19 research outputs found

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Provably Trustworthy and Secure Hardware Design with Low Overhead

    Get PDF
    Due to the globalization of IC design in the semiconductor industry and outsourcing of chip manufacturing, 3PIPs become vulnerable to IP piracy, reverse engineering, counterfeit IC, and hardware Trojans. To thwart such attacks, ICs can be protected using logic encryption techniques. However, strong resilient techniques incur significant overheads. SCAs further complicate matters by introducing potential attacks post-fabrication. One of the most severe SCAs is PA attacks, in which an attacker can observe the power variations of the device and analyze them to extract the secret key. PA attacks can be mitigated via adding large extra hardware; however, the overheads of such solutions can render them impractical, especially when there are power and area constraints. In our first approach, we present two techniques to prevent normal attacks. The first one is based on inserting MUX equal to half/full of the output bit number. In the second technique, we first design PLGs using SiNW FETs and then replace some logic gates in the original design with their SiNW FETs-based PLGs counterparts. In our second approach, we use SiNW FETs to produce obfuscated ICs that are resistant to advanced reverse engineering attacks. Our method is based on designing a small block, whose output is untraceable, namely URSAT. Since URSAT may not offer very strong resilience against the combined AppSAT-removal attack, S-URSAT is achieved using only CMOS-logic gates, and this increases the security level of the design to robustly thwart all existing attacks. In our third topic, we present the usage of ASLD to produce secure and resilient circuits that withstand IC attacks (during the fabrication) and PA attacks (after fabrication). First, we show that ASLD has unique features that can be used to prevent PA and IC attacks. In our three topics, we evaluate each design based on performance overheads and security guarantees

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Asynchrobatic logic for low-power VLSI design

    Get PDF
    In this work, Asynchrobatic Logic is presented. It is a novel low-power design style that combines the energy saving benefits of asynchronous logic and adiabatic logic to produce systems whose power dissipation is reduced in several different ways. The term “Asynchrobatic” is a new word that can be used to describe these types of systems, and is derived from the concatenation and shortening of Asynchronous, Adiabatic Logic. This thesis introduces the concept and theory behind Asynchrobatic Logic. It first provides an introductory background to both underlying parent technologies (asynchronous logic and adiabatic logic). The background material continues with an explanation of a number of possible methods for designing complex data-path cells used in the adiabatic data-path. Asynchrobatic Logic is then introduced as a comparison between asynchronous and Asynchrobatic buffer chains, showing that for wide systems, it operates more efficiently. Two more-complex sub-systems are presented, firstly a layout implementation of the substitution boxes from the Twofish encryption algorithm, and secondly a front-end only (without parasitic capacitances, resistances) simulation that demonstrates a functional system capable of calculating the Greatest Common Denominator (GCD) of a pair of 16-bit unsigned integers, which under typical conditions on a 0.35μm process, executed a test vector requiring twenty-four iterations in 2.067μs with a power consumption of 3.257nW. These examples show that the concept of Asynchrobatic Logic has the potential to be used in real-world applications, and is not just theory without application. At the time of its first publication in 2004, Asynchrobatic Logic was both unique and ground-breaking, as this was the first time that consideration had been given to operating large-scale adiabatic logic in an asynchronous fashion, and the first time that Asynchronous Stepwise Charging (ASWC) had been used to drive an adiabatic data-path

    A framework for development and implementation of secure hardware-based systems

    Get PDF
    Orientador : Ricardo Dahab.Tese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo A concepção de sistemas seguros demanda tratamento holístico, global. A razão é que a mera composição de componentes individualmente seguros não garante a segurança do conjunto resultante2. Enquanto isso, a complexidade dos sistemas de informação cresce vigorosamente, dentre outros, no que se diz respeito: i) ao número de componentes constituintes; ii) ao número de interações com outros sistemas; e iii) 'a diversidade de natureza dos componentes. Este crescimento constante da complexidade demanda um domínio de conhecimento ao mesmo tempo multidisciplinar e profundo, cada vez mais difícil de ser coordenado em uma única visão global, seja por um indivíduo, seja por uma equipe de desenvolvimento. Nesta tese propomos um framework para a concepção, desenvolvimento e deployment de sistemas baseados em hardware que é fundamentado em uma visão única e global de segurança. Tal visão cobre um espectro abrangente de requisitos, desde a integridade física dos dispositivos até a verificação, pelo usuário final, de que seu sistema está logicamente íntegro. Para alcançar este objetivo, apresentamos nesta tese o seguinte conjunto de componentes para o nosso framework: i) um conjunto de considerações para a construção de modelos de ataques que capturem a natureza particular dos adversários de sistemas seguros reais, principalmente daqueles baseados em hardware; ii) um arcabouço teórico com conceitos e definições importantes e úteis na construção de sistemas seguros baseados em hardware; iii) um conjunto de padrões (patterns) de componentes e arquiteturas de sistemas seguros baseados em hardware; iv) um modelo teórico, lógico-probabilístico, para avaliação do nível de segurança das arquiteturas e implementações; e v) a aplicação dos elementos do framework na implementação de sistemas de produção, com estudos de casos muito significativos3. Os resultados relacionados a estes componentes estão apresentados nesta tese na forma de coletânea de artigos. 2 Técnicas "greedy" não fornecem necessariamente os resultados ótimos. Mais, a presença de componentes seguros não é nem fundamental. 3 Em termos de impacto social, econômico ou estratégicoAbstract: The conception of secure systems requires a global, holistic, approach. The reason is that the mere composition of individually secure components does not necessarily imply in the security of the resulting system4. Meanwhile, the complexity of information systems has grown vigorously in several dimensions as: i) the number of components, ii) the number of interactions with other components, iii) the diversity in the nature of the components. This continuous growth of complexity requires from designers a deep and broad multidisciplinary knowledge, which is becoming increasingly difficult to be coordinated and attained either by individuals or even teams. In this thesis we propose a framework for the conception, development, and deployment of secure hardware-based systems that is rooted on a unified and global security vision. Such a vision encompasses a broad spectrum of requirements, from device physical integrity to the device logical integrity verification by humans. In order to attain this objective we present in this thesis the following set of components of our framework: i) a set of considerations for the development of threat models that captures the particular nature of adversaries of real secure systems based on hardware; ii) a set of theoretical concepts and definitions useful in the design of secure hardware-based systems; iii) a set of design patterns of components and architectures for secure systems; iv) a logical-probabilistic theoretical model for security evaluation of system architectures and implementations; and v) the application of the elements of our framework in production systems with highly relevant study cases. Our results related to these components are presented in this thesis as a series of papers which have been published or submitted for publication. 4Greedy techniques do not inevitably yield optimal results. More than that, the usage of secure components is not even requiredDoutoradoCiência da ComputaçãoDoutor em Ciência da Computaçã

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    corecore