a set-covering model written in
OPS5 to generate all the credible hypotheses that explain a given set of
detected alarms. It runs on three microVAXes in an environment developed

to allow it to run in parallel.

D2 is broken down into three members: the manager, proposal crew and
construction crew. The manager uses set-covering for alarm processing.
The proposal crew conjectures events to expand incomplete hypotheses
found by the manager. The construction crew then takes these conjectures
and translates them into actual events.

PERF-EXS is a diagnostic expert system based for performance evaluation of
a power plant 4. It was developed jointly by the companies APEIRON and
ANSALDO and was aimed at capturing ANSALDO'S vast knowledge and
expertise in power plants. Most diagnostic expert systems use a custom
built expert system shell. PERF-EXS instead makes use of a general
purpose, commercially available shell named KEE (Knowledge Engineering
Environment).

PERF-EXS is broken down into two components: fault detection and fault
models. These two components work together to detect malfunctions, start
the diagnostics, and locate the cause(s) of the malfunction. The physical
power plant is divided into the following subsystems: boiler, turbogenerator,
condenser, electrical auxiliaries and water regeneration. The diagnostic
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expert system monitors the performance of each subsystem and integrates
information from all of them to correctly diagnose malfunctions.

In the detection phase, PERF-EXS receives information about measured
variables and depends only on those readings to detect malfunctions. In the
diagnostic phase, the general inference engine reasons on the failure
knowledge base, searches for the cause(s) of the malfunctions detected, and
suggest ways to correct them.

PERF-EXS is very similar to TROUBEE III. Both rely on measurement
readings to detect the system--ssymptoms. Both_v_e the power system up
into independent subsystems and both US-e-a-commercia.lly-avaiiableshell.
The main difference is that PERF-EXS uses a mode-basedapproach while
TROUBLE III uses set-covering.

Resource scheduling for a power plant on Earth is not a major concern. If
every user on the system wants to operate at the same time, the power plant
simply generates more electricity or buys it from other plants on the system
grid to satisfy the peak electricity need. But in space, there is a maximum
amount of electricity that can be produced and many more users than can
be supplied at once. Therefore, the system has to schedule resources to
ensure tiiat every user gets th-e eiectr]c]ty it needs at Some time while never
overloading the system. Since this problem only occurs in space power
systems, the discussion of these expert systems is deferred to section 2.3.3.

Contingency screening is the last power system area that will be discussed.
It is very important for the power industry to be able to predict the
consequences of disturbances and take measures to prevent deterioration in
service quality.

Case Western Reserve University along with Cleveland Electric Iiluminating
have developed a rule-based expert system with knowledge of the power
system that uses pattern recognition techniques to do contingency
screening 17. This program has been demonstrated on moderate size power
systems.

Non-power Related Diagnostic Expert Systems

In this section, diagnostic expert systems will be discussed that are
competent in domains other than electric power. These are typical of
diagnostic systems that have been successfully developed for many diverse
applications.

The most famous diagnostic expert system is MYCIN 19,a medical diagnostic
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program which queries a patient like a doctor to diagnose the patient's
illness. The program reasons on the symptoms the patient has entered.
When it comes to a fork in the decision tree, it asks for more information to
help decide which path to follow until it finally reaches a conclusion on the
patient's health.

EDNACS (Expert Diagnostics for Nitric Acid Cooling System) is an example
of a diagnostic expert system developed for a chemical processing plant 16.
EDNACS was developed at the University of Waterloo to regulate the
temperature of nitric acid in a chemical cooling system. EDNAC is divided
into 4 stages: sensory, fault detection, anticipation and prevention. The
sensory stage observes the status of objects and reports abnormal
conditions to the fault detection stage. The fault detection stage uses rules
to determine what fault(s) corresponds to abnormal conditions. Anticipation
state predicts the future consequences of the fault while the prevention stage
suggests actions that may prevent future failures.

MYCIN and EDNACS are only two of the many diagnostic expert systems
that have been developed. But they show how diverse the applications can
be. There is no limit to where diagnostic expert systems can be applied and

power system diagnostics, like TROUBLE III, are just a small part of that
domain.

Space Based Expert Systems

Several areas are currently being explored to assess the benefits of applying
expert systems to space based systems. Power system diagnostics,
resource scheduling, potable water systems, and data reduction are just a
few areas where expert systems are being investigated.

NASA is committed to automating Space Station Freedom. Both the Lewis
Research Center and the Marshall Space Flight Center have automation labs
that are currently developing diagnostic expert systems for Space Station
Freedom. Lewis' developments include TROUBLE III and APEX while
Marshall is developing STARR, AMPERES, and ADEPT.

APEX (Autonomous Power Expert System) was developed using KEE and
LISP on a Texas Instruments Explorer II workstation 9. It is a rule-based
system that performs fault diagnostics on the 20kHz switchgear. APEX is
able to detect static faults in the switchgear as well as incipient failures (ie.
insulation breakdown in transformers, contact depletion in mechanical
switches, and thermal conductivity degradation in power semiconductors).

STARR was built on a Xerox 1109 workstation using KEE 2°. It is a rule-
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based system that monitors a space power system, recognizes problem
states, identifies the failure and recommends proper actions. Each
component of the test bed has a corresponding object in STARR. The
program monitors the test bed and looks for symptoms, then generates fault
hypotheses. In normal operation, STARR gets updated information about
each component approximately once per minute.

STARR was used as the prototype for AMPERES (Autonomously Managed
Power system Extendable Real-time Expert System)13. AMPERES uses a
"component centered" approach which encompasses the strength of a
model-based approach. It, like STARR, is a rule-based system that is
composed of the following functional models: main controller, status monitor,
fault diagnosing, knowledge base and interface handler. Each component of
the test bed has a corresponding object in AMPERES. Once symptoms are
detected, fault rules are run to find the faults and give a cause and
recommended action.

ADEPT (Automatic Detection of Electric Power Troubles) is yet another
diagnostic expert system created by Marshall for fault isolation on a power
system2121. ADEPT is implemented in LISP on a symbolic 3670. It uses
Ohm's law as a basis for the rules that isolate the faults. ADEPT looks for
significant changes at any sensor point then flags that fault condition and
sends it off for fault rule analysis.

STARR, AMPERES and ADEPT encode their failure cause diagnostic
knowledge in rures which makes them difficult to adapt to a new system.
With Space Station Freedom's power system still evolving, frequent revisions
need to be made to theseexpert systems to make their rules appropriate for
Space Station Freedom. This is where TROUBLE III, with its flexible set-
covering approach, has superior flexibility over other diagnostic expert
systems.

Resource allocation is a major problem aboard Space Station Freedom. For
the power system, allocating this limited resource so that station productivity
is maximized without overloading the system would be a difficult task for a
human operator to do quickly. Power allocation and scheduling need to be
automated and expert systems are a prime candidate. NASA Marshal is
investigating two schedulers on their test beds.

LES (Load Enable scheduler) is coded in Lisp and runs on a LISP
22

workstation . lt_e_Uies §nd resch_d_J_the payioads ufor Space Station
Freedom and is capable of handling hundreds of scheduling constraints.

LPLMS (Loads Priority List Management System) is also implemented in LISP
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on a LISP workstation_. It continuously computes a priority list of the
current users so in case of faults or loss or power, it can tell the system
which loads to shed first to avoid shutting down the whole power system.

Two other applications of expert systems technology in space systems are
for space station's potable water system and for Hubble telescope's data
reduction. The Application Generator1 is a fault diagnostic system analyzes
failures which have occurred on the system that reclaims potable water from
waste water. I-DARE_ is an expert system that performs data reduction of
the telemetry stream from the Hubble telescope.

SPACE STATION FREEDOM'S POWER SYSTEM

NASA has been engaged in the definition and design of Space Station
Freedom since 1984. The design for the electrical power system has yielded
two major requirements: 1) deliver 87.5 kW continuous electrical power and
2) deliver 113.5 kW peak power for up to 15 minutes during each orbit 18.

Deciding what type of generation and distribution to use are the two main
design issues for Freedom's Electrical Power System (EPS). The three
possible designs for generating the electrical power are an all photovoltaic
(PV) system, all solar dynamic (SD) system or a hybrid (PV and SD) system.
The options considered for distributing the electricity are a 20 kHz 440v AC
system, a 400 Hz 440v AC system, and a 120v DC system. The following
section describes Space Station Freedom power system's design evolution.

Chronology of Distribution System

In September 1984, the baseline configuration for Space Station Freedom's
electrical power system consisted of photovoltaic generation and 20 kHz AC
distribution. PV arrays generated 160v DC which was sent to the main
invertor unit to be transformed to the primary distribution of 20 kHz, 440v AC.
The primary distribution was then stepped down to 20 kHz, 208v AC for the
secondary distribution to the loads 24. This configuration made use of the
mature PV technology but introduced 20 kHz - a new technology.
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160vDC_M-_I 20 kHz --I I

PV - Photovoltaic
MIU - Main Invertor Unit
MBSU - Main Bus Switching Unit

TU - Transformer Unit
PDCU - Power Distribution Control Unit

Figure 1" EPS Configuration September, 1984

After further study, 20 kHz technology was judged immature and risky
because problems developing a resonant invertor to change DC to 20 kHz
AC. So in December 1985, a new baseline configuration was adopted that
featured 400 Hz distribution instead of 20 kHz. The generation remained the
same, PV 160v DC, but the primary distribution was changed to 400 Hz,
440v AC and the secondary became 400 Hz, 208v AC 24. 400 Hz was
selected because that technology was used throughout the aircraft industry.

__r--_---] 20avACJEk-;;T!__._
--i ,v _400Hz rtru_uJ v

PV - Photovoltaic
MIU - Main Invertor Unit
MBSU - Main Bus Switching Unit

TU - Transformer Unit
PDCU - Power Distribution Control Unit

Figure 2: EPS Configuration December, 1985

In April 1986, the baseline configuration returned to the original September
1984, desiqn: PV 106v DC generation and 20 kHz primary and secondary
distribution TM. The change was made due to the strong objections by
experimenters to the electromagnetic interference (EMI) generated by
400 Hz,
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--_'_ 160v DC_ 440v AC=_ _ 208v AC=_20kHz--_'_ ,u 120kHz v[ru_'uJ v

PV - Photovoltaic

MIU - Main Invertor Unit

MBSU - Main Bus Switching Unit

TU - Transformer Unit
PDCU - Power Distribution Control Unit

Figure 3: EPS Configuration April, 1986

May 1986, brought another change to the electrical power system baseline
configuration. A hybrid power source was adopted. Generation was now
achieved by both photovoltaic and solar dynamic. The original PV 160v DC
source was still used but now a 1200 Hz AC solar dynamic source was
added in parallel. In this configuration the 160v DC was inverted and the
1200 Hz AC converted to the 20 kHz 440v AC primary distribution then to
the 20 kHz 208v AC secondary 21.

_ov AC

(_ 1200 Hz_-_ 20 kHz --_

_t_-0---] 208vAC=_
20 kHz _I ru_u I

PV - Photovoltaic
MIU - Main Invertor Unit
MBSU - Main Bus Switching Unit

FCU - Frequency Control Unit

TU - Transformer Unit
PDCU - Power Distribution Control Unit

SD - Solar Dynamic

Figure 4: EPS Configuration May, 1986

Adding the immature solar dynamic technology increased the development
time and cost. So in September 1987, the National Research Council
recommended that solar dynamic generation be deferred until the growth
stage of the space station. Once again the baseline configuration returned
to the September 1984, version: PV 160v DC generation and 20 kHz AC
distribution.
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_1160v DC_ 440v AC-_20 kHz T[ _lD°ul lm,-

PV - Photovoltaic
MIU - Main Invertor Unit

MBSU - Main Bus Switching Unit

TU - Transformer Unit

PDCU - Power Distribution Control Unit

Figure 5: EPS Configuration September, 1987

This configuration was changed in December 1988, because the Europeans
and Japanese wanted a DC secondary distribution instead of AC. The
baseline then became PV 160v DC generation, 20 kHz, 440v AC primary
and 120v DC secondary distribution _4. With this configuration, DC was
converted to AC then back to DC which meant both AC and DC distribution
technology had to be developed.

-_ 160v DC__

PV- Photovoltaic
MIU - Main Invertor Unit

MBSU - Main Bus Switching Unit

ADCU - AC/DC Converter Unit
PDCU - Power Distribution Control Unit

Figure 6: EPS Configuration December, 1988

In a cost-cutting exercise during September 1989, it was decided to get rid
of the AC and have a total DC configuration: PV 160v DC generation, 160v
DC primary and 120v DC secondary distribution 24.
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160vDC MBSU] 160v oC __ 120v DC

PV - Photovoltaic
MBSU - Main Bus Switching Unit

DDCU - DC/DC Converter Unit

Figure 7: EPS Configuration September, 1989

As of today, the all DC configuration from September, 1989 is still the
baseline configuration for Space Station Freedom's electrical power system.
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Table 1: EPS Baseline Configuration Changes

DATE

September 1984

December 1985

April 1986

May 1986

September 1987

December 1988

GENERATION

PV 160v DC

PV 160v DC

PV 160v DC

PV 160v DC
SD 1200 Hz AC

PV 160v DC

PV 160v DC

PRIMARY

DISTRIBUTION

20kHz, 440vAC

400 Hz, 440v AC

20 kHz, 440v AC

20 kHz, 440v AC

20 kHz, 440v AC

20 kHz, 440v AC

September 1989 PV 160v DO 160v DC

SECONDARY
DISTRIBUTION

20 kHz, 208vAC

400 Hz, 208v AC

20 kHz, 208v AC

20 kHz, 208v AC

20 kHz, 208v AC

120v DC

120v DC

Need for Flexibility

The type of generation and distribution being used by an electrical power
system affects the behavior of the system and the design of the supporting
components. In writing a diagnostic expert system for such a system, the
behavior of the system and each subcomponent is described and analyzed.
If the distribution or generation design changes in mid stream, this
knowledge about the system becomes obsolete and the knowledge engineer
has to start the information gathering process over. Ideally, the expert
system design would be flexible enough that major changes to the generation
or distribution baselines would have minimal affects on the program.
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Since 1984, the generation and distribution baseline configuration for Space
Station Freedom has changed six times. Any diagnostic expert system
applied to this system should be flexible so it can handle these major design
changes if any more should come along. TROUBLE III was designed with
this type of flexibility and is discussed in the next chapter.

TROUBLE III

Background

Automating the operation of Space Station Freedom's electric power system
is rife with technologic opportunities. Expert Systems will be used to
schedule power resources as well as monitor and diagnose faults on the
power system 8. TROUBLE III, a diagnostic expert system, has been created
to perform fault detection and isolation for the electrical power system of
Space Station Freedom.

TROUBLE III is one of the projects of the Power System Facility Advanced
Automation Lab located at NASA Lewis Research Center. It is an object-

oriented program developed using the commercially available AI shell, ART
(Automated Reasoning Tool) from Inference Corporation. ART is a LISP
based shell and is installed on a Texas Instruments Explorer II workstation.

Space Station Freedom's electric power system design is still changing. This
complicates designing an expert diagnostic system since there is no
operating or failure experience. Usually, expert systems are built for working
systems for which there are knowledgeable experts. In these cases, the
design and specifications are an a priori knowledge base upon which the
knowledge engineer builds. What measurements are needed, how each
component of the system interacts with other components, and what faults
are most likely to occur in given situations are already known to the expert
and establishes a good frame work upon which to build a diagnostic

program.

Space Station Freedom is different. Without exact design and performance
information and with no operating experience it is hard to identify abnormal
behavior let alone write an expert system to do it. What is needed is a
flexible expert system that can quickly accommodate a design change.
Therefore, TROUBLE III has been designed using set-covering to represent
failure knowledge, rather than rules or models, to give it the flexibility needed
to handle the design changes in the power system.
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Design

The objective of TROUBLE Iil is to apply expert system technologies to
develop an automated system for detecting and diagnosing failures and
failure causes for the electric power system of Space Station Freedom.
TROUBLE !11 is an object-oriented program which performs the following
tasks:

. Symptom Detection
Monitors measurements throughout the system and determines what
failure symptoms, if any, are present. _-"

. Reasoned Assumptions --
Rules examine the current state of the system and decide whether
each potential failure object should have a reason for inclusion or
exclusion when it is matched to the detected symptoms. If the failure
hypothesis is to be excluded then no further processing is done.

. Failure Hypothesis Generation
Detected symptoms are matched to the predefined failure data to
come up with the possible failure hypotheses.

. Subcause Generation

The FHRs are linked together to form chains. The chains start with
the last failure of a chain reaction and work backwards to a root
cause. For each root cause, there is a separate chain. Chains take
the form "A failed because of B, B failed because of C; therefore C is
a root cause of A". Once the chains are formed, they are ranked in
order of their ability to explain the observed abnormalities.

. Explanation and Justification
The Justification Module takes any of the chains and justifies to the
user why the cause of that chain was selected as a possible root
cause for that failure.

° Human Interactions

The Output Module displays the requested results to the user. This
module can show the detected symptoms, the top level failures and
possible root causes (ranked in order of most probable) or the
justification for one of the chains. An Input Module allows the user to
load a test file or manually change the value of any of the
measurement devices for the purpose of testing.
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TECHNIQUES USED BY TROUBLE III
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(failure modes
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Figure 8: TROUBLE III Techniques

Set-Covering

In looking for a design approach for TROUBLE III, rule-based, set-covering
and model based approaches were investigated to see which was best suited
for Space Station Freedom's evolving power system. There are many
examples of diagnostic expert systems in the literature that use either a rule-
based (APEX, ADEPT, STARR, AMPRERES) or a model-based (PERF-EXS)
architecture. However, examples of diagnostic systems using a set-covering
architecture seem to be absent from the literature even though set-covering
is especially well suited to diagnostics 11.

A rule-based solution was considered but was not used due to its lack of

flexibility in handling a changing system. Rule-based designs, like APEX,
STARR, AMPERES, have the failure knowledge encoded in the rules. Each
rule looks for one specific set of conditions. If all the conditions are met
then that rule's failure mode becomes a possible failure hypothesis. The
same condition can appear in several failure rules. If the system changes,
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as is the case with Space Station Freedom, the programmer must go
through the complicated interconnections of the rules and change the
conditions and resulting failures to correspond to the new design. This
makes rule-based design very domain specific and not a good choice to be
used with Space Station Freedom's dynamic evolving power system.

Davis and Hamschers make a good argument for the use of a model-based
architecture. Unfortunately, model-based systems are best suited for an
existing system since knowledge about the internal structure of each
component, the connections of each component and behavioral description
of each component is needed. With Freedom's power system still changing
this information is not available. Making a good model of the system is
already a difficult task, but adding the complexity of modeling an evolving
system makes a model-based architecture unattractive for Space Station
Freedom.

In set-covering, knowledge about the failures is stored as data with the rules
being independent of this failure knowledge. With this technique, variable
data (symptoms) is compared to variable date (failure modes). This gives
the expert system the flexibility to adept to changes in the system without
having to rewrite rules.

With flexibility being the key in selecting an architecture for TROUBLE III, a
set-covering approach was selected. With this architecture, updating the
failure knowledge database is the only change needed to adapt TROUBLE
III to the new design.

Transitions

A production system's architecture employs a set of rules, a global database
and an inference engine that performs the recognize-act cycle of match,
conflict resolution and rule-firing 23. TROUBLE III is not strictly a rule-based
system but does perform the recognize-act cycle. Therefore, TROUBLE III
is not a pure production system according to the definition but since it
behaves like one, it will be considered a production system in this discussion.

In a pure production system, rules are in a sequential list and are evaluated
one at a time according to the order of the list. When all the conditions of
a rule are found true, the rule is executed and the rule evaluation begins
again at the top of the rule list. Most large production systems, including
TROUBLE III, can be divided into sub-systems (modules) that perform well
defined tasks. If the programmer exerts control over when each sub-
system's rules fire, the sub-systems will behave like sub-routines or functions
in procedural code.
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Explicit control over the flow of the program is advantageous to a production
system that is modularized. Since a production system evaluates the entire
list of sequential rules, the more rules there are the slower the execution is.
Therefore, the production system will run faster if the set of rules it is
evaluating is only a subset of the whole set of rules. Also, many times
certain tasks need to be performed before others. In a pure production
system where all rules are eligible for execution all the time, implementing
"rule priority" correctly becomes difficult. Where as having explicit control
over the rules makes rule prioritization a simple task. Therefore, for efficiency
and correctness a structure is needed that adds explicit control to production
systems.

Zisman23encountered this problem in his work with asynchronous concurrent
production systems for independent event driven office procedures. Zisman
suggested that Petri net transitions be used to model the interaction and
temporal relationships between the asynchronous concurrent events.

TROUBLE III is not a pure asynchronous concurrent production system like
Zisman's office procedure but it does have the same need for explicit control
over rule-firing. TROUBLE III expands Zisman's work to a non-asynchronous
concurrent production systems. Like Zisman, TROUBLE III uses Petri nets
to dynamically extract from the set of system rules those rules which are
relevant given the present system state. Transitions represent a process or
task; since these processes are described by productions (rules)., the
transition is really a "home" for the set of rules describing the process23.

Transitions control which set of rules are active in TROUBLE II1. Each
module has its own transition object which appears as one of the conditions
in each rule in the module. Transitions have the value inactive, active, or
fired. Petri nets, in the form of rules, control the status of each transitions.
If all the conditions are satisfied for a transition's rule, that transition becomes
active, otherwise it remains inactive. More than one transition can be active
at a time but only one can be fired. Conflict rules are used to resolve the
conflict of which transition to fire when multiple transitions are active. If only
one is active, it immediately fires. All rules associated with a fired transition
constitute the active rule set. TROUBLE IIl's inference engine continually

cycles through the active rule set evaluating its rules. Only rules in the active
rule set are evaluated. As transitions are fired and become inactive, the

active rule set changes.

TROUBLE 3 expanded Zisman's work to include nesting of transitions. In
TROUBLE IIl's design, rule prioritization was needed inside some of the
modules. To handle this, new sets of transitions were implemented inside of
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modules thus creating a nested Petri net transition structure.

By using Petri net transition, TROUBLE III was able to break its design into
modules and have explicit control over rule-firing. This reduced the number
of active rules which in turn reduces the processing time.

Failure Modes and Effects Analysis

The failure knowledge database can be obtained by performing a failure
modes and effects analysis (FMEA) of the system to be diagnosed. FMEA
is a method of identifying possible system failures and their consequences.

In a FMEA, an expert on the system describes the ways each system
component can fail. Each of these failures is called a failure mode and is a
qualitative description of the failure. For example, "No discharge current"
would be one of the possible failure modes for a battery charge discharge
unit (BCDU).

The expert then describes all possible causes for each failure mode. "No
charge on Battery" is an example of one of the possible causes for the
BCDU failure mode "No discharge current". Each unique failure-mode-cause
pair in the FMEA is used as a separate failure object in the failure database.
The symptom that a failure mode manifests is also identified in the FMEA.
It too is stored in the failure database.

The FMEA is complete when all of the failure modes, causes and symptoms
have been described for each system component. All this information
collectively represents the known failure knowledge of the system. Once this
information is entered into the database it is used by the failure rules to
generate the failure hypothesis.

Detection Module

To detect failures TROUBLE III searches for evidence of possible failures
(symptoms) using measurements taken throughout the power system. Each
measurement has its own unique data object. This object contains many
characteristics such as: the unique name of the device, the type of deyice
(voltmeter, ammeter etc.), the measuring unit, the present measurement
value, the device's purpose and its location. These attributes are defined in
advance and do not change, with the exception of the measurement value.
During each sampling period, each measurement's value slot is updated to
reflect the most current information about the system's state.

The detection module converts the quantitative measurements into qualitative
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symptoms that describe the system's performance. Detection rules monitor
the measurements and look for predefined symptoms of abnormal behavior.
During the FMEA process, a symptom associated with each failure mode was
described. Each symptom has a detection rule. If the measurement object's
attributes satisfy all the conditions of the rule, then the rule asserts the
corresponding symptom to the system. If the conditions are not satisfied,
then the symptom does not exist and cannot be reasoned about by the rest
of the program. The detected symptoms give a qualitative description of the
current state of the system.

Each symptom is itself a data object. The information stored about each
symptom includes: its unique name, its description of the symptom (i.e. low
output), its list of measurement devices used, its location of the measurement
device, and a time stamp to tell when the symptom was detected.

The power system is broken down into many subsystems and components
each with its own measurement devices and detection rules. Since
measurements in one subsystem may be used by a detection rule in another,
all measurement objects are stored in one file. The detection rules are
grouped according to subsystem or component and stored in their own file.
In this way a maintenance programmer can quickly and easily find the code
that needs to be changed.

Once the system's measurements have been read in and the failure
symptoms have been detected, a list of possible failures for the detected
symptom(s) is generated by the Failure Hypothesis Module.
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Figure 9: Detection Module Logic

Failure Hypothesis Module,

The failure hypothesis module generates a list of possible failures to explain
the symptoms identified by the detection module.

The essence of TROUBLE IIl's set-covering technique is encapsulated inside
this module which matches the detected symptoms to the predefined failure
knowledge. Two rules are used to take each symptom detected, search the
objects in the failure database, and select all failure objects whose symptom
slot matches the symptom in question. If these matched failure objects have
a reason for inclusion or if a reason for exclusion has been defeated then the
rules create a failure hypothesis record (FHR) for that failure mode (the
reasons are maintained by the reason module). These rules are very
general, matching variable symptom data to variable failure knowledge data.
No failure knowledge is encoded in the rules.

Failure hypothesis records are objects that contain specific facts about
possible failure modes and their causes. When the FHR rule fires, it
combines information from both the symptom object and the failure object to
generate a new FHR. The FHR's facts include the failure mode, failure
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cause, failure symptom, information on the failed device, the parent FHR,
chain number and time stamp which indicates when the FHR was created.

The FHRs taken together represent all known failures that can explain the
detected abnormal behaviors. These hypotheses are reviewed to determine
the most probable cause for the failure.

SYMPTOM
a

FAILURE
1

(failure b)
(causec)
(symptom a)

REASON 1

(include)

SYMPTOM y

FAILURE Z

(failure e)
(causef)
(symptom y)

i REASON Z(include)

FAILURE HYPOTHESIS MODULE

FHR i

(failure b)

(causec)
(symptom a)

\\

\

FHR

RULE

FHR t

._ (failure e)

(causef)(symptom y)

One Rule Matches the Failure Data to Detected Symptoms

Figure 10: Failure Hypothesis Module Logic

Reason Module

Doyle 1° discusses a methodology, Reasoned Assumptions, to express
uncertainty in terms of the non-statistical notions of typicality and defeasibility.
The reason module employs Doyle's reasoned assumptions methodology to
reduce the number of FHRs that can be created thus reducing the work
TROUBLE III must do to determine the most probable cause. As mentioned

previously, a failure object whose symptom has been detected must have a
reason for inclusion or a defeated reason for exclusion before it can generate

a failure hypothesis record. By posting the reason's status in each failure
object, the reason module is able to control which failure objects become
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FHRs. This limits the number of hypotheses considered while still generating
enough to identify the most likely hypothesis.

In Doyle's work, the normal or initial conditions were expressed as rules of
typicality which may be individually defeated if circumstances warrant. These
rules were considered as default reasons. Default reasons were used in

concert with other reasons expressing special cases, exceptions or other
overriding conditions. TROUBLE III incorporates Doyle's methodology by
creating unique reason objects for every failure object. These reason objects
have slots named: failure mode, symptom, cause, reason, status and
because. The failure mode, symptoms and cause slots are used to link it to
the appropriate failure object. The reason slot is used to define the initial
type of reason, if the associated failure is a normal failure then the reason
is a default reason and has a value of inclusions. If the failure is a special
case or exception, the reason value is set to exclusion. The status slot's
value is maintained if the reason value is still believed or defeated if not

believed. The because slot stores the reason in English for the justification
module.

A set of maintenance rules are activated after the detection task and before

the failure hypothesis generation task. These rules look for special
circumstances which will make an normal failure unlikely or an exception
failure a likely candidate. When these conditions exist, the rules change the
reason status to defeated. If those conditions no longer hold, the status is
changed back to maintained.

Failure objects whose corresponding reason objects have values of inclusion
maintained or exclusion defeated will become an FHR if their symptom is
detected. Failure objects whose corresponding reason object has values of
inclusion defeated or exclusion maintained will not become FHRs even if their

symptom is detected.

After every detection cycle, reason rules are used to check the status of the
reason objects to limit the number of eligible causes while making sure all
potential candidates are included.

Chaining Module

Usually, each failure in the FMEA has a subcause and the subcause has a
subcause and so forth. Each will produce a failure hypothesis record.
Although at time of creation these FHRs look independent, they are actually
interconnected by the subcause relationships. The chaining module is
responsible for creating chains (lists of FHRs) which show how the FHRs are
interconnected.
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After the failure hypothesis module has generated all the possible FHRs, the
chaining module is activated to connect the FHRs into failure chains. FHRs
can be members of more than one chain. AI! failure chains taken together

form the failure hypothesis tree. Each chain represents a path from the top
node of the failure hypothesis tree down to a root cause. Each of these
paths represents a possible explanation for the observed abnormalities.

The first step in the chaining module is to create all the parent links. A FHR
is the parent of another if the failure cause of the parent is the failure mode
of the other. For example, given these FHRs:
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(FHR 1

(failure-mode A)
(failure-cause B

(FHR 2

Ifailure-mode
failure-cause _)

FHR 1 is the parent of FHR 2 because the cause of FHR 1 (B) is the failure
mode of FHR 2.

When a parent is found, TROUBLE III stores the unique FHR number of the
parent in the parent slot of the child's FHR object. A FHR can only have
one parent but can be the parent of many children. Once all of the parent
nodes have been identified, failure chains are created by starting with a
bottom node and adding it's parent to the chain list then adding the parent's
parent and so forth until a top level failure is found.

The bottom node of a chain is the root cause of the chain. A root cause

has no subcause. Root causes are identified by finding the FHRs which are
not parents of any other FHR.

A top level failure is a failure that does not cause any other failure. They are
identified by finding the FHRs with no parent. It is the end of the line and,
in most cases, is a general failure. Top level failures are usually very
noticeable to the system operator and are the most serious type to clear
because they affect a large portion of the system. A voltage loss on a
distribution line is an example of a top level failure while a failed open relay
could be its root cause.

Usually, if a root cause is identified and cleared, all other failures in the chain
will also be cleared. The failures in the middle and at the top most likely
have occurred as a result of the root cause failure. Attempting to clear a
middle failure without clearing the root cause is futile because the conditions
that caused that failure are still present on the system and will cause the
same failure to reoccur. Therefore, the root cause and top failure are of
most concern in the failure chain.

Ranking Module

A list of potential failure causes is very useful when trouble shooting. But the
process of isolating and correcting the failures is more efficiently
accomplished if this list is ranked based on the probability of each failure
cause actually causing the failure. In TROUBLE III the ranking module
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Figure 12: Chaining Module Logic

accomplishes this by ranking the failure chains (the list of potential failure
causes) in decreasing order of likelihood.

As of now, TROUBLE III incorporates only one ranking scheme, although
future plans include adding more ranking schemes. The ranking scheme
used by TROUBLE III is called Related Modes With Different Symptoms
(RMWDS). Using this scheme, the number of different symptoms associated
with each chain of causes is counted and the ones with the largest number
are ranked first. Each failure chain is made up of a list of related FHRs
which also makes their failure modes related. Therefore, each chain includes
a set of related failure modes. So the task of counting the different
symptoms in each set of related modes is accomplished by counting the
number of different symptoms associated with each failure chain. The
ranking module looks at each FHR in a chain and counts the number of
different symptoms present. This number is stored in the chain's RMWDS
slot.

The logic behind this ranking scheme is simple: the more evidence for a
hypothesis, the more likely that it is a valid one. Each detector in TROUBLE
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ill generates a single symptom, so the number of different symptoms in a
chain is equal to the number of independent pieces of evidence associated
with the chain. The probability of a chain's cause being the actual cause
increases as the independent evidence associated with the chain increases.
Therefore, a large count of different symptoms (RMWDS) in a chain implies
a higher probability of that chain's cause being the real cause.

Other ranking schemes include easiest to check and severity of failure.
Neither of these have been incorporated into TROUBLE III as of yet. Easiest
to check ranks the causes in the order that would be easiest for the operator
to verify. The idea being why do a complicated test procedure if a simpler
one has the same probability of being at fault. If the easier to check one
happens to be the fault, checking it first eliminates the work of checking the
difficult one.

Ranking by severity of failure is a scheme that looks at the result of each
possible failure cause and ranks them in order of the one that has the
severest consequences. This method is based on the idea that severe faults
should be tested for first because if they exist they will do more damage.
Failure causes that impact small areas can be left unattended until all the
other possibilities have been checked more easily than a severe failure
cause.

These methods will be incorporated when better system operating knowledge
becomes available.

Justification Module

The justification module answers the question of "Why is a particular failure
chain included as a possible cause?". It justifies the chain's existence to the
user by retracing the logic TROUBLE III went through in creating the chain.

After the top level failure modes and root causes have been displayed to the
user, the user may want more information on why a particular failure cause
appeared. By entering the justification module the user can obtain the
desired information on any of the chains on the screen.

The justification module queries the user for the chain to justify and then
proceeds to backtrack through the chain displaying TROUBLE Ilrs reasoning.
Starting with the top level failure, this module displays in a natural language
format the failure mode, failure cause, failure symptoms, failed device and
locations for each link (FHR) in the chain. An example is shown in Figure
15. It shows the justification of why the root cause "DC BUS Voltage VT
Failed MAX" is a possible root cause for the failure mode "NO Discharge
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Current".

Besides giving the logic justification for each root cause, the justification
module also allows the user to believe or disbelieve any of FHRs in a chain.
If the operator has good reason to believe that a failure mode and its cause
is not a viable candidate, he/she can defeat the reason and remove that
FHR from all chains. Once a FHR's reason is defeated, the logic of the rest
of the chain falls apart and every root cause stemming from the defeated
FHR is no longer a possible candidate. After defeating a FHR's reason,
TROUBLE III will redisplay the possible top level failure modes and root
causes with all chains dependent upon the defeated FHR eliminated. Any
FHR's reason can be defeated, it does not have to be the top or bottom
node of the chain. The higher up in the chain the defeated FHR appears,
the more chains will be eliminated from contention. Defeated chains are
never discarded, just suppressed from being printed.

The user also has the option of reinstating a defeated FHR. When this
option is selected a menu appears with every defeated FHR being an option.
The user can reinstate any or all defeated FHRs. Once the selections are
made the possible failure modes and causes are redisplayed including the
ones reinstated.

Input and Output Modules

The input module allows the user to directly alter measurement values. It is
only used for developing and testing TROUBLE IIl's diagnostic logic. When
TROUBLE III is directly connected to hardware, input data will be acquired
from the hardware rather than from the input module.

The input module has two ways of entering or altering measurement values
stored in the database: 1) load a test file or 2) manually enter the
measurement number and value one at a time.

If the user selects to enter new data by loading a file, TROUBLE III displays
a mouse sensitive menu which lists all possible test case files. Upon
selection of a test file, TROUBLE III locates the desired file on the disk and
loads the file into its working memory where input rules modify the existing
measurement objects to correspond to the data in the test file. Once all of
the data has been modified, the input module increments the clock and
begins the diagnostic process by activating the detection module.

If the manual input mode is chosen, TROUBLE III keeps prompting the user
for the measurement device number and its new value until the user has

entered all of his/her changes. For each device number entered, TROUBLE
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III locates the corresponding measurement object and modifies it value to
correspond to the user's input. After all changes are made, TROUBLE III
increments the clock and begins the diagnostic process by activating the
detection module.

The output module is responsible for communicating the results of the
diagnostics to the user. By selecting one of the mouse sensitive areas on
the bottom of the screen, the user controls what output is exposed on the
screen. By interacting with the output module the user is able to 1) invoke
the input module, 2) view all symptoms detected, 3) view the FAILURE chains
created, 4) invoke the justification module, 5) invoke the belief maintenance
procedure or 6) EXIT the program.

Each of these options has its own window to display its results. The output
module determines which window is exposed to the user. In this way
TROUBLE III can switch back and forth between screens without having to
waste time regenerating the outputs. This is especially evident in the
detected symptoms and failure chains screen. If TROUBLE II! regenerated
the outputs for these screens every time the user selected them, a lot of time
would be wasted generating output that hadn't changed from the last time.
The other screens are cleared each time they are selected because they
invoke modules which generate different results each time depending on the
user responses to their prompts.

Figures 13-15 show output screens that are the result of running TROUBLE
III on Test Case 1. Figure 13 lists all the symptoms TROUBLE III found with
the conditions of the test case. Figure 14 displays the top level failures and
root cause for the observed abnormalities ranked by RMWDS. Figure 15
shows the justification for the fourth possible cause of Figure 14.
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Implementation

The previous sections have outlined the overall design and logic of TROUBLE
III. Each of the modules in the design have been implemented using ART
and LISP code. Each module is made up of rules, objects and databases

that incorporate the design techniques of set-covering, FMEA, and transitions.
After each module was developed and coded, it was tested to verify that it
functioned properly. The next section describes the testing procedures.

Testing

Diagnostic expert systems, like TROUBLE i11, must gain the user's
confidence. TROUBLE III uses a testing method to prove that it is accurate
and reliable. The testing method was to test and to debug each module
after it was coded.

As each module was coded it was tested to make sure that the results

agreed with the expectations. Specific test cases with known results were
used as input and the outputs of the module were compared to the known
results. If the output agreed, work began on the next module. If the results
disagreed, then the logic of the module was reviewed and altered
accordingly.

To do this testing, a power system was needed that could be analyzed and
the results used in testing. Since the power system being designed by the
project contractor was incomplete, James Dolce of NASA Lewis Research
Center completed the unfinished control system design using proposed
components and configurations;'. As the actual design evolves, only the
database will change not the logic of TROUBLE IIl's rules.

A failure mode and effects analysis was performed on the system design to
determine failures and causes, needed measurements, and corresponding

symptoms. This failure knowledge was placed into failure objects,
measurement objects, and detection rules. Next, test cases were developed
that simulated known failures.

Every module was tested with these cases and has produced the correct
diagnosis. The overall system can successfully diagnose failures as defined
in the data base for our hypothetical power system.

Future Developments

The next major development in TROUBLE IIl's future is integrating it with a
test bed. For the integration to be successful, issues surrounding data
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acquisition must be resolved, a failure mode and effects analysis must be
performed on the test bed, symptom detection rules must be developed,
and the diagnostic software integrated with test bed control software. Data
acquisition issues include determining the rate of acquisition and how to
convert the analog measurements into the measurement facts TROUBLE Ill
needs.

Adding additional ranking schemes, as discussed in Chapter 4.2.8, is another
enhancement planned for TROUBLE II1. Before implementing these, collateral
information on troubleshooting and failure probabilities will have to be

gathered from an expert and incorporated into the design.

Another development will be to integrate TROUBLE III with the other expert
systems being developed in the Advanced Automation Lab of NASA Lewis
Research Center. The results of the fault diagnoses of TROUBLE III will be
an important input into the load scheduler and security expert systems 9.

DIAGNOSTIC EXAMPLE USING TROUBLE I!1

This chapter is intended to clarify the function of each module of TROUBLE
III by discussing, in detail, an example used in testing. The test system,
failure mode and effects analysis and test conditions will be described. Then
this chapter will follow the given test conditions through each module and
explain how each module reacts.

Test System

The Battery Charger/Discharger Unit (BCDU) used in testing TROUBLE III
was also used as the test system for this example. The purpose of the
BCDU system is to charge the batteries when the solar arrays produce more
electricity than used by the loads and discharge the batteries when the loads
use more electricity than is produced. The batteries charge and discharge
at a rate that keeps the bus voltage constant.

Figure 16 shows a schematic diagram of the BCDU design. Five parallel
batteries, each with their own charger and discharger are connected to the
two parallel DC bus lines running from the solar arrays to the loads. The
control scheme uses measurements from the solar arrays, the loads, the
batteries and the main bus along with constant set points for the
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maximum bus voltage and charging current to control the amount of
discharging or charging for each battery. Detailed explanation of the control
scheme is not important for this example and will not be discussed.

FMEA

A FMEA was performed on the BCDU system to define the failure knowledge
used by TROUBLE III in diagnosing the system. For each component of the
BCDU system (ie VC01, IT01, IC03)= every possible cause and symptom for
every possible failure was described. Each unique failure-cause-symptom
was stored as a unique failure object. Once all the failure modes and
causes were identified, a failure hypothesis tree was created that shows how
the failure modes and causes are interconnected.

Figure 17 shows one branch of the failure hypothesis tree created for the
BCDU system. Each node of the tree that has children (branches coming
out of the right side) is a failure mode and each of its children is a possible
cause for that failure. As can be seen, a failure mode can be a cause (child)
of another failure mode. In figure 17 the failure mode "NO DISCHARGE
CURRENT" has six possible causes, one of which, "NO SIGNAL FROM IC03",
is itself a failure mode with four possible causes. In figure 17
specific device names such as IC03, IC01, etc. were used so that the reader
could easily locate the failures on the schematic. The real tree is more
general so that it can be used for all five batteries. The device names are
replaced with the device function. For example IC03, IC06, IC09, IC12 and
IC15 are all the same device, just a different battery, so in the tree, IC03
would be replaced with "DISCHARGE SET POINT IC" to make it general
enough to include the other four batteries. The failure tree is not stored in
TROUBLE III but each node is, so that TROUBLE III can generate all or part
of the tree depending upon the state of the system.

aVC = Voltage Controller, IC = Current Controller, VT = Voltage Transducer,
IT = Current Transducer
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Detection

The first module in TROUBLE III is the detection module which converts the

quantitative measurements into qualitative symptoms that describe the current
state of the system.

For this example, the conditions in Table 2 were input into TROUBLE III and
stored in the measurement objects. These values were selected in such a
way that they will simulate known failures to TROUBLE III. Figure 13 shows
the five symptoms that were detected by TROUBLE III when given the test
data.

Table 2: Test Conditions

DEVICE

VC01

IT05

IT06

IC07

IC09

VALUE

22.5

0

0

5.4

0

MEASUREMENT
NUMBER

4

17

18

19

21

The creation of the symptom "NO OUTPUT FROM DISCHARGE SET POINT
IC", as shown by figure 18, demonstrates the function of the detection rules.
For this symptom to be present on the system one of the discharge set point
ICs has to be sending no signal. Recall from before that IC03, IC06, IC09,
IC12, and IC15 are all discharge set point ICs. The test data entered had
the measuring device at the output of IC09 reading 0 so detection rule #2
matched this measurement object and created the symptom "NO OUTPUT
FROM DISCHARGE SET POINT IC" (Figure 18). In so doing detection rule
#2 converted a quantitative measurement (IC09 = 0) into a qualitative
symptom (NO OUTPUT FROM DISCHARGE SET POINT IC).
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DETECTION MODULE EXAMPLE

MEASUREMENT 2.1

(has-name IC09)

(has-value 0)

SYMPTOM 5

(has-name NO-OUTPUT-FROM-

DISCHARGE-SET-POINT-IC)

Figure 18: Detection Module Example

Failure Hypothesis Module

The failure hypothesis module is responsible for generating a list of possible
failures to explain the abnormal behavior(s) detected by the detection
module.

Failure objects have many attributes including failure mode, failure symptom
and failure cause. The failure hypothesis module matches each detected
symptom to failure objects with that symptom. If the reason object of the
matched failure object has value inclusion maintained or exclusion defeated,
a failure hypothesis record (FHR) is created (Figure 10).

In the test case being discussed, the five detected symptoms produced 18
possible FHRs to describe the observed abnormal behavior. Figure 19
shows the failure mode and cause of each of the FHRs created. Every
failure mode in Figure 19 appears as a parent node and every cause
appears as a child node in the failure hypothesis tree (Figure 17). Figure 19
uses the general device purpose instead of the device name that Figure 17
uses.
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Figure 19: Listed FHRs
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Concentrating on the symptom "NO OUTPUT FROM BDU" the FHR rule can
be demonstrated. In this example the symptom "NO OUTPUT FROM BDU"
is the failure symptom for the failure mode "NO DISCHARGE CURRENT".
Therefore, this symptom matched all six causes for the failure mode "NO
DISCHARGE CURRENT''. Figure 20 shows how the FHR rule takes this
symptom and failure to create the FHR with the cause "NO CHARGE ON
BATFERY".

FHR RULE EXAMPLE

SYMPTOM 12

(has-name S1)

FAILURE 3

(failure-mode F2)

(failure-symptom Sl)

(failure-cause C3)

REASON 3

(failure-mode F2)

(failure-symptom Sl)

(failure-cause C3)

(is-for I1)

FHR 5

(failure-mode F2)

(failure-symptom S1)

(failure-cause C3)

S1 - NO-OUTPUT-FROM-BDU

F2. NO-DISCHARGE-CURRENT

C3 - NO-CHARGE-ON-BA'I-rERY

I1 - INCLUSION MAINTAINED

Figure 20: FHR Rule Example

Chaining Module

The chaining module is responsible for taking the FHRs and linking them
together to form the portion of the failure hypothesis tree that describes the
current state of the system. The chaining module creates links between each
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parent and child in the tree, then uses these relationships to form the chains
(lists of FHRs) that go from a top level failure to a root cause. A root cause
is a cause that has no children.

Figure 21 shows how two chains in this example were created. Given the 18
FHRs of the example, the chaining module produced 15 possible failure
chains or root causes for the failure mode "NO DISCHARGE CURRENT"

(Figure 14). These correspond to the different paths in the failure hypothesis
tree from the top failure MODE down to each root cause. In this example
the part of the tree stemming from "NO SIGNAL FROM IC01" has been
pruned away because IC07 (IC01's counterpart) has a value so the failure
mode "NO SIGNAL FROM IC01" is not detected and the tree from that point
on is not developed in the FHRs. Figure 14 gives the 15 possible failure
chains ranked according to related modes with different symptoms.

CHAINING EXAMPLE
Given these FHR's...

FHR 1

(failure-mode NO-DISCHARGE-CURRENT)

(cause NO-SIGNAL.FROM-IC03)

FHR 3

(failure-mode NO-SIGNAL-FROM-IC03)

(cause IC03-FAILED-OFF)

FHR 2

(failure-mode NO-SIGNAL-FROM-IC03

(cause NO-SIGNAL-FROM-IC01)

FHR 4

(failure-mode NO-SIGNAL-FROM-IC01)

(cause IC01-FAILED-OFF)

These chains would be formed:

CHAIN 1 CHAIN 2

Chain links FHR1-FHR3 FHR1-FHR2-FHR4

Top level failure NO-DISCHARGE-CURRENT NO-DISCHARGE-CURRENT

Possible root cause IC03-FAILED-OFF IC01-FAILED-OFF

Figure 21: Chaining Example
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Justification Module

The justification module justifies a user selected chain's existence by
displaying the logic used by TROUBLE III in creating the chain.

Chain 4 was selected to be justified in this example and the results appear
in Figure 15. If one compares the justification of chain 4 to the failure
hypothesis tree, they would see that the justification module displays a
branch of the tree, from top failure to root cause, and explains in English
how "DC BUS VOLTAGE VT FAILED MAX" could be a root cause of the
failure "NO DISCHARGE CURRENT".

Looking at Figure 14 also shows how chain 4 got a RMWDS of four. If one
counts the number of different symptoms that appear in the justifications,
they will come up with four RMWDS.

Belief Maintenance

The belief maintenance module allows a user to defeat or reinstate any FHR.
If the user desires to see the chaining results if a selected FHR never
existed, he/she can defeat that particular FHR causing all chains containing
that FHR to disappear. This has the effect of pruning the failure hypothesis
tree at the desired node.

In this example, FHR 10 was defeated and Figure 22 displays the resulting
chains. Comparing this to the failure hypothesis tree one can see that
defeating FHR 10 has the same affect as pruning the tree at the "NO SIGNAL
FROM IC03" node. Only the five chains that do not contain that failure mode
are displayed. If FHR 10 was reinstated all the original chains would
reappear.
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CONCLUSION

This thesis has described an object oriented expert system TROUBLE i11,
which is intended to automate the fault diagnostics of Space Station
Freedom's power system.

It has been shown that this type of automation is desirable in a space based
system to reduce the number of needed personnel, increase reliability and
speed up response time to faults.

The design of TROUBLE III was complicated by the fact that Space Station
Freedom's power system design keeps changing. Adapting an expert
system to this dynamic, evolving system requires a flexible design. Three
types of expert systems were studied: rule-based, set-covering, and model-
based. A set-covering approach was selected because it offered the needed
flexibility that rule-based and model-based systems lack. In set-covering the
flexibility is gained because failure knowledge about the system is stored in
databases rather than encoded in rules.

Besides using a set-covering approach, TROUBLE III makes use of the
following techniques: Failure Modes and Effects Analysis (FMEA), Petri net
transitions, reasoned assumptions and Related Modes With Different
Symptoms (RMWDS). FMEA is used to produce the known failure database.
Transitions control the flow of the program by determining which module to
make active, while reasoned assumptions and RMWDS are methods that
reduce the work necessary to determine the most probable cause.

Besides expanding Zisman's work with Petri net transitions, an important
outcome of TROUBLE IIl's development was that it demonstrated it was
possible to combine the strengths of set-covering, FMEA, Petri net transitions,
and reasoned assumptions into one diagnostic expert system. These
techniques are not new ideas individually but combining them all together is
unique.

TROUBLE IIl's main strength is its quick adaptability to any system changes.
By performing a FMEA on the new system and changing the detection rules,
TROUBLE III can be adapted to handle diagnostics on any system. Failure
knowledge not being hard coded into rules means no diagnostic rules need
be altered.

As with any rule-based or set-covering expert system, the main limitation of
TROUBLE 111is that it can only detect faults that have been described to it
by a human expert. It cannot make inferences.. If a fault appears on the
system that was not described by the human expert, TROUBLE III has no
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knowledge of that fault and it will go undetected. The failure knowledge of
TROUBLE III is limited by the human expert. The more comprehensive the
human expert is in identifying the possible failures and causes of the system,
the better TROUBLE III becomes.

Another limitation of TROUBLE III is that it will not detect incipient faults, only
static faults. TROUBLE III does not have the capability to monitor the
performance history of each component in an attempt to predict and negate
possible failures before they occur. It can only detect and isolate faults that
have already occurred on the system.

A prototype battery charge-discharge control system was designed to test
TROUBLE II1. A FMEA was performed on this design with the consequent
failure modes and causes being stored in a failure database. A set of
detection rules was written to detect the symptoms of these failure modes.
Test cases were developed to simulate certain failure modes and the test
results were compared to the predicted results to verify the rule's logic.

TROUBLE III is a functioning diagnostic expert system but its development is
not complete. Several improvements are planned to make TROUBLE III a
better system: integrating TROUBLE III with a test bed, adding additional
ranking schemes, improving the graphics, and interconnecting TROUBLE III
with other expert systems.

Even though TROUBLE III has been designed specifically to handle Space
Station Freedom's dynamic, evolving power system, it is not limited to this
specific application. The flexibility that had to be incorporated in the design
to handle the changing power system makes TROUBLE III easily adaptable
to any diagnostic system on Earth or in space.
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