
Formal Design of Cryptographic Hardware

著者 Ueno Rei
学位授与機関 Tohoku University
学位授与番号 11301甲第18186号
URL http://hdl.handle.net/10097/00122854

Tohoku University
Graduate School of Information Sciences

Formal Design of
Cryptographic Hardware

Rei Ueno

Dissertation presented in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

Supervisor:
Prof. Takafumi Aoki
Prof. Naofumi Homma

Formal Design of Cryptographic Hardware

Rei Ueno

i

Acknowledgments

I wrote this thesis as the summarizing compilation of my study at Aoki Laboratory. Although

the road was steep and complicated, many amazing people led me to a better direction with their

support, which made me possible to reach such a honorable goal (and a starting point of new road

as a researcher).

First of all, I would like to show the greatest appreciation to my supervisor Professor Takafumi

Aoki. He has greatly encouraged me in my learning and study, and has always trusted me even

when I had made mistakes and failures. He has also taught me the importance of challenging

myself to everything, and let me find delight in study, research, and modern computer games.

I am awfully grateful to Professor Hiroki Shizuya and Professor Masanori Hariyama. I could

surely improve my thesis thanks to their insightful and valuable comments.

I owe a very important debt of gratitude to my supervisor Professor Naofumi Homma. I could

not have written this thesis as readily as I had done unless he had supervised me. I have always

had the honor of asking him about both research and off-research problems, which was essential

for pursuing my daily study and living. I believe that what he taught should offer the promise of

a brilliant future for me.

I have really enjoyed collaborative research and discussions with many outstanding researchers,

which brought expertised knowledge and a remarkable outcome to me. While it would be hard

to count everyone, a part of the people who especially helped me write my thesis and jour-

nal/conference papers is listed here with great appreciation: Dr. Sumio Morioka, Professor Ya-

suyuki Nogami, Dr. Kazuhide Fukushima, Dr. Shinsaku Kiyomoto, Dr. Yuto Nakano, Professor

Jean-Luc Danger, Professor Sylvain Guilley, Dr. Yves Mathieu, Professor Makoto Nagata, Dr.

Noriyuki Miura, Professor Kazuo Sakiyama, Dr. Takeshi Sugawara, Professor Yu-ichi Hayashi,

Dr. Daisuke Fujimoto, and Dr. Kazuhiko Minematsu.

I had fortune to be a member of Tohoku University’s Aoki Laboratory and Homma Labora-

tory, which gave me the good opportunity to share offices with many teachers and friends whom

I esteem. I would like to thank them who made me have the fulfilling time of my life. Further-

ii Acknowledgments

more, I would like to extend my respect and gratitude to my seniors and friends graduated from

the laboratory. Please let me introduce my lovely teachers, friends, and seniors here with great

admiration: Dr. Koichi Ito, Mr. Ville Yli-Mäyry, Ms. Manami Suzuki, Mr. Hirokazu Oshida,

Mr. Shota Hishinuma, Mr. Ryuichi Fufimoto, Mr. Akira Ito, Mr. Sora Endo, Mr. Kohei Koiwa,

Mr. Hayato Mori, Mr. Daisuke Miyata, Mr. Kouya Yodokawa, Mr. Takehisa Okano, Mr. Jun-ichi

Hata, Mr. Shotaro Sawataishi, Mr. Kohei Kazumori, Mr. Shuto Funakoshi, Dr. Sho Endo, Mr.

Takafumi Hibiki, Mr. Kotaro Okamoto, Mr. Hajime Uno, Mr. Yukihiro Sugawara, Mr. Shoei

Nashimoto, Mr. Daisuke Ishihata, and Mr. Wataru Kawai.

I was also lucky to study in such a beautiful city, where it is easy to find refreshments, restau-

rants, and amusements to get away from my work. I want to thank such shops, in particular, coffee

shop To-mon, Chinese restaurant Fukuraien, Japanese soba restaurants Myouan and Koushouan,

tonkatsu restaurant Katsusei, washu bar RAMBLE, and wine bar Clos de la Barre. They provided

me the mental energy to pursue my (sometimes hard) work with their fine dishes and beverages.

Finally, special thanks to my dearest family, who have kindly supported me with their under-

standing, encouragement, sacrifice, and endless love.

Rei Ueno

January 2018, Sendai

iii

Abstract

Cryptography has been widely deployed for secure information systems with secret communica-

tion, authentication, and digital signature. As a result of rapidly increasing LSI systems, hard-

ware implementation of cryptographic algorithms is being essential to realize cryptographic op-

erations efficiently from only transaction servers to resource-constraint embedded devices. In

addition, there is high demand of cryptographic hardware resistant to tampering attacks such as

Side-Channel Attacks (SCAs), because cryptographic hardware is used as a security primitive

and root-of-trust for information systems. Thus, rapid design and verification methods for var-

ious cryptographic hardware are strongly required as more and more cryptographic algorithms,

hardware architectures, and countermeasures against tampering attacks are being developed.

On the other hand, the conventional Electronic Design Automation (EDA) tools with Hard-

ware Description Languages (HDLs) have difficulty in designing cryptographic hardware. While

most modern cryptography is based on Galois-Field (GF) arithmetic, the conventional EDA tools

have not supported high-level description and automatic synthesis of GF arithmetic circuits. The

lack of high-level design methodology for GF arithmetic circuits forces designers to describe the

structural details of cryptographic hardware with massive low-level logical expression by hand,

which makes it difficult to design, debug, and optimize cryptographic hardware. To make matters

worse, the difficulties with the verification are more serious than those with the design itself. We

cannot verify circuits with input bit length greater than 128 bits by the common logic simulation

while cryptographic hardware frequently have more than 128-bit operands for the resistance to

cryptanalysis attacks. Moreover, it is basically difficult to apply the conventional high-level syn-

thesis and formal verification methods to practical GF arithmetic circuits because they have been

basically developed for integer and floating-point arithmetic. Nevertheless, complete verification

of cryptographic hardware is quite important because they are frequently used for mission-critical

and high-security systems.

To address these problems, a formal design method for GF arithmetic circuits was presented.

The method describes GF arithmetic circuits with a hierarchical mathematical graph called GF

iv Abstract

Arithmetic Circuit Graph (GF-ACG). Since GF-ACG hierarchically represents functions of GF

arithmetic circuits by GF equations, the circuit function can be formally verified by equivalence

checking of the GF equations between hierarchies. It was shown that we could completely ver-

ify a 128-bit GF multiplier and a 128-bit Advanced Encryption Standard (AES) hardware using

Gröbner basis and polynomial reduction techniques for the equivalence checking.

However, it is still challenging to apply the formal design method to practical cryptographic

hardware. The above method was applied to only standard and straight-forward architectures

without optimization techniques nor higher-degree functions. For example, while redundant GF

representations and pipelining techniques are sometimes useful for high-performance and/or SCA-

resistant cryptographic hardware design, the conventional GF-ACG cannot describe them. In

addition, the computation time for a Gröbner basis heavily depends on the degree and number

of variables derived from the target circuit function, and therefore the algebraic techniques have

difficulty in verifying functions of higher-degree (e.g., AES decryption hardware and efficient

AES encryption hardware with resister-retiming techniques) and circuits optimized at logic-level

(e.g., tamper-resistant AES hardware). Thus, design methodology that can be applied to a wider

variety of cryptographic hardware is quite necessary in the fields of EDA and information security.

This dissertation studies a formal design of cryptographic hardware. The contribution of this

dissertation is threefold.

Firstly, we propose a new formal design methodology for cryptographic hardware. We propose

a new GF-ACG which can represent a wider variety of GF arithmetic circuits for practical cryp-

tographic hardware including those with redundant GF representations and with pipeline archi-

tectures. We also propose two new equivalence checking methods for GF-ACGs and then present

a verification algorithm combining three equivalence checking methods with the conventional

one. The proposed algorithm can verify circuits with higher-degree functions and logic-level op-

timization in a systematic manner. The effectiveness and efficiency of the proposed algorithm are

demonstrated through its applications to various GF arithmetic circuits and cryptographic hard-

ware. For example, we successfully verify AES decryption hardware and tamper-resistant AES

hardware while the conventional methods fail.

Secondly, we present an automatic generation system of GF multipliers for cryptographic hard-

ware design developed based on the proposed method. The system generates verified HDL codes

from multiplier specification. The system supports automatic synthesis of GF (pm) multipliers

where p = 2, 3, 5, 7, 11 and 2 ≤ m ≤ 256. In addition, the system can also generate SCA-

resistant GF multipliers based on Generalized Masking Scheme (GMS). The SCA-resistance of

generated circuits is verified by new algorithms proposed in this dissertation. As a result of ex-

perimental generation, we confirm that the system can generate large GF multipliers (e.g., whose

v

input bit length is 256 × 77) within a practical time. The system generates compatible HDL

codes which can be used in the conventional EDA tools, and therefore the proposed formal design

methodology and the conventional EDA tools are connectable through the system.

Thirdly, in order to show the significance of the proposed methodology, we design highly ef-

ficient cryptograhic hardware architectures focusing on AES. We first present a highly area-time

efficient GF (28) inversion circuit andan AES S-box based on a combination of redundant and

non-redundant GF arithmetic. We then present a high throughput/gate AES hardware compressing

encryption and decryption datapaths. Finally, we present an efficient SCA-resistant AES hardware

architecture based on a variation of GMS. The proposed AES hardware achieves approximately

20–50% higher area-time efficiency (i.e., lower energy) than the conventional best ones. While

the proposed design utilize some practical techniques such as redundant GF arithmetic, pipelining,

resister-retiming (resulting in higher-degree function), and/or logic-level optimization, we confirm

that the proposed formal design methodology is applicable to such practical and state-of-the-art

cryptographic hardware.

vii

Contents

Acknowledgments i

Abstract iii

Contents vii

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Background . 1

1.2 Contributions . 5

1.3 Thesis Overview . 7

2 Preliminaries 9
2.1 Introduction . 9

2.2 Galois-Field Arithmetic . 10

2.2.1 Overview . 10

2.2.2 GF representations . 11

2.3 Cryptography and Its Implementation . 15

2.3.1 Overview of cryptography . 15

2.3.2 Cryptographic algorithms . 18

2.3.3 Block ciphers and modes of operation 20

2.3.4 Cryptographic implementation . 24

2.3.5 Implementation attacks and countermeasures 26

2.4 Design of Arithmetic Circuits . 27

2.4.1 Overview . 27

2.4.2 Problems on designing cryptographic hardware 29

viii CONTENTS

2.5 Functional Verification of Arithmetic Circuits 30

2.5.1 Overview . 30

2.5.2 Related works . 30

2.5.3 Problems on verifying cryptographic hardware 33

2.6 Formal Design of GF Arithmetic Circuits . 34

2.6.1 Overview . 34

2.6.2 Automatic generation system for GF arithmetic circuit 35

2.6.3 Issues on formal design of cryptographic hardware 36

2.7 Conclusion . 37

3 Formal Design Methodology of Cryptographic Hardware 39
3.1 Introduction . 39

3.2 Previous Work . 40

3.2.1 Formal Description of GF Arithmetic Circuits 40

3.2.2 Formal Verification of GF-ACG . 43

3.2.3 Example . 47

3.3 Proposed Method . 50

3.3.1 Proposed Formal Description . 50

3.3.2 Proposed Formal Verification . 59

3.4 Applications . 75

3.4.1 GF (2m) parallel multipliers . 75

3.4.2 GF (28) inversion circuits . 79

3.4.3 AES hardware . 82

3.4.4 Masked AES hardware . 85

3.4.5 LED hardware resistant to DPAs based on pipeline 87

3.5 Discussion . 92

3.5.1 Comparison with conventional formal verification methods 92

3.5.2 Applicability and generality . 94

3.6 Conclusion . 94

4 Automatic Generation System for Cryptographic Hardware 97
4.1 Introduction . 97

4.2 System Overview . 98

4.3 Automatic generation of GF (pm) multipliers 99

4.3.1 Extension of GF-ACG to GF (pm) arithmetic circuit 99

4.3.2 Generation of GF (pm) parallel multipliers 102

CONTENTS ix

4.3.3 Experimental generation . 108

4.4 Automatic generation of DPA-resistant GF (2m) multipliers based on GMS . . 110

4.4.1 Attack model . 110

4.4.2 GMS properties . 110

4.4.3 Construction of GMS-based circuit 111

4.4.4 Functional verification and GMS property checking 115

4.4.5 Experimental generation . 117

4.4.6 Discussion . 119

4.5 Conclusion . 119

5 Design of Efficient AES Hardware 121
5.1 Introduction . 121

5.2 Efficient GF (28) inversion circuit and AES S-box 122

5.2.1 Overview . 122

5.2.2 Related works . 123

5.2.3 Proposed GF (28) inversion circuit 124

5.2.4 Performance evaluation . 130

5.2.5 Application to AES S-box design . 132

5.3 High throughput/gate AES hardware . 137

5.3.1 Overview . 137

5.3.2 Related works to unified AES detapath for encryption and decryption . 138

5.3.3 Designed AES hardware . 141

5.3.4 Performance evaluation . 148

5.4 Efficient DPA-resistant AES hardware . 151

5.4.1 Overview . 151

5.4.2 GMS with d+ 1 input shares . 152

5.4.3 Our design . 154

5.4.4 Evaluation . 158

5.5 Conclusion . 161

6 Conclusion 163

Bibliography 165

List of Publications 177

xi

List of Figures

2.1 (a) Encryption and (b) decryption flows of AES. 21

2.2 LSI design flow. 28

2.3 Overvew of functional verification using reference. 31

2.4 (a) BDD and (b) ROBDD for a ∧ (b⊕ c). 32

2.5 Block diagram of GF-AMG. 35

3.1 Overview of GF-ACG . 40

3.2 Decomposition nodes with functional assertion given by (a) Eq. 3.5and (b) Eq.

3.6. 42

3.3 GF-ACG for full-tree multiplier over PB-based GF (22): (a) highest- to (d)

lowest-level of abstraction. 48

3.4 Verification time of GF (2m) full-tree multipliers for 2 ≤ m ≤ 64. 50

3.5 GF-ACG for PRR-based GF (22) cubing circuit. 53

3.6 GF-ACG for circuit converting from PB-based GF (22) to PRR-based one. . . . 54

3.7 GF-ACG for pipelined GF (22) multiplier: (a) top- and (b) second-level of ab-

straction. 57

3.8 Proof figures for inference rules of proposed method: (a) axiom of equal sign

and (b) rule of equal sign. 60

3.9 Example of GF-ACG for ND-based method: (a) top-level and (b) second-level

description. 61

3.10 Proof figure for verification of n0 in Fig. 3.9. 62

3.11 GF-ACG for circuit connecting κ0-input adder and inversion in serial. 64

3.12 Typical circuit structure of tower-field operation. 70

3.13 Classification of circuit functions. 73

3.14 GF-ACG for PRR-based GF (22) full-tree multiplier: (a) top- to (d) lowest-level

of abstraction. 76

3.15 Verification time of PRR-based full-tree multipliers. 76

3.16 Typical datapath of GF (28) composite field inversion. 80

xii LIST OF FIGURES

3.17 GF-ACG for GF ((24)2) inversion circuit based on combination of redundant

and non-redundant GF arithmetic: (a) top- and (b) second-levels of abstraction. 81

3.18 GF-ACG for sub-datapath of AES (a) encryption and (b) decryption hardware. . 83

3.19 Additional property of DPA-resistant operations. 87

3.20 LED encryption flow. 88

3.21 Architecture of TI-based LED hardware and S-box. 90

3.22 GF-ACG for TI-based LED hardware: (a) top-level node and internal structure

of (b) SubCells TI and (c) S-box TI. 91

4.1 Block diagram of GF-AMG. 98

4.2 GF-ACGs for GF (3) multiplier. 101

4.3 GF-ACGs for GF (34) parallel multipliers of (a) the top-level to (d) the 4th-level. 103

4.4 Schematic of GF (38) multiplier obtained from GF-AMG. 106

4.5 Comparison of three types of GF (2m) multiplier for different extension de-

grees. 108

4.6 Example of dth-order probing model. 111

4.7 GMS-based GF (2m) multipliers in [122]: (a) first- and (b) second-order. . . . 112

4.8 GF-ACG for GMS-based GF parallel multiplier: top- and second-levels of ab-

stractions. 113

5.1 Inversion circuit over GF (((22)2)2) in [33] (Same as Fig. 3.16). 123

5.2 Proposed inversion circuit. 125

5.3 Overview of AES (a) S-box and (b) inverse S-box based on tower field arithmetic.133

5.4 Typical architecture of unified S-box. 133

5.5 AES (a) S-box and (b) inverse S-box with proposed technique for optimizing

linear mappings. 134

5.6 Conventional parallel datapath in [78]. 139

5.7 Register-retiming techniques in [78]: (a) original and (b) resulting decryption

flows. 139

5.8 Conventional datapath in [127], where encryption and decryption paths are com-

bined. 140

5.9 Reordering technique in [127]: decryption flows (a) before and (b) after reordering.140

5.10 Overall architecture of proposed AES hardware. 141

5.11 (i) Encryption and (ii) decryption flows (a) before and (b) after our operation-

reordering and register-retiming techniques. 144

5.12 Proposed round function part. 145

LIST OF FIGURES xiii

5.13 Key scheduling part. 147

5.14 Overview of circuit of function t = 2 meeting first-order non-completeness. . . 152

5.15 First-order GMS-based GF (2m) multiplier with two input shares. 153

5.16 Three-stage expression of tower-field GF (28) inversion circuit. 154

5.17 Proposed first-order GMS-based tower-field inversion circuit. 155

5.18 Proposed byte-serial AES hardware architecture. 156

5.19 State array. 158

5.20 Timing diagrams of (a) Conventional [93] and (b) proposed byte-serial AES

hardware architectures. 159

5.21 Experimental setup. 160

5.22 Measurement and TVLA results without PRNG. 161

5.23 Measurement and TVLA results with PRNG. 161

xv

List of Tables

2.1 Comparison between PRR- and PB-based GF (2m) parallel multipliers 13

2.2 Threats to information systems . 16

2.3 Examples of ISO/IEC 18033 standard cryptographic algorithms and used GFs . 19

2.4 Typical modes of operation . 23

2.5 Comparison of cryptographic software and hardware implementation 24

3.1 Nodes, GFs, and GF variables in Fig. 3.3 . 49

3.2 Nodes, GFs, and GF variables in Fig. 3.5 . 53

3.3 Nodes, GFs, and GF variables in Fig. 3.5 . 55

3.4 Nodes, GF, and GF variables in Fig. 3.7 . 57

3.5 Nodes, GF, and GF variables in Fig. 3.11 . 65

3.6 Verification time of n0 in Fig. 3.11(s) . 65

3.7 Conversion rules to obtain PPRM form . 66

3.8 Description and verification of GF (2m) multipliers 70

3.9 Verification time for Mastrovito multipliers over GF (2m) (s) 71

3.10 Nodes, GFs, and GF variables in Fig. 3.14. 77

3.11 Nodes, GFs, and GF variables in Fig. 3.14. 78

3.12 Verification time of PRR-based GF (2m) full-tree multipliers (s) 78

3.13 Nodes, GFs, and GF variables in Fig. 3.17 . 81

3.14 Verification time of GF (28) tower-field inversion circuits 82

3.15 Nodes, GF, and variables in AES encryption hardware (Fig. 3.18(a)) 83

3.16 Nodes, GF, and variables in AES decryption hardware (Fig. 3.18(b)) 84

3.17 Verification time of AES encryption hardware 84

3.18 Verification time of AES decryption hardware 85

3.19 Nodes, GF, and GF variables for Masked Rand sub-datapath 86

3.20 Verification times for Masked Rand datapath 87

3.21 Nodes, GF, and GF variables in Fig. 3.22 . 92

3.22 Verification time of GF-ACG for TI-based LED hardware 93

xvi LIST OF TABLES

3.23 Classification of modern ciphers . 94

3.24 Summary of verification time of various GF arithmetic circuits (s) 95

4.1 Specification supported by GF-AMG . 99

4.2 Mapping of GF values onto logic values . 99

4.3 Nodes, GFs and GF variables in Fig. 4.2(b) 101

4.4 Mapping of GF values onto 3-valued logic values 102

4.5 Nodes, GFs and GF variables in Fig. 4.3 . 104

4.6 Generation times of multipliers over GF (pm) (s) 107

4.7 Performance of GF (pm) multipliers for different characteristics and degrees . . 109

4.8 Nodes, GFs, and variables in Fig. 4.8 . 114

4.9 Generation time of GMS-based GF multipliers (s) 118

5.1 Critical delay and gate count of inversion circuits over tower fields 130

5.2 Performance evaluation of inversion circuits over tower fields 131

5.3 Performance comparison of S-boxes based on tower field arithmetic 136

5.4 Performance comparison of unified S-boxes based on tower field arithmetic . . 136

5.5 Synthesis results for conventional and our AES hardware architectures with area

optimization . 148

5.6 Synthesis results for conventional and our AES hardware architectures with

area-speed optimization . 149

5.7 Performance evaluation of first-order GMS-based AES S-boxes 156

5.8 Performance of AES hardware architecture based on first-order GMS 160

1

1
Introduction

1.1 Background
Information and Communication Technology (ICT) have been providing various services

through the Internet. As a result of the development of communication and semi-conductor

technologies, Large-Scale Integrated circuits (LSIs) have been widely deployed in a lot of

products such as servers, laptop PCs, smart cards, mobile phones, consumer electronics, and

automotives in order to connect them to networks. The Internet of Things (IoT) is considered as

a promising paradigm in the domain of ICT where every thing or object is connected to interact

and cooperate with each other for reaching their application goals. Hence, digital information

on the Internet is being more and more valuable because of rapidly increasing the number

of IoT devices. To protect the digital information from cyber attacks, cryptography plays an

essential role in secure information systems performing secret communication, authentication,

and digital signature [129]. For example, secure communication protocols including Secure

Socket Layer/Transport Layer Security (SSL/TLS) preserve privacy and data integrity during

communication on the basis of cryptography. In addition, since more and more IoT devices will

2 1 Introduction

be connected through not only secure Local Area Network (LAN) but also common and insecure

networks, there is a higher risk of cyber attacks such as eavesdropping and falsification. Thus, the

importance of cryptography significantly increases in the context of IoT applications.

Cryptography has been studied in academia since the 1970s, and many cryptographic algo-

rithms have been proposed and developed. Currently, Galois-Field (GF) arithmetic is widely used

in many cryptographic algorithms. GF is a finite set where addition, subtraction, multiplication,

and division (excluding division by zero) are defined. Since a GF has finite elements, GF arith-

metic is more suitable to modern LSI systems and computers than common infinite fields (e.g.,

the field of complex number). Cryptographic algorithms can be classified into symmetric key and

public key, both of which frequently employ GF arithmetic. For example, an ISO/IEC standard

cipher Advanced Encryption Standard (AES), which is one of the most commonly used symmet-

ric key algorithms throughout the world, exploits a byte-wise GF arithmetic to obtain resistance

to cryptanalyses [100]. Furthermore, Elliptic Curve Cryptography (ECC), which is a public key

cryptography widely used since 2004, utilizes addition of points on elliptic curve over GF [70].

Pairing-Based Cryptography (PBC), which is a kind of next-generation cryptography, is also con-

structed using a bilinear mapping to a GF from elliptic curve(s). Thus, cryptography is closely

related to GF arithmetic.

In general, cryptographic algorithms require high computational costs of GF arithmetic in order

to guarantee their security (i.e., resistance to cryptanalyses). For example, as of 2017, we require

at least 1,000 multiplications with more than 100-bit inputs for a secure ECC-based communica-

tion and authentication. Although symmetric key ciphers including AES can be performed more

than 10,000 times faster than public key cryptography, they sometimes have to encrypt/decrypt

over 10,000 times longer data than public key cryptography for their main use such as secret com-

munication and storage encryption. Hence, when implementing cryptographic algorithms, it is

important to realize cryptographic operations (i.e., GF arithmetic) efficiently so as to satisfy con-

straints of latency, area, and power/energy consumption. In particular, hardware implementation

by Application Specific Integrated Circuit (ASIC) is sometimes required for transaction servers

and resource-constraint devices such as smart cards and Radio Frequency IDentifier (RFID) tags.

Hardware (i.e., LSI systems) consists of four blocks: input/output (I/O), memory, control unit,

and datapath. Here, the datapath design mainly determines overall performance such as latency,

throughput, area, and power/energy consumption. Therefore, design of GF arithmetic circuits,

which occupies a major part of datapath, is quite important when designing cryptographic hard-

ware. By contrast to other parts of LSI systems, the performance of an arithmetic circuits is

determined by its hardware algorithm for arithmetic in addition to device- and logic-level opti-

mizations. Such hardware algorithms are called arithmetic algorithms. There is a variety of arith-

1.1 Background 3

metic algorithms for one arithmetic function [72, 113, 116]. Cryptographic hardware designers

should design GF arithmetic circuits properly in the front-end stage in order to achieve required

performance.

In addition, given that cryptographic hardware is used as a security primitive and root-of-trust

for information systems, it should be resistant to tampering attacks. Originally, cryptographic al-

gorithms were designed on the basis of a classical communication model where there is attacker(s)

in the insecure communication channel between a sender and a receiver. (Contemporary standard

cryptographic algorithms are sufficiently secure under the model as evaluated by e-government

agencies such as NIST [104], CRYPTREC [43], and NESSIE [102].) However, in the last decades,

implementation (or physical) attacks on cryptographic modules are attracting much attention due

to the wider spread of cryptographic hardware. Such attacks retrieve secret information by tam-

pering on the sender’s or receiver’s cryptographic module in addition to eavesdropping/modifying

data in the communication channel. Side-channel Attack (SCA) is a typical implementation attack

which exploits side-channel information (e.g., power consumption, electromagnetic radiation, and

computation time) to retrieve secret key in the cryptographic module non-invasively [32,71]. It is

feasible to perform SCA with commercial and off-the-shelf products such as laptop PC and oscil-

loscope and is basically difficult to detect SCA by LSI. In addition, SCA can be practical to many

devices, such as smart cards, which can be accessed physically by attackers. Thus, SCA is con-

sidered as one of the most powerful implementation attacks and a practical threat in the context

of IoT applications. Accordingly, cryptographic hardware designers should apply countermea-

sures against implementation attacks including SCAs if a designed device can be a target of such

attacks. Since major information leakage through side-channel is caused by datapath [83, 137],

the designers should design SCA-resistant GF arithmetic circuits. Consequently, there is a high

demand of designing various GF arithmetic circuits for cryptographic hardware because more

and more cryptographic algorithms, implementation attacks, and their countermeasures are being

developed.

However, the conventional Electronic Design Automation (EDA) tools with Hardware Descrip-

tion Languages (HDLs) have been mainly developed for integer and floating-point arithmetic, and

have not supported high-level description and automatic synthesis of GF arithmetic circuits, which

results in two major problems on cryptographic hardware design. Firstly, the lack of high-level

design methodology forces designers to describe the structural details of GF arithmetic circuits

with massive low-level (i.e., logical) expressions by hand, which causes a difficulty in designing,

debugging, and optimizing cryptographic hardware. It is also difficult to apply the conventional

high-level synthesis methods for integer to GF arithmetic because the operation rule of GF arith-

metic differs depending on bit length and modular (i.e., irreducible) polynomial.

4 1 Introduction

Secondly, functional verification of cryptographic hardware is quite time-consuming. A bug

in cryptographic hardware can be critical vulnerability of the system [14], and ideally the func-

tionality of cryptographic hardware should be completely verified even in the front-end design.

Nevertheless, it is usually impossible to verify cryptographic hardware completely due to the long

input bit length and complexity of logical structure. The most common functional verification

using logic simulation, which is performed by examining test vectors to check the corresponding

output, cannot verify cryptographic hardware completely. This is because the verification time

increases exponentially to the input bit length. Note that cryptographic algorithms usually have

more than 64-bit operands for being resistant to exhaustive search and cryptanalysis attacks. Al-

though some functional verification methods are employed in commercial EDA tools, it is difficult

to apply them to practical cryptographic hardware such as AES hardware and 128-bit GF multi-

pliers [29, 30, 36, 46]. To make matters worse, the above methods requires to prepare a reference

(i.e., golden) model prior to the verification of target circuits, which is frequently impossible in

case of cryptographic hardware design.

To address these problems, a formal design method of GF arithmetic circuits was proposed

in [63, 64, 110]. In the formal design method, we describe GF arithmetic circuits using formal

representation called Galois-Field Arithmetic Circuit Graph (GF-ACG), which is a hierarchical

mathematical graph with functional assertion represented by GF arithmetic equations. We can

then perform a formal functional verification of GF arithmetic circuits described using GF-ACG

by checking the equivalence of GF equations between hierarchies, namely, checking whether the

functional assertion of higher-level description can be derived from those of lower-level descrip-

tion. Since the functions are represented by GF arithmetic equations, the equivalence checking

can be resolved into the mathematical problem of solving a system of simultaneous equations. In

order to proceed the functional verification in a systematic manner, computer algebra techniques

based on Gröbner basis and polynomial reduction [31, 40] were introduced in [63], which makes

it feasible to verify an AES hardware and a 128-bit multiplier completely in a practical time.

However, there are still issues on the design of practical cryptographic hardware even by GF-

ACG. One major issue is the limitation of design space. Although many GF arithmetic algorithm

and hardware architectures have been proposed for high-performance and/or SCA-resistant cryp-

tographic hardware so far, the existing GF-ACG was applied to only standard and straight-forward

ones. In other words, the existing GF-ACG has difficulty in designing practical cryptographic

hardware. For example, there are several methods for representing the elements of a GF, which

can determine the performance of GF arithmetic algorithms. The existing GF-ACG can handle

only standard non-redundant GF representations while several GF arithmetic algorithms based

on redundant representations have been recently presented [47, 68, 144]. The effectiveness of

1.2 Contributions 5

such redundant GF arithmetic in designing high-performance cryptographic hardware have been

shown in the previous works [60, 101], and therefore the importance of handling redundant GF

representation is increasing in order to design practical cryptographic hardware. In addition, the

existing GF-ACG focuses on combinational arithmetic circuits and cannot handle sequential ones

requiring several clock cycles for a computation (e.g., pipelined circuits). In the design of crypto-

graphic hardware, pipelining techniques are useful fo enhancing throughput and implementation

efficiency and for achieving the resistance to SCA. While glitches (a.k.a dynamic hazard) of arith-

metic circuits causes SCA leakage [83, 92], a pipelining technique can mitigate SCA leakage by

suppressing glitches [103,134]. In 2015, the resistance of countermeasures using pipeline was for-

mally described and generalized in [122]. Thus, pipelined GF arithmetic circuits are also essential

for practical cryptographic hardware design.

The formal verification based on GF-ACG has another issue on its application to practical cryp-

tographic hardware, which also leads to the limitation of design space by GF-ACG. Computation

time for a Gröbner basis (i.e., verification time) heavily depends on the degree and number of

variables derived from the target GF equations (i.e., the target circuit function). For example,

AES decryption is represented by GF equations of higher degrees than those of encryption. Ac-

cordingly, AES decryption hardware and unified AES encryption/decryption hardware cannot be

verified in realistic time even by the formal verification based on computer algebra. Moreover,

while the hierarchical description of GF-ACG is essential to reduce the number of variables per

Gröbner basis computation (i.e., verification time), such description is unavailable for arithmetic

circuits optimized in logic-level, which are commonly used for designing efficient arithmetic cir-

cuits. Thus, a formal verification method whose processing time does not heavily depend on the

degree and number of variables is also strongly required for practical cryptographic hardware

design.

In summary, the conventional EDA tools and formal methods have a difficulty in designing

practical cryptographic hardware. High-level data structure and fast formal verification method for

a wider variety of GF arithmetic circuits are highly demanded in the fields of EDA and information

security.

1.2 Contributions
This dissertation studies a formal design of cryptographic hardware through a threefold-

contribution of (a) theory, (b) implementation, and (c) applications, namely,

(a) To present a new formal design methodology of cryptographic hardware.

(b) To produce an automatic generation system of GF arithmetic circuits for cryptographic

hardware.

6 1 Introduction

(c) To design highly efficient AES hardware.

In (a), we present a newly extended GF-ACG and its verification which can handle various GF

algorithms including practical ones. Compared to the conventional GF-ACG, the proposed GF-

ACG can represent a wider variety of GF arithmetic circuits including those based on redundant

representations and with pipelining. We then propose two formula evaluation methods for veri-

fying GF-ACG. The first method is based on a Natural Deduction (ND) system for the first-order

predicate logic, and can verify GF arithmetic circuits with the functions of higher degrees very

fast. The second one, which exploits a canonical form of a logic function called Positive-Polarity

Reed Muller (PPRM), can verify flattened circuits (i.e., circuits optimized in logic-level) promptly

using a reference circuit which can be generated by the means of GF-ACG. The proposed formal

verification combines the two methods with the conventional one based on computer algebra in an

efficient manner. Thus, the proposed GF-ACG and formal verification can be efficiently applied

to the design and verification of various GF arithmetic circuits including ones used in practical

cryptographic hardware. The effectiveness and efficiency are demonstrated through experimental

designs and verifications of some GF arithmetic circuits including AES hardware. In addition, the

generality and applicability of the proposed formal design method are discussed.

In (b), we present an automatic generation system of GF multipliers for cryptographic hard-

ware design on the basis of the proposed formal design methodology. The system outputs a

verified HDL description of a GF multiplier, given a circuit specification including bit length,

modular polynomial, GF representation, and multiplication algorithm. In addition, the system can

also generate SCA-resistant GF multipliers based on Generalized Masking Scheme (GMS) [122].

The SCA-resistance property is formally verified using a newly proposed algorithms in this dis-

sertation. As a result of the experimental generations, we confirm that the proposed system can

generate large multipliers such as ones with 256 × 77 bit inputs in practical time. The generated

HDL description can be used in the conventional EDA tools (e.g., logic synthesis tool). Thus,

the system can be considered as an implementation and interface of the proposed formal design

methodology, and used for connecting the proposed methodology to the conventional EDA tools.

In (c), to show the significance of the proposed methodology, we design efficient AES cryp-

tographic hardware. In particular, two AES hardware are developed. The first one is a unified

AES hardware that supports both encryption and decryption, which achieves the highest through-

put/gate efficiency and the lowest power and energy consumption than the conventional ones by

exploiting several datapath optimizations. The second one is a SCA-resistant AES hardware with

a GMS-based countermeasure, which utilizes a pipelining technique to suppress glitch effects and

also employs resister-retiming and operation-reordering to reduce latency without area overhead.

The designed hardware is evaluated using a logic synthesis and a gate-level timing simulation.

1.3 Thesis Overview 7

We can confirm that the first hardware is approximately 53–72% better than the conventional best

ones in terms of throughput/gate, and the second architecture achieved the smallest circuit area

and 11–21% lower-latency than the conventional best ones with a GMS-based countermeasure.

While the conventional EDA tools and formal methods cannot be applied to the circuits having

high-degree functions and/or utilizing a pipelining. On the other hand, the proposed formal design

methodology is applicable to such practical and state-of-the-art cryptographic hardware designs.

1.3 Thesis Overview
This dissertation contains six chapters as follows:

Chapter 1 introduces this study with background, problems, and contributions.

Chapter 2 provides the basics of cryptographic hardware design. First, we describe GF arith-

metic briefly, and introduce GF representations handled in this dissertation. We then describe an

overview of cryptography including its building blocks and implementation. We also describe the

conventional design and verification methods for arithmetic circuits togethher with their problems

on the application to cryptographic hardware. Finally, we introduce the existing formal design

and verification methods of GF arithmetic circuits based on GF-ACG, and discuss the issues.

Chapter 3 presents a new formal design methodology of cryptographic hardware. We first de-

scribe the conventional formal design and verification methods of GF arithmetic circuits based

on GF-ACG. We then describe the new GF-ACG which can handle various GF representations

including redundant ones and can also handle the time modality and sequential arithmetic cir-

cuits, such as pipelined ones. Moreover, we introduce two equivalence checking methods based

on a natural deduction method for the first order predicate logic and a PPRM expansion, respec-

tively. We then present a new verification algorithm combining the two equivalence checking

methods with the conventional algebraic method. We demonstrate the effectiveness and efficiency

of the proposed methodology through its applications to parallel multipliers, AES hardware, and

tamper-resistant cryptographic hardware. Finally, we discuss the generality and applicability of

the proposed methodology.

Chapter 4 produces an automatic generation systems of GF arithmetic circuits for crypto-

graphic hardware. The proposed system can generate verified multipliers over GF (pm), where

p = 2, 3, 5, 7, 11 and 2 ≤ m ≤ 256. Such multipliers are used for symmetric key ciphers, ECC,

and PBC for example [56]. In addition, the system can also generate SCA-resistant GF multipli-

ers based on GMS and verify the SCA resistance property formally by newly proposed algorithms

proposed in this dissertation. The performance of the proposed system is evaluated through exper-

imental multiplier generations. As a result, we confirm that the proposed system can synthesize

large multipliers with 256-bit inputs within a practical time.

8 1 Introduction

Chapter 5 designs highly efficient AES hardware as applications of the propose design method-

ology. We first design a highly efficient GF (28) inversion circuit and an AES S-box based on a

combination of redundant and non-redundant GF representations. We then design a high through-

put/gate AES hardware compressing encryption and decryption detapaths. The designed hardware

architecture can be applied and useful to other modern ciphers because it exploits datapath opti-

mization techniques (e.g., resister-retiming, operation-reordering, unification of encryption and

decryption paths, and merging linear mappings). We also design an SCA-resistant AES hardware,

which achieves a higher efficiency than the conventional ones by the optimization techniques sim-

ilar to the above. Note that the above hardware can be designed using the proposed formal design

methodology. Thus, we confirm that the formal design methodology would be useful for such

state-of-the-art and practical cryptographic hardware design.

Chapter 6 contains concluding remarks.

9

2
Preliminaries

2.1 Introduction
This chapter introduces basic and preliminary information on cryptographic hardware design.

We first describe overview of GF arithmetic including the importance of GF representation in

designing GF arithmetic circuits. We then introduce cryptography, especially form viewpoints of

cryptographic algorithms based on GFs, its implementation, and attacks on cryptographic imple-

mentation. Moreover, we explain the conventional design methods of arithmetic circuits before

describing their problems on cryptographic hardware design. We also explain the conventional

verification methods and their problems. Finally, we explain formal design of GF arithmetic cir-

cuits based on GF-ACG, and describe its practical issues on cryptographic hardware design.

10 2 Preliminaries

2.2 Galois-Field Arithmetic
2.2.1 Overview

Field is an algebraic structure with addition and multiplication. In other words, a field is defined

as a set where addition, subtraction, multiplication, and division (excluding division zero) are de-

fined, and its elements are closed under the operations. For example, the field of rational numbers,

the field of real numbers, and the field of complex numbers are the most commonly known fields.

The above fields are called infinite fields since they have infinite elements. On the other hand,

fields with finite elements are called GFs (or finite fields). A GF with ω elements is denoted by

GF (ω), where ω is an integer referred to as the order of the field. GFs are classified into two

types: prime field and extension field. A prime field GF (p) has the order of a prime number p

while an extension field GF (pm) has the order of the mth power of p. Here, p is referred to as the

characteristics of the fields, and m is an integer greater than one.

A prime field GF (p) consists of finite natural numbers 0, 1, . . . , p − 1. The addition ⊕ and

multiplication ⊗ over GF (p) are defined as

a⊕ b = (a+ b) mod p, (2.1)

a⊗ b = (a× b) mod p, (2.2)

where a and b are elements of GF (p) (i.e., a and b ∈ {0, 1, . . . , p− 1}).

We then describe extension field GF (pm). An extension field GF (pm) consists of polynomials

of degrees up to m − 1 over GF (p). Let x and H(x) be a formal variable and an irreducible

polynomial of degree m over GF (p). The addition ⊞ and multiplication ⊠ over GF (pm) are

defined as

A⊞B = (A⊕B) mod H(x), (2.3)

A⊠B = (A⊗B) mod H(x), (2.4)

where A and B are elements of GF (pm). Constructing an extension field (e.g., GF (pm) in this

case) using an mth degree irreducible polynomial is called the mth degree extension, and the

field before extension (e.g., GF (p) in this case) is called subfield. As in Eqs. 2.3 and 2.4, the

operations over an extension field is realized by a combination of operations over its subfield.

In an extension field with a formal variable x, x is not a normal variable representing an un-

known nor arbitrary number, but an element constructs the extension field. Therefore, in order

to distinguish x and other normal variables, we replace x with β which is a root of H(x). Since

H(β) = 0 which is followed by βm = βm − H(β), the modulo operations over GF (pm) de-

scribed in Eqs. 2.3 and 2.4 can be considered as substitution of βm − H(β) to βm in order to

2.2 Galois-Field Arithmetic 11

reduce the degree of the resulting polynomial to at most m − 1. This construction of extension

field is called the (algebraic) adjunction of β to GF (p). This is similar to constructing the field

of complex number from that of real number by adjunction of the imaginary number i which is a

root of an irreducible polynomial x2 + 1. While two constructions are the essentially equal, the

construction by adjunction is useful for introducing GF representations.

In this subsection, while we described only an extension field of a prime field, we can fur-

ther extend an extension field GF (pm0) using an irreducible polynomial of degree of m1 over

GF (pm0) (and more repeatedly). Such extension fields which are derived by repeating extension

are called tower fields (or composite fields) and denoted by GF ((pm0)m1) in the above case.

The operations over tower fields are defined by a combination of subfield arithmetic recursively.

Tower-field arithmetic is frequently used for compact hardware implementation than the corre-

sponding extension field.

In the following, we use + and × even for the operations for GFs when they can be correctly

grasped.

2.2.2 GF representations

This subsection introduces GF representations (i.e., how to represent elements of GF) in the

order of non-redundant and redundant ones. In addition, we describe the differences between GF

representations, especially from the viewpoint of hardware implementation.

Non-redundant GF representations
Let q be a prime or the power of prime. Giving elements of GF (qm) as polynomials with β

whose degree is less than m is equivalent to representing GF (qm) by an m-dimensional linear

space over GF (q) with a basis {βm−1, βm−2, . . . , β0}. Here, the basis {βm−1, βm−2, . . . , β0}
is called a Polynomial Basis (PB), and thus, elements of GF is represented non-redundantly by

a basis, that is, a combination of m linearly independent elements. PB is the most common

representation for GFs. Actually, many modern cryptographic algorithms such as AES are defined

using arithmetic operations over PB-based GFs.

Normal Basis (NB) is another non-redundant GF representation [54, 99]. An NB-based

GF (qm) is given as {αqm−1

, αqm−2

, . . . , αq0}, where α is an element of the (PB-based) GF (qm)

satisfying αqm−1

+ αqm−2

+ · · · + αq0 = 1. For example, an NB-based GF (23) with an

irreducible polynomial H(β) = β3 + β + 1 is given by {α4, α2, α1}, where α = β3 = β + 1.

The major advantage of NB in designing GF arithmetic circuits is that the qth power of any

element represented by NB is calculated by solely cyclic shift (without any logic gate). Let a be

elements of an NB-based GF (qm) and a is represented as a = am−1α
qm−1

+am−2α
qm−2

+ · · ·+

12 2 Preliminaries

a0α
q0 , where am−1, am−2, . . . , a0 are elements of GF (q). Since (y+ŷ)q = yq+ŷq and yq

m

= y

for any values of y and ŷ ∈ GF (qm), aq = am−2α
qm−1

+am−3α
qm−2

+ · · ·+a0α
q1 +am−1α

q0 .

Hence, the usage of NB can lead to compact hardware implementation for many applications with

a lot of qth powering operation [33, 34]. On the other hand, since two-input GF multipliers based

on PB are superior to those based on NB in terms of latency and circuit area, it is important to

use proper representation for required circuit function. Moreover, a combination of PB and NB is

useful for designing efficient GF arithmetic circuits [106].

Redundant GF representations
We then describe redundant GF representations.

The performance of GF arithmetic circuits heavily depends on irreducible polynomial that

defines rules of arithmetic operations. According to [143], typical GF arithmetic algorithms

[58, 63] are more suitable to GFs where the modular polynomials have less terms. However,

given GF (qm), such good irreducible polynomials is not always available for the modular poly-

nomial of GF. For example, polynomial in the form of xm − 1, which is called binomial, is one of

optimal modular polynomial for GFs. Nevertheless, xm+1 is available for constructing GF (2m)

since xm + 1 is always reducible over GF (2) for m ≥ 2. Thus, in contrast to non-redundant

GF representations, two redundant GF representations called Polynomial Ring Representation

(PRR) [47, 60, 68, 133] and Redundantly Represented Basis (RRB) [101, 144] were proposed and

developed. GF (pm) based on redundant representations has a set of polynomials whose degrees

are up to n− 1, where n > m, and uses an nth degree reducible polynomial as the modular poly-

nomial instead of mth degree irreducible polynomial. Thus, redundant GF representations can be

sometimes useful for designing efficient arithmetic circuits over GF (pm) where an nth degree

reducible polynomial better than mth degree irreducible polynomial is available for the modular

polynomial.

Informally, a PRR-based GF (qm) is defined as an m-dimensional subspace of an n-

dimensional linear space over GF (q). This indicates that a PRR-based GF is also equivalent to a

Cyclic Redundancy Code (CRC), which is a kind of error-correction code.

We then describe the construction of PRR-based GF. Let G(x) be a polynomial of degree n−m,

which is relatively prime to the mth degree irreducible polynomial H(x). Let P (x) be an nth

degree polynomial given by the product of G(x) and H(x). Here, PRR-based GF (pm) is defined

as a set of up to (n− 1)th degree polynomials divisible by G(x) with addition and multiplication

modulo P (x). For example, a PRR-based GF (22) with P (x) = x3 + 1 (which follows H(x) =

x2 + x+ 1 and G(x) = x+ 1) is given by a set {0, x+ 1, x2 + 1, x2 + x}, where x2 + 1 is the

multiplicative unit element. See [60] for a construction method of mapping between PRR- and

PB-based GFs.

2.2 Galois-Field Arithmetic 13

Table 2.1 Comparison between PRR- and PB-based GF (2m) parallel multipliers

m P (x)
Critical delay

PRR PB

4 x5 + 1 TA + 3TX TA + 3TX

10 x11 + 1 TA + 4TX TA + 5TX

12 x13 + 1 TA + 4TX TA + 5TX

13 x16 + x3 + 1 TA + 5TX TA + 6TX

18 x19 + 1 TA + 5TX TA + 6TX

19 x22 + x3 + 1 TA + 6TX TA + 7TX

20 x25 + 1 TA + 5TX TA + 6TX

21 x24 + x + 1 TA + 5TX TA + 6TX

28 x29 + 1 TA + 5TX TA + 6TX

36 x37 + 1 TA + 6TX TA + 7TX

42 x42 + x + 1 TA + 7TX TA + 8TX

52 x53 + 1 TA + 6TX TA + 7TX

58 x59 + 1 TA + 6TX TA + 8TX

59 x61 + x26 + 1 TA + 8TX TA + 9TX

133 x136 + x43 + 1 TA + 10TX TA + 11TX

514 x943 + x + 1 TA + 11TX TA + 12TX

819 x821 + x313 + 1 TA + 12TX TA + 14TX

Table 2.1 shows a comparison of the minimum critical delay of PRR- and PB-based GF (2m)

parallel multipliers for several values of m, where the critical delays are derived from the number

of gates on critical path, and TA and TX denote the delays of an AND gate and XOR gate,

respectively. In Tab. 2.1, PRR-based multiplier has the smaller delay than PB-based ones. As

mentioned before, the performance of PRR-based GF arithmetic circuits can be better than those

of PB- and NB-based GF arithmetic circuits when the modular polynomial of PRR-based GF

(i.e., P (x)) is given by a binomial. For example, if an mth polynomial xm + xm−1 + · · · + 1 is

irreducible over GF (2), we can construct a PRR-based GF (2m) with P (x) = xm+1− 1 because

xm+1 − 1 = (x − 1)(xm + xm−1 + · · · + 1). Here, the polynomial xm + xm−1 + · · · + 1

is called the mth degree All One Polynomial (AOP). Irreducible AOPs are sometimes important

for constructing optimal NB and RRB in addition to PRR. Note that PRR-based GF should use a

formal variable as its element in contrast to other representations because x no longer preserves

the attributes of a root of irreducible polynomial.

The major advantages of using the binomial are as follows: (i) Parallel multiplication can be

given as the discrete time Wiener-Hopf equation, and (ii) Squaring operation and a part of con-

stant multiplication are performed only by bit-wise permutation (i.e., wiring). The advantage (i)

indicates that reduction by P (x) in multiplication can be performed only by bit-wise permutation

while multiplication based on non-redundant representation requires some addition over GF (2)

for the reduction. In (ii), squaring and a part of constant multiplication can be performed with-

14 2 Preliminaries

out any logic gate since they are the special case of multiplication. Accordingly, the PRR-based

design can be more efficient than conventional designs.

We then introduce RRB. RRB is another redundant representation of GF [101, 144]. Each

element of RRB-based GF is represented by an m-dimensional linear space using a root of an

mth degree irreducible polynomial similarly to PB and NB. However, each element of RRB-based

GF (pm) is represented with n linearly dependent elements βn−1, βn−2, . . . , β0 *1. The modular

polynomial of RRB is given by an nth degree reducible polynomial P (β) (= G(β)H(β)). Since

P (β) = 0, we can perform the reduction using βn = βn − P (β) instead of βm = βm − P (β).

Since the modular polynomial P (β) can be selected as same as P (x) for PRR-based GF, we

can design efficient GF arithmetic circuits based on RRB-based GF, especially when the mth

degree AOP is irreducible, that is, a binomial βm+1 − 1 can be used. Note that the elements of

RRB-based GFs are represented in a non-unique manner because βn, βn−1, . . . , β0 are linearly

dependent, which is typical difference between PRR and RRB.

RRB-based GF with a binomial also has the advantage of two-input multiplication, squaring op-

eration, and constant multiplication as well as PRR. When the mth degree AOP is irreducible over

GF (p), multiplication over RRB-based GF (pm) can be performed using Cyclic Vector Multipli-

cation Algorithm (CVMA) [107], which is one of the fastest multiplication algorithm for type-I

Optimal NB (ONB). Type-I ONB can be used if and only if the mth degree AOP is irreducible

over GF (p). It is given by {β2m−1

, β2m−2

, . . . , β20} = {βm, βm−1, . . . , β1}, which indicates

we can derive RRB by adding a base element β0 to ONB. Thus, we can design more efficient

multipliers by combining RRB and CVMA. As an example, let us consider a GF (24) multiplier

based on RRB. Let a and b (∈ GF (24)) be the inputs and c (∈ GF (24)) be the output. In RRB,

a is given by a4β
4 + a3β

3 + . . . a0, where a0, a1, . . . a4 are elements of GF (2). b and c are also

given in the same manner. The multiplication is represented by

c = a× b = c4β
4 + c3β

3 + c2β
2 + c1β + c0, (2.5)

*1 Therefore, RRBs are not bases of m-dimensional linear space. Note that the name RRB that a PB

{βn−1, βn−2, . . . , β0} can be redundantly represented by {βn−1, βn−2, . . . , β0} with additional elements

βn−1, βn−2, . . . , βm.

2.3 Cryptography and Its Implementation 15

where

c0 = (a1 + a4)(b1 + b4) + (a2 + a3)(b2 + b3), (2.6)

c1 = (a0 + a1)(b0 + b1) + (a2 + a4)(b2 + b4), (2.7)

c2 = (a0 + a2)(b0 + b2) + (a3 + a4)(b3 + b4), (2.8)

c3 = (a0 + a3)(b0 + b3) + (a1 + a2)(b1 + b2), (2.9)

c4 = (a0 + a4)(b0 + b4) + (a1 + a3)(b1 + b3). (2.10)

The critical delay of such an RRB-based multiplier is TA +2TX , while those of multipliers based

on non-redundant representations are TA+3TX [101]. The gate count of the RRB-based multiplier

requires only 10 AND and 25 XOR gates [101], whereas that of a PRR-based multiplier requires

25 AND and 20 XOR gates [47]. Nekado et al. [101] designed a more efficient GF ((24)2)

inversion circuit based on RRB by utilizing the above advantage.

The above was brief description about typical GF representations. It was proven that all GFs

with the identical order are isomorphic to each other regardless of representations and defining

polynomials. Since most cryptographic algorithms are defined using PB-based GF arithmetic,

elements of PB-based GF are frequently converted to the corresponding elements of other repre-

sentations suitable to the operation [128].

Moreover, there exists a representation different from both redundant and non-redundant rep-

resentations, called logarithmic representation. The logarithmic representation can perform mul-

tiplication and division with only an addition and a subtraction over Z/(q − 1)Z, respectively.

On the other hand, addition and subtraction based on logarithmic representation requires a large

table with a size of at least r2 log r (r is the order of GF), and there is no efficient conversion

method between GFs based on logarithmic and other representation. Therefore, the logarithmic

representation is scarcely used in cryptographic algorithms.

2.3 Cryptography and Its Implementation
2.3.1 Overview of cryptography

Information security is technology to counteract various threats to information systems. Ta-

ble 2.2 examples of threats to information systems. The threats can be classified into two types:

deliberate and environmental/accidental ones. Deliberate threats are caused by malicious actions

of the attackers. Environmental/Accidental threats are caused unintentionally (but they might be

exploited by the attackers). While information security covers both of the threats in a broad since,

information security in a common sense counteracts deliberate threats. ISO/IEC 27002, which

16 2 Preliminaries

Table 2.2 Threats to information systems

Type of threats Examples

Deliberate
Eavesdropping, falsification, malware, ransomware,

computer virus, unauthorized access, denial of service

Environmental/Accidental
Blackout, fire, earthquake, soft error, bugs in software or hardware,

equipment malfunction, operational mistake, week password

is the standard for information security management systems, define information security as the

preservation of the following three properties:

• Confidentiality

Only authorized users can use services (e.g., read messages and data). Unauthorized ones

cannot use services.

• Integrity (or authenticity)

Messages and data cannot be modified due to unauthorized people nor accidents. In prac-

tice, integrity indicates that authorized users can detect the modification (i.e., authenticity).

• Availability

Authorized users can use services whenever they want.

Cryptography mainly provides confidentiality and integrity. Cryptography basically consists of

three building blocks: (i) cryptographic algorithm, (ii) one-way hash function, and (iii) crypto-

graphic Pseudo Random Number Generator (PRNG), which are used in a combination to satisfy

the above properties. In the following, we briefly describe each building block.

(i) Cryptographic algorithms
Cryptographic algorithms translate messages into ciphertext which cannot be read by unau-

thorized people (i.e., attackers), and basically consist of encryption and decryption functions.

Encryption translates plaintext P into ciphertext C using encryption key KE while decryption

inversely obtains P from C using decryption key KD. Let Enc and Dec be encryption and de-

cryption functions, respectively. The relation between encryption and decryption is represented

by

C = Enc(P,KE), (2.11)

P = Dec(C,KD). (2.12)

Cryptographic algorithms are classified into two types: symmetric key and public key cryptog-

raphy. Symmetric key cryptography uses the identical value for KE and KD (i.e., KE = KD)

while public key cryptography uses different values for them (i.e., KE ̸= KD). In symmetric key

2.3 Cryptography and Its Implementation 17

cryptography, KE and KD are also called secret key. On the other hand, in public key cryptogra-

phy, encryption key KE and decryption key KD are called public key and secret key, respectively.

Confidentiality of cryptographic algorithms is based on that of secret key. In other words, cryp-

tographic algorithms are designed so that it is computationally difficult to obtain ciphertext from

plaintext without secret key. Therefore, users are authorized by holding the secret key. In ad-

dition, since only authorized users with secret key can perform (symmetric key) encryption and

decryption, cryptographic algorithms are sometimes used for generating authentication tags and

digital signatures. Therefore, system designers should carefully design the systems so that secret

key should not be leaked.

Most of modern cryptographic algorithms are defined using GF arithmetic because GFs have

finite elements and GF arithmetic is suitable to modern LSI systems rather than infinite field arith-

metic. In addition, logical structure of multiplicative inversion operation and Discrete Logarithm

Problem (DLP) over GFs can be exploited to design cryptographic algorithms resistant to crypt-

analyses. Cryptographic algorithms are further explained in Sections 2.3.2 and 2.3.3.

(ii) One-way hash functions
Hash functions are functions that compute values with a fixed length (i.e., hash values) from

a messages with arbitrary length. One-way hash functions (or cryptographic hash functions) is

hash functions used in cryptography. One-way hash functions are employed for detection of

message modification (i.e., checking the integrity) because the equivalence of two messages can

be easily checked by compering their hash values. One-way hash functions have two properties

called one-wayness and collision-resistance in order to prevent the attackers from replacing a

message to other messages which have the hash value equal to that of the original one. One-

wayness indicates computational difficulty in computing messages inversely from a hash value.

Collision-resistance indicates computational difficulties in finding two messages with the identical

hash value and in finding messages with a given hash value. Since the above properties make it

infeasible to replace massage without changing the hash value, one-way hash functions can be

used for checking integrity of messages.

(iii) Cryptographic PRNG
PRNG deterministically generates random bit strings without any statistical biases from a seed

value. PRNG is used for generating cryptographic keys in security applications. On the other

hand, by contrast to common PRNGs (e.g., those for simulation), PRNGs for security applications

require one additional property called unpredictability, which indicates computational difficulty

in predicting the next bit from the previous bits. Cryptographic PRNGs generate unpredictable

random bit string, and are frequently constructed with symmetric key ciphers and/or one-way hash

18 2 Preliminaries

functions.

2.3.2 Cryptographic algorithms

In this subsection, we describe cryptographic algorithms, which is one of the most important

building block. We first briefly explain symmetric and public key cryptography, and then introduce

some examples of cryptographic algorithms.

Symmetric key cryptography
In symmetric key cryptography, an encryption key and the corresponding decryption key are

given by the identical value, that is, KE = KD. The major advantage of symmetric key ciphers

is that encryption and decryption can be performed 100 to 30,000 times faster than those of pub-

lic key cryptography. The main use of symmetric key ciphers is secret communication, storage

encryption, and so on. On the other hand, there is a problem of key delivery which implies that

sender and receiver should share the secret key in advance. Key delivery should be realized by

public key cryptography.

The basic idea of encryption in symmetric key cryptography is to translate plaintext to cipher-

text using a huge random substitution table depending on secret key. Ideally, the ciphertexts is

seems to be random bit string, and can be inversely transformed into plaintext (i.e., decrypted)

only by people with the secret key. However, since it is difficult to implement such huge table

in practice, encryption and decryption of symmetric key ciphers are realized by repeating small

substitutions (e.g., byte-wise) and permutation. Symmetric key cryptography is classified into

two ciphers: block cipher and stream cipher. A block cipher has a fixed input bit length, and its

encryption and decryption are performed in a block-wise manner. On the other hand, a stream

cipher generates key stream from an initial secret key and initial vector with a fixed bit length

before its encryption (or decryption) which is performed by a bit-parallel XOR with plaintext (or

ciphertext).

Public key encryption
In public key encryption, an encryption key and the corresponding decryption key are given by

different values, that is, KE ̸= KD. Since encryption keys are public data without contaminating

nor compromising security, public key cryptography can achieve more functions than symmetric

key cryptography, such as key delivery. In addition, public key cryptography is suitable to one-to-

many communication because decryption can be performed only by people with decryption key.

Conversely, digital signatures which can be verified using public key is realized by encrypting a

hash value of messages with decryption key.

The security (e.g., confidentiality) of public key cryptography comes from computationally dif-

2.3 Cryptography and Its Implementation 19

Table 2.3 Examples of ISO/IEC 18033 standard cryptographic algorithms and used GFs

Public key cryptography Symmetric key cryptography

Key Encapsulation Mechanisms (KEMs) Block ciphers Stream ciphers

ECIES-KEM, PSEC-KEM AES, Camellia MUGI SNOW2.0, KCipher-2

GF (2m) (m ≥ 160), GF (p) (p ≥ 2163) GF (28) GF (28) GF (28), GF ((28)4)

ficult mathematical problems. For example, RSA, which is a pioneering public key cryptography,

exploits difficulty in factorizing large numbers while it is much easier to compute the product of

prime numbers. As other examples, DLP over GFs and DLP over elliptic curves (ECDLP) are also

such mathematical problems for public key cryptography. Public key cryptography from ECDLP

is called ECC. ECC can be used with shorter keys than the previous ones, which leads to less

computational cost of its encryption and decryption. Therefore, ECC is widely used since 2004.

In recent years, as a result of the development of networks, there is high demand of pub-

lic key encryption with more sophisticated functions than the conventional ones, such as ID-

based Encryption (IDE) [21], Attribute-Based Encryption (ABE) [55,124], Public key Encryption

with Keyword Search (PEKS) [22], and Functional Encryption (FE) [69, 112]. Such encryption

schemes can be realized using bilinear mappings on elliptic curves. Encryption schemes using

bilinear mappings is called PBC, which have been intentionally studied and developed, and is

expected as one of next-generation cryptography.

Examples of cryptographic algorithms based on GF arithmetic
Table 2.3 shows examples of ISO/IEC 18033 standard cryptographic algorithms and used GFs.

Many symmetric ciphers use GF (2m) (especially GF (28)) because elements of GF (2m) can

be represented by m bits,and inversion and matrix operations over GF (2m) are useful to func-

tions for resistance against cryptanalyses. Recently, Authenticated Encryption with Associated

Data (AEAD), which is a scheme of symmetric encryption securely unifying confidentiality and

integrity (authenticity), attracts much attention due to a lot of practical attacks exploiting lack

of integrity. It is notable that TLS 1.3 (working draft as of November 2017) will employ only

AEADs in its cipher suite and will no longer use ciphers without authenticity because of many

practical attacks on block ciphers without authenticity (e.g., BEAST attack [49] and Lucky Thir-

teen attack [6]). For example of AEAD, AES-GCM [52, 89] is one of the most commonly used

AEAD. In addition, ChaCha20-Poly1305 [74] is an emerging AEAD which have been already

introduced to TLS, OpenSSH, and, Google Chrome, and Google web services. AEAD consists of

two blocks: encryption and authentication tag generation. AES-GCM and ChaCha20-Poly1305

employ GF (2128) and GF (p) where p = 2130− 5 for authentication tag generation, respectively.

20 2 Preliminaries

Furthermore, as of 2017, an international competition for AEAD (CAESAR) [42] is being held,

where many candidate AEADs of CAESAR also employ GF arithmetic with large orders.

On the other hand, public key cryptography employ larger GFs than symmetric ciphers because

its security comes from difficulties of factorization in a large prime, DLP of large GFs, and so

on. In particular, since public key cryptography based on GFs with odd characteristics can use

shorter key than that based on GF (2m), ECC and PBC over GF (3m), GF (7m), and GF (p)

where p ≥ 2160 have been developed [9, 13, 23, 50, 51, 56, 75]. Moreover, as an emerging public

key cryptography, some post-quantum cryptography such as lattice-based cryptography [90] and

Multivariate Public Key Cryptography (MPKC) [44] also uses GF arithmetic.

2.3.3 Block ciphers and modes of operation

This subsection focuses on an block cipher AES since AES is an representative and the most

commonly used symmetric cipher. In addition, we introduce modes of operation, which are rules

for block ciphers to encrypt/decrypt messages longer than their block length with preserving con-

fidentiality (and authenticity).

128-bit block cipher AES
AES was designed by Rijmen and Daemen in 2000 before its specification was published by

NIST. Currently, AES have been specified by ISO/IEC 18033 which is the standard for crypto-

graphic algorithms, and its use is also recommended by Japanese e-government agency CRYP-

TREC. AES was designed not only to be secure against the conventional cryptanalyses [15, 88],

but also to be efficiently implemented on many platforms such as CPUs, microcontrollers, FPGAs,

and ASIC.

As described Section 2.3.2, while symmetric cipher encryption transforms plaintext to cipher-

text using a huge random table depending on secret key, such a huge table cannot be implemented

in practice. Therefore, AES (and other block ciphers) encryption is performed by applying a

function called round repeatedly. The round function of AES consists of an 8-bit substitution, a

32-bit permutation, and round key addition. Inputs of each round function are given by the output

of previous round and round key, which is computed from the secret key using a key schedul-

ing function. AES can be efficiently implemented on both software and hardware thanks to such

round construction. In addition, round-wise design makes it easier to evaluate its security and

performance.

Figure 2.1 shows the flows of (a) encryption and (b) decryption of AES. The block and key

lengths of AES are given by 128 bits, and the number of rounds is ten. The 128-bit intermediate

values and round keys are represented by 4×4 matrices over PB-based GF (28) with an irreducible

2.3 Cryptography and Its Implementation 21

(a) Encryption (b) Decryption

K10

K9

K8

K0

K0

K1

K9

K10

Fig. 2.1 (a) Encryption and (b) decryption flows of AES.

polynomial β8+β4+β3+β+1; and therefore, the round and key scheduling functions is defined

by arithmetic operations over the GF (28).

The round function consists of four subfunctions: (a) SubBytes, (b) ShiftRows, (c) Mix-

Columns, and (d) AddRoundKey. (a) SubBytes applies a byte-wise substitution (i.e., a nonlinear

function over GF (28)) to each byte (i.e., element of GF (28)). The nonlinear function is called

S-box. (b) ShiftRows is row-wise cyclic shift, where each row is shifted cyclically to left by

the row index. (c) MixColumns performs a column-wise linear transformation. Namely, a fixed

22 2 Preliminaries

matrix M is multiplied to each columns from left. The matrix M is given by

M =

v0 v1 v2 v3

v3 v0 v1 v2

v2 v3 v0 v1

v1 v2 v3 v0

 , (2.13)

where v0 = β, v1 = β +1, v2 = 1, and v3 = 1. Finally, (d) AddRoundKey adds round key to the

intermediate value over GF (28), and is realized by a bit-parallel XOR. Since the round function

(i.e., subfunctions) is bijection, AES decryption is performed by its inverse functions, namely,

InvSubBytes, InvShiftRows, InvMixColumns, and AddRoundKey.

On the other hand, the key scheduling function consists of an XOR chain (i.e., addition over

GF (28)) following three subfunctions: (e) RotWord, (f) SubWord, and (g) AddConstant. These

subfunctions including the XOR chain are row-wise (i.e., word-wise) operations for the matrix

of round key. (e) RotWord performs a bit-wise rotation of the first row. (f) SubWord applies the

S-box to elements of the output of RotWord. (g) AddConstant adds a round constant to the output

of SubWord. Then, the next round key is calculated by XOR chain of the output of AddConstant

following rows of current round keys. Since the key scheduling function is also bijective, the

round keys can be calculated from the final round key in the reverse order during decryption.

The S-box of AES consists of inversion over GF (28) and an affine transformation over GF (2).

Inversion operations over GF (2m) are known as a useful component for m-bit substitution func-

tions to be against major cryptanalysis techniques [108]. On the other hand, matrix operations

over GFs (e.g., MixColumns) can efficiently permutate intermediate values while their inverse

functions (i.e., inverse matrix) are easily found. Thus, such GF operations are frequently used to

construct symmetric ciphers [7, 57, 132, 136].

Modes of operation
Modes of operation are rules for block ciphers to encrypt/decrypt message longer than their

block length because block ciphers can encrypt/decrypt messages with their block length at a

time.

Table 2.4 show the typical modes of operations and their features. In the columns of Encryption

and Decryption, Pξ and Cξ denote the ξth block of plaintext and ciphertext, respectively. The

blocks “Enc” and “Dec” denote the encryption and decryption, respectively. The operator ⊕
denotes bit-parallel XOR. In addition, IV denotes the initial vector with the block length. Note

that we omitted the input of secret key to Enc and Dec.

The Electrical CodeBook (ECB) mode is the most simplest modes of operation. In the ECB en-

cryption, each plaintext block is independently encrypted and the corresponding ciphertext block

2.3 Cryptography and Its Implementation 23

Table 2.4 Typical modes of operation

Modes Encryption flow Decryption flow
Block-wise parallelism Recom-

Encryption Decryption mended?

ECB

C0

P0

C1 C2

P1 P2

P0

C0

P1 P2

C1 C2

Available Available No (due to
insecurity)

CBC

IV

C0

P0

C1

P1

C2

P2 IV

P0

C0

P1

C1

P2

C2

Not
available

Available Yes

CTR

C0

IV

C1

P1

C2

P2P0 IV + 1 IV + 2

P0

IV

P1

C1

P2

C2C0 IV + 1 IV + 2

Available Available Yes

is directly given by the output. Although ECB can be the most easily implemented because of no

additional operations for the mode, the use of ECB is not recommended due to critical security

flaws. (ECB encryption is also called encryption without modes of operation.) Since the cipher-

text blocks which is obtained from the identical plaintext blocks should be equal, information on

plaintext would be estimated from the ciphertext. In addition, if the attackers change the order of

the ciphertext blocks, we cannot detect the changes of blocks.

The Cipher Block Chaining (CBC) mode solves the above flaws using feedbacking ciphertext

blocks to the next block encryption. In the CBC mode encryption, the ciphertext blocks should

be different even if they are obtained from the identical plaintext. In addition, the change of block

order can be detected because the decrypted plaintext blocks corresponding to changed blocks are

broken*2.

Finally, the CounTeR (CTR) mode uses a block cipher like a stream cipher. In the CTR en-

cryption (or decryption), key stream blocks are generated from IV and a counter before XORing

plaintext (or ciphertext) to obtain ciphertext (or plaintext). Note that, in Tab. 2.4, the operator +

with IV denotes the integer addition. In contrast to ECB and CBC modes, in the CTR mode,

a bit-flip in ciphertext causes a bit-flip at the identical location of the plaintext, which cannot be

detected. While such a lack of authenticity can be a security risk, it can be an advantage in some

applications such as streaming distribution because errors in ciphertext is not diffused.

The modes of operation have an influence on not only security but also the performance of im-

*2 It is difficult to detect such changes if values of plaintext blocks are uniformly distributed. Message Authentication

Code (MAC) and AEAD can provide the authenticity even in this case.

24 2 Preliminaries

Table 2.5 Comparison of cryptographic software and hardware implementation

Implementation Cost Flexibility Latency
Power/Energy Circuit Tamper-

consumption area resistance

Software Low High High High Large Low

Hardware High Low Low Low Small High

plementation. For example, the CBC mode encryption cannot work with block-wise parallelism

(e.g., multicore and pipelining) to enhance throughput and implementation efficiency due to the

feedback of ciphertext blocks. On the other hand, in the CTR mode, both encryption and de-

cryption are parallelizable. In addition, the CTR mode does not require to implement decryption

algorithm because the CTR decryption is performed using not decryption algorithm but encryption

algorithm. When implementing block ciphers, the designers should select architectures suitable

to the modes of operation used in the application.

2.3.4 Cryptographic implementation

There is two types of cryptographic implementation: software and hardware implementation.

In this dissertation, software implementation indicates implementation on CPUs and microcon-

trollers, among other things. Hardware implementation indicates implementation on FPGA (or

Programmable Logic Device (PLD)) and ASIC. Such computing modules for cryptographic op-

erations is called cryptographic modules in this dissertation. In the following, we describe char-

acteristics of each implementation.

Table 2.5 illustrates comparison between hardware and software implementation, where Cost

denotes cost for design and implementation, Flexibility indicates easiness/difficulty of changes

and modification of functionality, Latency denotes latency of encryption and decryption (which is

closely related to throughput), Power/Energy consumption denotes power and energy consump-

tion for cryptographic operations, Circuit area denotes the minimal circuit area or footprint for im-

plementation, and Tamper-resistance indicates achievable robustness to implementation attacks.

In each column of Tab. 2.5, the bold characters emphasize that the implementation is superior to

the other in the above aspect.

Software implementation requires lower cost than hardware implementation because we can

use commercial and ready-made products such as CPUs and memories. In addition, we can easily

change and modify the functionality of software implementation by solely unpdating programs.

On the other hand, the main drawbacks of software implementation is latency and power/energy

consumption since software implementation should perform cryptographic operations using the

existing instruction set. Some instruction sets would have difficulty in performing bit-wise opera-

2.3 Cryptography and Its Implementation 25

tions and GF arithmetic operations on software efficiently due to the fixed operand length and/or

lack of instruction. Hardware implementation can achieve much lower latency, smaller area, and

lower power/energy consumption using dedicated datapath for cryptographic operations while it

is quite difficult to change and modify the functionality of hardware after its manufacture and

market introduction.

Nowadays, there is high demand of cryptographic hardware because of criteria of performance

and security. Cryptographic algorithms have been deployed in more and more embedded and

resource-constraint devices such as mobile phones, smart cards, and RFID tags. Nevertheless,

such applications sometimes require very high speed response in order to realize automatic ticket

gates, access management systems, and so on. Moreover, some devices with battery and wireless

power supply have strong constraints of power/energy consumption. Cryptographic hardware is

essential for such devices and applications in order to achieve practical latency and power/energy

consumption.

In addition, cryptographic modules sometimes require countermeasures against implementation

attacks which retrieve secret key by tampering or physical methods. Countermeasures for software

implementation are limited because software implementation cannot change datapath and should

perform cryptographic operations by the existing instruction set. On the other hand, cryptographic

hardware can employ many countermeasures at levels of hardware algorithm, gate, and transistor.

Thus, cryptographic hardware can achieve higher resistance than software.

Furthermore, cryptographic hardware is widely used as a root-of-trust for information systems

since it is basically difficult to modify the manufactured IC chips. Actually, Trusted Platform

Module (TPM) chips, which are one of ubiquitous secure coprocessor and are exploited as a root-

of-trust for many systems, are on the basis of cryptographic hardware.

While semi-conductor and computing technologies are being developed, many studies have

been devoted to cryptographic algorithms that can be easily and efficiently implemented on spe-

cific devices. For example, ARX-based ciphers [11, 74] perform encryption and decryption only

by arithmetic Addition (i.e., addition over Z/mZ), Rotation, and bit-parallel XOR in order to

achieve lower latency than AES on CPUs and microcontrollers without AES-NI*3. In addition,

lightweight ciphers, which have higher performance than AES and ISO/IEC 18033 standard ci-

phers in a specific aspect such as latency, area, and program memory size, have been developed

since 2002, the standard of lightweight ciphers ISO/IEC 29192-2 was published in 2012.

*3 AES-NI (AES New Instructions) is an extension of x86 instruction set (i.e., hardware support) for AES operations

and is implemented on some CPUs made in Intel and AMD. The usage of AES-NI makes AES encryption and

decryption very fast. In addition, AES-NI is also useful for eliminating a cache timing leak, which is a kind of

side-channel leak exploited by the SCA attackers [141].

26 2 Preliminaries

2.3.5 Implementation attacks and countermeasures

Implementation attacks are attack on cryptographic modules using tamper or physical meth-

ods. Originally, cryptographic algorithms are designed based on the model where the attackers

can access only ciphertexts (and plaintexts). If we use cryptographic algorithms whose security

is comprehensively evaluated by evaluation committees, the attackers cannot retrieve secret in-

formation by eavesdropping/modifying ciphertext on the communication channel. However, to

use cryptographic algorithms, cryptographic algorithms should be implemented as cryptographic

modules, and the attackers are likely to access the modules physically to retrieve secret informa-

tion. While it is difficult to break cryptographic algorithms, the cryptographic implementation

can be critical vulnerability; and therefore implementation attacks are attracting much attention.

Implementation attacks requires physical access to target device. However, IoT applications mo-

tivate implementation attacks because some devices (e.g., smart card) can be bought and belong

to the attackers, and may not be under users’ observation. Thus, implementation attacks and their

countermeasures are major topics in information security.

Implementation attacks are classified into invasive and non-invasive attacks. Invasive attacks

inspect and/or modify internals of cryptographic modules. Invasive attacks are quite powerful

attacks because the attacker directly observe ROMs and signals on wire/bus. However, invasive

attacks sometimes require impractical costs such as domain knowledge and extremely expensive

equipments. To defeat invasive attacks, for example, a countermeasure gathers components for

cryptographic operations into a single chip to prevent ROM analysis and wire probing. Other

countermeasure employs an active shield to detect the invasion.

On the other hand, non-invasive attacks are performed through irregular I/O without invading

internals of chip. Non-invasive attacks are considered as more practical threat than invasive one

because it is more difficult to detect non-invasive attacks and they can be performed with com-

mercial and off-the-shelf equipments.

SCA [32, 71] and Fault Injection Attack (FIA) [16, 20] are typical non-invasive attacks*4. SCA

retrieves secret key by observing and analyzing side-channel information such as power consump-

tion, EM radiation, and computation time. For example, Differential Power Analysis (DPA) and

Differential EM Analysis (DEMA) analyze a number of respective power and EM traces during

encryption or decryption by a statistical means, namely, calculating the correlation between side-

channel information and guessed secret keys. DPA and DEMA are considered as ones of the

most powerful SCA which can be applied to most symmetric ciphers. On the other hand, the FIA

*4 In this dissertation, we classify FIA into non-invasive attacks because it does not use permanent faults and some

FIAs can be performed without unsealing chips. FIA is sometimes called semi-invasive attack.

2.4 Design of Arithmetic Circuits 27

attackers first inject faults into cryptographic modules by physical means (e.g., laser irradiation

and overclock), obtain faulty ciphertexts, and then estimates the secret key from the faulty cipher-

text. Here, the fault indicates temporary misoperation of cryptographic modules such as bit-flip

of intermediate values.

Many countermeasures against the above attacks have been developed. Masking is a typi-

cal countermeasure against SCA, which apply random masks to intermediate values in order to

decorrelate side-channel information and secret information [65, 103, 114, 122, 140]. Hiding is

another typical countermeasure, which makes side-channel information constant regardless of op-

erating intermediate values such as Dual-rail with Precharge Logic (DPL) [37,119,138]. Counter-

measures against FIA basically exploit redundancy (e.g., duplication and error-correction codes)

for fault-tolerance or fault detection. As mentioned before, cryptographic hardware can achieve

higher resistance than software by using dedicated datapath, architectures, and cells. Major SCA-

leakage (especially, DPA) comes from datapath, and countermeasures against FIA involve mod-

ification of datapath. Therefore, to design cryptographic hardware resistant to SCA and/or FIA,

the designer should apply proper countermeasure(s) against expected attacks to datapath, which

is mainly composed of GF arithmetic circuits.

2.4 Design of Arithmetic Circuits
2.4.1 Overview

The increasing size and complexity of LSI systems introduce EDA tools to LSI design. EDA

tools have been developed with transition of key technologies of LSI design in the order of mask-

pattern, transistor-level, and gate-level. Since the 1980s, high-level design methodology based on

HDLs and logic synthesis have been the mainstream of LSI design. Figure 2.2 shows the LSI

design flow using HDLs and logic synthesis. HDLs directly describe architectures, behaviors, and

algorithms of hardware. Then, logic synthesis automatically synthesize the gate-level description

corresponding to the HDL code.

In the high-level design, circuits are designed in a top-down manner from higher-level to lower-

level of abstractions. Currently, LSIs are designed with two major stages: front-end and back-end.

The front-end stage generates an HDL code for gate-level netlist which describes connection be-

tween each cell (i.e., gate) using logic synthesis tool and higher-level HDL description. In other

words, the front-end stage designs a hardware algorithm to realize the functionality of the design-

ing LSI system. On the other hand, the back-end stage generates physical layout data form the

gate-level netlist using back-end tools such as Place and Route (P&R) and floor planning. While

the back-end stage is closely related to the physical properties of transistors and semi-conductor

28 2 Preliminaries

RTL design

Behavior code

RTL code (HDL)

Logic synthesis

Technology mapping

Gate level netlist

Place & Route

Physical design

Layout data

Standard

cell library

Front-end

Back-end

RTL simulation

Gate level

simulation

Functional

verification Reference

dataIP library Behavior design

Circuit specification

Behavior

simulation

Fig. 2.2 LSI design flow.

manufacturing processes, the performance of arithmetic circuits is determined by hardware al-

gorithm (i.e., arithmetic algorithm) in addition to the processes. Since the performance of LSI

system heavily depends on that of arithmetic circuits, arithmetic algorithm design in the front-end

stage is quite important. In the following, we focus on the front-end stage design.

In the front-end stage, circuits are described by HDLs with various levels of abstractions where

gate-level description is the lowest-level. Typically, abstractions of HDL description are given by

gate-level, Register Transfer Level (RTL), and behavior-level. We briefly explain each level in the

ascending order of abstraction levels.

• Gate-level
Gate-level description is the lowest-level description in HDL, and describes circuits as

netlists of connected logic gates. A gate-level description targets a specific technology. In

other words, a gate-level description use logic gates in the library of target technology to

description a circuit. On the other hand, description based on logical expression instead of

2.4 Design of Arithmetic Circuits 29

logic gates in the library is also available. Such description is sometimes called logic-level.

Given a technology, logic-level description is translated to the gate-level one by technology

mapping.

• RTL
RTL is a higher level than gate-level. RTL description explicitly describes registers and

dataflow (i.e., transfer) between registers. The dataflow is described as a combinational

circuit consisting of multiplexer, decoder, and arithmetic operators, among other things.

Note that word-level arithmetic operators are available only if the used HDL and EDA

tools support the high-level data structure for them. Logic synthesis tools can usually

generate the gate-level description form an RTL description. The stages after generating

RTL description are almost automated by EDA tools.

• Behavior-level
Behavior-level is a higher level than RTL, and describes the behavior of LSI or the al-

gorithm (sometimes like software). Behavior-level description is sometimes given by not

HDL, but C++ and C. In this level, circuits are described by a processing flow based on

arithmetic formulae without defining architecture given by registers, multiplexers, and Fi-

nite State Machines (FSMs). Then, high-level synthesis tools transform behavior-level

description into the RTL where resources are assigned and scheduled as optimally as pos-

sible. However, high-level synthesis is not always available. In such case, the behavior

code in Fig. 2.2 is not directly input to the EDA tool, and each module is designed in RTL

description by hand.

The usage of high-level description makes it unnecessary to describe the structural detail of

circuits by hand, which leads to simplification of circuit description, efficient debugging, and

the reduction of design costs. On the other hand, the designer should describe the arithmetic

circuits if the arithmetic circuits provided by EDA vendors do not satisfy required performance.

In addition, high-level description and automatic synthesis are unavailable unless the EDA vendor

has provided the high-level data structures.

2.4.2 Problems on designing cryptographic hardware

As mentioned in the previous subsection, the designer should describe the arithmetic circuits

by hand if the arithmetic functions are not supported by EDA tools. In addition, although logic

synthesis tools are useful for shortening the duration of design, the designer should design dedi-

cated arithmetic algorithms if the logic synthesis tool cannot achieve required performance. Note

30 2 Preliminaries

that, while logic synthesis tools can efficiently compress random logic in many cases, they are not

suitable to circuit with regularity including arithmetic circuits.

Thus, the conventional EDA tools have the following two major problems on designing crypto-

graphic hardware. (a) There are few EDA tools that support GF arithmetic, and (b) GF arithmetic

circuits should be designed using abstract lower than logic-level. These problems forces designers

to describe the structural detail of cryptographic hardware (i.e., GF arithmetic circuits) with mas-

sive low-level (i.e., logic-level) expressions by hand, which lead to the long duration and high cost

of design of cryptographic hardware. In addition, it is difficult to apply the conventional high-level

design methodology for integer ring arithmetic because arithmetic rules of GF can differ depend-

ing on the modular polynomial and GF representation given a bit length. More precisely, given a

bit length and GF arithmetic operation, circuit structure in logic-level is not uniquely determined,

and there is a number of variation of the circuit structures.

In summary, the conventional high-level design methodology (i.e., EDA tools) has difficulty

in designing cryptographic hardware based on GF arithmetic; and therefore, new design method

dedicated for GF arithmetic circuits is highly demanded.

2.5 Functional Verification of Arithmetic Circuits
2.5.1 Overview

In LSI design, functional verification should be required in order to check whether the circuit

description satisfies the circuit specification. Due to the increasing size and complexity of LSI

systems, the cost of functional verification is said to account for more than 80% of the total design

cost [46]. In addition, it is also said that ASIC respins are mostly caused by bugs in RTL and

gate-level description of HDL, that is, omission of verification in front-end stage. In the top-down

approach of high-level design, it is quite important to remove bugs in earlier stages in order to

reduce design costs. In the following, we describe the functional verification at RTL and gate-

level.

2.5.2 Related works

There are three types of functional verification of LSI: equivalence checking with reference,

property checking, and theorem proving. Among them, equivalence checking with reference is

basically used for arithmetic circuits. Figure 2.3 shows the overview of the functional verification

using reference, which are basically given by a table representing input-output relation (i.e., test

data) or circuit whose functionality is guaranteed (i.e., golden model). The equivalence indicates

the logical equivalence of target circuit and reference. In other words, the outputs are always

2.5 Functional Verification of Arithmetic Circuits 31

Fig. 2.3 Overvew of functional verification using reference.

equivalent for any expected input. In the following, we describe two conventional methods for the

equivalence checking: (i) logic simulation and (ii) formal verification.

(i) Logic simulation
Logic simulation is a classical and the most widely used method. In logic simulation, the

target circuit (and reference circuit) is simulated on software (e.g., verilog-XL), in order to check

whether the responses and behaviors are valid and correct. Reference is sometimes given by

a table representing input-output relation. If we perform an exhaustive verification using logic

simulation, the verification time increases exponentially by input bit length. Therefore, logic

simulation cannot verify circuits with large input completely in practice. As another method

similar to logic simulation, emulation using a reconfigurable device (e.g., FPGA) can perform

exhaustive verification several thousands times faster than logic simulation. Nevertheless, the

achievable verifcation coverage of emulation would be insufficient for some circuits with large

inputs.

Cryptographic algorithms basically have more than 64-bit operands, which indicates that logic

simulation requires to check at least 264 responses to verify cryptographic hardware completely.

In particular, cryptographic algorithms are designed to be secure against an brute force attack (i.e.,

exhaustive search of secret key), which implies that exhaustive verification is radically impossible.

For example, exhaustive verification of AES hardware requires to check 2256 responses (i.e., 128-

bit plaintext and 128-bit secret key), which is obviously infeasible. Actually, NIST published

AES Algorithm Validation Suite (AESAVS) which specifies the procedures (i.e., tests) involved

in validating AES implementations, but the successful validation by AESAVS does not imply

complete conformance of the AES implementation because AESAVS employs a Monte Carlo test

using only a small number of possible cases, as stated in AESAVS [10]. In addition, although

NIST also published the specifications of validating implementation of other ciphers, some issues

on detecting bugs by them have been pointed out [145].

32 2 Preliminaries

0

0

0 00 0 1 01

a

b b

c c c c

1

0 1

1 1 1

1

0 01

0

0 0

(a)

0 1

a

b

c c

1

1

10 0

0

(b)

0
1

Fig. 2.4 (a) BDD and (b) ROBDD for a ∧ (b⊕ c).

(ii) Formal verification
Formal verification methods verify arithmetic circuits by giving a proof that the target circuit

satisfies the properties (e.g., correctess of functionality) which are described by mathematical for-

mulae. Formal verification has a potential for solving the above problem on verifcation coverage,

and has been studied mainly in academia.

Formal verification for the equivalence checking first transform the target circuit and refer-

ence into the identical data structure (e.g., Boolean expression), and then check whether they are

mathematically equivalent. There are three conventional methods based on (1) Binary Decision

Diagram (BDD), (2) SATisfiability (SAT) solver, and (3) PPRM expansion.

(1) BDD is a data structure for logic functions f : Bn → B (where B = {0, 1}), and has been

mostly used for formal verification of arithmetic circuits. For example, Fig. 2.4(a) shows a BDD

for a∧ (b⊕ c), where ∧ and ⊕ denote OR and XOR operators, respectively. In Fig. 2.4, each node

corresponds to a logic variable, and weight of each edge under a node corresponds to assignment

of the variable to 0 or 1. Therefore, leaves correspond to the output of the representing function,

and we can know the output for an input by following edges downwardly from the root (i.e., node

on the top).

It is difficult to use the BDD in Fig. 2.4 for formal verfication because BDDs for the identical

function can differ depending on the expression of logic function. Therefore, Reduced Ordered

BDD (ROBDD) is used for formal verification. Figure 2.4(b) shows the ROBDD for f . ROBDD

is a canonical form of BDD where redundant variables are removed and the order of variables are

fixed. In other words, the circuit function can be verified by isomorphic dicision of two ROBDDs

for target and reference circuits because two ROBDDs have the identical form if and only if they

are equivalent.

The size of ROBDD (i.e., the number of nodes in ROBDD) has a big impact on the verification

2.5 Functional Verification of Arithmetic Circuits 33

time based on ROBDD. The size of ROBDD depends on the variable order and the representing

function. For example, there is an optimal veriable order for two-input Ripple Carry Adders

(RCAs), which makes ROBDD represent RCAs with a size increasing polynomially by the input

bit length. On the other hand, since it was proven that the size of ROBDD for multipliers always

increases exponentially by the input bit length for any variable order, it is different to verify large

multipliers using ROBDD [29].

(2) Since the equivalence checking can be easily resolved into an SAT problem, SAT solvers are

sometimes used for formal verification. Many SAT solvers for formal verification transform the

circuits into logic formulae in the Conjunctive Normal Form (CNF), and then examine satisfiabil-

ity of the logic formulae. State-of-the-art SAT solvers can solve examplary SAT problems with

several millions variables and handreds terms in several hours, which correspond to some circtuis

with several ten thousands gates if the SAT problem is suitable to the SAT solver. On the other

hand, the SAT solvers have difficulty in solving some SAT problems (e.g., a part of randomly

generated ones) even with only several hardreds variables.

Finally, (3) PPRM expansion is a dedicated method for equivalence checking of arithmetic

circuits over GF (2m) in contrast to other methods. In the method, we represent input-output rela-

tions of the circuits with logic equations, and then check whether the logic equations of reference

circuit logically imply those of target circuit. The check is performed by expanding the logic

equations to the PPRM form, which is a canonical form based on AND-XOR. Since most arith-

metic circuits over GF (2m) mainly consists in AND and XOR gates, PPRM would be suitable to

handle the circuits. In [95], it was shown that this method can be efficiently applied to GF (2m)

arithmetic circuits described in logic-level, and successfully verifeid some components of AES

hardware in a few seconds.

The above methods can reduce the verification time by exploiting similarities of targe and

reference circuits. If an equivalent signal between two circuits is detected, it can be considered

as the same signal. Thus, using the similarities (i.e., by checking equivalence of only different

points), the above formal verification methods can verify larger circuits than the straight-forward

approach.

2.5.3 Problems on verifying cryptographic hardware

BDDs and SAT solvers have difficulties in verifying practical cryptographic hardware. Most

cryptographic algorithms use addition, multiplication, and inversion over GFs in a combination.

As mentioned before, the size of BDD (i.e., verification time) increases exponentially by the

input bit length. In addition, inversion circuits has more complicated structure than multipliers.

Thus, huge GF arithmetic circuits (i.e., cryptographic hardware) cannot be verified by BDDs in a

34 2 Preliminaries

practical time. Actually, in [80], it was shown that a BDD could not verify GF multipliers whose

input bit lengh is more than 22. Recently, BDD is extended to Binary Moment Diagram (BMD),

which is a word-level graph structure [30]. Multiplicative BMD (*BMD) is a canonical form of

BMD which can be exploited by formal verification of arithmetic circuit. However, *BMD have

been mainly developed for integer ring arithmetic, and there are a few reports on *BMD for GF

arithmetic. The existing *BMDs for GF arithmetic are limited, are applied to only specific GFs

and circuits, and have difficulty in handling practical ones [94, 98, 135].

In addition, while many SAT solvers focus on CNF (i.e., AND-OR form), AND-XOR form can

efficiently compress logical expression of many cryptographic algorithms [96]. In other words,

CNF is not suitable to represent cryptographic algorithms, and such SAT solvers are not suitable

to formal verification of cryptographic hardware. Although a SAT-solver called CryptoMiniSat

has been developed for cryptographic applications, no SAT-solvers including CryptoMiniSat can

verify more than 16-bit GF multipliers [80].

Note that it is also difficult to reduce verification time using similarities because pairs of arith-

metic algorithms frequently have few similarities, and it is sometimes difficult to detect equivalent

signals.

Although PPRM expansion succeeded in verifying some AES components such as S-box and

MixColumns circuits using the corresponding reference circuits, it would be applicable to word-

level verification and huge circuits (e.g., whole of cryptographic datapath).

Finally, the most fatal problem of the above methods is that the methods should require refer-

ence circuits (i.e., golden model), which are usually not prepared for sophisticated functions and

cryptographic datapths. Thus, formal verification which does not require golden model is quite

important.

2.6 Formal Design of GF Arithmetic Circuits
2.6.1 Overview

Formal design method of GF arithmetic circuit was proposed in [63, 64, 110]. In this method,

GF arithmetic circuits are represented with a hierarchical and mathematical graph called GF-ACG.

In GF-ACG, the functions of GF arithmetic circuit can be represented by GF equations including

word-level. The usage of GF-ACG enables us not only to describe GF arithmetic circuit with var-

ious levels of abstraction, but also verify its functions formally by equivalence checking between

hierarchies (i.e., formula evaluation) without any reference circuit. For the formal verification, an

algebraic verification procedure with a GB and polynomial reduction technique has been intro-

duced in [63]. We can completely verify 256-bit GF multipliers and AES (encryption) hardware

2.6 Formal Design of GF Arithmetic Circuits 35

G
F

-A
C

G
 c

o
d

e
sy

n
th

es
iz

er

C
ir

cu
it

 s
p
ec

if
ic

at
io

n

G
F

-A
C

G
 c

o
d

e

G
F

-A
C

G
 v

er
if

ie
r

(F
o
rm

al
 v

er
if

ic
at

io
n
)

V
er

if
ie

d
 G

F
-A

C
G

 c
o
d

e

G
F

-A
M

G

A
C

G
-t

o
-H

D
L

 t
ra

n
sl

at
o

r

V
er

if
ie

d
 H

D
L

 c
o

d
e

Fig. 2.5 Block diagram of GF-AMG.

using GF-ACG in a practical time.

Actually, GB has been studied in the field of cryptography. Other algebraic formal verification

without reference circuit was reported in [79–81]. In [80], formal verification of GF ((2m0)m1)

was shown. In [79,81], methods for optimizing parameters in computing GB (i.e., term order and

variable order) were proposed. However, these method was applied to only PB-based GF multi-

pliers, and not applied to circuits based on other GF representations and cryptographic hardware,

which have higher-degree functions with a large number of variables and terms. They have a

significant impact on computation time of GB.

2.6.2 Automatic generation system for GF arithmetic circuit

GF Arithmetic Module Generator (GF-AMG) is an automatic generation system for GF (2m)

multipliers, is a main application of GF-ACG [109], and is open to public via our website [1].

Given multiplier specifications, GF-AMG generates only HDL code whose function is verified

based on GF-ACG. GF-AMG would be useful for the designers even unfamiliar with GF arith-

metic in order to reduce design cost of GF arithmetic circuits.

Figure 2.5 shows the block diagram of GF-AMG, which consists of (i) GF-ACG code syn-

thesizer, (ii) GF-ACG verifier, and (iii) ACG-to-HDL translator. The GF-ACG code synthesizer

generates GF-ACG code according to the users’ design specification. In [109], specifications are

given by bit length, irreducible polynomial, and GF representation chosen from PB and NB. The

GF-ACG verifier proceeds to formally verify the generated GF-ACG code. The ACG-to-HDL

translator finally translates the verified GF-ACG code to the corresponding HDL code. The sys-

tem in [109] supports generation of Mastrovito and Massey-Omura multipliers, which are typical

multipliers over PB- and NB-based GFs, respectively.

36 2 Preliminaries

2.6.3 Issues on formal design of cryptographic hardware

GF-ACG can be efficiently applied to basic arithmetic circuits such as two-input multipliers

and straight-forward AES hardware (i.e., without optimization). On the other hand, in practice,

more complex circuits and various optimization techniques are used in designing cryptographic

hardware. For example, resister-retiming and operation-reordering/merging are quite useful for

reducing critical delay and circuit area. However, the existing GF-ACG has restriction of han-

dleable arithmetic algorithms and hardware architectures, and has difficulties in designing many

practical cryptographic hardware.

In the following, we describe some issues on designing practical GF arithmetic circuit and

cryptographic hardware design by GF-ACG. Firstly, the existing GF-ACG focuses on only non-

redundant GF representations (i.e., PB and NB), and does not support redundant representations.

Since some redundant GF arithmetic algorithms have higher performance than non-redundant

ones [101], it is quite important to design GF arithmetic circuits based on redundant GF represen-

tations.

Secondly, although pipelining is used not only for enhancing throughput and implementation

efficiency, but also as a countermeasure against DPAs, the existing GF-ACG cannot represent such

sequential circuits. Nevertheless, the conventional GF-ACG does not represent time modality (i.e.,

clock cycle) and sequential arithmetic circuits including pipelined ones because they focuses on

only combinational circuits that performs the computation in a single clock cycle. Needless to

say, countermeasure against DPAs should be sometimes mandatory for cryptographic hardware.

Thirdly, some hardware architectures and optimization techniques are unavailable due to verifi-

cation time based on GB. The computation time of GB heavily depends on the degree and number

of variables of circuit function. Many cryptographic algorithms employ high-degree functions

such as inversion over GF, which sometimes make computation of GB infeasible. For exam-

ple, AES decryption hardware cannot be verified by the existing GF-ACG because AES decryp-

tion is represented by higher-degree functions than encryption. In addition, resister-retiming and

operation-reordering sometimes lead to the increase of function degree, which indicates that some

AES encryption hardware cannot be also verified by the existing GF-ACG. Moreover, while well-

hierarchical representation of GF-ACG is useful for reducing verification time (i.e., computation

time of GB), it is difficult to represent circuits optimized at logic-level in a hierarchical manner.

In such cases, computation of GB would be infeasible due to the increase of the number of vari-

ables. For example, AES hardware with a masking-based countermeasure cannot be verified in a

practical time.

In summary, the design space of the existing GF-ACG is very limited, and many practical

cryptographic hardware is out of the design space. The formal design method which covers a

2.7 Conclusion 37

wider design space is quite desirable.

2.7 Conclusion
Modern cryptographic algorithms are closely related to GF arithmetic, and a lot of next-

generation encryption schemes are also on the basis of GF arithmetic. In addition, Cryptographic

hardware is essential for resource-constraint devices, tamper-resistance, and root-of-trust. Thus,

it is quite important to design and verify GF arithmetic circuits for cryptographic hardware.

Nevertheless, the conventional EDA tools have difficulties in designing and verifying GF

arithmetic circuits. While the formal design based on GF-ACG is a promising method, it still has

some issues on designing practical cryptographic hardware.

39

3
Formal Design Methodology of

Cryptographic Hardware

3.1 Introduction
Chapter 2 described the increasing importance of GF arithmetic circuits for cryptographic hard-

ware. This chapter presents a new formal design methodology which can handle and rapidly verify

various GF arithmetic circuits including practical cryptographic hardware described before.

In this chapter, we first introduce the conventional GF-ACG and its formal verification by the

algebraic procedures as previous works.

We then propose the formal design methodology of cryptographic hardware. We first proposed

a new GF-ACG which can handle redundant GF representations in addition to non-redundant

ones, and also can handle registers and clock cycles on the basis of a modal logic. On the other

hand, since the proposed GF-ACG cannot be directly applied to the following verification due to

redundantly represented values and the modal logic representation, we also describe methods for

sound and complete verification.

40 3 Formal Design Methodology of Cryptographic Hardware

G0

n0

(F0, G1)

G1

n1

n2

G2

G3

: GF-ACG

: Node

: Directed edge

Highest level

of abstraction
Lower level of abstraction

Fig. 3.1 Overview of GF-ACG

Next, we proposed new formal verification of GF arithmetic circuits for cryptographic hard-

ware. We propose two formula evaluation methods for verifying GF-ACG. One is based on the

natural deduction for the first order predicate logic, and can rapidly verify higher-degree functions

frequently used in cryptographic hardware. The other is based on a combination of PPRM ex-

pansion and the conventional GB-based method, and can rapidly verify circuits with logic-level

optimizations. We then propose an efficient and complete verification algorithm which combines

the above formula evaluation methods including the conventional one.

To demonstrate the effectiveness and efficiency of the proposed methodology, we show its

applications to various circuits, namely, PRR-based multipliers, AES encryption and decryption

hardware, Masked AES hardware, and a DPA-resistant cryptographic hardware utilizing pipeline.

Finally, we discuss the generality and applicability of the proposed methodology.

3.2 Previous Work
3.2.1 Formal Description of GF Arithmetic Circuits

Figure 3.1 shows the overview of GF-ACG．A GF-ACG G is an directed graph and is defined

by

G = (N ,E), (3.1)

where N and E denote sets of nodes and directed edges, respectively. A node represents an

arithmetic circuits by its functional assertion and internal structure. A directed edge represents a

dataflow between nodes associated with a GF variable. Since each node has its internal structure

represented by GF-ACG, GF-ACG represents a circuit in a hierarchical manner.

A node n (∈ N) is defined by (F , Gin), where F is the functional assertion given be a set of GF

3.2 Previous Work 41

equations and Gin is the internal structure given by a low-level GF-ACG. A functional assertion

is represented using GF equations (formulae) Fl = Fr, where Fl and Fr are the respective output

and input expressions and each expression is given by variables, constants, or combinations of

them connected by the arithmetic operators +, −, and ×.

A node at the lowest-level of abstraction, which does not possess an internal structure, is de-

fined by (F , nil). The lowest-level nodes have functions which are assumed to be correct; and

therefore, nodes which do not have their internal structures represent cells (including standard and

custom ones), logic gates, or IP cores.

A directed edge e ∈ E is defined as (ns,ne, υ), where ns is the start node, ne is the set of end

nodes, and υ represents a variable of GF. The directed edge represents an external input or output

for the given GF-ACG if either ns or ne is nil. A GF variable is associated with a GF. Let GF(r)

be a formal representation of GF(r). A GF(r) is represented as (B,C, IP), where B denotes the

basis, C is the coefficient vector, and IP is the irreducible polynomial. If GF(r) represents an

mth-degree extension field of GF (q) (i.e., GF(r) = GF(qm)), B, C, and IP are given by

B = (Bm−1, Bm−2, . . . , Bi, . . . , B0), (3.2)

C = (Cm−1,Cm−2, . . . ,Ci, . . . ,C0), (3.3)

IP = βm + cm−1β
m−1 + · · ·+ ciβ

i + · · ·+ c0β
0, (3.4)

where Bi (0 ≤ i ≤ m−1) denotes a basis element (i.e., Bi = βi for PB and Bi = αqi), Ci is the

coefficient set of degree i (i.e., set of elements of GF (q)), and ci ∈ GF (q) is an element of Ci. On

the other hand, if GF(r) represents a prime field GF (p), we let B = 1, C = ({0, 1, . . . , q − 1}),
and IP = nil. Thus, GF(r) can represent both prime and extension fields including tower fields.

A GF variable υ is defined as (GF(q), (h, l)), where h and l denote the most and least degrees of

υ, respectively. The ordered pair (h, l) is called the degree range. Using the above notation, we

handle a specific variable υd of degree d. Note that every GF variable satisfies the field equation

υω = υ (ω is the order of field), which is mandatory in order to make the following verification

complete.

A GF variable can be decomposed/composed into an expression with sub-variables at a

lower/higher level of abstraction. In other words, we can change the level of abstraction in the

edge representation using decomposition/composition nodes. A decomposition node decompose

υ into h − l + 1 GF variables. There are two types of decomposition nodes. For example,

Fig. 3.2 shows two decomposition nodes for a GF variable υ with a degree range (1, 0), where

42 3 Formal Design Methodology of Cryptographic Hardware

υ1
(s)B1 + υ0

(s)B0 = υυ

υ0
(s)

υ1
(s)

(b)

υ1
(e) + υ0

(e) = υυ

υ0
(e)

υ1
(e)

(a)

GF(qm) GF(qm) GF(qm) GF(q)

Fig. 3.2 Decomposition nodes with functional assertion given by (a) Eq. 3.5 and (b)

Eq. 3.6.

the functional assertions of decomposition nodes of (a) and (b) are generally given by

υ
(e)
h + υ

(e)
h−1 + · · ·+ υ

(e)
l = υ, (3.5)

υ
(s)
h Bh + υ

(s)
h−1Bh−1 + · · ·+ υ

(s)
l Bl = υ, (3.6)

respectively. The decomposition node (a) decomposes υ ∈ GF (qm) into υ
(e)
d s (l ≤ d ≤ h). The

GF variable υ
(e)
d is an element of GF (qm), and is formally represented by ((GF(qm), (d, d))).

On the other hand, the decomposition node (b) decomposes υ ∈ GF (qm) into υ
(s)
d s. The GF

variable υ
(s)
d is an element of GF (q), and is formally represented by (GF(q), (h

′, l′)), where

(h′, l′) denotes the degree range of decomposed variable. Thus, while decomposition node (a)

does not change the abstraction level of the input GF variable in terms of GF representation*1,

decomposition node (b) is used for changes the abstraction level of a GF variable into lower-level

(i.e., subfield). In addition, we define composition nodes by exchanging the input and output of

decomposition nodes. Note that decomposition and composition nodes are the lowest-level node

(i.e., do not have internal structure) because change of abstraction should be performed by only

wiring.

The above GF-ACG can represent GF arithmetic circuits based on PB and NB (i.e., non-

redundant representations). In addition, GF-ACG can also represent any kind of logic circuits.

Logic signals in logic circuits are represented by pseudo-logic variables, which is a GF variable

that can take 0 or 1. Let Logic be the field consisting of pseudo-logic variables, and u be a

*1 On the other hand, decomposition node (a) changes the abstraction level of GF variable into lower-level in terms

of degrees (or digits) of GF variables because GF variables after decomposition have constraints about their degree

ranges compare to the input GF variable

3.2 Previous Work 43

pseudo-logic variable. logic and u are given by

Logic = ((1), ({0, 1}), nil), (3.7)

u = (Logic, (0, 0)). (3.8)

In addition, every pseudo-logic variables should meet the idempotent constraint u2 = u instead

of field equation. Using such a pseudo-logic variables, GF-ACG can represent logic circuits in

the similar manner to GF arithmetic circuits. The functional assertions of nodes for typical logic

operations NOT(u), OR(u, v), AND(u, v), and XOR(u, v) are given by

NOT(u) = 1− u, (3.9)

OR(u, v) = u+ v − uv, (3.10)

AND(u, v) = uv, (3.11)

XOR(u, v) = u+ v − 2uv, (3.12)

respectively. Note that the above representations of logic operations does not depend on GF.

Although we showed typical logic operations, we can also represent any kind of logic circuits,

including negative logic gates and functional gates. Thus, we can describe arithmetic circuits

hierarchically from logic-level to word-level of abstractions.

3.2.2 Formal Verification of GF-ACG

The usage of GF-ACG enables us to formally verify GF arithmetic circuits by equivalence

checking between hierarchies. Since circuit functions are represented by GF equations, the equiv-

alence checking is resolved into formula evaluation. So far, the formula evaluation has been

performed the automatic algebraic procedures based on GB and polynomial reduction.

Algorithm 3.1 describes the GF-ACG verification in an algorithmic manner, which was pre-

sented in [63]. Algorithm 3.1 verifies that the functional assertion of the highest-level node is

correctly derived form GF-ACG of the internal structure, assuming that the functions of lowest-

level nodes are correct. Given a GF-ACG, Algorithm 3.1 recursively applies the verification to

its internal structures. In Line 6, the formula evaluation “GB-BasedEvaluation” is applied to all

nodes with an internal structure. GB-BasedEvaluation returns true if and only if the functional

assertion and internal structure of the input node are equivalent. On the other hand, no procedures

are applied to the lowest-level nodes because their functional assertion are assumed to be correct.

Thus, Algorithm 3.1 returns true if and only if all the nodes excluding the lowest-level are equiv-

alent to their internal structures, and the function of the highest-level node is correctly realized by

the lowest-level nodes (e.g., logic circuit).

44 3 Formal Design Methodology of Cryptographic Hardware

Algorithm 3.1 GF-ACG verification
Input: GF-ACG G = (N ,E)

Output: Verification result res ∈ {true, false}
1: function VERIFY(G)

2: Bool res← true;

3: for all n = (F , Gin) ∈N do
4: if Gin ̸= nil then
5: res← res & Verify(Gin);

6: res← res & GB-BasedEvaluation(n);

7: end if
8: end for
9: return res;

10: end function

We then describe formula evaluation based on polynomial reductions by GB (i.e., GB-

BasedEvaluation). Since the functional assertions are given by GF-ACG, we can perform the

equivalence checking by checking whether the functional assertions (i.e., GF equations) of a

node are correctly derived from the simultaneous equations representing its internal structure.

In [63], this formula evaluation was resolved into an ideal membership problem, which is solved

by the algorithm based on polynomial reductions by GB in a systematic manner. In the following,

we introduce the ideal, polynomial reduction, and GB before describing the formula evaluation

algorithm.

An ideal is defined as a specific sub-ring of a ring*2. Let R and I be a ring and its sub-ring.

I is an ideal of R if c0f0 + c1f1 ∈ I where f0, f1 and c0, c1 are arbitrary elements of I and R,

respectively. If I is represented by I = {
∑

cζfζ | cζ ∈ R} (f0, f1, . . . , fζ , . . . , fℓ−1 are elements

of I), I is called an ideal generated by f0, f1, . . . , fℓ−1, and is denoted by ⟨f0, f1, . . . , fℓ−1⟩.
I = {f0, f1, . . . , fℓ−1} is called ideal basis.

Then, let R be a multivariate polynomial ring over GF (ω), and let us consider the following

simultaneous equations:
f0 = 0

f1 = 0
...

fℓ−1 = 0

. (3.13)

Here, every element f ∈ I = ⟨f0, f1, . . . , fℓ−1⟩ satisfies f = 0 because f is given in a form of

c0f0+c1f1+ · · ·+cℓ−1fℓ−1. Ideal membership problem indicates whether or a polynomial f is a

*2 Ring is an algebraic structure and a superset of field. A ring is defined as a set where addition, subtraction, and

multiplication are defined such as the ring of integer.

3.2 Previous Work 45

Algorithm 3.2 Formula evaluation based on polynomial reduction by GB
Input: Node n = (F , Gin)

Output: Formula evaluation result res ∈ {true, false}
1: function GB-BASEDEVALUATION(n)

2: set S ← ∅;
3: for all n = (F ′, G′

in) ∈N ′(∈ Gin) do
4: S ← S ∪ F ′;

5: end for
6: GB← GröbnerBasisOf(S);

7: Boolres← IsIdealMember(F ,GB);

8: return res;

9: end function

decision problem which decides whether or not a polynomial f is a member of an ideal I. Hence,

we can verify a circuit function f ∈ F by solving the ideal membership problem determined by

the simultaneous equations representing internal structure. Note that, in the formal verification,

GF equations are considered as polynomials in the form of lhs− rhs.

Polynomial reduction is a technique for solving ideal membership problems. A polynomial

reduction transforms a multiplication polynomial into a remainder divided by other multivariate

polynomial. Therefore, we can solve an ideal membership problem by repeating polynomial

reductions of f until f cannot be divided by any element generating I, and check whether or not

the result is equal to 0. Here, the result is called by the normal form of f by I , and is denoted by

NFI (f). If NFI (f) = 0, f ∈ I.
However, NFI (f) is not unique and depends on the order of polynomial reduction, and

NFI (f) is sometimes not equal to 0 even if f ∈ I. The non-uniqueness of normal forms causes

false-positive of the verification although soundness is quite important for formal verification.

On the other hand, GB is an ideal basis which can make normal forms always unique. Formally,

the necessary and sufficient condition that an ideal basis is GB is that f ∈ GB if and only if

NFGB(f), where GB denotes the ideal generated by GB. In addition, there is an algorithm

called Buchberger’s algorithm, which transforms an ideal basis to the equivalent GB in finite

steps [31]. In addition, it was proven that Buchberger’s algorithm always terminates in finite step.

Thus, we can perform sound and complete verification thanks to the uniqueness of NFGB(f)

and total correctness of Buchberger’s algorithm. See [40, 41] for details of GB and Buchberger’s

algorithm.

Algorithm 3.2 verifies functional assertion of a node based on polynomial reduction by GB. In

Algorithm 3.2, Lines 3–5 extract simultaneous equations representing the internal structure. Note

that equations are considered as polynomials in Algorithm 3.2 as stated before. Line 6 computes

46 3 Formal Design Methodology of Cryptographic Hardware

Algorithm 3.3 Decision procedure for ideal membership problem
Input: Functional assertion F , Gröbner basis GB

Output: Decision res ∈ {true, false}
1: function ISIDEALMEMBER(F , GB)

2: Bool res← true;

3: for all f ∈ F do
4: if NFGB(f) = 0 & GB ̸= {1} then
5: res← res & true;

6: else
7: res← res & false;

8: end if
9: end for

10: return res;

11: end function

the GB equivalent to the simultaneous equations using Buchberger’s algorithm (or improved one).

Line 7 verifies GF equations in F are included in the ideal generated by GB using the algorithm

“IsIdealMember,” and Line 8 returns the result.

Algorithm 3.3 is a decision procedure for ideal membership problem (i.e., IsIdealMember).

Line 4 computes NFGB(f), where f is an equation in vrF . If and only if NFGB(f) = 0, f is

correctly derived from the internal structure. If NFGB(f) ̸= 0, the circuit is wrong. Note that,

if GB = {1}, the simultaneous equations have no solution, which indicates that the circuit is

wrong*3.

The computation time of Algorithms 3.2 and 3.3 is mainly determined by that of GB compu-

tation. Although a GB computation always terminates, the computation time heavily depends on

the degree and number of variables of the simultaneous equations. For example, if the simultane-

ous equations are linear, the GB computation time increases the cubit of κ, where κ denotes the

number of variables. The hierarchical description of GF-ACG reduces the degree and number of

variables par GB computation, which leads to the reduction of total verification time. Therefore,

we should describe circuits well-hierarchically when verifying huge circuits. On the other hand,

there are some cryptographic hardware where the circuit function has very high degree even at

word-level (e.g., AES decryption hardware), and/or hierarchical description is unavailable (e.g.,

masked AES hardware). Therefore, formula evaluation methods whose computation time does

not heavily depend on the degree and number of variables is quite necessary.

*3 In this dissertation, we consider only reduced GBs, which are defined as GBs containing no redundant polynomial.

A GB can be easily transformed into the corresponding reduced GB.

3.2 Previous Work 47

3.2.3 Example

In this subsection, we show formal design of two-input parallel full-tree multipliers over PB-

based GF (2m) [63]. We first describe algebraic description of the multipliers. Let a and b be

elements of GF (2m) and the inputs to the multipliers. Let c be an element of GF (2m) and the

output. Let F (β) be an mth degree irreducible polynomial over GF (2), and F (β) is given by

βm + fm−1β
m−1 + fm−2β

m−2 + · · · + f0, where fi is an element of GF (2). The function

of multiplier is represented by c = a × b. Full-tree multipliers are composed of two blocks: a

Partial Product Generator (PPG) and an ACCumulator (ACC), The functions of PPG and ACC are

represented by

n−1∑
i=0

wi = a× b, (3.14)

c =
n−1∑
i=0

wi, (3.15)

respectively. Here, wi is the ith partial product generated by PPG, and is given by a× biβ
i, where

bi (∈ GF (2)) denotes the ith bit of b. In other words, the function of multipliers is realized by

arithmetic circuits with functions represented by Eqs. 3.14–3.15.

Let wi,̂i (∈ GF (2)) be the ith bit of wi. Since b is represented by bm−1β
m−1 + bm−2β

m−2 +

. . . b0 in the lower-level of abstraction (and a is also represented in the same manner), the function

of PPG is represented by

w′
i,̂i

= aî × bi, (3.16)

wi,̂i = w′
i,̂i+i

+

i∑
ι=1

(
w′i,m−ι × f ′

î,m+i−ι

)
, (3.17)

where w′
i,̂i

denotes the intermediate result (w′
i,̂i+i

= 0 when î+i ≥ m), and f ′
î,m+i−ι is a constant

over GF (2) which is determined as the îth coefficient of a polynomial given by dividing βm+i−ι

by F (β). Equation 3.16 represents multiplication excluding reduction by F (β), and is realized by

GF (2) multipliers (i.e., AND gates). Equation 3.17 represents reduction by F (β), and is realized

by GF (2) adders (i.e., XOR gates). In other words, in order to perform wi = a×biβ
i, we perform

the multiplication a× bi by Eq. 3.16, and then perform the multiplication of β and a× bi by Eq.

3.17.

On the other hand, Eq. 3.15 is implemented using an array of GF (2m) adders, which are given

by bit-parallel XOR gates.

Figure 3.3 shows a GF-ACG for GF (22) full-tree multiplier at four-levels of abstraction. The

nodes in Fig. 3.3(a), (b), and (c) correspond to the respective shaded parts in Fig. 3.3(b), (c),

48 3 Formal Design Methodology of Cryptographic Hardware

(b)

n9 n8

n10

n7 n6

n12 n11

n4

(Sub-

PPG1)

n5

(GFA0)

n3

(Sub-

PPG0)

n1

(PPG)

n2

(ACC)

n0

(Multiplier)

a b

c

a b

c

a b

c

a b

c

w1 w0 w1 w0 w1 w0

G0

G1

G2

G3

G4G5

G6

(a) (c) (d)

High-level Low-level

Fig. 3.3 GF-ACG for full-tree multiplier over PB-based GF (22): (a) highest- to (d)

lowest-level of abstraction.

and (d). Figure 3.3(d) denotes the lowest-level of abstraction, which represents a logic circuit.

Table 3.1 shows nodes, GFs, and GF variables in Fig. 3.3, in which the decomposition and com-

position nodes are omitted.

Nodes “PPG” and “ACC” have functional assertions given by Eqs. 3.14 and 3.15, respectively.

Nodes “SubPPG0” and “SubPPG1” have functional assertion given by Eq. 3.16. In addition,

a node “GFA0” represents an adder over GF (22), Note that we can design the multipliers for

different bit length and irreducible polynomials in the same manner.

We then measure verification time of the GF (2m) multipliers for different m. Figure 3.4 shows

the time of the formal verification, where the verification procedures are performed using an open-

source computer algebra software Risa/Asir [2] on a Linux personal computer with an Intel Xeon

E5450 3.00GHz processor and 32GB RAM. For a comparison, we also show the verification

time of the corresponding Verilog HDL description using a typical Logic simulator Verilog-XL.

We did not verify multipliers larger than GF (216) using the logic simulator in this experiment

because verification time increases exponentially to the extension degree (i.e., input bit length).

On the other hand, we could verify large multipliers by using formal verification. For example,

a GF (2128) multiplier was completely verified within one minute. Thus, we could confirm the

efficiency of GF-ACG.

The verification time of formal verification increases proportionally to the square of extension

degree because the GF-ACG for GF (2m) full-tree multipliers have one, two, and 2m2 +m − 1

nodes at highest-, second-, and third-level hierarchies, respectively. Algorithm 3.1 applies the

3.2 Previous Work 49

Table 3.1 Nodes, GFs, and GF variables in Fig. 3.3

Node

[Multiplier]

n0 = ({c = a× b}, G1)

[PPG]

n1 = ({
∑1

i=0 wi = a× b}, G2),

[SubPPG0]

n3 = ({w0 = a× b0}, G4)

[GF(2) Multiplier]

n6 = ({w0,0 = a0 × b0}, nil),
n7 = ({w0,1 = a1 × b0}, nil),

[SubPPG1]

n4 = ({w1 = a× b1}, G5)

[GF(2) Multiplier]

n8 = ({w′
1,0 = a0 × b1}, nil),

n9 = ({w1,1 = a1 × b1}, nil),
[GF(2) Adder]

n10 = ({w1,0 = w1,1 + w′
1,0}, nil),

[Accumulator]

n2 = ({c =
∑2

i=0 wi}, G3)

[GFA0]

n5 = ({w0 = w0 + w1}, G6)

[GF(2) Adder]

n11 = ({c0 = w0,1 + w0,0}, nil)
n12 = ({c1 = w1,1 + g1,0}, nil)

GFs

GF(22) = (
(
x2, x1, x0

)
, ({0, 1}, {0, 1}, {0, 1}) , (x2 + x+ 1, x+ 1))

GF(2) = ((1), ({0, 1}), nil)

GF variables

a, b, c = (GF(22), (1, 0))

w0, w1 = (GF(22), (1, 0))

a0, a1, b0, b1, c0, c1 = (GF(2), (0, 0))

w0,0, w0,1, w1,0, w1,1, w′
1,0 = (GF(2), (0, 0))

formula evaluation to 2m2+m+1 nodes. Since the degree and number of variables of functional

assertion of each node is not so large, formula evaluation of each node is performed in less than

one second. Thus, the hierarchical description of GF-ACG is quite important for fast verification.

50 3 Formal Design Methodology of Cryptographic Hardware

Logic Simulation
Formal Verification

0 10 30 4020 50 60
0.0

0.5

1.5

2.0

1.0

x103

Extension degree m (bits)

V
er

if
ic

at
io

n
 t

im
e

(s
)

Fig. 3.4 Verification time of GF (2m) full-tree multipliers for 2 ≤ m ≤ 64.

3.3 Proposed Method
3.3.1 Proposed Formal Description

This subsection presents a new GF-ACG which can handle both redundant and non-redundant

GF representations and pipelined circuits.

Formal representation of GFs
The conventional GF-ACG gives GF(qm) by a basis B, coefficient vector C, and an irreducible

polynomial IP . On the other hand, in the proposed GF-ACG GF(qm) is represented using a vector

X which consists of arbitrary elements of GF (qm), and X is given by

X = (Xn−1, Xn−2, . . . , Xj , . . . , X0). (3.18)

If GF(qm) represents a PRR-based GF (qm) Xj is given by xj . If GF(qm) represents an RRB-

based GF (qm), Xj is given by βj . In addition, the number of elements in C increases to n. On

the other hand, redundant representations (i.e., PB and RRB) can be also represented by the same

manner as the conventional one.

The conventional GF(qm) uses an irreducible polynomial to represent the indeterminate ele-

ment. On the other hand, in PRR-based GFs, the modular polynomial is given by a product of

an mth degree irreducible polynomial F (x) and (n−m)th degree polynomial G(x), the indeter-

minate x is no longer a root of the modular polynomial, and all elements are divisible by G(x).

To represent such properties of PRR-based GFs, we explicitly represent the modular polynomial

of PRR-based GFs by two polynomials F (x) and G(x). By contrast, since RRB-based GF uses

3.3 Proposed Method 51

a root of mth degree irreducible polynomial to represent its elements as well as PB and NB, we

give the definition polynomial of RRB-based GFs for by only F (β) as same as PB and NB. Thus,

in the proposed GF-ACG, GF(qm) is defined as

(X,C, (F,G)). (3.19)

If GF(qm) represents a PRR-based GF (qm), let G be a polynomial defining the GF. If GF(qm)

represents a PB-, an NB-, or an RRB-based GF (qm), let G be 1. For example, let GF
(PB)
(22) ,

GF
(NB)
(22) , GF

(PRR)
(22) , and GF

(RRB)
(22) be formal representations of a PB-, an NB-, a PRR-, and an

RRB-based GF (22) with F (β) = β2 + β + 1 (F (x) = x2 + x + 1), respectively. They are

represented by

GF
(PB)
(22) = ((β1, β0), ({0, 1}, {0, 1}), (β2 + β1 + β0, 1)), (3.20)

GF
(NB)
(22) = ((α21 , α20), ({0, 1}, {0, 1}), (β2 + β1 + β0, 1)), (3.21)

GF
(PRR)
(22) = ((x2, x1, x0), ({0, 1}, {0, 1}, {0, 1}), (x2 + x+ 1, x+ 1)), (3.22)

GF
(RRB)
(22) = ((β2

0 , β
1
0 , β

0
0), ({0, 1}, {0, 1}, {0, 1}), (β2 + β1 + β0, 1)), (3.23)

where α = β1.

PRR-based GF (qm) is equivalent to an m-dimensional subspace of n-dimensional linear space

over GF (q), which indicates that arithmetic circuits over PRR-based GF have don’t-care inputs

in contrast to those based on other representations. In words, qn− qm elements in the entire space

qn are not included in PRR-based GF (qm). Because these qn − qm elements are not applied to

the GF arithmetic, the above algebraic verification cannot be directly applied to the GF arithmetic

circuits described in digit-level, that is, nodes whose internal structures include decomposition (or

composition) nodes of GF (qm) (or GF (q)) elements into GF (q) (or GF (qm)) elements. Note

that we can verify any node whose internal structure consists of word-level arithmetic functions.

The basic idea for valid verification is to represent the don’t-care condition by algebraic equa-

tions. Because PRR-based GF (qm) is equivalent to an m-dimensional subspace of n-dimensional

linear space, we can consider PRR-based GF (qm) as an (n,m) linear code over GF (q), where n

and m denote code length and information symbol length, respectively. In addition, since all ele-

ments of PRR-based GF (qm) can divisible by G(x), PRR-based GF (qm) defined with G(x) (and

H(x)) is equivalent to a (quasi-)cyclic code with a generator polynomial G(x). The (n,m) cyclic

code is a linear code where all (i.e., polynomials whose degree is up to n−1) are close to addition,

multiplication, and cyclic shift (i.e., arithmetic operations modulo P (x) = xn − 1). On the other

hand, an (n,m) quasi-cyclic code is derived by shortening an (n′,m) cyclic code (n′ > n) where

all codewords are closed to addition and multiplication modulo P (x) (= G(x) × F (x)). Thus,

PRR-based GF (qm) is equivalent to the (n,m) cyclic code if the modular polynomial P (x) is

52 3 Formal Design Methodology of Cryptographic Hardware

binomial; otherwise, PRR-based GF (qm) is equivalent to an (n,m) quasi-cyclic code. The nec-

essary and sufficient condition that a polynomial is a codeword of a (quasi-)cyclic code is given

by linear equations called Linear Recurrence Relation (LRR). We can represent the don’t-care

condition of PRR-based GF arithmetic circuits using LRR.

The LRR of cyclic code is derived from the generator polynomial G(x). (The LRR of quasi-

cyclic code is also derived from a similar method.) We first calculate an mth degree polynomial

H(x) = xm+hm−1x
m−1+hm−2x

m−2+ · · ·+h0 (hi ∈ GF (q)) called parity check polynomial

as follows:

H(x) =
xn − 1

G(x)
. (3.24)

(xn − 1)/G(x) in the rhs is always divisible by G(x) since G(x) is given as a factor polynomial

of xn − 1. Here, a polynomial of up to nth degree A(x) = an−1x
n−1 + an−2x

n2 + · · · + a0

(aj ∈ GF (q)) is a code word of the (n,m) cyclic code if and only if a0, a1, . . . , an−1 satisfy

h0aĵ+m + h1aĵ+m−1 + · · ·+ hm−1aĵ+1 + aĵ = 0, (3.25)

for 0 ≤ ĵ ≤ n − 1, and Eq. 3.25 is the LRR of the (n,m) cyclic code. While we described the

LRR of cyclic code, we can also derive those of quasi-cyclic codes by replacing n with n′ and

letting an = an+1 = · · · = an′−1 = 0 in Eq. 3.25.

For valid (i.e., sound and complete) verification, in the proposed GF-ACG, decomposition

nodes of PRR-based GF (qm) into GF (q) has LLR as its functional assertion in order to guarantee

that the decomposed variable is a valid element of PRR-based GF (qm) and satisfies don’t-care

condition. On the other hand, when verifying nodes whose internal structure contains composition

nodes of PRR-based GF (q) into GF (qm), we check whether the LRR of composed variable can

be derived from the internal structure in order to guarantee the outputs’ validity.

In addition, PRR-based GFs use a formal variable x instead of a root of irreducible polyno-

mial (e.g., β). This indicates that we should describe the correspondence relation between x and

β explicitly in verifying GF arithmetic circuits based on a combination of PRR and other repre-

sentations. We then describe the correspondence relation between x and β, where β is a root of

F (x). Let E(x) be the multiplicative unit element of PRR-based GF (qm), and E(x) corresponds

to 1 in GF (qm) based on other representations. According to [60], an element of PRR-based GF

A(x) is mapped to the corresponding element of PB-based GF by substituting β into x in A(x).

Therefore, E(β) = 1. Then, let us consider a polynomial xE(x) mod P (x). Since E(x) is

divisible by G(x), xE(x) is also divisible by G(x), which indicates xE(x) is an element of PRR-

based GF (qm). Here, since βE(β) = β (which is followed by E(β) = 1), xE(x) mod P (x)

corresponds to β. Hence, the correspondence relation between x and β is given by

(xE(x) mod P (x)) = β. (3.26)

3.3 Proposed Method 53

G0

G1

c

a

n1

n3 n2

n0

(Cubing)

c

a

(a) (b)

n4

Fig. 3.5 GF-ACG for PRR-based GF (22) cubing circuit.

Table 3.2 Nodes, GFs, and GF variables in Fig. 3.5

Node

[Cubing] n0 = ({c = a3, c2 + c1 + c0 = 0}, G1)

[Decomposition] ndecomp = ({a2x2 + a1x+ a0 = a, a2 + a1 + a0 = 0}, nil)
[AND] n1 = ({w0 = a2 × a1}, nil)
[AND] n2 = ({c0 = w0 × a0}, nil)
[XOR] n3 = ({c1 = w0 + a0}, nil)
[wiring] n4 = ({b2 = c1, b1 = c1}, nil)
[Composition] ncomp = ({c = c2x2 + c1x+ c0}, nil)

GFs

GF
(PRR)

(22)
= (

(
x2, x1, x0

)
, ({0, 1}, {0, 1}, {0, 1}) , (x2 + x+ 1, x+ 1))

GF(2) = ((1), ({0, 1}), nil)

GF variables

a, b = (GF
(PRR)

(22)
, (2, 0))

a2, a1, a0, b2, b1, b0, c1, c0 = (GF(2), (0, 0))

By adding Eq. 3.26 to functional assertion of decomposition/composition nodes for PRR-based

GFs, we can validly verify GF arithmetic circuits based on a combination of GF representations.

Thus, we can represent and verify GF arithmetic circuits based on various GF representation. Note

that E(x) can be easily derived using the extended Euclidean algorithm. See [60] for detail.

In the following, we show two examples to validate our method.

The first example of extended GF-ACG is a PRR-based GF (22) cubing circuit based on com-

bined representations. Figure 3.5 depicts a GF-ACG for the cubing circuit at two levels of ab-

straction, and Tab. 3.2 shows the nodes, variables, and GFs in Fig. 3.5. In this example, we have

G(x) = x+ 1, F (x) = x2 + x+ 1 (the second degree AOP) and P (x) = x3 + 1. The functional

54 3 Formal Design Methodology of Cryptographic Hardware

G0

G1

c

a

n1 n3n2

n0

(Conversion)

c

a

(a) (b)

Fig. 3.6 GF-ACG for circuit converting from PB-based GF (22) to PRR-based one.

assertion is given by c = a3. Here, c is represented by c = c2x
2 + c1x + c0, and the LRR of

c of PRR-based GF (22) is given by c2 + c1 + c0 = 0. (a and its LRR are also given in the

same manner.) We can efficiently implement such non-linear function using bit-level operations

exploiting the don’t-care condition (i.e., LRR). The node “Cubing” has the functional assertion

c = a3 and the LRR of c (i.e., c2+ c1+ c0 = 0) because its internal structure contains a composi-

tion node for c. Its internal structure represents a logic circuit consisting of a decomposition node,

a composition node, two AND gate nodes, and an XOR gate node. Note here that the functional

assertion decomposition node includes an additional GF equation representing the LRR for the

input variable a (i.e., a2 + a1 + a0 = 0).

When we verify the node “Cubing” without the LRR, the formula evaluation returns a value

of false because the cubing circuit is valid only for elements of the PRR-based GF (22). On the

other hand, the formula evaluation considering the LRR returns a value of true because the LRR

provides the condition that a is always an element of PR-based GF (22). Furthermore, the formula

evaluation considering the LRR also guarantees that the output variable c is always an element of

GF (22) because the corresponding LRR (c2 + c1 + c0 = 0) is derived from the GB.

The second example is a conversion circuit from the PB-based GF (22) to PRR-based one.

Figure 3.6 shows the corresponding GF-ACG and Tab. 3.3 shows the nodes, GFs, and GF variables

in Fig. 3.6. Node “Conversion” in Fig. 3.6(a) is the top-level node that consists of a composition

node ncomp, decomposition node ndecomp, nodes for wiring n1, n2, and a node representing an

XOR gate n3. Figure 3.6(b) shows the internal structure of “Conversion.” Nodes in Fig. 3.6(b)

does not have internal structure because the GF-ACG of Fig. 3.6(b) represents a logic circuit. In

this example, the unit element E(x) is given by x2 + x, and the algebraic relation between the

3.3 Proposed Method 55

Table 3.3 Nodes, GFs, and GF variables in Fig. 3.5

Node

[Conversion] n0 = ({c = a, c2 + c1 + c0 = 0}, G1)

[Decomposition] ndecomp = ({a1β + a0 = a}, nil)
[wiring] n1 = ({c0 = a1}, nil)
[wiring] n2 = ({c1 = a0}, nil)
[XOR] n3 = ({c2 = a1 + a0}, nil)
[Composition] ncomp = ({c = c2x2 + c1x+ c0, x2 + x = β}, nil)

GFs

GF
(PB)

(22)
= (

(
β1, β0

)
, ({0, 1}, {0, 1}) , (β2 + β + 1, 1))

GF
(PRR)

(22)
= (

(
x2, x1, x0

)
, ({0, 1}, {0, 1}, {0, 1}) , (x2 + x+ 1, x+ 1))

GF(2) = ((1), ({0, 1}), nil)

GF variables

a = (GF
(PB)

(22)
, (2, 0))

b = (GF
(PRR)

(22)
, (2, 0))

a1, a0, b2, b1, b0 = (GF(2), (0, 0))

indeterminate x and the root β (satisfying β2 + β+1 = 0) is represented by x(x2 + x) = β. The

functional assertion of “Conversion” is given by b = a, which cannot be derived from only the five

equations representing its internal structure. On the other hand, using the relation x2 +1 = β, we

can correctly derive b = a from its internal structure equations. The LRR of c (i.e., c2+ c1+ c0 =

0) is also derived, which guarantees that c is an element of PRR-based GF (22).

Formal representation of sequential arithmetic circuits
We then describe new GF-ACG which can represent sequential arithmetic circuits that perform

the computation with plural clock cycles, such as pipelined ones.

In order to represent time modality, we introduce Linear-time Temporal Logic (LTL) to the GF-

ACG representation. LTL is a kind of modal logic and has modality for linear and discrete time

[84,118]. So far, LTL has been used for several formal verification such as behavior verification of

microprocessors [38, 73]. In the proposed method, we represent the circuit functions using LTL,

and then transform them to GF equations representing the same functions in order to perform

formula evaluation by the conventional computer algebra software (or formula evaluation method

presented in Section 3.3).

First, we introduce two modal operators: X and N . The operator X is applied to an equation,

and X (Π) (Π is an equation such as c = a × b) indicates that Π holds for every clock cycle in a

synchronous circuit. Note here that, for equations Π0 and Π1, (X (Π0) ∧ X (Π1)) → X (Π0∧Π1),

which expresses that the identical clock is applied to two blocks with respective functions Π0 and

56 3 Formal Design Methodology of Cryptographic Hardware

Π1 in a circuit. The operator N is applied to a variable. Nυ denotes the value of a variable υ

after one clock cycle for the reference (e.g., initial) cycle. Here, υ and Nυ basically represent

the identical variable, but have different modal (i.e., clock cycles). In addition, N can be applied

repeatedly to one variable. For example, N (Nυ) denotes the value of a variable υ after two clock

cycles. To represent delays of ϑ clock cycles (where ϑ is a natural number), we define N ϑ as

follows:

N ϑυ =

N (N ϑ−1υ) if ϑ ≥ 2

Nυ if ϑ = 1
. (3.27)

Thus, N ϑυ denotes the value of υ after ϑ clock cycles. Note that, in this representation, υ without

N is considered as N 0υ and represents the value of υ at the reference clock cycle.

We then describe pipelined circuits using the above modal operators. We first define the pipeline

register. A pipeline register has the functionality which outputs the input of the previous clock

cycle. In addition, the functionality holds for every clock cycle. Hence, the functional assertion

of pipeline register is represented by

X (Nυout = υin) , (3.28)

where υin and υout denote the input and output of pipeline register, respectively. Let nreg be a

node for pipeline register. Since standard cell libraries usually have cells for register and delay

element, nreg has no internal structure and is given as follows:

nreg = ({X (Nυout = υin)}, nil). (3.29)

Similarly, we can also represent other functional delay elements and registers (e.g., scan flip-flops)

using X and N .

We can represent pipelined circuit using nreg . For example, Fig. 3.7 shows a pipeline GF (22)

multiplier at (a) top- and (b) second-level of abstraction. Table 3.4 shows nodes, GF, and GF

variables in Fig. 3.7. The basic structure of the multiplier is the same as one in Fig. 3.3 excluding

pipeline registers inserted at boundary between PPG and ACC. The functional assertion of the

highest-level node is given by X (N c = a × b), which expresses that the product of a and b is

computed one clock cycle after the input, and this function holds for every clock cycle. Note that

we omit the internal structures of PPG and ACC because they are given in the similar manner to

ones in Fig. 3.3.

Thus, we can describe any kind of GF arithmetic circuits based on pipeline. However, since

the above representation includes the modal operators of LTL, the following formal verification

cannot be applied to the representation. Therefore, we transform the LTL-based representation

3.3 Proposed Method 57

0

a b

c

(Pipelined-Multiplier)

(a)

2

1

4 3

1

a b

c

w
in0

w
out0

w
in1

w
out1

ACC

(b)

Fig. 3.7 GF-ACG for pipelined GF (22) multiplier: (a) top- and (b) second-level of

abstraction.

Table 3.4 Nodes, GF, and GF variables in Fig. 3.7

Nodes

[Pipelined-Multiplier] n0 = ({X (N c = a× b)}, G1)

[PPG] n1 = ({X (win0 + win1 = x× y)}, G2)

[GFA] n2 = ({X (c = wout0 + wout1)}, G3)

[Reg0] n3 = ({X (Nwout0 = win0)}, nil)
[Reg0] n4 = ({X (Nwout10 = win1)}, nil)

GFs

GF (22) = (
(
β1, β0

)
, ({0, 1}, {0, 1}) , β2 + β + 1)

GF (2) = (
(
β0

)
, ({0, 1}) , nil)

GF variables

x, y, z = (GF (22), (1, 0))

wi, ri = (GF (22), (1, 0)), (0 ≤ i ≤ 1)

to GF equations which represent the identical functionality without modal operators. For the

transformation, we introduce time (i.e., clock cycle) indices.

Let υt be the value of υ in the tth clock cycle (t is an element of N). The formula X (Π) is

equal to ∀t(Π) because X indicates “for all clock cycles.” By contrast, for the t0th clock cycle,

Nυ(t0) is equal to υ(t0+1) because υ(t0+1) indicates the value after one clock cycle. It is clear

that N ϑυ(t0) is equal to υ(t0+ϑ). Thus, we can describe any LTL-based representation without

temporal operators X and N . The transformation can be performed in a systematic manner. Note

58 3 Formal Design Methodology of Cryptographic Hardware

that the GF equations after transformation should be generated through LTL-based representation

in order to express data dependency between different clock cycles.

Then, we describe the formal verification of Pipelined-Multiplier in Fig. 3.7. The functional

assertion of Pipelined-Multiplier is transformed into

∀t(c(t+1) = a(t) × b(t)), (3.30)

and substitute a reference clock cycle t0 into the bound variable t as follows:

c(t0+1) = a(t0) × b(t0), (3.31)

which is the GF equation which should be derived from its internal structure. Note that, in this

case, there is no constraint about the free variable t0. On the other hand, the functional assertions

in its internal structure are composed of ∀t(w(t)
in0+w

(t)
in1 = a(t)× b(t)), ∀t(c(t) = w

(t)
out0+w

(t)
out1),

∀t(w(t+1)
out0 = win0), ∀t(w(t)

out1 = win1). Since we consider only synchronous circuits, all blocks

in the circuit should have the reference (i.e., initial) clock cycle. Since ∀t(Π0) ∧ ∀t(Π1) →
∀t(Π0 ∧Π1), the simultaneous equations representing internal structure is represented by

w
(t)
in0 + w

(t)
in1 = a(t) × b(t)

w
(t+1)
out0 = w

(t)
in0

w
(t+1)
out1 = w

(t)
in1

c(t+1) = w
(t+1)
out0 + w

(t+1)
out1

, (3.32)

for all t. Therefore, we verify the function of Pipelined-Multiplier by checking whether Eq. 3.31

is satisfied if Eq. 3.33 holds for all t.

Let ϑmax be the maximum value of exponents of N in Eq. 3.31. Here, ϑmax represents the

number of pipeline stages, that is, the number of clock cycles required for the computation of

Pipelined-Multiplier. Since simultaneous equations derived by substituting t0 into t in Eq. 3.33

represent the circuit function in t0th clock cycle, simultaneous equations derived by substituting

t0, t0 + 1, . . . , t0 + ϑmax into t in Eq. 3.33 represent all functions required for the computation.

In the case of Eq. 3.31, because ϑmax = 1, we can check whether Eq. 3.31 can be derived from

w
(t0)
in0 + w

(t0)
in1 = a(t0) × b(t0)

w
(t0+1)
out0 = w

(t0)
in0

w
(t0+1)
out1 = w

(t0)
in1

c(t0+1) = w
(t0+1)
out0 + w

(t0+1)
out1

w
(t0+1)
in0 + w

(t0+1)
in1 = a(t0+1) × b(t0+1)

w
(t0+2)
out0 = w

(t0+1)
in0

w
(t0+2)
out1 = w

(t0+1)
in1

c(t0+2) = w
(t0+2)
out0 + w

(t0+2)
out1

, (3.33)

3.3 Proposed Method 59

in order to verify the function of Pipelined-Multiplier. Because there is no longer temporal oper-

ators nor quantifier (i.e., ∀), we can perform formula evaluation based on polynomial reduction

by GB (or other formula evaluation methods represented in the following section). While we

described only the case where ϑmax = 1, we can also verify any kind of GF arithmetic circuit

with ϑmax pipelined stage by substituting t0, t0 +1, . . . , t0 + ϑmax into t. On the other hand, the

number of variables in the formula evaluation increases linearly to the number of pipeline stages

(i.e., ϑmax), and ϑmax would have an impact on verification time. Therefore, we confirm the ef-

fectiveness of proposed method through experimental verification of DPA-resistant cryptographic

hardware utilizing pipeline.

In the above verification, the circuit function and input/output variables are fixed and initial-

ization is not required, which indicates that no constraint on the free variable t0. Therefore, the

functional assertion of pipelined circuit (e.g., Eq. 3.31) holds for all t0 in accordance with the ∀
introduction rule. On the other hand, if the circuit requires initialization or input/output variables

change in clock cycles, there is constraints on t0. To verify such circuits (e.g., multiprecision mul-

tipliers), methods for representing operand-scheduling and initial condition would be required.

3.3.2 Proposed Formal Verification

This subsection presents new formal verification method of GF-ACG. The verification of GF-

ACG is performed by checking equivalence between hierarchies. So far, a formula evaluation

method based on polynomial reduction by GB (i.e., Algorithms 3.2 and 3.3) have been used for

the equivalence checking. However, the method has difficulties in verifying circuits with higher-

degree function (e.g., AES decryption hardware) and those with logic-level optimization (e.g.,

masked AES hardware). To address these issues, we first present two formula evaluation methods.

First, we present a method based ND for the first order predicate logic, which can rapidly verify

circuits of higher-degree functions. We then present a method combining PPRM expansion and

GB-based evaluation, which can be useful for verifying logic-level optimized circuits. Finally, we

propose new verification algorithm which combines three formula evaluation method for fast and

complete verification.

ND-based evaluation method
A major advantage of GF-ACG is that we can describe sophisticated datapaths, such as those

found in many cryptographic hardware. However, they sometimes include high-level nodes with

higher-degree arithmetic functions (e.g., exponentiation of polynomials). GB-based verification

has difficulty handling such functions, as mentioned above. On the other hand, the functional

assertion of such nodes is often given as a simple equation, substituting input variables for internal

60 3 Formal Design Methodology of Cryptographic Hardware

P[τ
1
/var]

τ0=τ1P[τ
0
/var]

τ =τ

(a) (b)

Fig. 3.8 Proof figures for inference rules of proposed method: (a) axiom of equal sign

and (b) rule of equal sign.

structure (function). This is because many higher-level functions of cryptography, which consist

of several sub-functions, are implemented by simple serial and/or parallel combinations of sub-

functions. The correctness of such substitution can be verified deductively without algebraic

manipulation. In other words, we use only substitution to verify whether the connection of the

internal nodes is valid for the function.

To verify nodes whose functional assertions are efficiently given by substitutions alone, we

introduce a natural deduction technique for first-order predicate logic with equal sign [121]. Ac-

cordingly, we treat the equations (i.e., functional assertions and simultaneous equations of internal

structure) as symbol strings in order to apply the inference rules of natural deduction, which de-

rives an equation from other equations. In predicate logic, if formula Π can be derived from a set

of formulae T by applying inference rules a finite number of times, it can be said “Π is provable

from T .” This means that A is correct if all of the elements of T are correct. Using the proof

method, we solve simultaneous algebraic equations of mathematical substitutions by natural de-

duction. In general, we generate a proof figure to give the natural deduction proof. The proof

figure has a tree structure consisting of formulae, and shows that the formula at the bottom (i.e.,

the conclusion) is provable from the formulae at the top (i.e., the premises). We apply inference

rules repeatedly to the formulae from the bottom up in order to generate such a proof figure. The

inference rules themselves are given as a proof figure. Figure 3.8 shows proof figures for the two

inference rules of natural deduction used in the proposed method. The set of rules are equivalent

to equality axioms that give the attributes of the general equal sign. Figure 3.8(a) shows one infer-

ence rule, that τ = τ for any term τ is true without any premise or/and any proof. Figure 3.8(b)

shows the other inference rule, which defines mathematical substitution, where P [τ0/var] and

P [τ1/var] indicate the formulae P where every variable var is replaced by term τ0 and term τ1,

respectively. The rule illustrated in Fig. 2(b) says that an equation P [τ1/var] is provable from two

equations, P [τ0/var] and τ0 = τ1. The natural deduction system with these two rules guarantees

that the conclusion at the bottom of the proof figure is true if all of the premises are true.

The new ND-based method treats a functional assertion (an equation) and internal structure

3.3 Proposed Method 61

n0

({c = gζ'(f0(x), f1(x), ..., fκ -1(x)) | 0 ≤ ζ'≤ κ -1}, G0)

c0

aκ -1a1a0

c1 cκ -11

0

1
2ζ'

(a)

G0

a0

n1

({wζ = fζ (a) | 0 ≤ ζ ≤ κ -1}, G1)

n2

({cζ' = gζ' (w0, w1, ..., wκ -1) | 0 ≤ ζ' ≤ κ -1}, G2)

c0

a1 aκ -1

c1 cκ -1

w1w0 wκ -1

0

1

12

2

2

(b)

Fig. 3.9 Example of GF-ACG for ND-based method: (a) top-level and (b) second-level

description.

(i.e., simultaneous equations) as a “conclusion” and “premises” in the proof figure, respectively.

When we successfully generate a proof figure that has the functional assertion at the bottom and

consists of inference rules and/or premises at the higher steps, we can say that the node function

is correctly derived from the internal structure.

Note here that the new method exploits arithmetic logic and essentially differs from the existing

verification methods based on DDs. Our new method describes predicates (i.e., GF equations) by

word-level variables whose domain consists of elements of GF and gives a proof by the applica-

62 3 Formal Design Methodology of Cryptographic Hardware

cζ' = gζ'(f0(a), f1(a), …, fκ -1(a))

cζ' = gζ'(f0(a), f1(a), …, wκ -1)

w0 = f0(a)

cζ' = cζ'

wκ -1= fκ -1(a)

cζ' = gζ'(f0(a), w1, …, wκ -1)

cζ' = gζ'(w0, w1, …, wκ -1)

w1 = f1(a)

cζ' = gζ'(w0, w1, …, wκ -1)2

2

2

2 2 2

2

Fig. 3.10 Proof figure for verification of n0 in Fig. 3.9.

tion of predicates (i.e., inference rules), while DD-based methods describe a circuit specification

by using logic variables and quantifiers ∀ and ∃ and check the equivalence between target and

reference circuits. Thus, the new method is easily applied to GF-ACGs.

Figure 3.9 shows an example of GF-ACG which is suitable for the new verification method.

Let n0 in Fig. 3.9(a) be a node that has κ0 inputs and κ1 outputs. The functional assertion is given

by

cζ′ = gζ′ (f0(a), f1(a), . . . , fκ2−1(a)) , 0 ≤ ζ ′ ≤ κ1 − 1, (3.34)

where x represents κ0 variables a0, a1, . . . , aκ0−1, and f0, f1, . . . , fκ2−1 represent functions of

κ2 and g0, g1, . . . , gκ1−1 represent functions of κ1 variables, respectively. In addition, let n1, n2

in Fig. 3.9(b) be nodes of the internal structure of n0 with functional assertions

wζ = fζ (a) , 0 ≤ ζ ≤ κ2 − 1, (3.35)

cζ′ = gζ′(w0, w1, . . . , wκ2−1), 0 ≤ ζ ′ ≤ κ1 − 1, (3.36)

respectively. Figure 3.10 shows a proof figure to verify the functional assertion of n0, which is

generated by the verification method based on natural deduction. We generate such proof figures

for all ζ ′ (0 ≤ ζ ′ ≤ q − 1). The double line in Fig. 3.10 represents the application of the

same inference rules more than once. Such a proof figure is certainly generated if the function is

correct and the simultaneous algebraic equations are given as mathematical substitutions. Fig. 3.9

illustrates an example where the internal structure is composed of two nodes connected in series,

but the verification method can be applied to any internal structure if the simultaneous equations

are given as mathematical substitutions.

Algorithm 3.4 shows the proposed ND-based method, where the node given by (F , G) is the

input and the verification result res ∈ {true, false} is the output. Lines 3–5 obtain simultaneous

3.3 Proposed Method 63

Algorithm 3.4 Formula evaluation based on ND
Input: Node n = (F , Gin)

Output: Formula evaluation result res ∈ {true, false}
1: function ND-BASEDEVALUATION(n)

2: set S ← ∅; Bool res← true;

3: for all n = (F ′, G′
in) ∈N ′(∈ Gin) do

4: S ← S ∪ F ′;

5: end for
6: list L← SortEquationsByLength(S);

7: for all f ∈ F do
8: str c← f ; int ζ ← 0; list L′ ← L;

9: while ζ < length(L′) do
10: if IsSubstitutable(S,L′[i]) = true then
11: c← Substitution(c, L′[i]);

12: delete L′[i]; ζ ← 0;

13: else
14: ζ ← ζ + 1;

15: end if
16: end while
17: res← res& IsAxiom(S);

18: end for
19: return res;

20: end function

equations (i.e., functional assertions) that forms the internal structure G as well as Algorithm 3.2.

The function “SortEquationsByLength” in Line 6 sorts the obtained equations by the length of

rhs in descending order to perform the following substitutions uniquely. Using the sorted list,

we then apply the inference rule in Fig. 3.8(b) repeatedly to each equation in F . The function

“IsSubstitutable” in Line 10 examines whether the ζth element of L can be substituted for any term

in c. If it is possible, the function “Substitution” at line 11 performs mathematical substitution by

using the rule of equal sign, where the output c, the inputs c, and L′[i] correspond to P [τ0/var],

P [τ1/var], and τ0 = τ1 in Fig. 3.8(b), respectively. After the substitution, the equation used

in “Substitution” is deleted from list L′ since an equation is never used again to give proof of

an equation and the value of ζ is reset to examine the substituted equation again from the first

equation in L′. After all substitutions, the function “IsAxiom” in Line 17 examines whether the

obtained equation is the same as axiom (τ = τ). Finally, we return true if and only if all the

equations in F are transformed to the axiom.

The verification time of this algorithm is basically proportional to the number of performed

substitution operations, that is, the number of equations that comprise the functional assertion and

the internal edges in the internal structure Note that each substitution operation is performed by

64 3 Formal Design Methodology of Cryptographic Hardware

G0

G1

C

n1

(κ -adder)

n2

(GF(28)
inversion)

n0

(Accumulator

and inversion)

c

aκ -1

(a) (b)

aκ -2 a0 aκ -1 aκ -2 a0

w

0 0

0

0 0

Fig. 3.11 GF-ACG for circuit connecting κ0-input adder and inversion in serial.

a symbolic computation. Therefore, the verification method is efficient when the GF-ACG has a

higher-degree function given by substitutions.

The algorithm stops when “IsSubstitutable(S,L′[i]) = false” for every equation. The termi-

nation condition of this algorithm is that the internal structure (i.e., GF-ACG) does not include

directed cycle graphs, that is, substitutions are not repeated more than once. This property is

also implemented by delete L′[i] on Line 8. The “false” suggests that the number of equations

obtained from the internal structure is finite. In addition, Algorithm 3.4 simply consists of sub-

stitution operations to examine a proof figure. The correctness of Algorithm 3.4 is given from

the proven soundness of the natural deduction system [121], which means that the conclusion

(i.e., functional assertion) is correct if the premises (i.e., internal structure) are correct in the proof

figure.

The above algorithm returns false if the node is wrong or the proof must consider arithmetic

rules (e.g., addition and multiplication) because it does not exploit arithmetic rules and other

inference rules of natural deduction (e.g., rules about ∨,∧ and ⊃). In other words, the algorithm

sometimes returns false even if the circuit is correct when the function is not derived deductively.

Therefore, it is better to apply the ND-based method only to nodes derived deductively and those

that would required to take an enormous amount of time to verify by the GB-based method.

To evaluate the efficiency of the ND-based method, we show the design and verification of the

GF (28) circuits consisting of an n-input adder and an inversion which are sometimes used in

ECC decoders and cryptographic processors.

3.3 Proposed Method 65

Table 3.5 Nodes, GF, and GF variables in Fig. 3.11

Nodes

[Accumulator and inversion]

n0 = ({c =
(∑κ0−1

ζ=0 aζ

)254

}, G1)

[Accumulator] n1 = ({w =
∑κ0−1

ζ=0 ai}, G2)

[Inversion] n2 = ({c = w254}, G3)

GF

GF (28) = (
(
β7, β6, . . . , β0

)
, ({0, 1}, {0, 1}, . . . , {0, 1}) , β8 + β4 + β3 + β2 + 1)

GF variables

aζ = (GF (28), (7, 0)), 0 ≤ ζ ≤ κ0 − 1

c, w = (GF (28), (7, 0))

Table 3.6 Verification time of n0 in Fig. 3.11 (s)

of variables κ0 2 3 4 5 6 7 8

Logic simulation 0.56 30.16 10,032.98 TO TO TO TO

GB-based 0.33 0.49 130.84 TO TO TO TO

ND-based 0.37 0.32 0.28 0.27 0.35 0.33 0.32

Figure 3.11 shows a GF-ACG for the target circuit and Table 3.5 shows the nodes, GFs, and

GF variables in Fig. 3.11. The node “Accumulator and inversion” in Fig. 3.11(a) is the top-level

node. Its functional assertion is given by

b =

κ0−1∑
ζ=0

aζ

254

. (3.37)

This function is higher-degree and has a large number of terms in the expanded form because it

performs an exponentiation of a multivariate polynomial. Fig. 3.11(b) shows the internal structure

of the “Accumulator and inversion” node, which consists of two nodes: “κ0-adder” and “GF (28)

inversion.” The κ0-adder node is described by 2-input adders (i.e., bit-parallel XOR) and GF (28)

inversion is described by an addition-chain exponentiation to compute c = w254. (We describe

the details of the inversion circuit in the following parts of this dissertation.)

The verification time of such circuits for 2 ≤ κ0 ≤ 8 was measured by open-source computer

algebra system Risa/Asir on a Linux PC with Intel Xeon E5450 3.00 GHz processor and 32 GB

RAM. Table 3.6 shows the results using the conventional RTL simulation, GB-based method, and

ND-based method (the proposed method) where “TO” indicates that the verification did not finish

66 3 Formal Design Methodology of Cryptographic Hardware

Table 3.7 Conversion rules to obtain PPRM form

Before After

∀((var1 = exp1) & f(var1)) ∀(f(exp1))
exp1 = exp2 ¬(exp1 ⊕ exp2)

exp1 → exp2 (¬exp1) | exp2
exp1 | exp2 ¬((¬exp1) & (¬exp2))
¬exp1 exp1 ⊕ 1

(exp1 ⊕ exp2) & exp3 (exp1 & exp3)

⊕(exp2 & exp3)

exp1 & exp1 exp1

exp1 ⊕ exp1 0

exp1 ⊕ 0 exp1

0⊕ 1 1

in a day (i.e., 8.64×104 sec). Note that Table 3.6 shows the verification time only for the top-level

node. The RTL simulation could not verify the circuits completely if the number of operands was

more than five. This is because the verification requires 240 test patterns when κ0 = 5. The GB-

based method also failed to verify the circuits when κ0 ≥ 5 because of the memory limitations

caused by the large number of terms. More precisely, the number of terms becomes
(
254+κ0−1

κ0−1
)

(≈ 262 in the case of κ0 = 5). On the other hand, the ND-based method successfully verified

such circuits in a fixed time independently of κ0 because the verification time only depends on

the number of equations representing the internal structure. Thus, we confirmed that the proposed

method is efficient in verifying GF arithmetic circuits of high degrees.

PPRM-based evaluation method
A PPRM-based verification method was first introduced in [95], demonstrating very fast cor-

rectness proof of combinational circuits of AES components (S-box, MixColumns, etc.). This

method is applicable to GF (2)-level verification, and cannot handle GF (2m)-level verification.

PPRM stands for Positive Polarity Reed-Muller (form) and is a form of Boolean logic formulae,

where they are represented by single stage AND-XOR expressions with no negation [126]. Any

Boolean logic formulae can be converted to PPRM form by applying transformation rules shown

in Tab. 3.7. Because PPRM is a canonical form [126], any logic formulae will be converted to the

identical PPRM formula if and only if their corresponding truth tables are the same.

This verification method consists of the following steps: (Step 1) Describe predicates of both

combinational circuit specification, called reference, and its implementation. A predicate Πcircuit

3.3 Proposed Method 67

represents the input-output relation of a circuit and are in the form of

Πcircuit(in0, . . . , inκin−1, out0, . . . , outκout−1) ≡

out0 = f0(in0, . . . , inκin−1) & . . .& outκout−1 = fκout(in0, · · · , inκin), (3.38)

where κin and κout denote the number of input and output variables, respectively. Variables inρ

and outϱ (0 ≤ ρ ≤ κin and 0 ≤ ϱ ≤ κout) represent the circuit’s primary input and output,

respectively. Boolean function f
(b)
ϱ represents the circuit function.

(Step 2) Describe the following verification condition

∀variables {Pref (in
(r)
0 , . . . , in

(r)
κin−1, out

(r)
0 , . . . , out

(r)
κout−1)

& Pimpl(in
(m)
1 , . . . , in

(m)
κ′
in−1

, out
(m)
0 , . . . , out

(m)
κout−1)

& in
(r)
0 = in

(m)
0 & . . .& in

(r)
κin−1 = in

(m)
κin−1

& out
(r)
0 = out

(m)
0 & · · ·& out

(r)
κout−1 = out

(m)
κout−1 }, (3.39)

where κ′in is the number of primary inputs of the target circuit, and Πref and Πimpl denote the

predicates corresponding to reference and target circuits, respectively. Variables in(r)
ρ′ (0 ≤ ρ′ ≤

κ′in−1)and in
(m)
ϱ denote the primary inputs of reference and target circuit, respectively. Variables

out
(r)
ρ and out

(m)
ϱ denote the primary outputs of reference and target circuit, respectively. The

meaning of this formula is that the values of all primary outputs in the implementation should

equal to those in the reference, for any values of primary inputs. Please note that the number of

primary inputs in the implementation can be larger than that in the reference (κ′in ≥ κin) *4.

(Step 3) Convert the body of the verification condition to PPRM form, in order to determine the

truth. The implementation circuit is equivalent to the reference, namely. it is correct, if and only

if a constant 1 is obtained as a result*5. The Steps 2 and 3 can be mechanized.

Needless to say, this verification method is meaningful only when the “correct” reference cir-

cuits (i.e., golden model) can be constructed easily and the implementation circuits are mostly

different from their reference because of various optimizations. For example, in the case of AES,

this condition is applicable and a practical method of making reference AES components was in-

troduced in [95]. Making correct GF adder and multiplier is easy because the adder is just a set of

parallel XORs and the multiplier has a simple regular structure if implemented as Mastrovito or

full-tree multiplier. Once correct GF adder and multiplier are built, correct S-box, MixColumns

*4 In this case, the primary inputs in(m)
κin

through in
(m)

κ′
in

should have no effect to primary outputs.
*5 Determining the truth of this verification condition enables to check all PPRM representations of outputs simulta-

neously, while it is described in the above as if the check of each output is done separately.

68 3 Formal Design Methodology of Cryptographic Hardware

and other AES components can be built up easily in a bottom-up manner. For instance, a cor-

rect GF (28) inversion circuit on can be made by cascading multiple multipliers and squarers, by

computing a254, where a is input of the inverter. Although these straightforward circuits cannot

be used in the practical AES implementations, because of too large size and too long critical path

delay, it is sufficient as references. The real AES designs use much more optimized and/or masked

components and the design tasks are difficult and complicated.

While the judgment of the truth of verification condition in step 3 is not always impossible by

conventional logic manipulation methods such as BDD, Free binary DD (FDD) and conversions

to the other canonical forms [94], this PPRM method is not only significantly faster [95], but also

applicable to much larger circuits with large number of input variables*6.

In the following, a new PPRM-based formula evaluation method is proposed. Algorithm 3.5 is

used for verifying GF (2)-level circuit very fast using reference circuit generated the GB-based

method.

Given a node over GF (2), we first translate it into the corresponding logical expressions in

the PPRM expression, then apply the PPRM-based evaluation to the PPRM expression with the

equivalent reference expression stored in the library (denoted by Lib). If the given node is a

fundamental arithmetic circuit such as adders and multipliers, the reference can be automatically

retrieved from the library. If there is no adequate reference in the library, we (i.e., users) need to

prepare a GF-ACG description in advance for the reference. The reference description is verified

by the GB-based method in the reference generation step. The verified reference is transformed

to logical expressions, and is then used in the PPRM-based evaluation.

In summary, the major new features of the proposed method are (1) to switch the verification

method depending on the GF (i.e., GF (2m) or GF (2)), and (2) the semi-automatic reference

generation for the PPRM-based method. The details of these features will be explained in the fol-

lowing. The basic concept of such verification method combining GB- and PPRM-based methods

was shown in [111]. In this dissertation, we show in-depth quantitative and experimental evalua-

tion of verification time of tower-field arithmetic circuits, how to describe correctness criteria of

tower-field and masked circuits for the verification, and a systematic design flow exploiting the

verification method in accordance with the results, while the previous work showed only verifica-

tion of several circuits and application to a masked AES hardware.

*6 Conventional logic manipulation methods are unsuitable for handling GF arithmetic circuits, because the GF

circuits mostly consist of XOR gates (addition on GF (2)) and AND gates (multiplication on GF (2)). The use

of many XOR gates often causes exponential growth of BDD and/or Sum-Of-Products/Products-Of-Sum logic

formula size. In addition, it is difficult to apply SAT (SATisfiability) solvers to GF arithmetic circuits. The previous

result in [81] showed that any SAT solver did not succeed in verifying multipliers over GF (216), which means

that SAT solvers have difficulty in handling practical GF arithmetic circuits with more-than 32-bit operands.

3.3 Proposed Method 69

Algorithm 3.5 Formula evaluation based on PPRM expansion with reference library or generation

by GB-based method
Input: GF (2)-level node n = (F , Gin), Reference library Lib
Output: Formula evaluation result res ∈ {true, false}
1: function PPRM-BASEDEVALUATION(n)

2: list Υ← LogicalExp(n);

3: if Logical expression for function F in Lib then
4: list ref ← GetReference(Lib, F);

5: Bool res← PPRM-Expansion(Υ, ref);

6: else
7: list Gref ← GF-ACG-synthesis(F);

8: node nref ← Top-levelNodeOf(Gref);

9: if GB-BasedEvaluation(nref) then
10: list ref ← LogicalExp(nref);

11: Bool res← PPRM-Expansion(Υ, ref);

12: else
13: Bool res← false;

14: end if
15: end if
16: return res;

17: end function

In the following, we describe design of tower-field circuits which is frequently used in practical

cryptographic hardware, especially based on GF (2m) arithmetic [7, 101, 123, 128]. In general,

arithmetic circuits over tower fields are much smaller than those over standard extension fields,

and many side channel countermeasures are based on this tower field technique. Tower-field cir-

cuits are highly optimized in logic-level, and GB-based evaluation sometimes requires huge-time

to verify tower-field circuits. Thus, tower-field circuits can be main applications and examples of

PPRM-based evaluation.

Figure 3.12 shows the overview of the κin-input κout-output combinational circuits based on

this technique. Main computation is performed on a tower field, and an isomorphic mapping δ

and its inverse mapping δ−1 are attached to the main computation. These functions are used to

convert the data from/to the original extension field.

One weakness of the GB-based evaluation is that it is not suitable for component verification on

GF (2)-level. We have conducted an experiment of component verification, by using Mastrovito

and tower-field multipliers as design examples described in GF-ACG. The experimental setup is

the same as that in Sect. 3.2.3.

Table 3.8 shows the description and verification results of the Mastrovito and tower-field mul-

tipliers, where “# vars.” and “# eqs.” in the columns “Highest-level” indicate the number of

70 3 Formal Design Methodology of Cryptographic Hardware

Arithmetic circuit

over tower field

δ δ
−1

Extension

field

Tower field Extension

field

δ
−1

δ
−1

δ

δ

in0

in1

inn-1

out0

out1

outm-1

Isomorphism/

Inv-isomorphism

Fig. 3.12 Typical circuit structure of tower-field operation.

Table 3.8 Description and verification of GF (2m) multipliers

m

Mastrovito multipliers Tower field multipliers

GB veri. Highest level GB veri. Highest level

time (s) # vars. # eqs. time (s) # vars. # eqs.

4 2.18 7 2 1.53 36 49

8 2.85 11 2 55.30 72 97

16 4.34 19 2 TO 144 193

32 7.98 35 2 TO 288 381

64 15.66 67 2 TO 576 769

128 39.21 131 2 TO 1,152 1,537

variables and equations in verifying the most time-consuming highest-level node, respectively.

The GB-based verification time (i.e. GB veri. time) for Mastrovito multipliers basically increased

by the square of the operand bit length m since the number of nodes in a GF-ACG was given by

O(m2). Each node was verified in less than 1 second thanks to the well-hierarchical description.

On the other hand, the GB-based verification times for tower field multiplier ran out from the

16-bit one due to the flattened description of isomorphic mappings*7.

It is known that the numbers of variables and equations have a significant impact on the compu-

*7 There is a difference between the verification results of this dissertation and the previous paper [64]. This is

because the verification time in this dissertation includes isomorphic mappings from/to extension fields while that

in [64] does not.

3.3 Proposed Method 71

Table 3.9 Verification time for Mastrovito multipliers over GF (2m) (s)

m
PPRM veri. time Veri. time in [81] GB veri. time

Bug-free Bugs Bug-free Bugs for ref. circuit

16 0.02 0.02 0.04 0.04 5.49

32 0.06 0.06 1.41 1.43 9.36

64 0.34 0.33 112.13 114.86 18.30

128 2.29 2.33 3,054.00 3,061.00 44.05

160 4.27 4.32 9,361.00 9,384.00 66.24

163 4.52 4.50 16,170.00 16,368.00 67.79

233 7.52 7.44 No data No data 138.43

283 22.36 22.66 No data No data 217.08

tational cost of Gröbner basis in general. According to [8], the worst-case complexity of Gröbner-

basis computation is at least O(22
κ/10

), that is, the double exponential of number of variables κ.

In addition, it is shown that the arithmetic complexity bound in the cases of zero-dimensional ideal

is degO(κ2) and that of the homogenized system having finitely many solutions is ℓO(1)degO(k),

where deg is the maximum degree of equations and ℓ is the number of equations. Our verification

is not always such cases, but we require at worst the above computational cost. The numbers of

variables and equations for verifying tower-field circuits are respectively given by κ = 3κiom

and ℓ = 4κiom + 1, where κio denotes the total number of inputs and outputs. In the case of

multipliers, the numbers of variables and equations are κ = 9m and ℓ = 12m + 1 while those

of Mastrovito multipliers are at most κ = m + 3 and ℓ = 2, respectively. As a result, we had

a difficulty in verifying the highest-level node in larger tower-field multipliers by the GB-based

evaluation.

As another preliminary experiment, Tab. 3.9 shows the comparison of PPRM-based evaluation

and the previous work [81] by verifying Mastrovito multipliers. In PPRM-based evaluation, the

implementation and reference in GF-ACG are translated into those in conventional Boolean ex-

pressions. In addition, Tab. 3.9 also shows the GB-based evaluation time of the corresponding

full-tree multiplier [63], which is simply composed of a partial product generator and an accumu-

lator, and therefore is employed for references. Note here that the circuit architectures of full-tree

multiplier is different from that of Mastrovito multiplier. Even when the architectures of the target

and reference multiplier are different, the PPRM-based evaluation can rapidly verify Mastrovito

multipliers using the reference multipliers. This means that the PPRM-based evaluation can effi-

ciently verify tower-field multipliers using the corresponding extension field multiplier generated

by means of GF-ACG. Thus, we can confirm the efficiency of the combination of GB- and PPRM-

based evaluation methods. We have found also that the PPRM-based evaluation was much faster

72 3 Formal Design Methodology of Cryptographic Hardware

Algorithm 3.6 Transformation from GF-ACG to logical expression
Input: GF-ACG G = (N ,E)

Output: Logical expression Λ

1: function LOGICALEXP(G)

2: Λ′ ← ∅;
3: for all (F , Gin) ∈N do
4: Λ′ ← Λ′∪ LogicalExp(Gin);

5: end for
6: Λ← Compression(Λ′,E);

7: return Λ;

8: end function

than the GB-based evaluation and was applicable to larger designs. In addition, the PPRM-based

evaluation was significantly faster than the previous verification report [81] and was able to verify

multipliers over larger fields such as GF (2233) and GF (2283).

Through the above preliminary experiments, we have decided to use the PPRM-based for

GF (2)-level component verification, instead of the GB-based method. In order to do this, we

constructed a translation algorithm from a GF-ACG to the corresponding logical expressions. Al-

gorithm 4.1 is necessary to verify a GF-ACG description of a component implementation. In this

algorithm, when a GF-ACG G is given, we first extract a set of logic expressions from G recur-

sively. Then, the set of logic expressions is minimized by compression operations according to

the connections of internal edges.

Regarding to the reference circuits which are required in the PPRM-based method, these are

constructed in advance, as already described before. In many cases, such as inversion circuits, we

can easily generate and verify reference circuits, which are implemented with a simple architecture

(e.g., without tower-field techniques), by the GB-based evaluation method. The PPRM-based

method can efficiently verify practical (or highly-optimized) circuits using such reference circuits.

Thus, the PPRM-based evaluation method is applicable to a wider variety of circuits than either

of the methods solely even if an extra cost generating reference circuits is required.

Note that, since the reference circuits for the PPRM-based evaluation is generated through alge-

braic procedures (i.e., GB-based evaluation), the additional properties of cryptographic hardware

such as validity of tower-field implementation are implicitly verified by the PPRM-based eval-

uation. In addition, because PPRM-based method examines inclusion relation of the reference

and target circuits, it can be used even when the reference and target circuits have different bit

length (e.g., verification of masked implementation) by describing the relation between additional

input/output. We show how to apply the PPRM-based method to an masked implementation [114]

in Section 3.3.5.

3.3 Proposed Method 73

Cryptographic

function

GB-based

method

GF(pm) exponentiation of

multivariate polynomial

GF(pm) exponentiation of

univariate polynomial

GF(pm) multiplication

GF(p) multiplicationGF(pm) addition

GF(p) addition

Bit-level operations

ND-based

method

7

6

5

4

3

2

1

Layer

Higher-level

abstraction

Lower-level

abstraction

Fig. 3.13 Classification of circuit functions.

Proposed formal verification combining three formula evaluation methods
The ND-based method can verify nodes in which the functional assertion can be derived deduc-

tively from their internal structures. The PRRM-based method can verify nodes with logic-level

(i.e., GF (2)-level) optimization if the nodes represent basic components where the reference cir-

cuit is easily prepared (using the GB-based method). On the other hand, the conventional GB-

based method can be applied to any kind of GF arithmetic circuits, and can efficiently verify cir-

cuits with hierarchical structure and lower-degree functions. Therefore, the proposed verification

method combines the above formula evaluation method to verify any kind of GF arithmetic cir-

cuits efficiently. First, we apply the PPRM-based method to GF (2)-level nodes. In addition, we

apply the ND-based method to nodes derived deductively from their internal structures. Finally,

we apply the GB-based method to the rest of nodes in order to perform complete verification.

We then describe how to use the three evaluation methods in a combination. It is clear that the

PPRM-based method should be applied to GF (2)-level nodes. On the other hand, to use GB-

and NB-based methods in a combination, we first divide arithmetic functions into seven layers to

distinguish functions derived deductively. We then apply the ND-based method to functions be-

longing to the top two layers and the GB-based method to the rest. Fig. 3.13 shows the hierarchical

structure of arithmetic functions that is commonly given by GF-ACG. This hierarchy consists of

the Cryptographic function, GF (pm) exponentiation of multivariate polynomials, GF (pm) expo-

nentiation of polynomials with one variable, GF (pm) multiplication, GF (pm) addition, GF (pm)

multiplication, GF (pm) addition, and Bit-level operations from higher to lower levels of abstrac-

tion. In practical circuit design, such hierarchical structure of arithmetic functions are usually

considered in order to provide rational description and to achieve high-performance.

The top layer includes the node for the whole Cryptographic hardware function and the sec-

74 3 Formal Design Methodology of Cryptographic Hardware

ond layer includes the nodes for exponentiation of multivariate polynomials. These functions

are necessarily implemented by simple serial or/and parallel combinations of subfunctions (e.g.,

adders, multipliers, and inversion). Therefore, such functions can be derived deductively and are

suitable for the ND-based method. Note again that the GB-based method has difficulty in veri-

fying functions such as those that belong to the top two layers since these functions usually have

higher degrees. On the other hand, the rest of the functions, which belong to the lower layers, per-

form basic arithmetic operations, and most of them are low-degree functions even though there

are many implementations of such functions. In other words, most of them are not derived de-

ductively. Therefore, these functions should be verified by the GB-based method. Furthermore,

several circuits with GF (2)-level optimization is not classified according to Fig. 3.13. For ex-

ample, although a masked inversion circuit in [114] belongs to the second layer, but it is directly

realized by GF (2)-level (i.e., bit-level) operations. Therefore, all nodes where their internal struc-

tures is given at GF (2)-level should be verified by the PPRM-based method, regardless of their

belonging layer described in Fig. 3.13

In summary, our design method consists of three steps, as follows:

(Step 1) Describe the target circuit in the form of GF-ACG (N ,E).

(Step 2) For each node n given by (F , Gin) ∈ N , determine which verification method should

be applied.

(Step 3) Verify each node by either the GB-, ND-, or PPRM-based method.

In Step 1, it is essential to describe the circuit hierarchically according to Fig. 3.13 to ensure

fast verification.

Algorithm 3.7 shows the entire verification flow used in Steps 2 and 3, which is obtained by

extending Algorithm 3.1 for combining the GB-, ND-, PPRM-based formula evaluation methods.

Given a GF-ACG, the formula evaluation based on either GB-, ND-, or PPRM-based method is

applied to all the nodes having functional assertions and internal structures. In Line 4, for nodes

with internal structures (i.e., G ̸= nil), we recursively apply “NewVerify” to G and verify the node

using either GB-, ND-, or PPRM-based method. On the other hand, for nodes without any internal

structure (i.e., G = nil), “Verify” always returns true since the node represents a logic element

(i.e., a pre-defined gate in a standard cell library). Line 6 checks whether or not the given node is

GF (2)-level. This check can be easily realized by checking whether there are directed edges with

GF (2) variables in its internal structure. If it is true, the PPRM-based method is applied to the

node. Line 8 corresponds to Step 2. “LayerOf” returns the layer level of the function, as shown in

Fig. 3.13. LayerOf can be implemented easily by looking at the form of the function and whether

Gin consists of decomposition/composition nodes. Consequently, each node is verified properly

in Lines 9 or 11. If there are nodes whose functions are fully given as mathematical substitutions

3.4 Applications 75

Algorithm 3.7 Proposed GF-ACG verification
Input: GF-ACG G = (N ,E)

Output: Verification result res ∈ {true, false}
1: function NEWVERIFY(G)

2: Bool res← true;

3: for all (F , Gin) ∈N do
4: if G′ ̸= nil then
5: res← res & VerifyGin;

6: if Gin is GF (2)-level then
7: res← res & PPRM-BasedEvaluation(F , Gin);

8: else if LayerOf(F) ≤ 2 then
9: res← res & ND-BasedEvaluation(F , Gin);

10: else
11: res← res & GB-BasedEvaluation(F , Gin);

12: end if
13: end if
14: end for
15: return res;

16: end function

with higher degrees and large nodes verified by PPRM-based method, we can significantly reduce

the total verification time.

3.4 Applications
3.4.1 GF (2m) parallel multipliers

In order to demonstrate the effectiveness and efficiency of the proposed method, this subsection

shows its applications to design various GF arithmetic circuits and cryptographic hardware. In

this section, we represent GF-ACGs without temporal operators when designing circuit without

pipeline.

First, we describe formal design of full-tree multipliers over PRR-based GF (2m). PRR-based

full-tree multipliers can be designed in the same manner as PB-based ones described in Section

3.2.3. Figure 3.14 shows a PRR-based GF (22) full-tree multiplier with a modular polynomial

P (x) = x3 + 1. Table 3.11 shows nodes, GFs, and GF variables in Fig. 3.14. Since the modular

polynomial is given by a binomial, reduction by P (x) in nodes “SubPPB0,” “SubPPB1,” and

“SubPPB2” in the third-level abstraction (i.e., Fig. 3.14(c)) can be performed by solely bit-wise

permutation without logic gates. Generally, if there are less terms in P (x), the number of logic

gates in SubPPGs decreases, which motivates the usage of redundant GF representations.

Figure 3.15 shows the verification time of PRR-based multipliers for 2 ≤ m ≤ 32. Table 3.12

76 3 Formal Design Methodology of Cryptographic Hardware

b

G8

n22 n21 n20

G5

n13 n12 n11

G4

n10 n9 n8

G6

n16 n15 n14

a

w0w1w2

c

G7

n19 n18 n17

b

G3

G2

a

w0w1w2

c

n6

(GFA0)

n4

(SubPPG1)

n3

(SubPPG0)

n7

(GFA1)

n5

(SubPPG2)

G1

b

n2

(ACC)

n1

(PPG)

a

w0w1w2

cG0

n0

(PRR-based Multiplier)

ba

c

Fig. 3.14 GF-ACG for PRR-based GF (22) full-tree multiplier: (a) top- to (d) lowest-

level of abstraction.

Extension degree m

V
er

if
ic

at
io

n
 t

im
e

(s
)

0 5 10 15 20 25 30
0

2

4

6

8

103

Logic Simulation

Formal Verification

Fig. 3.15 Verification time of PRR-based full-tree multipliers.

3.4 Applications 77

Table 3.10 Nodes, GFs, and GF variables in Fig. 3.14.

Node

[PRR-based Multiplier] n0 = ({c = a× b}, G1)

[PPG] n1 = ({
∑2

j=0 wj = a× b}, G2),
[SubPPG0]
n3 = ({w0 = a× b0}, G4)

[GF(2) Multiplier]
n8 = ({w0,0 = a0 × b0}, nil),
n9 = ({w0,1 = a1 × b0}, nil),
n10 = ({w0,2 = a2 × b0}, nil),

[SubPPG1]
n4 = ({w0 = a× b1}, G5)

[GF(2) Multiplier]
n11 = ({w1,0 = a0 × b1}, nil),
n12 = ({w1,1 = a1 × b1}, nil),
n13 = ({w1,2 = a2 × b1}, nil),

[SubPPG2]
n5 = ({w2 = a× b2}, G6)

[GF(2) Multiplier]
n14 = ({w2,0 = a0 × b2}, nil),
n15 = ({w2,1 = a1 × b2}, nil),
n16 = ({w2,2 = a2 × b2}, nil),

[Accumulator] n2 = ({c =
∑2

j=0 wj}, G3)

[GFA0]
n6 = ({u0 = w0 + w1}, G7)

[GF(2) Adder]
n17 = ({u0,0 = w0,0 + w1,0}, nil)
n18 = ({u0,1 = w0,1 + w1,1}, nil)
n19 = ({u0,2 = w0,2 + w1,2}, nil)

[GFA1]
n7 = ({c = u0 + w2}, G8)

[GF(2) Adder]
n20 = ({c0 = u0,0 + w2,0}, nil)
n21 = ({c1 = u0,1 + w2,1}, nil)
n22 = ({c2 = u0,2 + w2,2}, nil)

GFs

GF(22) = (
(
x2, x1, x0

)
, ({0, 1}, {0, 1}, {0, 1}) , (x2 + x + 1, x + 1))

GF(2) = ((1), ({0, 1}), nil)

GF variables

a, b, c = (GF
(PRR)

(22)
, (2, 0))

w0, w1, w2 = (GF
(PRR)

(22)
, (2, 0))

u0 = (GF
(PRR)

(22)
, (2, 0))

a0, a1, a2, b0, b1, b2, c0, c1, c2 = (GF(2), (0, 0))

w0,0, w0,1, w0,2, w1,0, w1,1, w1,2, w2,0, w2,1, w2,2 = (GF(2), (0, 0))

u0,0, u0,1, u0,2 = (GF(2), (0, 0))

also shows typical multipliers for m = 4, 8, 16, 32, 64, and 128, where verification procedures

are performed using an open-source computer algebra software Risa/Asir on a Linux personal

78 3 Formal Design Methodology of Cryptographic Hardware

Table 3.11 Nodes, GFs, and GF variables in Fig. 3.14.

Node

[PRR-based Multiplier] n0 = ({c = a× b}, G1)

[PPG] n1 = ({
∑2

j=0 wj = a× b}, G2),

[SubPPGj] n3+j = ({wj = a× bj}, G4+j)

[GF(2) Multiplier]

n4+3j+ĵ = ({gj,j+ĵ mod 3 = aĵ × bj}, nil),
[Accumulator] n2 = ({c =

∑2
j=0 wj}, G3)

[GFA0] n6 = ({u0 = w0 + w1}, G7)

[GF(2) Adder]

n17+j = ({u0,j = w0,ĵ + g1,ĵ}, nil)
[GFA1] n7 = ({c = u0 + w0}, G8)

[GF(2) Adder]

n20+j = ({cj = u0,ĵ + w0,ĵ}, nil)

GFs

GF(22) = (
(
x2, x1, x0

)
, ({0, 1}, {0, 1}, {0, 1}) , (x2 + x+ 1, x+ 1))

GF(2) = ((1), ({0, 1}), nil)

GF variables

a, b, c = (GF
(PRR)

(22)
, (2, 0))

w0, w1, w2 = (GF
(PRR)

(22)
, (2, 0))

u0 = (GF
(PRR)

(22)
, (2, 0))

a0, a1, a2, b0, b1, b2, c0, c1, c2 = (GF(2), (0, 0))

w0,0, w0,1, w0,2, w1,0, w1,1, w1,2, w2,0, w2,1, w2,2 = (GF(2), (0, 0))

u0,0, u0,1, u0,2 = (GF(2), (0, 0))

Table 3.12 Verification time of PRR-based GF (2m) full-tree multipliers (s)

m 4 8 16 32 64 128

Logic simulation 0.37 0.41 9,329.98 N/A N/A N/A

This study 1.81 3.53 4.84 10.84 16.54 20.01

computer with an Intel Xeon E5450 3.00GHz processor and 32GB RAM. In order to compare

our results, we also show the verification time of the corresponding Verilog HDL description us-

ing a typical logic simulator (Verilog-XL). We did not verify multipliers other than the GF (216)

multipliers using the logic simulator in this experiment because verification time increases expo-

nentially with an increase in the extension degree m. On the other hand, we completely verified

the GF (2128) multiplier. Thus, we confirmed the validity and efficiency of the proposed method.

Note that other conventional verification methods would not be applicable to PRR-based multipli-

ers because they did not show how to model PRR-based circuits and its don’t-care condition.

3.4 Applications 79

3.4.2 GF (28) inversion circuits

The multiplicative inversion of a (∈ GF (28)) is given by a−1 = a254 because any element of

GF (ω) satisfies aω = a. In cryptographic algorithms, the inversion of 0 is usually defined to be

0. The inversion operation is widely used in cryptographic algorithms such as AES. In particular,

since GF (2m) inversions are known as one of the most useful functions for resistance against

some cryptanalytic techniques [108] such as differential and linear cryptanalyses [15, 88], many

byte-oriented ISO/IEC standard ciphers employ GF (28) inversion. Thus, investigating GF (2m)

inversion circuit implementation is quite valuable from academic and practical viewpoints; and

therefore, various inversion circuits have been proposed because performance in the previously

mentioned applications can be critical [33, 96, 97, 101, 106, 127].

In this paper, we design GF (28) inversion circuits based on various representations including

redundant ones using GF-ACG. The inversion circuits designed in this paper is based on tower-

field arithmetic produced by repeating the field extension, which is denoted by GF ((24)2) or

GF (((22)2)2). The use of tower field is a promising approach to implementing efficient GF (2m)

inversion [66]. Note that there is a one-to-one mapping (i.e., isomorphism) between the elements

of GF (28) and those of the composite fields. The basic idea underlying the composite field

approach is to reduce hardware cost by exploiting smaller arithmetic operations over subfield

GF ((22)2) or GF (24) instead of GF (28). This GF inversion over a composite field is efficiently

implemented in the Itoh-Tsujii Algorithm (ITA) [66]. Figure 3.16 shows the typical datapath of

tower-field inversion circuit based on the ITA. Each component denotes an arithmetic circuit over

a subfield (i.e., GF (24) or GF ((22)2)). See Section 5.2 for details of tower-field inversion.

The tower-field inversion circuits can be designed using GF-ACG. Figure 3.17 shows a GF-

ACG for the inversion circuit combining NB, PRR, and RRB representations at the top two levels

of abstraction, and Tab. 3.13 shows nodes, variables, and GFs in Fig. 3.17. (Note that figures of

GF-ACG for lower-level of abstraction is omitted for the simplicity.) In Tab. 3.13, γ is a primitive

element of the GF (24). Node “GF ((24)2) inversion” in Fig. 3.17(a) is the top-level node, which

consists of five nodes including decomposition and composition nodes. Fig. 3.17(b) shows the

internal structure of “GF ((24)2) inversion.” Here, the inputs (i.e., a1 and a0) are given by an

NB, the intermediate value w0 is given by a PR, and the outputs (i.e. b1 and b0) and w1 are given

by an RRB. Node n1 computes w0 and converts from NB to PRR representation, and its internal

structure is given by a logic circuit. Node n2 performs GF (24) inversion and conversion from

PR to RRB, and its internal structure is also given by a logic circuit. Finally, node n3 performs

multiplication over the RRB by two RRB-based multipliers over GF (24).

Since nodes n0, n1, and n2 are associated with variables of PRR-based GF (24), these nodes

cannot be verified by GF-ACG without the above extension. In this example, the algebraic relation

80 3 Formal Design Methodology of Cryptographic Hardware

Mul.

νSqr.

Inv.a a
-1

µ
2

Mul.

Mul.

h

l

Stage 1 Stage 2 Stage 3

Add.

Add.

Fig. 3.16 Typical datapath of GF (28) composite field inversion.

between x and β0 is given by β0 = x4 + x3 + x2 + 1, which are required to verify n0 and n1

correctly. In addition, since w0 is given by PRR, n1 contains a composition node to PRR while

n2 contains a decomposition node from PRR. There, the LRR of w0 should be correctly derived

from the internal structure of n1, and is required for the complete verification of n2. The LRR of

w0 is given by w0,0 + w0,1 + w0,2 + w0,3 + w0,4 = 0, where w0,j (0 ≤ j ≤ 4) is the jth bit of

w0.

Table 3.14 shows the verification time of GF (28) inversion circuits base on various representa-

tions. Note that GF (28) inversion circuits based on other representation(s) over GF ((24)2) and

GF (((22)2)2) can be designed in the manner similar to the above. We could successfully verify

them in several seconds. The verification time basically depended on the number of nodes (i.e.,

call of GB-, ND-, or PPRM-BasedEvaluation) in each internal structure of n1, n2, and n3, because

each node could be verified in a short time by the GB-based method. For example, Nogamis’ cir-

cuits, which exploited both PB- and NB-based multipliers in a well-hierarchical manner, required

the longest time among them. On the other hand, circuits of this work could be verified in the

shortest time because the circuit was described in a flattened manner (i.e., the internal structures

of n1, n2, and n3 were given by logic circuits), although these nodes can be efficiently verified

even by the GB-based method. To the authors’ best knowledge, this is the first study to verify

inversion circuits utilizing a combination of GF representations (including redundant ones) in a

formal manner.

Table 3.14 also shows the area-time product of the eight GF (28) inversion circuits using Syn-

opsys Design Compiler with a TSMC 65-nm cell library. The result suggests that the inversion

circuit based on a combination of redundant and non-redundant representations (This study (Sec-

tion 5.2)) achieved the highest efficiency, which can be efficiently designed and verified by using

the extended GF-ACG, while the conventional formal methods could not verify it because of

redundant representation. Thus, we can confirm the effectiveness of the proposed GF-ACG sup-

3.4 Applications 81

G0

G1

c

a

n1

n3

n2

n0

(GF((2
4
)

2
)

inversion)

c

a

(a) (b)

w0

w1

Fig. 3.17 GF-ACG for GF ((24)2) inversion circuit based on combination of redundant

and non-redundant GF arithmetic: (a) top- and (b) second-levels of abstrac-

tion.

Table 3.13 Nodes, GFs, and GF variables in Fig. 3.17

Nodes

[GF ((24)2) Inversion] n0 = ({c = a254}, G1)

[Decomposition] ndecomp = ({a1β16
1 + a0β1 = a}, nil)

[GF (24) 17th power] n1 = ({w0 = a1a0(x4 + x)2 + (a1 + a0)2(x4 + x3 + x2 + 1)}, G2),

[GF (24) Inversion] n2 = ({w1 = w14
0 }, G3)

[GF (24) Multipliers] n3 = ({c1 = w1 × a0, c0 = w1 × c1}, G4)

[Composition] ncomp = ({c = c1β16
1 + c0β1}, nil)

GF

GF ((24)2) = (
(
b161 , b11

)
,
(
{0, γ1

0 , . . . , γ
14
0 }, {0, γ1

0 , . . . , γ
14
0 }

)
, (β2

1 + (β4
0 + β0)β1 + β0, 1))

GF (24)(NB) = ((β23

0 , β22

0 , . . . , β20

0), ({0, 1}, {0, 1}, . . . , {0, 1}), (β4
0 + β3

0 + β2
0 + β1

0 + β0
0 , 1))

GF (24)(PRR) = ((x4, x3, . . . , x0), ({0, 1}, {0, 1}, . . . , {0, 1}), (x4 + x3 + x2 + x1 + x0, x+ 1))

GF (24)(RRB) = ((β4
0 , β

3
0 , . . . , β

0
0), ({0, 1}, {0, 1}, . . . , {0, 1}), (β4

0 + β3
0 + β2

0 + β1
0 + β0

0 , 1))

GF variables

a, c,= (GF ((24)2), (1, 0))

a1, a0 = (GF
(NB)

(24)
, (3, 0))

c1, c0 = (GF
(RRB)

(24)
, (4, 0))

w0 = (GF
(PRR)

(24)
, (4, 0))

w1 = (GF
(RRB)

(24)
, (4, 0))

porting both redundant and non-redundant representations. See Section 5.2 for detail of This study

(Section 5.2).

82 3 Formal Design Methodology of Cryptographic Hardware

Table 3.14 Verification time of GF (28) tower-field inversion circuits

Field
Representation

Verification time [s]
Tower field Indeterminate field

Satoh et al. [127] GF (((22)2)2) PB PB 3.12

Canright [33] GF (((22)2)2) NB PB 3.92

Nogami et al. [106] GF (((22)2)2) PB and NB PB and NB 5.45

Rudra et al. [123] GF ((24)2) PB PB 2.93

Joen et al. [67] GF ((24)2) PB PB 2.93

Nekado et al. [101] GF ((24)2) NB RRB 2.00

This study GF ((24)2) NB PR 3.55

This study (Section 5.2) GF ((24)2) NB NB, PRR, and RRB 1.20

3.4.3 AES hardware

In this subsection, we focus on the design and verification of AES encryption and decryp-

tion hardware which perform one round per clock cycle. Note that we do not consider the key

scheduling function to generate round keys. However, AES hardware with round key generation

on-the-fly can also be designed in the same manner.

The datapath of AES hardware is divided into four sub-datapaths, and each of them encrypts

(or decrypts) four bytes independently. Figure 3.18 shows the GF-ACGs of the first sub-datapaths

for the AES (a) encryption and (b) decryption hardware at the second and third levels of abstrac-

tion. The top-level nodes (i.e., the entire datapaths) are composed of sub-datapaths connected in

parallel. (The figures and descriptions of the top-level nodes are omitted for simplicity.) Tables

3.15 and 3.16 show the nodes of first sub-datapaths of the AES encryption and decryption hard-

ware, respectively. Note that the second, third, and fourth sub-datapaths are designed in the same

manner.

Here, we explain the details of the encryption hardware. Node “sub-datapath” is the second-

level node, whose inputs are four-byte data, a four-byte round key, and one-bit control signal csel.

The functional assertion, which is derived deductively from its four sub-functions and Mux, is

very high degree. Nodes “SubBytes,” “ShiftRows,” “MixColumns,” and “AddRoundKey” in the

internal structure have functional assertions corresponding to the sub-functions. As mentioned

above, “SubBytes” has a high-degree function with one variable and “MixColumns” has four lin-

ear functions with four variables. Therefore, their combination also has high-degree functions

with a large number of terms. Lower-level abstractions are detailed in [63]. The decryption

hardware is also designed in the same manner as the encryption hardware. “InvSubBytes,” “In-

vShiftRows,” and “InvMixColumns” perform the inverse functions of “SubBytes,” “ShiftRows,”

3.4 Applications 83

0,0 1,1 2,2 3,3

0,0 1,0 2,0 3,0

0,0

1,0

2,0

3,0

0,0 1,0 2,0 3,0

0,0 1,1 2,2 3,3

9 1087

0,0 1,0 2,0 3,0

sel

1 432

5

11

1

6

0,0 1,0 2,0 3,0w w w w

(a)

0,0 1,0 2,0 3,0

0,0 1,1 2,2 3,3

1

2

8 11109

7

5 643

0,0 1,1 2,2 3,3

0,0 1,0 2,0 3,0

sel

0,0 1,0 2,0 3,0

0,0 1,0 2,0 3,0

0,0

1,0

2,0

3,0

1

w w w w

(b)

Fig. 3.18 GF-ACG for sub-datapath of AES (a) encryption and (b) decryption hard-

ware.

Table 3.15 Nodes, GF, and variables in AES encryption hardware (Fig. 3.18(a))

Nodes

[sub-datapath]

n0 = ({a′ϵ,0 = kϵ,0 + csel(
∑7

dr=0 cdra
−2dr
ϵ,ϵ + c8) + (1− csel)

∑3
er=0 ver−ϵ(

∑7
dr=0 cdra

−2dr
er,er + c8)

| 0 ≤ ϵ ≤ 3}, G1)

[SubBytes] nϵ+1 = ({sϵ,ϵ =
∑7

dr=0 cdra
−2dr
ϵ,ϵ + c8}, Gϵ+2)

[ShiftRows] n5 = ({tϵ,0 = sϵ,ϵ | 0 ≤ ϵ ≤ 3}, G6)

[MixColumns] n6 = ({uϵ,0 =
∑3

er=0 ver−ϵter,0 | 0 ≤ ϵ ≤ 3}, G7)

[Mux] nϵ+7 = ({wϵ,0 = cseltϵ,0 + (1− csel)uϵ,0}, Gϵ+8)

[AddRoundKey] n11 = ({a′ϵ,0 = kϵ,0 + wϵ,0 | 0 ≤ ϵ ≤ 3}, G12)

GF

GF (28) = ((β7, β6, . . . , β0), ({0, 1}, {0, 1}, . . . , {0, 1})β8 + β4 + β3 + β1 + β0)

GF variables

aϵ,ϵ, a′ϵ,0, sϵ,ϵ, tϵ,0, uϵ,0, kϵ,0, wϵ,0 = (GF (28), (7, 0)), (0 ≤ ϵ ≤ 3)

csel = (GF (28), (0, 0))

and “MixColumns,” respectively. Note that “AddRoundKey” has the same function as in the en-

cryption since it is a simple key addition (i.e., bit-parallel XOR with a round key). See [63] for

how to obtain algebraic description of AES hardware.

For comparison, the AES encryption and decryption hardware were verified by the GB-based

method and the proposed verification method. Tables 3.17 and 3.18 show the verification

84 3 Formal Design Methodology of Cryptographic Hardware

Table 3.16 Nodes, GF, and variables in AES decryption hardware (Fig. 3.18(b))

Nodes

[sub-datapath]

n0 = ({a′
ϵ,0 = (

∑7
dr=0 cdr (csel(kϵ,0 + aϵ,0) + (1− csel)×

∑3
er=0(v

′
er−ϵ(ker,−ϵ + aer,−ϵ)))

2dr + c8)
254

| 0 ≤ ϵ ≤ 3}, G1)

[AddRoundKey] n11 = ({sϵ,−ϵ = kϵ,−ϵ + aϵ,−ϵ | 0 ≤ ϵ ≤ 3}, G12)

[InvMixColumns] n6 = ({tϵ,−ϵ =
∑3

er=0 v′
er−ϵser,0 | 0 ≤ ϵ ≤ 3}, G7)

[InvShiftRows] n5 = ({wϵ,0 = uϵ,−ϵ | 0 ≤ ϵ ≤ 3}, G6)

[InvSubBytes]nϵ+1 = ({a′
ϵ,0 = (

∑7
dr=0 cdrw

2dr
ϵ,0 + c8)

254}, Gϵ+2), 0 ≤ ϵ ≤ 3

[Mux] nϵ+7 = ({wϵ,0 = cseltϵ,0 + (1− csel)uϵ,0}, Gϵ+8), 0 ≤ ϵ3

GF

GF (28) = ((β7, β6, . . . , β0), ({0, 1}, {0, 1}, . . . , {0, 1}), β8 + β4 + β3 + β1 + β0)

GF variables

aϵ,−ϵ, a
′
ϵ,0, sϵ,−ϵ, tϵ,0, uϵ,0, kϵ,0, wϵ,0 = (GF (28), (7, 0)), (0 ≤ ϵ ≤ 3)

csel = (GF (28), (0, 0))

Table 3.17 Verification time of AES encryption hardware

Nodes
Verification Time (s)

GB-based This study

AESencryption 0.44 0.07

sub-datapath 0.25 0.07

SubBytes 3.72 3.72

ShiftRows 0 0

MixColumns 0.84 0.69

Mux 0.63 0.35

AddRoundKey 0.24 0.21

Total 6.12 5.07

times of the encryption and decryption hardware, respectively, where “AESencryption” and

“AESdecryption” indicate the top-level nodes of the encryption and decryption hardware, respec-

tively. The experimental setup was the same as Section III. In this verification, the ND-based

method was applied to “AESencryption” and “sub-datapath” since “AESencryption” belongs

to the ECC/cryptographic layer and “sub-datapath” belongs to the GF (pm) exponentiation of

multivariate polynomial layer in Fig. 3.13. Note that “ShiftRows” and “InvShiftRows” were

not verified since they were implemented only by wiring. As a result, the GB-based method

failed to verify “AESdecryption,” but could verify “AESencryption.” This was caused by the

order of SubBytes and MixColumns (InvSubBytes and InvMixColumns). The function of

“AESencryption” does not have fewer terms than “AESdecryption” since the encryption hardware

3.4 Applications 85

Table 3.18 Verification time of AES decryption hardware

Nodes
Verification Time (s)

GB-based This study

AESdecryption N/A 0.07

sub-datapath N/A 0.07

AddRoundKey 0.24 0.21

InvMixColumns 1.71 1.71

Mux 0.63 0.35

InvShiftRows 0 0

InvSubBytes 4.58 4.58

Total N/A 6.99

performs SubBytes before MixColumns. Therefore, when verifying “AESdecryption,” the

GB-based method required an enormous amount of memory and computational time because

of the huge number of terms in the polynomials. On the other hand, the proposed method

successfully verified “AESdecryption” in less than a second since the ND-based method could

verify the function without expanding the polynomials. This result confirms the efficiency of the

proposed method in verifying cryptographic hardware.

3.4.4 Masked AES hardware

We have applied the proposed method to a practical 128-bit AES hardware with a masking-

based countermeasure against side-channel attack [114]. The above hardware is designed with

GF-ACG in the same manner as [111], where each node has a function described by algebraic

equations and an internal structure. Table 3.19 shows the nodes, GFs and variables using in

GF-ACGs of top three levels of abstraction for the masked datapath. The Masked Rand sub-

datapath is one of four 32bit data randomization nodes consisting of one MaskedDataPath, one

MaskPath and one MaskedRoundKey at the highest level of the hierarchy. The MaskedDataPath

then consists of four MaskedSBox units, one ShiftRows, one MixColumns, four Mux units and

one AddRoundKey. The MaskPath is represented by four ShiftRows units, one MixColumns and

four Mux units, and the Maskedroundkey is represented by four 3-input/1-output adders.

The critical component designed here is Masked inversion in the MaskedSBox. The functional

assertion of this masked inversion is given by

b = (a+ x)254 + y. (3.40)

Note again that, although 3.40 belongs to the second layer of Fig. 3.13, MaskedSBox is a GF (2)-

86 3 Formal Design Methodology of Cryptographic Hardware

Table 3.19 Nodes, GF, and GF variables for Masked Rand sub-datapath

Nodes

[Masked Rand sub-datapath]
n0 = ({a′

ϵ,0 = kϵ,0 + zϵ,0 + (1− csel)yϵ,ϵ + csel
∑3

er=0 ver−ϵyer,er

+csel((
∑7

dr=0 cdr (aϵ,ϵ + zϵ,ϵ)
−2dr + c8) + yϵ,ϵ)

+(1− csel)
∑3

er=0 ver−ϵ((
∑7

dr=0 cdr (aer,er + zer,er)
−2dr + c8) + yer,er) | 0 ≤ ϵ ≤ 3}, G1)

[MaskedDataPath]

n1 = ({a′
ϵ,0 = k′

ϵ,0 + csel((
∑7

dr=0 cdr (aϵ,ϵ + zϵ,ϵ)
−2dr + c8) + yϵ,ϵ)

+(1− csel)
∑3

er=0 ver−ϵ((
∑7

dr=0 cdr (aer,er + zer,er)
−2dr + c8) + yer,er) | 0 ≤ ϵ ≤ 3}, G2)

[MaskedSBox] nϵ+4 = ({sϵ,ϵ = (
∑7

dr=0 cdr (aϵ,ϵ + zϵ,ϵ)
−2dr + c8) + yϵ,ϵ}, Gϵ+5), (0 ≤ ϵ ≤ 3)

[ShiftRow] n8 = ({tϵ,0 = sϵ,ϵ | 0 ≤ ϵ ≤ 3}, G9)

[MixColumn] n9 = ({uϵ,0 =
∑3

er=0 ver−ϵter,0, | 0 ≤ ϵ ≤ 3}, G10)

[Mux] nϵ+10 = ({wϵ = cseltϵ,0 + (1− csel)uϵ,0}, Gϵ+33), (0 ≤ ϵ ≤ 3)

[AddRoundKey] n14 = ({a′
ϵ,0 = kϵ,0 + wϵ | 0 ≤ ϵ ≤ 3}, G11)

[MaskMixColumn] n2 = ({y′
ϵ,0 = (1− csel)yϵ,ϵ + csel

∑3
er=0 ver−ϵyer,er | 0 ≤ ϵ ≤ 3}, G3)

[MaskedKeyScheduling] n3 = ({k′
ϵ,0 = kϵ,0 + zϵ,0 + y′

ϵ,0 | 0 ≤ ϵ ≤ 3}, G4)

GF

GF (28) = ((β7, β6, . . . , β0), ({0, 1}, {0, 1}, . . . , {0, 1}), β8 + β4 + β3 + β1 + β0)

GF variables

aϵ,ϵ, a
′
ϵ,0, zϵ,ϵ, zϵ,0, yϵ,ϵ, y

′
ϵ,0, sϵ,ϵ, tϵ,0, uϵ,0, kϵ,0, k

′
ϵ,0, wϵ = (GF (28), (7, 0)), (0 ≤ ϵ ≤ 3)

csel = (GF (28), (0, 0))

level circuit.

To verify the MaskedSBox validly, we obtain an additional criterion (i.e., relation between mask

and masked values) for masked components which is used in the masked implementations [45,

114]. Typical implementation of masked component fm(md,m0, ...,mk) receives mask value(s)

m0 ... mk (k ≥ 0) and a masked input md = mask(d,m0, ...,mk) (d is an unmasked input), and

returns masked output. If there is a corresponding unmasked reference fr(d), the fm is correct

when the following condition holds (Fig. 3.19):

∀d,m0, ...,mk {fr(d) = mask−1(fm(mask(d,m0, ...,mk),m0, ...,mk),m0, ...,mk)}.
(3.41)

For comparison, we verified the MaskedSBox by both the GB-based and the PPRM-based ver-

ification methods. Using the GB-based method, we could not succeed in verifying maskedSBox,

since the composite-field circuit has three (i.e., more-than-one) isomorphism functions. On the

other hand, by the PPRM-based method, we could succeed in verification in approximately 1

second.

Table 3.20 shows the verification time for the whole masked datapath by the proposed method,

where the experimental setup is the same as that in Section 3.2. In Table 3.20 the verification times

of the MixColumns and MaskedRoundKey include those of the lower-level design. In summary,

3.4 Applications 87

Check if correct masked-output is obtained for any value of mask(s).

Reference SBox
without mask(s) Output 7

Output 1
Output 0

…
Input 7

Input 1
Input 0

…

SBox implementation
with mask(s) Output 7

Output 1
Output 0

…
Input 7

Input 1
Input 0

…
Apply

mask(s)
Remove
mask(s) … …

Mask K

Mask 1
Mask 0

…

…… …

Check if correct masked-output is obtained for any value of mask(s).

Reference SBox
without mask(s) Output 7

Output 1
Output 0

…
Input 7

Input 1
Input 0

…

SBox implementation
with mask(s) Output 7

Output 1
Output 0

…
Input 7

Input 1
Input 0

…
Apply

mask(s)
Remove
mask(s) … …

Mask K

Mask 1
Mask 0

…

………… ……

Fig. 3.19 Additional property of DPA-resistant operations.

Table 3.20 Verification times for Masked Rand datapath

Node Num. Veri. time [sec] Procedure

Masked Data Randomization 1 0.14 ND

Masked sub-datapath 4 0.10 ND

MaskedDataPath 4 0.11 ND

MaskedSBox 16 0.93 PPRM

ShiftRow 4 0.00 GB

MixColumn 4 0.83 GB

Mux 16 0.01 PPRM

AddRoundKey 4 0.03 PPRM

MaskMixColumn 4 0.21 GB

MaskedRoundKey 4 0.41 GB

Total 61 2.77

the proposed method could verify all of the datapath circuit in all design levels within 3 seconds

thanks to the combination of three formula evaluation method. Note that, since GB-based method

requires a larger time for verifying higher-level nodes (i.e., Masked Data Randomization, Masked

sub-datapath, and MaskedDataPath), the ND-based method makes the verification about 76 times

faster than that without the ND-based method [111].

3.4.5 LED hardware resistant to DPAs based on pipeline

The LED block cipher [57] (i.e., LED) is a 64-bit lightweight block cipher based on GF (24)

arithmetic. LED is well known as a smaller implementation in compared to other conventional

block ciphers. In this study, we consider the 64-bit-key LED that operates on a 4 × 4 matrix of

nibbles (one nibble = four bits), whose elements are variables over GF (24). The intermediate

state M in the encryption and the secret key K are represented by the nibbles mϵ,ε and kϵ,ε

(0 ≤ ϵ ≤ 3 and 0 ≤ ε ≤ 3).

88 3 Formal Design Methodology of Cryptographic Hardware

Fig. 3.20 LED encryption flow.

Figure 3.20 provides an overview of the LED encryption flow. The 64-bit-key LED encryp-

tion comprises 32 rounds. Each round consists of four sub-functions: AddConstants, SubCells,

ShiftRows, and MixColumnsSerial similarly to AES. The intermediate value and key are added

at the AddRoundKey step every four rounds. Each sub-function is performed over GF (24) with

an irreducible polynomial x4 + x + 1. Let aϵ,ε, sϵ,ε, tϵ,ε, wϵ,ε, and a′ϵ,ε be the output of the sub-

functions and AddRoundKey, respectively. The algebraic representation of each sub-function is

given as follows.

1. AddConstants: aϵ,ε = mϵ,ε + rconϵ,ε,

where rconϵ,ε is a constant value.

2. SubCells: sϵ,ε =
∑14

dr=0 cdra
dr
ϵ,ε,

where cdr is a constant of GF (24).

3. ShiftRows: tϵ,ε = sϵ,ε−ϵ,

where the εth row is cyclically shifted to the left.

4. MixColumnsSerial: wϵ,ε =
∑3

h=0 eϵ,ϵ′tϵ′,ε,

where eϵ,ε is the (ϵ, ε)th element of a constant matrix and wϵ,ε corresponds to the input to

the next round when AddRoundKey is not performed.

5. AddRoundKey: a′ϵ,ε = wϵ,ε + kϵ,ε,

where a′ϵ,ε corresponds to the input to the next round.

We then apply a countermeasure against DPAs using pipelining to LED hardware. This sub-

3.4 Applications 89

section focuses on a design of Threshold Implementation (TI), which is a state-of-the-art coun-

termeasure. TI combines dynamic hazard reduction by pipelining and a cryptographic protocol

called Multi-Party Computation (MPC). In MPC, an m-bit secret data a(∈ GF (2m)) is divided

into σ shares additively (i.e., a = a0 + a1 + · · · + aφ + · · · + aσ−1, al ∈ GF (2m)) to prevent

attackers from estimating secret data a even if they obtain partial shares. In addition, TI randomly

divides a into σ shares in order for DPA-leakage to disappear. Here, because TI does not cause

any information leakage by means of dynamic hazard as a result of pipelining, TI is said to be

superior to other sharing-based countermeasures.

DPA-leakage is mainly caused by a non-linear operation (i.e., S-box). We then design a TI-

based S-box. (Please see [103] for details about TI.) Let a(∈ GF (24)) and S(a) be the input

to the S-box and a bijective function (i.e., S-box) in LED. In addition, let s be the output of the

S-box. We cannot compute s = S(a) directly without generating DPA-leakage. To prevent such

leakages, we divide a and s into three shares, where a = a0 + a1 + a2 and s = s1 + s2 + s3,

respectively. Instead of S, we then compute a 12-bit input and 12-bit output function S′, which

meets (s0, s1, s2) = S′(a0, a1, a2). Here, S(a) is divided into F and G, which satisfy S(a) =

F (G(a)) because S′ should be implemented with a two-stage pipeline architecture to reduce

dynamic hazard and its DPA-leakage. The crucial feature of TI is that F and G are realized by

partial functions Fl and Gl (0 ≤ l ≤ 2) that satisfy the following conditions:

1. Correctness

The sum of shares becomes original data. In other words, a = a0+a1+a2, g = g0+g1+g2,

and s = s0 + s1 + s2, where g is the output of function G and gl is its share.

2. Noncompleteness

A sub-function Gl is independent of an input share gl: g0 = G0(a1, a2), g1 =

G1(a0, a2), g2 = G2(a0, a1). Function F has the same construction.

3. Uniformity

The variables of a, g, and s and the shares al, gl, and sl are uniformly distributed. In other

words, for arbitrary value v ∈ GF (24) and u ∈ GF (24)3, the probability of sl = v and

s = u is 1/|GF (24)| and 1/|GF (24)3|, respectively. The other variables al, gl, a, and g

have the same probabilities.

Fig. 3.21 shows the entire architecture of a TI-based LED hardware and S-box designed in this

study. The architecture has a 192-bit datapath because 64-bit secret data (i.e., plaintext) is divided

into three shares. A plaintext is first divided into three shares, and a ciphertext is given as the

sum of encrypted shares. SubCells consists of the aforementioned TI-based S-boxes and other

90 3 Formal Design Methodology of Cryptographic Hardware

2

210

10

012

444

444

12

12

Fig. 3.21 Architecture of TI-based LED hardware and S-box.

operations are constructed by simply duplicating original ones.

Figure 3.22 shows GF-ACGs for the TI-based LED hardware of Fig. 3.21. Table 3.21 shows

the nodes, GFs, and GF variables. Figure 3.22(a) shows the top-level node, where ai,ε,l and bi,ε,l

are the divided input and output, respectively. The secret key ki,ε and round constant rconi,ε are

also divided. Figure 3.22(a) shows the internal structure of the “LED TI datapath.” The functional

assertions of “AddConstants,” “ShiftRows,” “MixColumnsSerial,” and “AddRoundKey” are pre-

viously described. The functional assertion of “SubCells TI” is derived as functions that compute

si,ε,l from ai,ε,0, ai,ε,1, and ai,ε,2 with one stage pipeline. Figure 3.22(b) shows the internal struc-

ture of “SubCells TI,” which consists of 16 “S-box TIs.” Finally, Fig. 3.22(c) shows the internal

structure of a “S-box TI,” which is implemented by “Function Fl,” “Function Gl,” and pipeline

registers “Reg rl.” The functional assertions of “Function Fl” and “Function Gl” are given by the

aforementioned method and their internal structures are logic circuit.

Table 3.22 shows the verification time of the GF-ACG shown in Fig. 3.22, in which the pro-

posed verification procedures are performed using an open-source computer algebra software

Risa/Asir on a Linux PC with an Intel Xeon E5450 3.00GHz processor and 32GB RAM. The

pipelined tamper-resistant LED hardware was successfully verified in approximately 1 h whereas

the conventional formal verification method would fail because of the pipeline architecture. The

logic simulation could not also verify it in a day. Thus, the LTL-based representation and GB-

3.4 Applications 91

5

6

1

2

3

4

7

0,0,0 3,3,20,0,0 3,3,2

0,0,0 3,3,2

0,0,0 3,3,2

0,0,0 3,3,2

0,0,0 3,3,2

0,0,0 3,3,2

0,0,0 3,3,2

0,0,0

3,3,2

3,3,20,0,0

0

1

1

(a)

8 9 23

0,0,0 0,0,1 0,0,20,1,0 0,1,13,3,0 3,3,1 3,3,20,1,2

0,0,0 0,0,1 0,0,20,1,0 0,1,1 3,3,1 3,3,20,1,23,3,0 2

(b)

26

2

30

0

29

2

28

1

24

0

25

1

27

0

32

2

31

1

0,0,0 0,0,1 0,0,2

0,0,0 0,0,1 0,0,2

0,0,2 0,0,1 0,0,0

0,0,2 0,0,1 0,0,0

9

(c)

Fig. 3.22 GF-ACG for TI-based LED hardware: (a) top-level node and internal struc-

ture of (b) SubCells TI and (c) S-box TI.

based method are useful for designing and verifying such practical pipelined circuits. Note that

we used only GB-based method in this experiment (i.e., without ND- and PPRM-based methods)

in order to evaluate the influence of LTL-based representation on GB computation, but ND- and

PPRM-based methods can be used for speeding up the verification. In particular, the usage of

ND-based method would make it possible to verify the node “LED TI datapath” within a second,

considering the above results about AES hardware.

92 3 Formal Design Methodology of Cryptographic Hardware

Table 3.21 Nodes, GF, and GF variables in Fig. 3.22

Nodes

[LED TI datapath]
n0 = ({X (Na′

0,0,0 = (1−Nsel0)(1−Nsel1)(a0,0,0 + k0,0,0+

rcon0,0,0) +Nsel0(1−Nsel1)(
∑3

er=0 v0,erF0(G1(aer,0,2,

aer,0,0), G2(aer,0,0, aer,0,1)) + rcon0,0,0) + (1−Nsel0)sel1∑3
er=0 v0,erF0(G1(aer,0,2, aer,0,0), G2(aer,0,0, aer,0,1))),

...
}, G1)

[SubCells TI]
n1 = ({X (Nsϵ,j,0 = F0(G1(aϵ,ε,2, aϵ,ε,0), G2(aϵ,ε,0, aϵ,ε,1))),

X (Nsϵ,ε,1 = F1(G2(aϵ,ε,0, aϵ,ε,1), G0(aϵ,ε,1, aϵ,ε,2))),

X (Nsϵ,ε,2 = F2(G0(aϵ,ε,1, aϵ,ε,2), G1(aϵ,ε,2, aϵ,ε,0))

| 0 ≤ ϵ ≤ 3, 0 ≤ ε ≤ 3}, G2)

[S-box TI]
n24 = ({X (g0,0,0 = G0(a0,0,1, a0,0,2))}, G25)

n25 = ({X (g0,0,1 = G1(a0,0,2, a0,0,0))}, G26)

n26 = ({X (g0,0,2 = G2(a0,0,0, a0,0,1))}, G27)

n27+l = ({X (Nr0,0,l = g0,0,l)}, nil) (0 ≤ l ≤ 3)
n30 = ({X (s0,0,0 = F0(r0,0,1, r0,0,2))}, G28)

n31 = ({X (s0,0,1 = F1(r0,0,2, r0,0,0))}, G29)

n32 = ({X (s0,0,2 = F2(r0,0,0, r0,0,1))}, G30)

...
[ShiftRows]
n2 = ({X (tϵ,ε,l = sϵ,ε−ϵ,l) | (0 ≤ ϵ ≤ 3, 0 ≤ ε ≤ 3, 0 ≤ l ≤ 2)}, G3)

[MixColumnsSerial]
n3 = ({X (wϵ,ε,l =

∑3
er=0 vϵ,er ter,ε,l) | (0 ≤ ϵ ≤ 3, 0 ≤ ε ≤ 3, 0 ≤ l ≤ 2)}, G4)

[AddConstants]
n4 = ({X (wϵ,ε,l = wϵ,ε,l + rconϵ,ε,l) | (0 ≤ ϵ ≤ 3, 0 ≤ ε ≤ 3, 0 ≤ l ≤ 2)}, G5)

n6 = ({X (yϵ,ε,l = wϵ,ε,l + rconϵ,ε,l) | (0 ≤ ϵ ≤ 3, 0 ≤ ε ≤ 3, 0 ≤ l ≤ 2)}, G7)

[AddRoundKey]
n5 = ({X (Nzϵ,ε,l = aϵ,ε,l + kϵ,ε,l) | (0 ≤ ϵ ≤ 3, 0 ≤ ε ≤ 3, 0 ≤ l ≤ 2)}, G6)

[3:1 Mux]
n7 = ({X (a′

ϵ,ε,l = (1− sel0)(1− sel1)yϵ,ε,l + sel0(1− sel1)wϵ,ε,l + (1− sel0)sel1wϵ,ε,l)

| (0 ≤ ϵ ≤ 3, 0 ≤ ε ≤ 3, 0 ≤ l ≤ 2)}, G8)

GFs

GF (24) = (
(
β3, β2, β1, β0

)
, ({0, 1}, {0, 1}, {0, 1}, {0, 1}) , β4 + β + 1)

GF (2) = (
(
β0

)
, ({0, 1}) , nil)

GF variables

aϵ,ε,l, a
′
ϵ,ε,l, sϵ,ε,l, tϵ,ε,l, wϵ,ε,l, wϵ,ε,l, yϵ,ε,l, zϵ,ε,l, fϵ,ε,l, gϵ,ε,l, rconϵ,ε,l, kϵ,ε,l

= (GF (24), (3, 0)), (0 ≤ ϵ ≤ 3, 0 ≤ ε ≤ 3, 0 ≤ l ≤ 2)

sel0, sel1 = (GF (24), (0, 0))

3.5 Discussion
3.5.1 Comparison with conventional formal verification methods

Although we showed the verification result of logic synthesis for a comparison with conven-

tional method, there are other types of formal verification methods, as descrbed in Section 2.5. In

3.5 Discussion 93

Table 3.22 Verification time of GF-ACG for TI-based LED hardware

Graph name Verification time

LED TI datapath 3,153.19

AddConstants 0.24

SubCells 7.69

ShiftRows 0.19

MixColumnsSerial 1.10

AddRoundKey 0.57

3:1Mux 0.90

Total 3,163.88

earlier related works, functional verification methods were primarily based on decision diagrams

(DDs) and binary moment diagrams (BMDs) [28, 30]. However, as described in Sect. 2.5, these

methods are basically limited to integer arithmetic and focus on only small component circuits

such as adders and multipliers. Although there are some DDs for GFs [82, 135], handling practi-

cal GFs such as GF (216) and GF (232) is difficult. According to [81], a BDD- (Binary DD-)based

method required 1,899.69 s to verify a GF (216) multiplier, and could not verify a GF (222) mul-

tiplier in 10 h. In addition to DD-based methods, SAT- and SMT-solvers are also used for the

functional verification of arithmetic circuits in some commercial EDA tools. Many SAT-solvers

can efficiently solve satisfiability of CNF (Conjunctive Normal Form) formulae, but they have

difficulty in verifying GF circuits, which are usually described in an AND-XOR expression. Al-

though a SAT-solver called CryptoMiniSAT has been developed for cryptographic applications,

it cannot verify a PB-based Mastrovito multiplier over GF (216) in 10 h [81]. Applying SMT-

solvers to GF arithmetic is also difficult because SMT-solvers have also been developed basically

for integer arithmetic. In addition, such methods require reference circuits (i.e., golden models),

which are often not prepared in advance. On the other hand, recently, algebraic methods based

on a GB were also presented in [79–81], which verified up to 163-bit GF multipliers effectively

without any reference model. However, these methods were only applied to multipliers based on

polynomial basis (PB). It seems difficult to apply them to larger and practical circuits commonly

used in cryptographic hardware (e.g., multipliers over GF (2233) and GF (2283) in elliptic curve

cryptography and circuits based on an NB and redundant representations for compact and effi-

cient implementation). In contrast, the proposed method supports various arithmetic algorithms

(e.g., full-tree, Mastrovito, and Massey-Omura) and representations including both redundant and

non-redundant representations (i.e., PB, NB, PRR, and RRB) in addition to PB- and PRR-based

multipliers used for our experimental evaluation in this dissertation. Thus, we can confirm the

effectiveness of the proposed method.

94 3 Formal Design Methodology of Cryptographic Hardware

Table 3.23 Classification of modern ciphers

Applicable Not applicable

GF GF (28) GF (24) GF (2)

Ciphers

AES, Camellia, Piccolo, PRESENT,

MUGI, SNOW, LED, PRINCE,

KCipher-2 TWINE SIMON

3.5.2 Applicability and generality

The AES encryption hardware designed in this paper performs the subfunctions in the order of

SubBytes, ShiftRows, MixColumns, and AddRoundKey, which is a naive implementation. Such

naive hardware can be verified even by the conventional GB-based method as shown in the pre-

vious paper [63]. On the other hand, in many previous works on AES hardware implementation,

resister-retiming and subfunction-reordering techniques heve been proposed to reduce the circuit

delay and area [59, 87, 128]. We should consider these optimized techniques for designing practi-

cal AES hardware. The conventional GB-based method would require huger time to verify such

practical AES encryption datapaths that perform AddRouneKey or MixColumns prior to Sub-

Bytes because the function contains the 254th power of multivariate polynomials as a result of the

reordering. On the other hand, the proposed method can efficiently verify such practical datapaths

where the function can be derived deductively even after the resister-retiming and subfunction-

reordering. Thus, the applications of GF-ACG-based design can be extended by the proposed

method.

A further application of the proposed method to other symmetric key algorithms would be

possible because many modern ciphers are represented by GF (2m) (m ≥ 4) arithmetic. Table

3.23 shows a classification of some modern ciphers by GF used. Some of the ISO/IEC 18033

standard ciphers with GF (28) arithmetic, such as Camellia [7], SNOW [53], MUGI [61], and

KCipher-2 [132], can be designed and verified using the proposed method. Some of lightweight

ciphers with GF (24) arithmetic, such as LED [57], Piccolo [131], and TWINE [136], are also

possible applications. On the other hand, it would be difficult to apply for ciphers which are

not based on GF (2m) arithmetic and/or cannot be described in a hierarchical manner such as

PRESENT [19], PRINCE [24], and SIMON [117].

3.6 Conclusion
This section proposed a new formal design methodology for cryptographic hardware. The pro-

posed GF-ACG has the following advantages: to represent various GF representations including

3.6 Conclusion 95

Table 3.24 Summary of verification time of various GF arithmetic circuits (s)

PB-based PRR-based AES enc. AES dec. Masked AES TI-based LED
GF (216) mult. GF (216) mult. hardware hardware hardware hardware

Logic simulation 9,330.00 TO TO TO TO TO

BDD 1,899.69 N/A TO TO TO N/A

SAT solver TO N/A TO TO TO N/A

Existing GF-ACG 5.52 N/A 6.12 TO TO N/A

This study 5.50 4.84 5.07 6.99 2.77 3,163.88

redundant ones and to handle sequential arithmetic circuits such as pipelined ones. In addition, we

proposed two new formula evaluation methods for verifying GF arithmetic circuits which cannot

be verified by the conventional GB-based formula evaluation in a practical time, and then pro-

posed the formal verification based on a combination of three formula evaluation methods. The

proposed formal verification can verify many practical cryptographic hardware, which cannot be

verified by any other conventional method.

The proposed formal design method has a far larger design space than conventional methods,

which covers many practical cryptographic hardware. Table 3.24 shows a brief summary of the

verification results of various GF arithmetic circuits and cryptographic hardware by the conven-

tional and proposed method, where “N/A” means “Not Applicable.” The values for BDD and SAT

solver are derived from [81]. Table 3.24 clearly indicates the advantage of the proposed method

in designing and verifying GF arithmetic circuits and cryptographic hardware.

97

4
Automatic Generation System

for Cryptographic Hardware

4.1 Introduction
Chapter 2 presented the formal design methodology of cryptographic hardware. Although the

proposed GF-ACG is useful for designing and verifying various GF arithmetic circuits, GF-ACG

cannot be used with the conventional EDA tools such as logic synthesizer. Therefore, Chapter 3

provides an automatic generation system of GF arithmetic circuits for cryptographic hardware in

order to unify the proposed design methodology and conventional EDA tools. While the proposed

system focuses only GF multipliers, the synthesis methods and transformation from GF-ACG to

HDL are useful for other GF arithmetic circuits. In addition, since GF (qm) adders can be imple-

mented by digit-parallel GF (q) adders, automatic generation of GF (qm) multipliers is useful for

designing a wider variety of GF (qm) circuit, many of which is constructed by a combination of

adders and multipliers over GF (qm).

In this chapter, we first introduce the overview of proposed systems. We then describe automatic

98 4 Automatic Generation System for Cryptographic Hardware

Fig. 4.1 Block diagram of GF-AMG.

Algorithm 4.1 Translate GF-ACG to HDL
Input: GF-ACG G = (N ,E)

Output: HDL Description D

1: function MAPPING(G)

2: D′ ← ∅; str S;

3: for all (F , G′) ∈N do
4: if G′ ̸= nil then
5: D′ ←D′∪Mapping(G′);

6: end if
7: end for
8: S ← GFACGtoHDLmodule(G);

9: D ←D′ ∪ {S};
10: return D

11: end function

generation of GF (pm) multipliers where p = 2, 3, 5, 7, and 11. In addition, we present automatic

generation of formally-proven DPA-resistant GF multipliers based on GMS. In addition to the

circuit function, the DPA-resistance is formally verified by the algorithms proposed in Section

4.4. The capability and performance are evaluated through experimental generation of various

multipliers.

4.2 System Overview
Figure 4.1 is a block diagram of GF-AMG. It consists of (i) the GF-ACG Code Synthesizer, (ii)

the GF-ACG Verifier, and (iii) the ACG-to-HDL Translator. The GF-ACG Code Synthesizer gen-

erates GF-ACG code according to the users’ design specification, which includes characteristic,

multiplication algorithm, modular polynomial, and logic type. Table 4.1 shows a list of charac-

teristics, multiplication algorithms, modular polynomial degrees, logic types, and security order

that can be generated by the GF-AMG system. Here, security order inidicates the order of GMS

4.3 Automatic generation of GF (pm) multipliers 99

Table 4.1 Specification supported by GF-AMG

Characteristic p Algorithm Degree for IP Logic type Security order

Full-tree 2–256

2 Mastrovito 2–256 binary 0–5

Massey-Omura 2–64

3, 5, 7, 11 Full-tree 2-256
binary

0
p-valued logic

Table 4.2 Mapping of GF values onto logic values

(a) An example of GF (2)

GF (2) value Logic value

0 0

1 1

(b) An example of GF (3)

GF (3) value Logic value

0 00

1 01

2 10

described in Section 4.3. In multiplication algorithms, full-tree and Mastrovito are algorithms for

PB, PRR, and RRB multipliers while Massey-Omura is an algorithm for NB-based multiplier.

The GF-ACG Verifier proceeds to formally verify the generated GF-ACG code by the method

described in Chapter 3. The ACG-to-HDL Translator then translates the verified GF-ACG code

into the equivalent Verilog-HDL code, using the algorithm shown in Algorithm 4.1. In addition,

when generating a DPA-resistant multiplier based on GMS, the GF-ACG property checker checks

whether it satisfies GMS-properties using algorithms proposed in the following section. Given a

GF-ACG G, we extract a set of relations of internal edges at the lowest level of abstraction from G

recursively. The relations of internal edges are then translated into the corresponding HDL format

by one-to-one mapping.

4.3 Automatic generation of GF (pm) multipliers
In this section, we first show design of GF (pm) arithmetic circuits by GF-ACG, which is ex-

tended in order to handle GF arithmetic circuit with a characteristic greater than two and multiple-

valued logic devices (e.g., ternary gate). We then show the automatic generation of GF (pm)

multipliers on the basis of the extended GF-ACG.

4.3.1 Extension of GF-ACG to GF (pm) arithmetic circuit

An extension of the GF-ACG is presented for describing a GF (pm) arithmetic circuit, enabling

it to be implemented in multiple-valued logic as well as in binary logic. In the above GF-ACG, a

100 4 Automatic Generation System for Cryptographic Hardware

mapping from a GF variable to a logic variable at the lowest level description is implicitly given

(i.e., 0 and 1 in GF (2) are mapped into 0 and 1 in binary logic, respectively) because it focuses

only on GF (2m) arithmetic circuits and their binary implementations. Therefore, such mapping

is done without the need for any additional procedure. In order to describe and verify nodes with

GF (p) (p ≥ 2) variables and their R-valued (R ≥ 2) implementation, however, we need to give

an explicit mapping at the lowest level of abstraction. Our plan is to provide a mapping function,

called an encoding function, for transforming GF (p) variables into R-valued logic variables in

the form of a functional assertion (i.e., a GF equation) for the lowest-level nodes.

We first describe an encoding function for transforming GF (p) variables into binary logic vari-

ables. Each GF variable in Ci (a coefficient set of degree i) is encoded by at least ⌈log2 |Ci|⌉ logic

variables. Table 4.2 gives examples of such mappings, showing encodings of (a) GF (2) ∈ {0, 1}
and (b) GF (3) ∈ {0, 1, 2} into binary logic variables. Note that for cases having characteris-

tic p > 2, any encoding is possible, including non-minimum-length encoding. Such encoding

can be represented by a specific equation, referred to as an encoding equation. Let x and Lη

(0 ≤ η ≤ k − 1) be a GF variable over GF (p) and a logic variable used for encoding, respec-

tively. Let α = (α0, α1, . . . , αk−1) ∈ {0, 1}k be a k-bit logic value. The general form of the

encoding equation is then given as

a =
∑

α∈{0,1}k

(
f(α)×Πk−1

η=0L
αη
η

)
, (4.1)

where f(α) is the GF value corresponding to α, and L
αη
η is the η-th literal, defined as

Lαη
η =

{
1− Lη (αη = 0)

Lη (αη = 1)
. (4.2)

For example, the encoding equations for Tab. 4.2(a) and (b) are given as a = L0 and a =

(1− L1)L0 + 2L1(1− L0), respectively.

Figure 4.2 shows GF-ACGs for a 2-input multiplier over GF (3) implemented in binary logic

[115], where the node in Fig. 4.2(a) corresponds to the shaded part in Fig. 4.2(b). This indicates

that node n0 has an internal structure consisting of lower-level nodes in the corresponding shaded

part. Table 4.3 shows the nodes, GFs and variables used in Fig. 4.2. The nodes of n1, n2, and n9

in Fig. 4.2(b) perform the mapping between GF variables and logic variables. More precisely, the

functions of n1 and n2 are to translate GF variables into logic variables, while the function of n9

is to translate logic variables into GF variables. Note that the functional assertions of such nodes

require equation(s) that represent unused inputs. In this example, one such equation is given as

aL0aL1 = 0 because (aL0, aL1) = (1, 1) is not used. Thus, any GF (pm) arithmetic circuit will

be implemented by binary logic circuits in a uniform manner.

4.3 Automatic generation of GF (pm) multipliers 101

0

GF

ab

c

(a)

2 1

6 5 4 3

8 7

9

L0L1L0L1

L0L1

0123

1

ab

bb a a

c c

c

(b)

Fig. 4.2 GF-ACGs for GF (3) multiplier.

Table 4.3 Nodes, GFs and GF variables in Fig. 4.2(b)

Nodes

n0 = ({c = a× b}, G1)

n1 = ({(1− aL1)aL0 + 2aL1(1− aL0) = a, aL0aL1 = 0}, nil)
n2 = ({(1− bL1)bL0 + 2bL1(1− bL0) = b, bL0bL1 = 0}, nil)
n3 = ({w0 = AND(aL1, bL1)}, nil)
n4 = ({w1 = AND(aL0, bL0)}, nil)
n5 = ({w2 = AND(aL0, bL1)}, nil)
n6 = ({w3 = AND(aL1, bL0)}, nil)
n7 = ({cL0 = OR(w0, w1)}, nil)
n8 = ({cL1 = OR(w2, w3)}, nil)
n9 = ({c = (1− cL1)cL0 + 2cL1(1− cL0), cL1cL0 = 0}, nil)

GFs

GF (3) = (
(
β0

)
, ({0, 1, 2}) , nil)

Logic = (
(
β0

)
, ({0, 1}) , nil)

GF variables

a = (GF (3), (0, 0)) aL0, aL1 = (Logic, (0, 0))

b = (GF (3), (0, 0)) bL0, bL1 = (Logic, (0, 0))

c = (GF (3), (0, 0)) cL0, cL1 = (Logic, (0, 0))

w0, w1, w2, w3 = (Logic, (0, 0))

Next, we then describe an extension of the above encoding equation for the case of R-valued

implementation. Table 4.4 shows examples of the mapping of (a) GF(3) ∈ {0, 1, 2} and (b) GF(5)

∈ {0, 1, 2, 3, 4} into ternary logic. Let a and Lη (0 ≤ η ≤ k − 1) be a GF variable over GF (p)

and an R-valued logic variable used for encoding, respectively. Let α = (α0, α1, . . . , αk−1) ∈

102 4 Automatic Generation System for Cryptographic Hardware

Table 4.4 Mapping of GF values onto 3-valued logic values

(a) An example of GF (3)

GF (3) value
3-valued

logic value

0 0

1 1

2 2

(b) An example of GF (5)

GF (5) value
3-valued

logic value

0 00

1 01

2 02

3 10

4 11

{0, 1, . . . , R− 1}k be a k-bit R-valued logic value; the encoding equation is then given as

a =
∑

α∈{0,1,...,R−1}k

(
f(α)×Πk−1

η=0L
αη
η

)
, (4.3)

and L
αη
η is represented by

Lαη
η =

∏
l∈{0,1,··· ,R−1}

l ̸=αη

Lη − l

αη − l
, (4.4)

where Eqs. 4.3 and 4.4 are based on arithmetic operations over GF (p).

For example, the encoding equations for Tab. 4.4 (a) and (b) are given by a = L0 and a =

(2L1 + 3L1 + 1)L0 + 2L2
1 + L1, respectively.

4.3.2 Generation of GF (pm) parallel multipliers

This section focuses on the design and generation of GF (pm) parallel multipliers in GF-AMG.

For the conventional design of GF (2m) parallel multipliers also generated by GF-AMG, see

[110], [58], and [85]. Let a and b ∈ GF (pm) be the inputs and let c ∈ GF (pm) be the output.

The multiplication over GF (pm) is first divided into the following two functions:

m−1∑
i=0

wi = a× b, (4.5)

c =
m−1∑
i=0

wi, (4.6)

where wi ∈ GF (pm) (0 ≤ i ≤ n − 1) is the i-th partial product. We then consider the inter-

nal structure of the nodes corresponding to Eqs. 4.5 and 4.6 to obtain its hierarchical GF-ACG

description. Each wi is given by

wi = a× bi, (4.7)

4.3 Automatic generation of GF (pm) multipliers 103

a b

c

(a)

a b

c

(b)

a b

c

(c)

9

a b

c

(d)

Fig. 4.3 GF-ACGs for GF (34) parallel multipliers of (a) the top-level to (d) the 4th-

level.

where bi is the i-th element obtained by the decomposition of b =
∑m−1

i=0 bi and a ∈ GF (pm).

This means that the internal structure of the node performing Eq. 4.5 is composed of m nodes

performing Eq. 4.7. The nodes corresponding to Eq. 4.6 are composed of m− 1 2-input 1-output

adders over GF (pm), which are given by m 2-input 1-output adders over GF (p).

For example, Fig. 4.3 shows the GF-ACGs for the GF (34) parallel multiplier at the top four

levels of abstraction. Table 4.5 shows the corresponding nodes, GFs and GF variables. Note that

the decomposition and composition nodes are not shown in Tab. 4.5. The nodes in Fig. 4.3 (a),

(b), and (c) correspond to the shaded parts in Fig. 4.3 (b), (c), and (d), respectively. The 2nd-

level nodes “Partial Product Generator” (PPG) and GF “Accumulator” (GFA) in Fig. 4.3 (b) have

104 4 Automatic Generation System for Cryptographic Hardware

Table 4.5 Nodes, GFs and GF variables in Fig. 4.3

Nodes

[Multiplier] n0 = ({c = a× b}, G1)

[Partial Product Generator] n1 = ({w0 + w1 + w2 + w3 = a× b}, G2)

[PPG0] n3 = ({w0 = a× b0}, G4)

n10 = ({w0,0 = a0 × b0,0}, G11) n11 = ({w0,1 = a1 × b0,0}, G12)

n12 = ({w0,2 = a2 × b0,0}, G13) n13 = ({w0,3 = a3 × b0,0}, G14)

[PPG1] n4 = ({w1 = a× b1}, G5)

n14 = ({w6 = a0 × b1,1}, G15) n15 = ({w1,2 = a1 × b1,1}, G16)

n16 = ({w1,3 = a2 × b1,1}, G17) n17 = ({w1,0 = a3 × b1,1}, G18)

n18 = ({w7 = −w1,0}, G19) n19 = ({w1,1 = w6 + w7}, G20)

[PPG2] n5 = ({w2 = a× b2}, G6)

n20 = ({w8 = a0 × b2,2}, G21) n21 = ({w2,3 = a1 × b2,2}, G22)

n22 = ({w2,0 = a2 × b2,2}, G23) n23 = ({w9 = a3 × b2,2}, G24)

n24 = ({w10 = −w2,0}, G25) n25 = ({w11 = −w9}, G26)

n26 = ({w2,1 = w10 + w9}, G27) n27 = ({w2,2 = w8 + w11}, G28)

[PPG3] n6 = ({w3 = a× b3}, G7)

n28 = ({w12 = a0 × b3,3}, G29) n29 = ({w3,0 = a1 × b3,3}, G30)

n30 = ({w13 = a2 × b3,3}, G31) n31 = ({w14 = a3 × b3,3}, G32)

n32 = ({w15 = −w3,0}, G33) n33 = ({w16 = −w13}, G34)

n34 = ({w17 = −w14}, G35) n35 = ({w3,1 = w13 + w15}, G36)

n36 = ({w3,2 = w14 + w16}, G37) n37 = ({w3,3 = w12 + w17}, G38)

[Accumulator] n2 = ({c = w0 + w1 + w2 + w3}, G3)

[GFA0] n7 = ({w4 = w0 + w1}, G8)

n38+i = ({w4,i = w0,i + w1,i}, G39+i)

[GFA1] n8 = ({w5 = w2 + w3}, G9)

n42+i = ({w5,i = w2,i + w3,i}, G43+i)

[GFA2] n9 = ({c = w4 + w5}, G10)

n46+i = ({ci = w4,i + w5,i}, G47+i)

GFs

GF (34) = (
(
β3, β2, β1, β0

)
, ({0, 1, 2}, {0, 1, 2}, {0, 1, 2}, {0, 1, 2}) , β4 + β + 2)

GF (3) = (
(
β0

)
, ({0, 1, 2}) , nil)

GF variables

a, b, c = (GF (34), (3, 0)) ai, bi, ci = (GF (3), (0, 0)), (0 ≤ i ≤ 3)

bi,i = (GF (3), (0, 0)) wς = (GF (34), (3, 0)), (0 ≤ ς ≤ 5)

wς,i = (GF (3), (0, 0)), (0 ≤ ς ≤ 5)

functional assertions corresponding to Eqs. 4.5 and 4.6, respectively. The 3rd-level nodes “PPGi”

in Fig. 4.3 (c) have the functional assertion corresponding to Eq. 4.7. The nodes “GFAi” in Fig.

4.3 (c) indicate 2-input 1-output adders over GF (34) to construct “Accumulator”. In addition, the

nodes in Fig. 4.3 (d) indicate GF (3) arithmetic circuits, and these are described as given in Fig.

4.2, which showed the binary implementation case. Thus, we have the GF-ACGs for the GF (pm)

parallel multiplier represented in a hierarchical manner.

Algorithm 4.2 displays an algorithm for synthesizing GF (pm) multipliers. Given a design

specification (i.e., an irreducible polynomial and an implementation logic), the algorithm

generates a GF-ACG. The function “Degree” in Line 2 obtains the degree of the irreducible

4.3 Automatic generation of GF (pm) multipliers 105

Algorithm 4.2 Synthesize GF-ACG
Input: Irreducible Polynomial IP , Logic L

Output: GF-ACG G = (N ,E)

1: function FULLTREE(IP, Logic)

2: int m← Degree(IP); str eq;

3: for i = 0 to m− 1 do
4: int eq ← GetEquation(i, IP);

5: int l← CountSubOperator(eq);

6: int m← CountAddOperator(eq);

7: for η = 0 to m− 1 do
8: Gm+η ← GenerateGFpMultiplier(L); ▷ 4th-level

9: end for
10: for η = 0 to l − 1 do
11: G2m+η ← GenerateGFpAdditiveInv(L); ▷ 4th-level

12: end for
13: for η = 0 to m− 1 do
14: G2m+l+η ← GenerateGFpAdder(L); ▷ 4th-level

15: end for
16: Gi ← GeneratePPGi(eq,Gm, . . . , G2m+l+m−1); ▷ 3rd-level

17: end for
18: G

′ ← GeneratePPG(G0, . . . , Gd−1); ▷ 2nd-level

19: for i = 0 to m− 2 do
20: for η = 0 to m− 1 do
21: Gm+η−1 ← GenerateGFpAdder(L); ▷ 4th-level

22: end for
23: Gi = GenerateGFAi(Gm−1, . . . , G2m−2); ▷ 3rd-level

24: end for
25: G

′′
= GenerateACC(G0, . . . , Gm−2); ▷ 2nd-level

26: G = GenerateMultiplier(G
′
, G

′′
); ▷ top-level

27: return G

28: end function

polynomial. According to the value obtained, its internal structure is generated in a recursive

manner. The function “GetEquation” in Line 4 obtains an equation of the “PPGi” expressions

that are represented in Eq. 4.7. The functions “CountSubOperator” and “CountAddOperator”

count the numbers of “-” and “+” operators in the equation, respectively. Using the above

numbers and the degree, we generate 4th-level GF-ACGs for GF (p) arithmetic circuits. The

functions “GenerateGFpMultiplier”,“GenerateGFpAdditiveInv”, and “GenerateGFpAdder”

return GF-ACGs for GF (p) multipliers, additive inverters, and adders, respectively. Their

internal structures are determined by the given logic L. If L is binary logic, the internal structure

is given by the netlist corresponding to GF (p) multiplier, additive inverter, and adder which are

106 4 Automatic Generation System for Cryptographic Hardware

G
F

(3
) A

d
d

er

G
F

(3
) A

d
d

er

G
F

(3
) A

d
d

er

Fig. 4.4 Schematic of GF (38) multiplier obtained from GF-AMG.

designed in a manner similar to Fig. 2. If L is not binary logic, the internal structure is given

as nil in order for designers to use custom logic cells designed by themselves. The function

“GeneratePPGi” in Line 16 generates “PPGi” expressions (0 ≤ i ≤ m − 1) from the 4th-level

GF-ACGs, where the GF (p) adders are placed as a tree. The function “GeneratePPG” in Line

18 generates a GF-ACG for “Partial Product Generator” from the 3rd-level GF-ACGs of “PPGi”.

Similarly, “Accumulator” is generated from the 3rd-level GF-ACGs of “GFAi” consisting of

m GF-ACGs of GF (p) adders. In “Accumulator”, m − 1 “GFAi” expressions are placed as a

tree. Finally, the function “GenerateMultiplier” in Line 26 generates a GF-ACG for the GF (pm)

multiplier from the 2nd-level GF-ACG.

The HDL code generated for GF (pm) multipliers may be applied in not only a binary imple-

mentation but also an L-valued implementation. (GF (2m) multipliers, by contrast, are imple-

mented only in binary logic.) For a binary implementation, we can apply the HDL code to the

standard back-end design flow including logic synthesis and placement and routing (P&R) with

the standard cell library. For an L-valued implementation, we would implement the HDL code

by a technology mapping with a custom-made library in an L-valued logic. Thus, we see that

GF-AMG generates verified HDL codes for both multiple-valued logic and binary logic.

As an example, Fig. 4.4 shows a schematic of a GF (38) multiplier generated by GF-AMG,

where the lowest level component indicates an arithmetic circuit over GF (3). We can implement

this multiplier in ternary logic by applying a ternary logic circuit to the component.

4.3 Automatic generation of GF (pm) multipliers 107

Ta
bl

e
4.

6
G

en
er

at
io

n
tim

es
of

m
ul

tip
lie

rs
ov

er
G
F
(p

m
)

(s
)

E
xt

en
de

d
de

gr
ee

m
8

16
32

C
ha

ra
ct

er
is

tic
p

2
3

5
7

11
2

3
5

7
11

2
3

5
7

11

G
F-

A
C

G
sy

nt
he

si
s

0.
07

0.
07

0.
07

0.
07

0.
07

0.
08

0.
08

0.
08

0.
09

0.
09

0.
12

0.
14

0.
14

0.
15

0.
15

Fo
rm

al
ve

ri
fic

at
io

n
2.

59
2.

78
2.

77
2.

78
2.

77
4.

06
4.

26
4.

24
4.

25
4.

24
7.

40
7.

70
7.

62
7.

70
7.

66

A
C

G
-t

o-
H

D
L

0.
01

0.
01

0.
01

0.
01

0.
01

0.
02

0.
02

0.
02

0.
02

0.
02

0.
10

0.
11

0.
11

0.
11

0.
11

To
ta

l
2.

66
2.

86
2.

84
2.

86
2.

85
4.

17
4.

37
4.

35
4.

36
4.

36
7.

62
7.

95
7.

87
7.

96
7.

92

E
xt

en
de

d
de

gr
ee

m
64

12
8

25
6

C
ha

ra
ct

er
is

tic
p

2
3

5
7

11
2

3
5

7
11

2
3

5
7

11

G
F-

A
C

G
sy

nt
he

si
s

0.
29

0.
35

0.
44

0.
37

0.
39

0.
99

1.
23

1.
30

1.
33

1.
39

3.
90

4.
99

5.
18

5.
32

5.
58

Fo
rm

al
ve

ri
fic

at
io

n
16

.3
9

17
.2

6
18

.3
7

17
.2

5
17

.2
6

48
.2

5
54

.1
4

54
.0

9
54

.0
8

54
.2

2
23

5.
62

28
9.

79
29

3.
42

29
2.

79
29

2.
34

A
C

G
-t

o-
H

D
L

0.
58

0.
66

0.
81

0.
66

0.
67

3.
63

4.
63

4.
33

4.
56

4.
40

27
.5

7
33

.0
5

32
.8

8
33

.3
4

33
.3

3

To
ta

l
17

.2
6

18
.2

7
19

.6
2

18
.2

8
18

.3
2

52
.8

7
60

.0
0

59
.7

2
59

.9
7

60
.0

1
26

7.
09

32
7.

83
33

1.
48

33
1.

45
33

1.
24

108 4 Automatic Generation System for Cryptographic Hardware

Mastrovito

Full-Tree

Massey-Omura

A
re

a
(K

G
at

es
)

Extension degree m

0 20 40 60 80 100 120
0

50

100

150

200

250

300

(a) Area.

Mastrovito

Full-Tree

Massey-Omura

D
el

ay
 (

n
s)

Extention degree m

0 20 40 60 80 100 120
0.0

0.5

1.0

1.5

2.0

2.5

(b) Delay.

Fig. 4.5 Comparison of three types of GF (2m) multiplier for different extension de-

grees.

4.3.3 Experimental generation

The performance of our system was evaluated through the experimental generation of GF (pm)

parallel multipliers. We first generated a set of GF (pm) parallel multipliers of typical degrees.

4.3 Automatic generation of GF (pm) multipliers 109

Table 4.7 Performance of GF (pm) multipliers for different characteristics and degrees

Area (KGates) Delay (ns)

m 4 8 16 32 64 128 4 8 16 32 64 128

p = 3 0.6 2.3 9.7 39.3 158.1 685.8 1.48 2.36 2.81 3.25 3.68 4.13

p = 5 2.22 9.67 40.28 164.34 663.78 2,667.98 2.83 3.74 4.63 5.54 6.43 7.34

p = 7 5.26 23.02 96.71 399.90 1,572.58 N/A 5.28 6.58 9.09 9.24 11.78 N/A

p = 11 14.06 61.99 259.32 1,043.41 4,247.72 N/A 9.95 12.44 17.09 19.43 21.88 N/A

The generation was conducted with the same experimental setup as the above.

Table 4.6 shows the generation times, consisting of GF-ACG synthesis, verification, and GF-

ACG-to-HDL translation times, for each of the degrees investigated. Using our method, we

achieved complete verification even for a 1024-bit multiplier over GF (11256). Note here that

the verification time decreases even in the case of a larger p because the computation time of alge-

braic operation with the software used in the experiment is sometimes dependent on the machine

condition such as parallel-executed processes. As a comparison to evaluate the advantage of the

verifier, we also performed the Verilog-XL simulation using the corresponding HDL descriptions.

With this method, we were not able to complete the simulation of GF (310) or larger multipli-

ers because the simulation time increases exponentially as the extension degree increases. As

described above, GFs with at most characteristic seven are used for pairing-based cryptography

so far. Thus, the experimental result suggests that our system is sufficient and available for such

applications.

We then generated a set of GF (2m) parallel multipliers for three types of multiplication al-

gorithm in order to assess the performance variation. The performance was evaluated with the

Synopsys Design Compiler and the TSMC 65-nm cell library.

Figure 4.5 shows the area and delay of the three types of GF (2m) multiplier for different value

of m, where the vertical axis indicates the (a) area or (b) delay, and the horizontal axis indicates

the extension degree. We can confirm here that Mastrovito and Full-Tree have the advantage in

area and delay, respectively. Massey-Omura, which is a typical multiplication algorithm using

a normal basis (NB), did not demonstrate any advantage in area or delay over the other two

algorithms. However, Massey-Omura is useful for more sophisticated arithmetic NB circuits; for

example, we can design efficient exponential circuits based on an NB since the squaring operation

is performed only by wiring.

Table 4.7 shows the performance of GF (pm) multipliers implemented in a binary logic, for

different characteristics and degrees. For GF (pm) multipliers with p = 5, 7, and 11, we imple-

mented GF (p) arithmetic circuits (i.e., adder, multiplier, and constant multipliers over GF (p))

using the corresponding lookup-table. The Synopsys Design Compiler could not synthesize the

110 4 Automatic Generation System for Cryptographic Hardware

GF (7128) and GF (11128) multipliers under our experimental condition due to the memory over-

flow. This would be because the circuit area (i.e., the number of logic gates) for the multipliers

are too large (∼ 6 M gates). However, the results suggest that designers can generate a variety of

practical GF multipliers from given design specifications by the proposed GF-AMG system.

4.4 Automatic generation of DPA-resistant GF (2m) multi-
pliers based on GMS

GMS is a state-of-the-art masking-based countermeasure against higher-order DPAs [122]. A

dth-order GMS can describe any kind of arithmetic circuits over GF (2m) resistant to dth-order

DPAs including advanced ones that utilize glitch induced in power consumption [83, 92]. In

this section, we first describe the attack model considered in this thesis called dth order probing

model, and describe three security properties of GMS. Then, we show a construction of GMS-

based circuits using GF parallel multipliers as examples.

4.4.1 Attack model

GMS considers a modified dth-order probing model [65] to attackers’ advantage. It was proven

that the dth probing model is essentially equivalent to dth-order DPA model [48] while the probing

model is useful for discussing countermeasures against DPAs using glitch.

In this model, the attacker can probe d wires in the circuit within a time window. The values of

the probed wires is determined by the combinational logic circuit performing the GF arithmetic

function before the wire. This indicates that the attacker obtain the value of synchronous points

(i.e., registers) connected to the wires. For example, Fig. 4.6 illustrates the circuit for describing

the first-order probing model. The attacker would probe the wire g (i.e., output of the function

G) to obtain the values of registers f ′0, f
′
1, . . . , and f ′σ−1 (i.e., all input of G). In other words,

the attacker can retrieve all intermediate values to calculate F ′. On the other hand, the attacker

cannot obtain the values of reg1 and intermediate values in the functions F0, F1, . . . , and Fσ−1

by probing f . Though we describe the first-order probing here, the dth probing model where the

attacker probes d wires is much alike.

4.4.2 GMS properties

The working principle of masking schemes including GMS is to represent a secret value a ∈
GF (2m) by a0 + a1 + · · · + aφ + · · · + aσ−1, where aφ ∈ GF (2m) (0 ≤ φ ≤ σ − 1) is

initially given by a random mask. Each element aφ is called a share. Let a be the input and

a0, a1, . . . , aφ, . . . , aσ−1 be the share of a, where σ is the number of input share. Let r ∈ GF (2m)

4.4 Automatic generation of DPA-resistant GF (2m) multipliers based on GMS 111

0

1

s-1

0

1

s-1

0

1

s-1

Fig. 4.6 Example of dth-order probing model.

be the output of combinational circuit and r0, r1, . . . , rφ′ , . . . , rσ′−1 be the share of r, where rφ

∈ GF (2m) (0 ≤ φ′ ≤ σ′ − 1) denotes the φ′th share, and σ′ is the number of output shares.

(i) Correctness: the first property implies that the sum of shares is equal to the secret value at the

input and output of the circuit, namely, a = a0 + a1 + · · ·+ aσ−1 and r = r0 + r1 + · · ·+ rσ′−1.

This property indicates that the shared circuit correctly performs the original (i.e., nonshared)

function.

(ii) dth-order noncompleteness: the second property implies that any d output shares are in-

dependent of at least one input share. The number of input shares (i.e., σ) required to meet the

dth-order noncompleteness is dependent on d and the degree of the circuit function. Typically, σ

and σ′ are respectively given by dt+ 1 and
(
σ
t

)
, where t is the degree.

(iii) Uniformity: the third property indicates that the input and output values are uniformly

distributed.

Correctness and dth-order noncompleteness can be realized for any GF function, while some

functions cannot satisfy uniformity under the constraints of two above properties. However, the

uniformity criterion can be satisfied by the addition of fresh mask(s) to the non-uniform outputs

[103].

4.4.3 Construction of GMS-based circuit

As an example, we describe the construction of GMS-based GF (2m) multipliers. The number

of input shares σ is given by 2d+1 because the degree of a multiplication is two (the GMS-based

two-operand multiplier has 2σ inputs in total). The number of output shares is given by σ′ =
(
σ
2

)
(= d(2d + 1)). Figure 4.7 shows the (a) first- and (b) second-order GMS-based multipliers over

GF (2m), where aφ and bφ̂ (0 ≤ φ̂ ≤ σ − 1) are input shares and cφ is output share of the

multiplier. When m ≥ 2, AND and XOR gates in Fig. 4.7 denote multiplier and adder over

GF (2m), respectively. Hence, each GMS-based multiplier in Fig. 4.7 performs c = a× b where

a =
∑

φ ai, b =
∑

φ̂ bφ̂, and c =
∑

φ cφ. The GMS-based multipliers are composed of nonlinear,

112 4 Automatic Generation System for Cryptographic Hardware

z1

z0

b2 a2 b2 a1b1 a2

b0

a0

b2

a0

b0

a2

b1
a1

b0
a1

b1
a0

Linear layer L
Non-linear layer N

Refreshing layer R

z2

c1 c2

c0

(a) (b)

c2

c1c0

Linear layer L

Non-linear layer N

Refreshing layer R

b4

a3

b3

a4

b2
a1

b1
a2

b3
a1

b1
a3

b3
a2

b2
a3

b4
a2

b2
a4

b3
a3

b3
a0

b0
a3

b2 a2 b2a0

b0 a2

b4a4
b4a1

b1a4

b1

a1

b1

a0

b0

a1

b0

a0

b4

a0

b0

a4

c3

c4

Compression layer C

z2

z1

z0

z9

z8

z7

z6

z5

z4

z3

r1

r0

r9

r8

r7
r6

r5

r4

r2

r3

r0

r1

r2

Compression layer C

Fig. 4.7 GMS-based GF (2m) multipliers in [122]: (a) first- and (b) second-order.

linear, refreshing, and compression layers and are denoted by N , L, R, and C, respectively. Note

that the bold line separating R and C denotes registers and σ′ indicates the number of output

shares for R (i.e., rφ′).

The nonlinear layer N computes aφbφ̂ (0 ≤ φ ≤ σ − 1 and 0 ≤ φ̂ ≤ σ − 1) using multipliers

over GF (2m). The number of inputs and outputs for N is given by 2σ and σ2, respectively.

The linear layer L consists of adders to reduce the number of elements from σ2 to σ′. The

adders should be constructed to satisfy dth-order noncompleteness. In other words, any d outputs

of L are independent of at least one input of N .

The refreshing layer R adds fresh masks to the outputs of L to meet uniformity*1. The ring-

shaped addition shown in Fig. 4.7 makes it possible to add fresh masks while maintaining cor-

rectness and noncompleteness.

The compression layer C consists of adders to reduce the number of shares from σ′ to σ. Note

that, if σ′ = σ, the C layer is composed of only wiring as Fig. 4.7(a). To satisfy dth-order

noncompleteness, the registers are located at the boundary between R and C.

We then design a DPA-resistant multiplier based on the dth-order GMS using GF-ACG. Figure

*1 In the first-order GMS, R can be omitted if the outputs of L meet the required uniformity criterion. However,

since it is known that two-input multiplication has no construction to satisfy the uniformity [103], R is always

required for first-order GMS multipliers, as shown in Fig. 4.7(a). In other words, the uniformity is satisfied by R

in the first-order GMS.

4.4 Automatic generation of DPA-resistant GF (2m) multipliers based on GMS 113

G1

n1

(Mult)

n2

(Mult)

n3

(Mult)

n4

(Mult)

n5

(Mult)

n6

(Mult)

n7

(Mult)

n8

(Mult)

n9

(Mult)

a1a0 a2 b1b0 b2

n10

(Adder)

n11

(Adder)

n12

(Adder)

n13

(Adder)

n14

(Adder)

n15

(Adder)

z1z0 z2

p0,1 p1,1 p1,0 p0,2 p0,0 p2,0 p1,2 p2,2 p2,1

l2 l1 l0

n16

(reg)

n17

(reg)

n18

(reg)

r2 r1 r0

c1c2 c0 n0 (GMS-based Multiplier)

Fig. 4.8 GF-ACG for GMS-based GF parallel multiplier: top- and second-levels of ab-

stractions.

4.8 shows a GF-ACG for the GMS-based GF (2m) multiplier with d = 1 and an irreducible

polynomial IP , which corresponds to the multiplier of Fig. 4.7(a). Table 4.8 shows nodes, GF,

and variables in Fig. 4.8. Note here that the subscripts of p and z are members of Z/σZ and

Z/σ′Z, respectively. The variables ai, bj , and ci denote the shares of input and output a, b, and

c, respectively (i.e., a =
∑

φ aφ, b =
∑

φ̂ bφ̂, and c =
∑

φ cφ and the multiplier performs

c = a× b). Nodes n1, n2, . . ., and n9 denote the multipliers in the N . (Note that we can use any

type of multipliers for them including ones shown in this dissertation.) Nodes n10, n11, and n12

denote the adders in the L, which are designed to satisfy noncompleteness. Nodes n13, n14, and

n15 denote the adders in the R, where fresh masks z0, z1, and z2 are added to l0, l1, and l2. After

the R, output shares rφ′ for the R are stored in registers n16, n17, and n18. Finally, the register

outputs are added together to reduce the number of shares from σ′ to σ. In Fig. 4.8, we do not

perform addition in the C because σ = σ′ = 3. Note that higher-order GMS-based multipliers

can be also described in the same manner.

Algorithm 4.3 synthesizes GF-ACG to represent a GMS-based multiplier from an irreducible

polynomial IP and a GMS-order d. Function “DegreeOf” in Line 2 obtain the extension de-

gree m from IP . In Line 3, we calculate the numbers of input and output shares (i.e., s and

114 4 Automatic Generation System for Cryptographic Hardware

Table 4.8 Nodes, GFs, and variables in Fig. 4.8

Nodes

[GMS-based Multiplier]
n0 = ({X (c0 = a1b2 + a2b2 + a2b1 + z1 + z2),

X (c1 = a0b2 + a0b0 + a2b0 + z0 + z2),

X (c2 = a0b1 + a1b1 + a1b0 + z0 + z1)}, G1)

[Mult]
n1 = ({X (p0,1 = a0b1)}, G2) n2 = ({X (p1,1 = a1b1)}, G3)

n3 = ({X (p1,0 = a1b0)}, G4) n4 = ({X (p0,2 = a0b2)}, G5)

n5 = ({X (p0,0 = a0b0)}, G6) n6 = ({X (p2,0 = a2b0)}, G7)

n7 = ({X (p1,2 = a1b2)}, G8) n8 = ({X (p2,2 = a1b1)}, G9)

n9 = ({X (p2,1 = a2b1)}, G10)

[Adder]
n10 = ({X (l2 = p0,1 + p1,1 + p1,0)}, G11)

n11 = ({X (l1 = p0,2 + p0,0 + p2,0)}, G12)

n12 = ({X (l0 = p1,2 + p2,2 + p2,1)}, G13)

n13 = ({X (r0 = l2 + z1 + z2)}, G14)

n14 = ({X (r1 = l1 + z0 + z2)}, G15)

n15 = ({X (r2 = l0 + z0 + z1)}, G16)

[reg]
n16 = ({X (Nc0 = r2)}, G17)

n17 = ({X (Nc1 = r1)}, G18)

n18 = ({X (Nc2 = r0)}, G19)

GF

GF (2m) = (
(
βm−1, βm−2, . . . , β0

)
, ({0, 1}, {0, 1}, . . . , {0, 1}) , IP)

GF variables

aφ, bφ̂, pφ,φ̂, cφ′ , lφ′ , rφ′ , zφ′ = (GF (2m), (m− 1, 0))

s′, respectively). In Lines 4–8, we generate GF-ACGs for submultipliers in the N . Function

“GenSubMult” obtains a GF-ACG G
(N)
σφ+φ̂ for a submultiplier to calculate a partial product aφbφ̂.

This function can be implemented using Algorithm 4.2. In Lines 9–19, we generate adders in the

L. Functions “GenAdderL0(m, o0, o1)” and “GenAdderL1(m,x, y)” obtain GF-ACGs G(L)
k for

adders that calculate ao0bo1 + ao0bo0 + ao1bo0 and ao0bo1 + ao1bo0 , respectively, where o0 and

o1 are integers. An adder in the L has two input shares of a and b. Therefore, the d outputs are

dependent on at most 2d input shares, which indicates that the L would be satisfied with the dth-

order noncompleteness. The GF adders are easily synthesized because they consist of bit-parallel

XORs. In Lines 20–22, we generate adders in the R and registers for the outputs of the R. Func-

tion “GenAdderR” obtains a GF-ACG G
(R)
φ for adders to compute rφ′ = lφ′ + zφ′+1 + zφ′+2,

and a register to store rφ′ . Lines 23–25 generate adders in the C. Function “GenAdderC” obtains

a GF-ACG G
(C)
φ for adders to compute cφ =

∑d−1
e=0 rφd+e. Lastly, function “GenGMSMult” in

Line 26 generates a GF-ACG G0 for the GMS-based multiplier, where G(N), G(L), G(R), and

G(C) denote the sets of all G(N)
σφ+φ̂, G(L)

φ′ , G(R)
φ′ , and G

(C)
φ , respectively.

4.4 Automatic generation of DPA-resistant GF (2m) multipliers based on GMS 115

Algorithm 4.3 GF-ACG synthesis
Input: Irreducible polynomial IP , GMS-order d
Output: GF-ACG G0 = (N0,E0)

1: function GF-ACGSYNTHESIS(IP, d)
2: int m← DegreeOf(IP);
3: int σ ← 2d + 1; int σ′ ← d(2d + 1);
4: for φ from 0 to σ − 1 do
5: for φ̂ from 0 to σ − 1 do
6: G

(N)
σφ+φ̂ ← GenSubMult(m,φ, φ′, IP);

7: end for
8: end for
9: for φ from 1 to σ − 2 do

10: G(L)
σφ ← GenAdderL0(m,φ, 0);

11: for φ̂ from 1 to φ− 1 do
12: G

(L)
σφ+φ̂ ← GenAdderL1(m,φ, φ̂);

13: end for
14: end for
15: G

(L)

σ′−σ
← GenAdderL0(m, 0, σ − 1);

16: G
(L)

σ′−σ+1
← GenAdderL0(m,σ − 1, 1);

17: for φ̂ from 2 to σ − 2 do
18: G

(L)

σ′−σ+φ̂+1
← GenAdderL1(m,σ − 1, φ̂);

19: end for
20: for φ′ from 0 to σ′ − 1 do
21: G

(R)

φ′ ← GenAdderR(m,φ′);

22: end for
23: for φ from 0 to σ − 1 do
24: G(C)

φ ← GenAdderC(m,φ);
25: end for
26: G0 ← GenGMSMult(G(N), G(L), G(R), G(C));
27: return G0;
28: end function

Algorithm 4.4 Correctness checking for multiplier
Input: A GF-ACG G0 = (N0,E0)

Output: Verifcation result res ∈ {true, false}
1: function CHECKCORRECTNESS(n0 = (F 0, G1) ∈ N)
2: Bool result← true;
3: set M ← {c− ab};
4: set T ←MaskingRelation(E0);
5: set G← F 0 ∪ T ;
6: set GB ← GröbnerBasisOf(G);
7: res← res & IsIdealMember(M ,GB);
8: return res;
9: end function

4.4.4 Functional verification and GMS property checking

The functionality of synthesized GF-ACG code is verified by algorithms in Chapter 3. In ad-

dition, in this dissertation, we present a novel formal method for checking whether the GF-ACG

116 4 Automatic Generation System for Cryptographic Hardware

Algorithm 4.5 Noncompleteness checking
Input: A GF-ACG G1 = (N1,E1), Order d
Output: Veirifcation res ∈ {true, false}
1: function CHECKNONCOMPLETENESS(G1)
2: set U ← ∅; set S ← ∅;
3: int σ′ ← d(2d + 1); Bool res← true;
4: for all (F ′

in, G
′
in) ∈ N1 do

5: S ← S ∪ F ′
in;

6: end for
7: set GB ← GröbnerBasisOf(S);
8: for φ′ from 0 to σ′ − 1 do
9: if ExtractPolyWithHT(rk,GB) = ∅ then

10: res← res & false;
11: else
12: U ← U∪ExtractPolyWithHT(rφ′ ,GB);
13: end if
14: end for
15: set V ← CombinationsOfPolyIn(U , d);
16: for all v ∈ V do
17: if v contains all input shares then
18: res← res & false;
19: end if
20: end for
21: return res;
22: end function

satisfies the GMS properties. Algorithm 4.4 checks the correctness property of GF-ACG for a

GMS-based multiplier. The algorithm focuses on the relation between the secret variable a and

its shares aφ. (Other variables b and c can also be handled similarly.) In other words, since the

correctness of multiplication indicates that the secret variables a, b, and c meet c = a×b, the algo-

rithm verifies whether c = a×b is derived from the equation of the internal structure, a =
∑

φ aφ,

b =
∑

φ̂ bφ̂, and c =
∑

φ cφ, Function “MaskingRelation” in Line 4 derives the above equation

representing the relation between secret variable and its shares from the set of edges. Then, the

equivalence checking can be performed by means of GB and polynomial reduction in Lines 6 and

7, respectively. Algorithm 4.4 is less time consuming than the functional verification of GF-ACG

because the computation of GB, which is a time-consuming procedure, is required only once. In

addition, the proposed method can handle a reduced number of variables for computing GB owing

to a hierarchical GF-ACG description.

Algorithm 4.5 verifies the dth-order noncompleteness by checking whether any d output shares

from the R (i.e., r0, r1, . . . , rσ′−1) are independent of at least one input share (i.e., aφ or bφ′).

Noncompleteness can be checked with a symbolic manipulation after a formula manipulation be-

cause a GF-ACG represents the relation of input, output, and intermediate variables by GF equa-

tions. More precisely, we first compute the relationship between rφ′ and input shares. In Lines

4.4 Automatic generation of DPA-resistant GF (2m) multipliers based on GMS 117

3–5, we generate a polynomial set S that contains all the functional assertions of internal nodes

for the GMS-based multiplier. Set S represents its function with intermediate variables pφ,φ̂, lφ′ ,

and rφ′ . In Line 6, we compute the Gröbner basis corresponding to S with a lexicographical

order ⪯ induced by aφ ⪯ bφ̂ ⪯ zφ′ ⪯ rφ′ ⪯ pφ,φ̂ ⪯ lφ′ ⪯ cφ. Thus, in Lines 8–14, we can

obtain the relationship between rφ′ and input shares in accordance with the elimination theorem,

where the function “ExtractPolyWithHT(rφ′ ,GB)” extracts a polynomial whose head term is

rφ′ in GB. If we fail to extract such a polynomial the GF-ACG is not satisfied with the dth-order

noncompleteness. In Line 15, we create a set V including all d-combinations of polynomials in

U , where each element is a set of d polynomials. Set V has
(
d(2d+1)

d

)
sets because V consists of

σ′ (= d(2d+1)) polynomials according to the number of outputs of the R layer. In Lines 16–20,

we check if each element (i.e., set) v of V does not contain all input shares. The time or memory

complexity of Alg. 4.5 increases at least proportionally to the factorial of d because d(2d + 1)

elements have to be examined.

Finally, we can easily verify the uniformity by looking at the R because an R can guarantee

uniformity.

4.4.5 Experimental generation

The performance of the proposed system is demonstrated through experimental generations of

GMS-based multipliers. We measured the processing time of each step in Fig. 4.1 by generating

GMS-based Mastrovito multipliers for different extension degrees m (= 8, 16, 32, 64, 128, and

256) and GMS orders d (1 ≤ d ≤ 5).

Table 4.9 shows the experimental result. Note that the conventional logic simulation cannot

verify even the smallest multiplier (i.e., when m = 8 and d = 1) because its total input size

is 72 bits (including fresh masks for the R layer). When d ≤ 4, our system could generate

all the multipliers including the 256-bit ones within 8 min. In the experiment, the verification

time was given by O(m2) because the number of nodes in the GMS-based multiplier increased

proportionally to m2, and each node was verified in less than 1 s. Because the time for functional

verification dominated the total generation time, we could significantly reduce it using GF-ACG.

On the other hand, when d ≥ 5, the GMS-property checking dominated the generation time.

This is because the computation time of noncompleteness checking by Alg. 4.5 increases at least

proportionally to the factorial of d. However, we confirmed that the proposed system successfully

generated such a huge multiplier with m = 256 and d = 5 in only 15 min.

118 4 Automatic Generation System for Cryptographic Hardware

Table
4.9

G
eneration

tim
e

ofG
M

S-based
G

F
m

ultipliers
(s)

E
xtension

degree
m

8
16

32

G
M

S
order

d
1

2
3

4
5

1
2

3
4

5
1

2
3

4
5

G
F-A

C
G

synthesis
0.07

0.07
0.07

0.07
0.08

0.09
0.09

0.09
0.09

0.10
0.16

0.15
0.16

0.16
0.16

Functionalverification
2.97

3.18
3.24

3.67
4.44

4.53
4.73

4.81
5.28

6.22
8.19

8.41
8.49

8.94
9.96

Property
checking

0.18
0.18

0.23
4.17

331.96
0.18

0.18
0.24

3.89
330.02

0.18
0.19

0.24
4.11

330.61

G
F-A

C
G

to
H

D
L

0.01
0.01

0.01
0.01

0.01
0.03

0.03
0.03

0.03
0.03

0.14
0.14

0.14
0.15

0.15

Total
3.23

3.43
3.56

7.92
336.50

4.82
5.03

5.17
9.29

336.36
8.67

8.90
9.03

13.36
340.88

E
xtension

degree
m

64
128

256

G
M

S
order

d
1

2
3

4
5

1
2

3
4

5
1

2
3

4
5

G
F-A

C
G

synthesis
0.41

0.41
0.41

0.41
0.42

1.48
1.49

1.49
1.50

1.50
5.95

5.94
5.92

5.94
6.02

Functionalverification
18.40

18.87
19.01

19.28
21.32

63.76
63.92

64.33
64.94

69.73
405.29

406.63
406.21

407.29
426.09

Property
checking

0.19
0.20

0.26
4.03

336.20
0.24

0.24
0.30

3.93
364.15

0.41
0.42

0.48
5.70

406.74

G
F-A

C
G

to
H

D
L

0.83
0.85

0.85
0.83

0.85
5.67

5.69
5.63

5.66
5.66

44.71
44.91

44.96
45.17

46.34

Total
19.83

20.33
20.53

24.56
358.78

71.16
71.34

71.76
76.03

441.04
456.35

457.91
457.57

464.10
885.19

4.5 Conclusion 119

4.4.6 Discussion

The result shows that functional verification occupies a large portion of the generation time

when d ≤ 4, which indicates that the limitation of our system is determined by functional verifi-

cation. Thus, we can significantly reduce the generation time by employing fast formal verification

based on GF-ACG, as discussed in Section 3.4.1.

A discussion point of importance is the applicability of our method. For example, a GF (2128)

multiplier is used in AES-GCM. Because the multiplication can be targeted by a side-channel

attacker [12], there is a high demand for designing tamper-resistant multipliers for AES-GCM,

which can be efficiently generated by our system as shown in Table 4.9. In addition, we could

generate larger multipliers such as m = 233 and m = 283 that can be used in elliptic curve

cryptography, which indicates that our system is also useful for designing tamper-resistant elliptic

curve cryptographic processors.

Our system supports GMS-based multipliers whose order is not greater than five. However, the

DPA order discussed in many literatures (e.g., [91]) is at most five. As the DPA order increases,

attackers find retrieving the key more difficult because of noise. Until now, DPA-leakages have

been evaluated with at most fifth-order even in a state-of-the-art laboratory setting [91]. Owing to

the abovementioned reasons, the proposed system would be considerably useful in many practical

or commercial devices considering tamper-resistance.

Finally, it was shown that side-channel-resistant circuits based on dth-order GMS could be con-

structed with d+1 shares at minimum, which would be useful for designing more compact circuits

than conventional ones with dt+1 shares [39]. Our system would be extended to multipliers with

d + 1 shares, while our system would easily synthesize and verify the multipliers in the manner

similar to the above.

4.5 Conclusion
This chapter presented an automatic generation system of GF arithmetic circuits for crypto-

graphic hardware. Since the system generates verified HDL description from design specifica-

tions, the generated HDL can be used in the conventional EDA tools. Thus, the system can be

considered as an implementation and interface of the proposed formal design methodology, and

unifies the proposed methodology and conventional EDA tools. As a result of experimental gener-

ation, we confirmed that the system can generate more than 10,000 GF multipliers including large

ones such as fifth-order GMS-based GF (2256) multipliers in a practical time. This indicates that

our system is useful for designing (DPA-resistant) cryptographic hardware (e.g., AES-GCM and

PBC).

121

5
Design of Efficient AES

Hardware

5.1 Introduction
This chapter designs highly efficient AES hardware in order to demonstrate the significance

of redundant GF arithmetic, higher-degree functions, logic-level optimization, and pipelining in

designing cryptographic hardware. First, we design an efficient GF (28) inversion circuit and

AES S-box based on a combination of redundant and non-redundant GF arithmetic. We then

design an efficient AES hardware that supports both encryption and decryption. The functional

assertion of proposed architecture is given as higher-degree functions because of optimizations to

compress encryption and decryption datapaths. Moreover, we design an efficient DPA-resistant

AES hardware based on GMS. The performance of the architectures designed in this chapter

are evaluated through logic synthesis and gate-level timing simulation for power estimation in

comparison with the conventional ones. As a result, our architectures have approximately 20–

50% higher area-time efficiency than the conventional best ones.

122 5 Design of Efficient AES Hardware

5.2 Efficient GF (28) inversion circuit and AES S-box
5.2.1 Overview

Inversion functions over GF (2m) are known as a useful component for m-bit substitution func-

tions [108]. Therefore, for modern ciphers, the substitution function based on GF (28) inversion is

one of the most integral parts to be resistant against major cryptanalytic techniques such as differ-

ential and linear cryptanalyses [15,88]. Many ISO/IEC standard ciphers (e.g., AES and Camellia)

employ an inversion function over GF (28) in substitution functions [7, 100]. For example, Sub-

Bytes of AES consists of an inversion over GF (28) (i.e., S-box) and an affine transformation over

GF (2). The hardware performance of such ciphers heavily depends on the inversion circuits used.

As a result of the explosive increase in resource-constrained devices in the context of Internet of

Things (IoT) applications, there is currently substantial demand for lightweight implementation

of inversion functions.

Many approaches to reducing the hardware cost of GF (28) inversion circuits have been pro-

posed. While it has been shown that direct mapping-based approaches (e.g., table-lookup, PPRM,

and BDD [96,97,125]) are useful for low-latency implementation, the tower field approach, which

calculates a−1 (= a254) (a ∈ GF (28)) using the equivalent tower field, is a promising approach

for achieving the compact and efficient implementation. This technique converts the original field

GF (28) into a tower field such as GF (((22)2)2) and GF ((24)2) in the middle of the inversion.

Researchers have previously shown that the tower field approach is efficient because the subfields

GF ((22)2) and GF (24) operations are designed more compactly than the original field opera-

tions. Satoh et al. [127] were the first to present a compact implementation of the AES S-box by

the tower field GF (((22)2)2) represented by PBs. Canright [33] further reduced the gate count

of the AES S-box using NBs and optimizing the isomorphic mappings. Canright’s implementa-

tion was the smallest for a long time. Nogami et al. [105] recently mixed polynomial and normal

bases to achieve the most efficient implementation. They showed that the product of gate count

and critical delay for the inversion circuit could be reduced by the Mixed Bases (MB). Some im-

plementations using GF ((24)2) have also been proposed by researchers such as Rudra et al. [123]

and Jeon et al. [67], who presented PB-based GF ((24)2) inversion circuit designs. These results

suggest that such field representations have a significant impact on hardware performance. In ad-

dition, while the aforementioned ones are based on non-redundant representations, Wu et al. [144]

and Nekado et al. [101] showed that RRB-based designs were useful for designing efficient inver-

sion circuits.

This dissertation presents a technique in which non-redundant and redundant GF arithmetic are

combined to achieve a compact and efficient GF (28) inversion circuit design. The key idea un-

5.2 Efficient GF (28) inversion circuit and AES S-box 123

Mul.

νSqr.

Inv.a a
-1

µ
2

Mul.

Mul.

h

l

Stage 1 Stage 2 Stage 3

Add.

Add.

Fig. 5.1 Inversion circuit over GF (((22)2)2) in [33] (Same as Fig. 3.16).

derlying the proposed circuit is calculation of the inversion of the tower field GF ((24)2) by the

NB, PRR, and RRB combination. The former part for the 16th and 17th powers of the input is

calculated by an NB with a symmetric property. This is followed by calculation of the latter parts

for GF (24) inversion and GF (24) multiplication by PRR and RRB, respectively. The mapping

from NB to PRR/RRB is efficiently implemented by the symmetric property of the NB. The effi-

cacy of the proposed circuit is evaluated by means of gate counts and logic synthesis results using

a TSMC 65-nm CMOS standard cell library. The proposed circuit is approximately 25% higher

efficiency (i.e., area-time product) excluding isomorphic mappings than any other conventional

circuits, including those with the tower field GF (((22)2)2). In addition, the flexibility of redun-

dant representations in the proposed circuit enables it to have the best efficiency even including

isomorphic mappings from/to GF (28). To the best of our knowledge, the proposed circuit is the

most efficient tower field arithmetic-based implementation for the AES S-box.

In the following, we fisrt review the tower-field GF (28) inversion circuits based on Itoh-Tsujii

Algorithm (ITA). Then, we show the proposed tower-field inversion circuits and their performance

evaluation by logic synthesis in comparison with the conventional ones. In addition, we apply the

proposed inversion circuit to AES S-box design.

5.2.2 Related works

This section briefly describes previous work on the design of GF (28) inversion circuits based

on tower field arithmetic. The inverse element of a non zero a ∈ GF (28) is given by a−1 = a254

because any non zero element of GF (28) satisfies a = a256. (The inverse element of zero is

usually defined to be zero for common cryptographic applications.) The basic idea underlying

the tower field approach is reduction of hardware cost by exploiting smaller arithmetic operations

over subfield GF ((22)2) or GF (24) instead of GF (28). There is a one-to-one mapping (i.e., an

isomorphism) between the elements of GF (28) and those of the tower field. This GF inversion

over a tower field is efficiently implemented in the Itoh-Tsujii Algorithm (ITA) [66].

124 5 Design of Efficient AES Hardware

Figure 5.1 illustrates a GF (28) inversion circuit presented in [33], where the datapath is di-

vided into upper and lower 4 bits and each component denotes an arithmetic circuit over subfield

GF ((22)2). Let a ∈ GF (((22)2)2) be the input given by hα16 + lα in an NB {α16, α}, where

h and l (∈ GF ((22)2)) are respectively the upper and lower 4 bits of a, and α is a root of a

second degree irreducible polynomial over GF ((22)2) (i.e., a modular polynomial for extend-

ing GF ((22)2) to GF (((22)2)2)). The inversion of a is calculated in the following three stages:

(1) Calculation of the 16th and 17th powers, (2) Subfield inversion, and (3) Final multiplication.

Note that the above GF ((22)2) operators are replaced with the GF (24) operators in the case of

the tower field GF ((24)2).

The performance of this inversion circuit depends on the tower field and its basis representation.

Three of the best known circuit structures are based on the tower field of GF (((22)2)2). Satoh

et al. first designed this kind of GF (((22)2)2) inversion circuit using PB [127]. Canright then

designed a more compact circuit based on NB [33]. The hardware cost of inversion and expo-

nentiation operations can be reduced by NB because the squaring operation is performed solely

by wiring. Nogami et al. presented the possibility of MB, which employs both polynomial and

normal bases for the input and output data, respectively [105]. Their method exhibited improved

performance in the product of gate count and critical delay for the GF (((22)2)2) inversion circuit

and the AES S-box, including isomorphic mappings. In addition to GF (((22)2)2), it is possible

to design efficient inversion circuits using another tower field of GF ((24)2). Rudra et al. [123]

and Jeon et al. [67] designed GF ((24)2) inversion circuits based on PB with smaller critical delay

than those of GF (((22)2)2) inversion circuits.

5.2.3 Proposed GF (28) inversion circuit

This section presents our proposed GF (28) inversion circuit that takes full advantage of the

above redundant GF arithmetic. The important ideas are to employ the tower field GF ((24)2)

inside the circuit and perform the subfield (i.e., GF (24)) operations using redundant GF arith-

metic. We introduce PRR for the GF (24) inversion because we can exploit a modular polyno-

mial, P (x) = x5 + 1, thanks to the irreducible fourth degree AOP. We also introduce RRB for

the GF (24) multiplication. In addition, we employ an NB for the input in order to exploit the

Frobenius mapping feature, which performs the 16th power of input solely by wiring.

In accordance with ITA, our inversion circuit consists of three stages, as shown in Fig. 5.1.

Here, we represent the inputs of Stages 1, 2, and 3 by NB, PRR, and RRB, respectively. In

particular, we employ an NB that has a symmetric property, which makes it possible to convert

the elements from NB to PRR without increasing the circuit delay.

Figure 5.12 shows a block diagram of our proposed circuit, where components H,L, and F

5.2 Efficient GF (28) inversion circuit and AES S-box 125

L

H
Stage 3

F

Stage 2

(GF(24)

inversion)

-1

h

l

h'

l'

NBtoRRB

NBtoRRB

Stage 1

Stage 3

Fig. 5.2 Proposed inversion circuit.

respectively calculate Hi,j , Li,j , and Fi′,j′ described in the following. When input a is represented

by hα16 + lα, components NB2RRB convert h and l from NB to RRB solely by wiring. Note

that H and L are shared with Stages 1 and 3. The stages in the proposed circuit are designed as

follows:

1. Calculation of the 16th and 17th powers
Stage 1 performs the 16th and 17th powers of input, where input a is given by NB, and outputs

a16 and a17 are given by RRB and PRR, respectively. Let α be a root of a second degree irre-

ducible polynomial over GF (24). The irreducible polynomial is given by α2 + µα + ν, where

µ and ν are the constants of GF (24). When input a is represented by a = hα16 + lα in an NB

{α16, α}, a16 and a17 are respectively given by

a16 = lα16 + hα, (5.1)

a17 = hlµ2 + (h+ l)2ν. (5.2)

Eq. 5.1 indicates that a16 is performed by twisting wires.

The isomorphic mapping from NB to RRB does not require any additional gates because the

NB (e.g., {β4, β3, β2, β1}) can be considered as a reduced version of RRB (e.g., {β4, β3, β2, β1,

β0}) with the identical root of the 4th degree AOP. Conversely, the isomorphic mapping from

NB to PRR requires some gates. However, the symmetric property of the NB used in our circuit

provides a mapping that does not increase the circuit delay.

Let us now look at the isomorphic mapping from NB to PRR. Here, an isomorphic mapping

is represented by z′ = Γ(z), where an element z in one GF representation is converted into an

element z′ in another GF representation. In the binary vector form, the output z′ is obtained

from the product of a conversion matrix γ and the transposed input (i.e., z′ = γzT) when the

conversion matrix γ represents the isomorphism Γ. The PRR-based GF (24) is given with the

modular polynomial P (x) = x5 + 1 (G(x) = x+ 1 and H(x) = x4 + x3 + x2 + x+ 1) and the

126 5 Design of Efficient AES Hardware

conversion matrix from NB to PRR is as follows:

ϕ =

1 1 1 1

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

, (5.3)

where the least significant bits are in the upper left corner. (See Appendix for an explanation of

how to obtain the matrix.) Let d (= d4x
4 + d3x

3 + · · · + d0) be the output of Stage 1 (i.e.,

the 17th power of input in PRR), where d0, d1, . . . , and d4 are the elements of GF (2). The

output is provided by applying the isomorphism Φ from NB to PRR to a17 (i.e., the product of

the conversion matrix ϕ and the transposed vector form of a17). However, the multiplication of

ϕ and the output of Eq. 5.2 requires an additional circuit with 2TX delay if the multiplication is

performed explicitly. To avoid such additional circuit, we derive another output equation from Eq.

5.2 as follows:

d = Φ(hlµ2 + (h+ l)2ν)

= Φ(µ2(hl)) + Φ(ν((h+ l)2))

= Φ′(hl) + Φ′′((h+ l)2), (5.4)

where Φ′ and Φ′′ are the linear functions obtained by merging Φ with the constant multiplications

of µ2 and ν, respectively. Note that constant multiplications over GF can also be given as linear

functions represented by conversion matrices. When µ = β4+β and ν = β, the resulting matrices

ϕ′ and ϕ′′ representing respectively Φ′ and Φ′′ are given as

ϕ′ =

0 1 1 0

0 0 1 1

0 0 0 1

1 0 0 0

1 1 0 0

, ϕ′′ =

1 1 1 0

1 1 1 1

0 1 1 1

1 0 1 1

1 1 0 1

, (5.5)

where the least significant bits are in the upper left corners.
To design the circuit defined by Eq. 5.4, we exploit an NB with the symmetric property that h

and l are given by h = h4β
4 + h3β

3 + h2β
2 + h1β and l = l4β

4 + l3β
3 + l2β

2 + l1β with a
common NB {β4, β3, β2, β1}, where h1, . . . , h4 and l1, . . . , l4 are the elements of GF (2) *1. As

*1 The notation of bases in the NB is frequently given by (β23 , β22 , β21 , β20) = (β3, β4, β2, β1). In this subsec-

tion, we employ the notation (β4, β3, β2, β1) to simplify the correspondence between the NB and PRR/RRB.

5.2 Efficient GF (28) inversion circuit and AES S-box 127

a result, the outputs d0, d1, . . . , and d4 are given by

d0 = (h1l2 + h2l1 + h3l4 + h4l3 + h1l1 + h4l4) + (h1 + l1 + h3 + l3 + h4 + l4), (5.6)

d1 = (h1l2 + h2l1 + h1l3 + h3l1 + h2l2 + h4l4) + (h1 + l1 + h2 + l2 + h3 + l3 + h4 + l4), (5.7)

d2 = (h1l3 + h3l1 + h1l4 + h4l1 + h2l3 + h3l2 + h2l2) + (h1 + l1 + h2 + l2 + h4 + l4), (5.8)

d3 = (h1l4 + h4l1 + h2l3 + h3l2 + h2l4 + h4l2 + h3l3) + (h2 + l2 + h3 + l3 + h4 + l4), (5.9)

d4 = (h2l4 + h4l2 + h3l4 + h4l3 + h1l1 + h3l3) + (h1 + l1 + h2 + l2 + h3 + l3), (5.10)

respectively. Here, the symmetric property enables us to factor Eqs. 5.6–5.10 as follows:

d0 = H1,2 ∨ L1,2 +H3,4 ∨ L3,4 + h2 ∨ l2 + h3l3, (5.11)

d1 = H1,2 ∨ L1,2 +H1,3L1,3 + h3 ∨ l3 + h4 ∨ l4, (5.12)

d2 = H1,3 ∨ L1,3 +H1,4L1,4 +H2,3 ∨ L2,3 + h4 ∨ l4, (5.13)

d3 = H1,4 ∨ L1,4 +H2,3 ∨ L2,3 +H2,4L2,4 + h1 ∨ l1, (5.14)

d4 = H2,4 ∨ L2,4 +H3,4 ∨ L3,4 + h1 ∨ l1 + h2l2, (5.15)

where Hi,j = hi + hj , Li,j = li + lj (1 ≤ i < j ≤ 4), and ∨ denotes the OR operator (i.e.,

a ∨ b = a+ b+ ab). The component denoted by Stage 1 in Fig. 5.12 performs the computations

corresponding to Eqs. 5.11–5.15. Therefore, the proposed Stage 1 is performed with only TA +

3TX (or TO + 3TX) delay, whereas conventional GF (((22)2)2) inversion implementations are

performed with at least 6TX delay, where TA, TO, and TX denote the delays of the AND, OR,

and XOR gates, respectively.

2. Subfield inversion
Stage 2 performs the inversion over the subfield GF (24), where the input and output are given

by PRR and RRB, respectively. We first describe the architecture of the PRR-based GF (24)

inversion, and then show the isomorphic mapping from PRR to RRB below.

The inversion over GF (24) is performed by the 14th power of the input. The input (i.e., the

output of Stage 1) d (= d4x
4+d3x

3+ · · ·+d0) is given as an element of the PRR-based GF (24).

The input is satisfied with the condition (called the linear recurrence relation) d0+d1+d2+d3+

d4 = 0 *2 because it is equivalent to the codeword of a CRC generated by G(x) (= x + 1),

which makes it possible to perform the exponentiation by bit-wise operations over the PRR-based

GF (24) in an efficient manner.

*2 The linear recurrence relation is used for error detection in CRC. A polynomial is a codeword of a CRC iff the

relation is satisfied.

128 5 Design of Efficient AES Hardware

Let e (= e4x
4 + e3x

3 + · · ·+ e0) be the inverse element of d in PRR, where e0, e1, . . . , and e4

are the elements of GF (2). Using the linear recurrence relation, we can derive e0, e1, . . . , and e4

as follows:

e0 = (d1 ∨ d4)(d2 ∨ d3), (5.16)

e1 = ((d4 + 1)(d1 + d2)) ∨ (d0d4(d2 ∨ d3)), (5.17)

e2 = ((d3 + 1)(d2 + d4)) ∨ (d0d3(d1 ∨ d4)), (5.18)

e3 = ((d2 + 1)(d1 + d3)) ∨ (d0d2(d1 ∨ d4)), (5.19)

e4 = ((d1 + 1)(d3 + d4)) ∨ (d0d1(d2 ∨ d3)). (5.20)

According to Eqs. 5.16–5.20, the proposed Stage 2 requires TA + TO + TX delay, whereas

the conventional structures [33, 101, 105, 127] require at least TA + 3TX . Note that when the

multiplicative unit element E(x) (= x4 + x3 + x2 + x) is given as the input, the output becomes

not E(x) but 1. However, the output is acceptable in Stage 3 (i.e., GF (24) multiplication) because

both E(x) and 1 are the idempotent elements in the residue ring modulo P (x).

Let us now look at the PRR-to-RRB mapping. To provide it uniquely, we focus on the definition

of PRR in [47], in which the mapping Ψ from PRR defined by x to another representation defined

by β is isomorphism. According to [60], the change-of-basis from PRR can be performed by

substituting a root of H(x) (i.e., β) to elememts. Let f = f4β
4 + f3β

3 + · · ·+ f0 be the output

of Stage 2 in RRB, where f0, f1, . . . , and f4 are elements of GF (2). The output can be given by

f = Ψ(e) = e4β
4 + e3β

3 + e2β
2 + e1β + e0,

because the RRB is defined using H(x). This means that the PRR-to-RRB mapping is performed

without any additional circuit, assuming that f0 = e0, . . . , and f4 = e4. As a result, the PRR-

based design provides inversion and isomorphic mapping with fewer logic gates.

3. Final multiplication
Stage 3 generates the final output using two GF (24) multiplication operations, where both the

inputs and output are given by RRB. As stated above, the RRB-based GF (24) multiplier is known

to be one of the most efficient multipliers [101].

Let h′ (= h′4β
4 + h′3β

3 + · · ·+ h′0) be the upper 5 bits of the final output a−1 in RRB, where

h′0, h
′
1, . . . , and h′4 are the elements of GF (2). Multiplying f and l, we can calculate elements

5.2 Efficient GF (28) inversion circuit and AES S-box 129

h′0, h
′
1, . . . , and h′4 as follows:

h′0 = L1,4F1,4 + L2,3F2,3, (5.21)

h′1 = l1F0,1 + L2,4F2,4, (5.22)

h′2 = l2F0,2 + L3,4F3,4, (5.23)

h′3 = l3F0,3 + L1,2F1,2, (5.24)

h′4 = l4F0,4 + L1,3F1,3, (5.25)

where Fi′,j′ denotes fi′ + fj′ (0 ≤ i′ < j′ ≤ 4). The lower five bits of a−1 (denoted by l′) are

also obtained in the same manner as in Eqs. 5.21–5.25. The component denoted by Stage 3 in Fig.

5.12 performs the computations corresponding to Eqs. 5.21–5.25. Note here that the calculations

for Fi′,j′ can be shared within Stage 3. As a result, the number of circuit components for the two

multipliers in Stage 3 is reduced.

The above inversion circuit achieves the shortest critical delay among tower field inversion

circuits as evaluated in Section 4. In the following, we describe a variation of the proposed circuit

with a smaller critical delay at the cost of a slight area overhead. We focus on Stage 2 and Fi′,j′

computation prior to Stage 3. Since Stage 2 is given by one-to-one mapping and Fi′,j′ is computed

by XORing the output of Stage 2, we can unify Stage 2 and Fi′,j′ computation by deriving Fi′,j′

directly from d0, d1, . . . , and d4 as follows:

F0,1 = d2(d1d3 + 1) + d0d1 + d3d4, (5.26)

F0,2 = d4(d1d2 + 1) + d0d2 + d1d3, (5.27)

F0,3 = d1(d3d4 + 1) + d0d3 + d2d4, (5.28)

F0,4 = d3(d2d4 + 1) + d0d4 + d1d2, (5.29)

F1,2 = d1(d0d2 + 1) + d0d4 + d2d3, (5.30)

F1,3 = d3(d0d1 + 1) + d0d2 + d1d4, (5.31)

F1,4 = d0(d2d3 + 1) + d1d3 + d2d4, (5.32)

F2,3 = d0(d1d4 + 1) + d1d2 + d3d4, (5.33)

F2,4 = d2(d0d4 + 1) + d0d3 + d1d4, (5.34)

F3,4 = d4(d0d3 + 1) + d0d1 + d2d3. (5.35)

The above computation for each Fi′,j′ requires TA + 2TX delay while the critical delay of the

original circuit in Fig. 5.12 requires TA + TO + 2TX . Thus, we can further reduce the critical

delay of the inversion circuit at the expense of a few additional gates.

130 5 Design of Efficient AES Hardware

Table 5.1 Critical delay and gate count of inversion circuits over tower fields

Field
Representation

Gate count Critical delay
Tower field Intermediate field

Satoh et al. [127] GF (((22)2)2) PB PB (30, 0, 96, 0, 0, 6, 0) 4TA + 17TX

Canright [33] GF (((22)2)2) NB NB (0, 0, 56, 0, 0, 34, 6) 4TA + 15TX

Nogami et al. [105] GF (((22)2)2) PB and NB PB and NB (36, 0, 95, 0, 0, 0, 0) 4TA + 14TX

Rudra et al. [123] GF ((24)2) PB PB (60, 0, 72, 0, 0, 0, 0) 4TA + 10TX

Jeon et al. [67] GF ((24)2) PB PB (58, 2, 67, 0, 0, 0, 0) 4TA + 10TX

Nekado et al. [101] GF ((24)2) NB RRB (42, 0, 68, 2, 0, 0, 0) 4TA + 7TX

This study (low-power) GF ((24)2) NB NB, PRR, and RRB (38, 16, 51, 0, 4, 0, 0) 3TA + TO + 6TX

This study (high-speed) GF ((24)2) NB NB, RR, and RRB (45, 10, 57, 0, 10, 0, 0) 3TA + 6TX

5.2.4 Performance evaluation

Table 5.1 shows the circuit delay and gate count of the proposed inversion circuit, where

(g0, g1, g2, g3, g4, g5, g6) in the Gate count column respectively indicate the number of AND,

OR, XOR, XNOR, NOT, NAND and NOR gates, and Representation indicates the GF represen-

tation(s) used in the circuit. In the Representation column, “Tower field of GF (28)” and “In-

termediate field” denote the representations for GF (((22)2)2) or GF ((24)2) and GF ((22)2) or

GF (24), respectively. “This study (low-power)” denotes the inversion circuit in Fig. 5.12, and

“This study (high-speed)” denotes the circuit where Stage 2 and Fi′,j′ computation are unified as

described in the last paragraph of Section 3. For comparison, Tab. 5.1 also shows those of the

conventional inversion circuits. The critical delay of all the conventional ones were given by refer-

ence to [101]. On the other hand, the gate counts of the conventional ones were individually given

because there was no single reference data covering all of them. The gate count of [33] was given

from the original paper, that of [127] was given from a public source code by the authors [139],

and those of [67, 101, 123]*3 were given by reference to [101]. The gate count of [105] was given

from a straightforward structure designed by us according to [105] since there was neither public

data nor source code.

The critical paths of Stages 1, 2, and 3 in the proposed circuit require TA+3TX , TA+TO+TX ,

and TA + 2TX delay, respectively. In our high-speed version, that of Stages 2 and 3 is at most

3TA+2TX . As a result, the total delay of our inversion circuit is 3TA+TO+6TX (or 3TA+6TX),

which is the fastest compared with the other inversion circuits. The gate count in “This study

(high-speed)” is smaller or comparable to the conventional ones because the number of additional

*3 The paper [123] focused on efficinet software implementation of AES. However, in the paper, tower-field arithmetic

and bit-slicing techniques were used for implementing GF (28) inversion on software. In other words, they first

proposed a tower-field GF (28) inversion circuit (i.e., hardware implementation) and then proposed a software

implementation based on the circuit. Note that the authors in [123] mentioned that their technique could be applied

to both hardware and software implementation. Thus, we can compare the performance of the proposed circuit

with that of [123] according to its circuit description.

5.2 Efficient GF (28) inversion circuit and AES S-box 131

Table 5.2 Performance evaluation of inversion circuits over tower fields
Area Time Power Area-Time Power-Time
[GE] [ns] [µW] product product

Satoh et al. [127] 210.50 3.02 38.0 635.72 114.76

Canright [33] 178.00 2.92 38.6 519.75 112.71

Nogami et al. [105] 291.50 3.67 70.9 1,069.81 260.20

Rudra et al. [123] 219.00 2.32 35.6 508.08 82.59

Jeon et al. [67] 221.25 2.19 34.1 474.54 72.68

Nekado et al. [101] 204.50 1.89 33.4 386.51 63.13

This study (low-power) 174.75 1.81 20.7 316.30 37.47

This study (high-speed) 187.50 1.55 21.4 290.63 33.17

XOR and XNOR gates due to unification is trivial. In total, the high-speed is more efficient than

any other circuits including our low-power version.

To conduct a detailed evaluation, the above tower-field GF (28) inversion circuits were synthe-

sized using Synopsys Design Compiler with a TSMC 65-nm CMOS standard cell library. Table

5.7 shows the synthesis results, where Area indicates the circuit area estimated based on a two-

way NAND equivalent gate size (i.e., gate equivalents (GE)), Time indicates the circuit delay un-

der the worst-case conditions, Power indicates the power consumption estimated by the dynamic

gate-level simulation-based method*4 at the operation frequency of 100 MHz, and Area-Time

product indicate the product of Area and Time. For the best performance comparison, an area

optimization option (which maximizes the effort of minimizing the number of gates without flat-

tening the description) was applied. Note that the results were consistent even when the following

speed optimization (which searches for the minimum timing without increasing the area obtained

from the prior area optimization) options was applied. The conventional inversion circuits were

also synthesized and evaluated using the same tool, option, and power estimation method. The

source codes of [127] and [33] were obtained from authors’ websites [139] and [35] , respectively.

(Like them, we also applied gate-reduction techniques to our inversion circuit.) The source codes

of [105], [123], [67], and [101] were described by us according to the structures given in the

papers.

Our inversion circuit of low-power version achieved the smallest area although the total gate

count of the proposed circuit was roughly the same as the convetional ones [33, 101]. The less

XOR gates in our circuit would lead to the smaller circuit area because an XOR and XNOR gates

require larger area than a NAND and NOR gate in standard cell libraries. The power consumption

*4 This method performed a timing simulation (or delay simulation) at the gate-level using a set of test input data, and

logged the switching activity of all internal gates. In this subsection, we checked all patterns of circuit inputs and

internal states, and then estimated the circuit power from the simulation log and the cell information of the target

library.

132 5 Design of Efficient AES Hardware

was basically proportional to the circuit area. However, the power consumption of Canright’s

circuit was relatively larger in spite of its small area. This is because Stage 1 of Canright’s circuit

has two paths whose delays are different as shown in Fig. 5.1. Note that the Stage 2 also has such

paths owing to the recursive construction of GF (((22)2)2) inversion. Such difference causes

glitches that usually make the power consumption larger. On the other hand, Satoh’s circuit based

on GF (((22)2)2) had lower power than Canright’s one because the two paths in the Stage 1 (and

2) were compressed in Satoh’s source code. Consequently, we confirmed that the low-power

version of the proposed circuit achieved the smallest area of 174.75 GE, the smaller circuit delay

of 1.81 ns compared with conventional other circuits, and the lowest power consumption of 20.7

µW that was 38% lower than the conventional best. In addition, the high-speed version of the

proposed circuit achieved the smallest critical delay of 1.55 ns, and the area-time product was

24.8% smaller than that of the conventional best circuit, respectively.

5.2.5 Application to AES S-box design

The proposed inversion circuit was efficiently applied to the AES S-box design. The AES S-

box consists of a GF (28) inversion and an affine transformation over GF (2). Here, the GF (28)

is represented in a PB with an irreducible polynomial x8 + x4 + x3 + x + 1. Therefore, a

change-of-basis between GF (28) and GF ((24)2) is required if the inversion over GF ((24)2) is

applied. Figure 5.3 shows an overview of the AES S-box with tower field arithmetic. In an S-

box (Fig. 5.3(a)), the input (in the PB-based GF (28)) is initially mapped to the tower field by

applying an change-of-basis ∆f which is given by an isomorphim. After the inversion operation

over the tower field, the inverse mapping and affine transformation are finally performed in series.

Here, we can merge the inverse mapping into the affine transformation because both of them are

represented in the form of constant matrices over GF (2). The merged mapping is denoted by

∆l. This merging reduces the delay and gate counts. On the other hand, in an inverse S-box (Fig.

5.3(b)), the inverse affine transformation is performed prior to change-of-basis and tower field

inversion. Hence, The inverse affine transformation and change-of-basis are unified as Λf , and

the inverse change-of-basis Λl is solely performed after the tower field inversion.

The matrices for the change-of-basis ∆f and ∆l (Λf and Λl) have an impact on the performance

of S-box. When tower field GF ((24)2) is used, the matrices are defined by the bases of GF (24)

and the defining polynomials for the extension of GF (24) to GF ((24)2). The efficiency of the

two matrices for change-of-basis ∆f and ∆l (Λf and Λl) is determined by the largest Hamming

weight in the columns. For example, if the largest Hamming weight in the columns is four, the

critical path becomes 2TX delay. If it is five, the critical path becomes 3TX delay. Therefore,

the matrices should be selected with a view to minimizing the largest Hamming weight in the

5.2 Efficient GF (28) inversion circuit and AES S-box 133

(a)

(b)

Fig. 5.3 Overview of AES (a) S-box and (b) inverse S-box based on tower field arith-

metic.

f

f

l

l

Fig. 5.4 Typical architecture of unified S-box.

columns.

Some techniques for optimizing change-of-basis between AES field and GF ((24)2) have been

reported in [86, 87, 101]. In [86, 87], an algorithm which searches all construction of isomorphic

mappings from/to PB-based GF ((24)2) was used. In addition, a technique in [101] used More

Miscellaneously Mixed Bases (MMMB) to expand search space of the isomorphim for change-

of-basis by utilizing asymmetric property of input of inversion circuit given by RRB. However,

these technique cannot be applied to our inversion circuits because the irreducible polynomial of

GF (24) should be given by the AOP of degree 4 and the input of inversion circuit should be given

by symmetric NB.

We design a unified S-box that supports both encryption and decryption shown in Fig. 5.4 in

addition to the S-box. There are efficient conversion matrices for either encryption or decryption

in the proposed inversion circuit. However, we found that there is no efficient conversion matrix

for both encryption and decryption in the structure of Fig. 5.4 due to the deficiency of search

space of isomorphim for change-of-basis. Therefore, we introduce a new technique for expanding

the search space. Figure 5.5 illustrates the AES S-box structures with the proposed technique,

134 5 Design of Efficient AES Hardware

(a)

(b)

Fig. 5.5 AES (a) S-box and (b) inverse S-box with proposed technique for optimizing

linear mappings.

where the component “constant multiplication” perform a multiplication over PB-based GF (28)

with a fixed value. The S-box based on tower field arithmetic (denoted by S) is represented by

S(a) = A(Θ′((Θ(a))−1)) + 0x63, where Θ is a change-of-basis from the PB-based GF (28) to

a tower field, Θ′ is its inverse change-of-basis, and A denotes the linear mapping of the affine

transformation. We can rewrite the equation using a non-zero fixed value c (in the PB-based

GF (28)) as follows:

S(a) = A(c(Θ′((Θ(c(a)))−1))) + 0x63.

Because the multiplication with c is a linear mapping, we can unify c and Θ as ∆f , and unify

Θ′, c, and A as ∆l. The fixed value c can take one of 255 elements over GF (28). Thus, we can

increase the variety of conversion matrices by 255 times. The proposed technique can be also

applied to the inverse S-box S′ as follows:

S′(a) = c′(Θ′(((Θ(c′(A′(a)))))−1)) + Θ(c′(0x05)),

where A′ is the linear mapping of the inverse affine transformation and c′ is a non-zero fixed value

for decryption. Note that c and c′ do not need to be equal in general.

With the proposed technique, we successfully found efficient conversion matrices δf , δl, λf ,

and λl respectively for ∆f , ∆l, Λf , and Λl when the GF (24) elements of Stage 1 are represented

in an NB {β4, β3, β2, β1} and the defining polynomial for the extension is given by α2 + (β4 +

5.2 Efficient GF (28) inversion circuit and AES S-box 135

β)α+ β. As a concrete example, the matrices δf , δl, λf , and λl are given by

δf =

1 1 0 0 1 0 1 0

1 1 0 0 1 0 0 0

0 1 1 0 0 1 1 0

0 0 0 1 1 0 0 1

0 1 1 0 1 0 0 0

1 1 1 1 0 0 0 0

0 1 0 0 0 1 1 0

1 0 1 0 0 1 0 0

, δl =

1 0 1 1 1 0 1 1 1 1

1 0 1 0 0 1 0 0 0 1

0 0 1 1 0 1 0 1 1 1

0 0 0 0 0 1 1 1 1 0

0 1 0 0 1 0 0 1 1 0

1 0 1 0 0 1 0 1 0 0

1 0 0 1 0 0 1 1 1 1

1 0 1 0 0 1 0 0 1 0

, (5.36)

λf =

0 0 0 0 1 1 0 0

1 0 0 0 0 1 0 0

1 1 1 0 1 0 0 0

0 0 1 0 1 1 0 0

0 1 0 1 0 0 1 1

0 0 1 1 1 1 0 0

0 0 1 1 1 0 0 0

1 1 0 0 0 1 1 0

, λl =

1 0 0 1 0 0 1 0 0 1

0 0 1 0 1 0 1 0 1 0

0 0 0 1 1 0 0 0 0 0

0 1 1 1 1 1 1 0 0 0

1 0 1 0 0 1 1 0 0 0

1 0 1 0 0 0 1 1 0 0

1 1 1 1 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 1

, (5.37)

where the least significant bits are in the upper left corners. The vector of the inverse affine

transformation is given by Θ(c′(0x05)) = 0x29. Here, the largest Hamming weight in each

column of δf and λf is at most four while that of δl and λl is at most six. This means that the

former and latter mappings are implemented with at most 2TX and 3TX delays, respectively.

Tables 5.3 and 5.4 show the critical delay and the number of XOR gates required for the

mappings of the proposed AES S-box and unified S-box compared with the conventional im-

plementations, respectively. Here, the numbers of XOR gates for Canright’s and Jeon’s S-boxes,

which were achieved by factorizing XOR gates, were given according to their papers. We applied

the similar factorization technique to our S-boxes. On the other hand, those for other S-boxes

were derived directly from conversion matrices without any factorization. Our circuits achieve

3TA + TO + 11TX or 3TA + 11TX delay, which is smaller than the conventional S-boxes with

tower field arithmetic*5. Tables 5.3 and 5.4 also show the synthesis results (area, delay time, and

power) obtained from the same tool, synthesis options, and method as the above, where ENC and

*5 According to [26] and [27], a logic minimization method can further reduce the total gates or critical delay of [33]

and [105]. However, the same minimization can also be applied to other circuits including ours. Therefore, we

did not apply the minimization in this dissertation. Note that, in our environment, the critical delay and area-time

product of our S-boxes without the minimization technique are smaller than those in [26] and [27].

136 5 Design of Efficient AES Hardware

Table 5.3 Performance comparison of S-boxes based on tower field arithmetic

Critical delay # XOR gates Area Time Power Area-Time Power-Time
∆f ∆l ∆f ∆l [GE] [ns] [µW] product product

Satoh et al. [127] 3TX 3TX 24 21 283.50 4.41 72.4 1,250.24 319.28

Canright [33] 3TX 3TX 24 (in total) 236.75 4.30 72.8 1,018.04 313.04

Nogami et al. [105] 2TX 2TX 20 19 392.00 4.78 113.0 1,873.77 540.14

Rudra et al. [123] 3TX 3TX 20 23 283.39 3.65 60.0 1,034.36 219.00

Jeon et al. [67] 3TX 3TX 10 31 312.25 4.82 73.2 1,505.03 352.82

Nekado et al. [101] 2TX 3TX 17 36 289.50 3.29 64.6 952.46 212.53

This study (low-power) 2TX 3TX 15 21 249.00 3.04 43.1 756.96 131.02

This study (high-speed) 2TX 3TX 15 21 261.50 2.78 44.4 726.98 123.43

Table 5.4 Performance comparison of unified S-boxes based on tower field arithmetic

Critical delay # XOR gates Area Time Power [µW] Area-Time

∆f or Λf ∆l or Λl ∆f + Λf ∆l + Λl [GE] [ns] ENC DEC product

Satoh et al. [127] 3TX 3TX 46 44 366.75 4.94 97.0 95.2 1,811.75

Canright [33] 3TX 3TX 20 18 311.25 4.97 109 111 1,546.91

Rudra et al. [123] 3TX 3TX 42 44 367.00 4.06 80.6 79.9 1,490.01

Jeon et al. [67] 3TX 3TX 22 31 381.00 5.93 112 124 2,259.33

Nekado et al. [101] 2TX 3TX 32 68 372.50 3.66 89.0 96.2 1,363.36

This study (low-power) 2TX 3TX 32 56 334.75 3.33 59.9 67.5 1,114.71

This study (high-speed) 2TX 3TX 32 56 347.50 3.05 61.4 69.4 1,059.87

DEC in the Power column in Tab. 5.4 indicate the power consumption for encryption and decryp-

tion, respectively. The source codes were given from the same methods as Tab. 5.7. Note here that

Canright’s design in [33] supports both encryption and decryption, and we have slightly changed

it to support only encryption to allow a fair comparison to our design (for Tab. 5.3). On the other

hand, since Satoh’s design supports either encryption or decryption, we have also changed it to

support both encryption and decryption as described in Fig. 5.4 (for Tab. 5.4). As a result, the

area-time products of our AES S-boxes unified S-boxes were respectively 28.1% and 31.5% bet-

ter than Canright’s ones, which had been the smallest for a long time, and were also respectively

23.2% and 22.3 % better than Nekado’s latest ones. The power consumption of our S-boxes and

unified S-boxes were respectively 40.8% and 42.1% better than Canright’s ones, and were also

respectively 33.2% and 31.2 % better than Nekado’s ones. Note that the synthesis results and

power consumption of inverse S-boxes would be consistent with Tab. 5.3.

A further discussion point when applying the proposed method to cryptographic cores is the

well-known side channel issue. In particular, the resource sharing of Stages 1 and 3 would cause

glitches during the computation. To apply our method to masking-based countermeasures with

pipelining such as threshold implementation [17, 103] and generalized masking scheme [39, 122]

to defeat sophisticated (higher-order) attacks utilizing glitches, we need to decompose shared

5.3 High throughput/gate AES hardware 137

resources, which results in the increase of 12 XOR gates for the low-power version or 17 XOR

gates for high-speed version in total. Note however that such increase would also happen in other

works (e.g., [33,101]) using the similar optimization. In contrast, our method is more suitable for

multiplexing-based countermeasures, such as WDDL [138], due to the high efficiency.

5.3 High throughput/gate AES hardware
5.3.1 Overview

Nowadays, many cryptographic algorithms are required to be implemented in resource-

constrained devices and embedded systems with a high throughput and efficiency. Since 2001,

many hardware implementations for AES have been proposed and evaluated for CMOS logic

technologies. Studies of AES design are important from both practical and academic perspectives

since AES employs an SPN structure and the major components (i.e., an 8-bit S-box and

permutation used in ShiftRows and MixColumns) followed by many other security primitives.

AES encryption and decryption are commonly used in block-chaining modes such as CBC,

CMAC, and CCM (e.g., for SSL/TLS, IEEE802.11 wireless LAN, and IEEE802.15.4 wireless

sensor networks). Therefore, AES hardware that efficiently perform both encryption and de-

cryption in the above block-chaining modes are highly demanded. However, many conventional

hardware architectures employ pipelining techniques to enhance the throughput and efficiency

[76, 78, 87], although such block-wise parallelism is not available in the above block-chaining

modes. For example, the highest throughput of 53 Gbps was achieved in the previous best encryp-

tion/decryption architecture [87], but it only worked in the ECB mode. In addition, these previous

studies assumed offline key scheduling owing to the difficulty of on-the-fly scheduling. On-the-fly

key scheduling should be implemented in most resource-constrained devices because an offline

key scheduling implementation requires additional memory to store expanded round keys. Thus,

it is valuable to investigate an efficient AES architecture with on-the-fly key scheduling without

any pipelining technique.

In this subsection, we design a new round-based AES hardware for both encryption and decryp-

tion with on-the-fly key scheduling, which achieves the lowest critical path delay (the least number

of serially connected gates in the critical path) with less area overhead compared to conventional

architectures with tower-field S-boxes. Our architecture employs new operation-reordering and

register-retiming techniques to unify the inversion circuits for encryption and decryption without

any selectors. In addition, these techniques make it possible to unify the affine transformation and

linear mappings (i.e., the isomorphism and constant multiplications) to reduce the total number

of logic gates. The proposed and conventional AES encryption/decryption datapaths are synthe-

138 5 Design of Efficient AES Hardware

sized and evaluated with the TSMC standard-cell and NanGate open-cell libraries. The evaluation

results show that our architecture can perform both (CBC-)encryption and decryption more effi-

ciently. For example, the throughput per gate of the proposed architecture in the NanGate 15-nm

process is 72% larger than that of the best conventional architecture.

5.3.2 Related works to unified AES detapath for encryption and decryp-
tion

Architectures that perform one round of encryption or decryption per clock cycle without

pipelining are the most typical for AES design and are called round-based architectures in this

dissertation. Round-based architectures can be implemented more efficiently in terms of through-

put per area than other architectures by utilizing the inherent parallelism of symmetric key ciphers.

For example, the byte-serial architecture [86,93] is intended for the most compact and low-power

implementations such as in RFID but is not intended for the high throughput and efficiency. In

contrast, round-based architectures are suitable for a high throughput per gate, which leads to a

low-energy implementation [127].

To design such round-based encryption/decryption architectures in an efficient manner, we con-

sider how to unify the resource-consuming components such as the inversion circuits in Sub-

Bytes/InvSubBytes for the encryption and decryption datapaths. There are two conventional ap-

proaches for designing such unified datapaths. The first approach is to place two distinct datapaths

for encryption and decryption and select one of the datapaths with multiplexers as in [78]. Figure

5.6 shows an overview of the datapath flow in [78], where the inversion circuit is shared by both

paths, and additional multiplexers are used at the input and output of the encryption and decryption

paths. In [78], a reordered decryption operation was introduced as shown in Fig. 5.7. The inter-

mediate value is stored in a register after InvMixColumns instead of AddRoundKey. Such register

retiming was suitable for pipelined architectures. The main drawbacks of such approaches are the

false critical path delay and the required area and delay overheads caused by four multiplexers.

The critical path of the datapath in Fig. 5.6 is denoted in bold, which would never be active be-

cause it passes from the decryption path to the encryption path. This false critical path reduces

the maximum operation frequency owing to logic synthesis due to the false longest logic chain.

The overhead caused by the multiplexers is also nonnegligible for common standard-cell-based

designs.

The second approach is to unify the circuits of the functions SubBytes, ShiftRows, and Mix-

Columns with their inverse functions, respectively. Figure 5.8 shows the datapath in [127] where

encryption and decryption paths are combined using the second approach, where the reordering

technique is given in Fig. 5.9. The order of the decryption operations is changed to be the same

5.3 High throughput/gate AES hardware 139

Fig. 5.6 Conventional parallel datap-

ath in [78].

K9

Kr

K10

Kr

K0

K10

(a) (b)

Fig. 5.7 Register-retiming techniques

in [78]: (a) original and (b)

resulting decryption flows.

as that of the encryption operations. Note that the order of (Inv)SubBytes and (Inv)ShiftRows

can be changed without any overhead, and the datapath in [127] changes the order of SubBytes

and ShiftRows in the encryption. The reordering of AddRoundKey and InvMixColumns utilizes

the linearity of InvMixColumns as follows: MC−1(Mr + Kr) = MC−1(Mr) + MC−1(Kr),

where MC−1 is the function InvMixColumns, and Mr and Kr are the intermediate value after In-

vShiftRows and the round key at the r-th round, respectively. Here, InvMixColumns requires the

round keys, whereas MixColumns and InvMixColumns can be unified to reduce the area. There-

fore, this type of architecture requires an additional InvMixColumns to compute MC−1(Kr) for

decryption. In addition, the false path and multiplexer overhead exist because each function and

its inverse function are implemented in a partially serial manner with multiplexers like SubBytes

140 5 Design of Efficient AES Hardware

Kr

MC
-1
(Kr)

Fig. 5.8 Conventional datapath

in [127], where encryption

and decryption paths are

combined.

Kr

K

K10

MC
-1
(Kr)

K

K10

(a) (b)

Fig. 5.9 Reordering technique

in [127]: decryption flows

(a) before and (b) after

reordering.

and InvSubBytes in Fig. 5.6, where the critical path consists of Affine, Inversion, InvAffine, and

an additional multiplexer.

The architecture in [87] employs a reordering technique similar to [127]. The major difference

is the intermediate value stored in the register. The architecture in [77] also employs the same

approach that combines the encryption and decryption datapaths, but does not change the order

of AddRoundKey and InvMixColumns to remove InvMixColumns to compute MC−1(Kr). As

a result, an additional selector is required to unify MixColumns and InvMixColumns.

As described above, sharing inversion circuits is essential for designing efficient AES hardware.

Although a hardware T-box architecture such as that in [97] is also useful for a high-throughput

implementation, it is not applicable to the above shared datapath owing to the lack of sharable

components between the encryption and decryption paths.

The design of the inversion circuit used in (Inv)SubBytes has a significant impact on the per-

formance of AES implementations as described in Section 5.2. Since we focus on efficient AES

hardware in terms of throughput/gate, we focus on inversion circuits based on tower-field arith-

metic. On the other hand, some architectures perform all of the AES subfunctions (i.e., SubBytes

5.3 High throughput/gate AES hardware 141

GF(2
8
) GF((2

4
)
2
)

Fig. 5.10 Overall architecture of proposed AES hardware.

as well as ShiftRows, MixColumns, and AddRoundKey) over the tower field, where isomorphic

mapping and its inverse mappings are performed at the timings of the data (i.e., plaintext and

ciphertext) input and output, respectively [59, 86, 87, 93, 123]. In other words, the cost of field

conversion is suppressed when the conversion is performed only once during encryption or de-

cryption. However, the cost of constant multiplications in MixColumns over a tower field is

worse than that over the AES field while inversion is efficiently performed over the tower field.

More precisely, in tower-field architectures, such linear mappings including constant multiplica-

tions usually require 3TXOR delay, where TXOR indicates the delay of an XOR gate [101]. The

XOR gate count used in (Inv)MixColumns over a tower field is also worse than that over AES

field.

5.3.3 Designed AES hardware

This subsection designs a new round-based AES architecture that unifies the encryption and

decryption paths in an efficient manner. The key ideas for reducing the critical path delay are

summarized as follows: (1) to merge linear mappings such as MixColumns and isomorphic map-

pings as much as possible by reordering subfunctions, (2) to minimize the number of selectors to

unify the encryption and decryption paths by the above merging and a register retiming, and (3) to

perform isomorphic mapping and its inverse mappings only once in the pre- and post-round datap-

aths. We can reduce the number of linear mappings to at most one for each round operation as the

142 5 Design of Efficient AES Hardware

effect of (1). Moreover, we can reduce the number of selectors to only one (4-to-1 multiplexer) in

the unified datapath as the effect of (2) while the inversion circuit is shared by the encryption and

decryption paths. From the idea of (3), we can remove the isomorphic mapping and its inverse

mappings from the critical path. Figure 5.10 shows the overall architecture that consists of the

round function and key scheduling parts. Our architecture performs all of the subfunctions over a

tower field for both the round function and key scheduling parts and therefore applies isomorphic

mappings between the AES and tower fields in the datapaths of the pre- and post-round opera-

tions, which are represented as the blocks “Pre-round datapath” and “Post-round datapath” in Fig.

5.10. “Round datapath” performs one round operation for either encryption or decryption.

Round function part
The designed architecture in this subsection employs a unified datapath for encryption and

decryption as in [78] and applies new operation-reordering and register-retiming techniques to

address the conventional issues of a false critical path and additional multiplexers. Using our

operation-reordering technique and then merging linear mappings, we can reduce the number of

linear mappings on the critical path of the round datapath to at most one. Our reordering technique

also allows to unify the linear mappings and affine transformation in a round. The unification of

these mappings can drastically reduce the critical path delay and the XOR-gate count of linear

mappings, even in a tower-field architecture.

The new operation reordering is derived as follows. First, the original round operation of AES

encryption is represented by the following equation:

m(r+1)
ϵ,ε = u−ϵS(m

(r)
0,ϵ+ε) + u1−ϵS(m

(r)
1,ϵ+ε) + u2−ϵS(m

(r)
2,ϵ+ε) + u3−ϵS(m

(r)
3,ϵ+ε) + k(r)ϵ,ε

=
3∑

e=0

(ue−ϵS(m
(r)
e,ϵ+ε)) + k(r)ϵ,ε , (5.38)

where m
(r)
ϵ,ε and k

(r)
ϵ,ε are the ϵth row and εth column intermediate value and round key at the rth

round, except for the final round. Note that the subscripts of each variable are a member of Z/4Z.

The function S indicates the 8-bit S-box, and u0, u1, u2, and u3 are the coefficients of the matrix

of MixColumns and respectively given by β, β + 1, 1, and 1, where β is the indeterminate of

GF (28) satisfying β8 + β4 + β3 + β + 1 = 0. We can rewrite Eq. 5.38 by decomposing S into

inversion and affine transformation as follows:

m(r+1)
ϵ,ε =

3∑
e=0

(ue−ϵ(A(
(
m

(r)
e,ϵ+ε

)−1
) + const)) + k(r)ϵ,ε , (5.39)

where A is the linear mapping of the affine transformation, and const (= β6 + β5 + β + 1) is a

5.3 High throughput/gate AES hardware 143

constant. In the case of tower-field architectures, Eq. 5.39 is represented by

m(r+1)
ϵ,ε =

3∑
e=0

(ue−ϵ(A(∆′(
(
∆(m

(r)
e,ϵ+ε)

)−1
)) + const)) + k(r)ϵ,ε , (5.40)

where ∆ is the isomorphic mapping from the AES field to a tower field, and ∆′ is the inverse

isomorphic mapping.

The linear mappings, which include an isomorphism and constant multiplications over the GF,

are performed by the constant multiplication of the corresponding matrix over GF (2). Therefore,

we can merge such mappings to reduce the critical path delay and the number of XOR gates. In

addition, we consider the variable d
(r)
ϵ,ε of the tower field derived from m

(r)
ϵ,ε . Substituting m

(r)
ϵ,ε

with ∆′(d
(r)
ϵ,ε) (= m

(r)
ϵ,ε), we can merge the linear mappings as follows:

d(r+1)
ϵ,ε =

3∑
e=0

(Ue−ϵ(
(
d
(r)
e,ϵ+ε

)−1
)) + ∆(const) + ∆(k(r)ϵ,ε), (5.41)

where Uϵ(x) = ∆(uϵ(A(∆′(x)))). Note that an arbitrary linear mapping L satisfies L(a + b) =

L(a) + L(b). Thus, the linear mappings of a round in Eq. 5.41 can be merged into at most one,

even with a tower-field S-box, whereas the linear mappings in Eq. 5.40 cannot be.

On the other hand, the corresponding equation for AES decryption with tower-field arithmetic

is given by

d(r−1)ϵ,ε =
3∑

e=0

(∆(ve−ϵ(∆
′(
(
∆(A′(∆′(d

(r)
e,ε−ϵ))) + ∆(const′)

)−1
+∆(k

(r)
e,ε−ϵ))))), (5.42)

where A′ indicates the linear mapping of the inverse affine transformation. The coefficients

v0, v1, v2, and v3 are respectively given by β3+β2+β, β3+β+1, β3+β2+1, and β3+1, and

const′ (= β2 + 1) is a constant. Here, the linear mappings cannot be merged into one because

they are performed both before and after the inversion operation. In addition, if we construct an

encryption/decryption datapath based on Eqs. 5.41 and 5.42, the inversion circuit cannot be shared

by encryption and decryption without a selector because the timings of the inversion operations

are different from each other. Therefore, we consider a register retiming to store the intermediate

value s
(r)
ϵ,ε given after the inverse affine transformation over the tower-field. Here, s(r)ϵ,ε is given by

s
(r)
ϵ,ε = ∆(A′(∆′(d

(r)
ϵ,ε))) +∆(const′). In the decryption, we store s

(r)
ϵ,ε in the data register instead

of d(r)ϵ,ε . Using s
(r)
ϵ,ε and s

(r−1)
ϵ,ε , we rewrite Eq. 5.42 as follows:

s(r−1)ϵ,ε =

3∑
e=0

(Ve−ϵ(
(
s
(r)
e,ε−ϵ

)−1
+∆(k

(r)
e,ε−ϵ))) + ∆(const′), (5.43)

where Vϵ(x) = ∆(A′(vϵ(∆
′(x)))).

144 5 Design of Efficient AES Hardware

Kr

Kr

K0

K10

K0

K10

(a) (b)

(i)

Kr

K

K10

Kr

K

K10

(a) (b)

(ii)

Fig. 5.11 (i) Encryption and (ii) decryption flows (a) before and (b) after our operation-

reordering and register-retiming techniques.

Our round datapath is constructed with a minimal critical path delay according to Eqs. 5.41 and

5.43. Here, we further reorder the sequence of operations (i.e., subfunctions) to share inversion

circuits without additional selectors and to unify the linear mappings. Figure 5.11 shows the

proposed reordering technique. We first decompose SubBytes into the inversion and (Inv)Affine.

In the encryption, Affine, MixColumns, and AddRoundKey can be merged by exchanging Affine

and ShiftRows. In the decryption, the inversion circuit is located at the beginning of the round by

exchanging the inversion and InvShiftRows. Thus, additional selectors for sharing the inversion

circuit are not required thanks to the operation-reordering and register-retiming techniques. This

is because both inversion operations are performed at the beginning of the round, which means

that the data register output can be directly connected to the inversion circuit.

Figure 5.12 illustrates our round function datapath with the unification of linear mappings. Our

architecture employs only one 128-bit 4-in-1 multiplexer, whereas conventional ones employ sev-

eral 128-bit multiplexers. For example, the datapath in [77] employs seven 128-bit multiplexers*6.

Fewer selectors can reduce the critical path delay and circuit area and solve the false critical path

problem. Unified affine and Unified affine−1 in Fig. 5.12 perform the unified linear mappings (i.e.,

*6 The selectors in SubBytes/InvSubBytes are included in the seven multiplexers.

5.3 High throughput/gate AES hardware 145

-1

GF(2
8
) GF((2

4
)
2
)

GF((2
4
)
2
) GF((2

8
)

Fig. 5.12 Proposed round function part.

U0, . . . , U3 and V0, . . . , V3) and constant addition. The number of linear mappings on the critical

path is at most one in our architecture, whereas that of the conventional architectures is not. We

can also suppress the overhead of constant multiplication over the tower field by the unification.

Adder arrays in Fig. 5.12 consist of four 4-input 8-bit adders in MixColumns or InvMixColumns.

In the encryption, the factoring technique for MixColumns and AddRoundKey [101] is available

for Unified affine, which makes the circuit area smaller without a delay overhead. As a result,

the data width between Unified affine and Adder array in Encryption path is reduced from 512 to

256 bits because the calculations of U1 and U3 are not performed in Encryption path. In addition,

Adder array and AddRoundKey are unified in Encryption path because both of them are composed

of 8-bit adders*7. On the other hand, since there is no factoring technique for InvMixColumns

without delay overheads, the data width from Unified affine−1 to Adder array in Decryption path

is 512 bits. Finally, an inactive path can be disabled using a demultiplexer since our datapath is

fully parallel after the inversion circuit. Thanks to the disabling, a multiplexer and AddRoundKey

*7 Some architectures such as [77, 127] unify AddInitialKey and AddRoundKeys. We did not unify them to avoid

increasing the number of selectors.

146 5 Design of Efficient AES Hardware

are unified as Bit-parallel XOR. (The addition of ∆(c) in Unified affine should be active only

when encryption.) In addition, the demultiplexer would suppress power consumption due to a dy-

namic hazard. Although tower-field inversion circuits are known to be power-consuming owing

to dynamic hazards [96], these hazards can be terminated at the input of the inactive path.

Our datapath employs the inversion circuit presented in the previous section because it has the

highest area-time efficiency among inversion circuits including one using a logic minimization

technique [26]. We can merge the isomorphic mappings in order to reduce the linear function on

the round datapath to only one, even if the inversion circuit has different GF representations at the

input and output. Since the output is given by an RRB, the data width from Inversion to Unified

affine (or Unified affine−1) is given by 160 bits. However, AddRoundKey in the decryption path

and Bit-parallel XOR in the post-round datapath are implemented respectively by only 128 XOR

gates because the NB used as the input is equal to the reduced version of the RRB. In addition,

a 1:2 DeMUX is implemented with NOR gates thanks to the redundancy, whereas nonredundant

representations require AND gates.

Key scheduling part
The on-the-fly key scheduling part is shared by the encryption and decryption processes. For

the encryption, the key scheduling part first stores the initial key in the initial key register (in Fig.

5.10) and then generates the round keys during the following clock cycles. For the decryption,

the final round key should be calculated from the initial key and stored in the initial key register

in advance. The key scheduling part then generates the round keys in the reverse order by the

round key generator (in Fig. 5.10). However, conventional key scheduling datapaths such those

as in [77, 127] are not applicable to our round datapath because they have a loop with a false path

and/or a longer true critical path than our datapath.

To address the above issue, we introduce a new architecture for the key scheduling datapath.

For on-the-fly implementation, the subkeys are calculated for each of the four subkeys (i.e., 128

bits) in a clock cycle. Therefore, the on-the-fly key scheduling for the encryption is expressed as
k
(r+1)
0 = k

(r)
0 +KeyEx(k

(r)
3)

k
(r+1)
1 = k

(r)
0 + k

(r)
1 +KeyEx(k

(r)
3)

k
(r+1)
2 = k

(r)
0 + k

(r)
1 + k

(r)
2 +KeyEx(k

(r)
3)

k
(r+1)
3 = k

(r)
0 + k

(r)
1 + k

(r)
2 + k

(r)
3 +KeyEx(k

(r)
3)

, (5.44)

where k
(r)
0 , k

(r)
1 , k

(r)
2 , and k

(r)
3 are a 32-bit subkey at the rth round and KeyEx is the key expan-

sion function that consists of a round constant addition, RotWord, and SubWord. The inverse key

5.3 High throughput/gate AES hardware 147

GF(2
8
) GF((2

4
)
2
)

GF(2
8
) GF((2

4
)
2
)

k0
(r)

k1
(r)

k2
(r)

k3
(r)

k0
(r-1)/k0

(r+1)

k1
(r-1)

k1
(r+1)

k2
(r-1)

k2
(r+1)

k3
(r-1)

k3
(r+1)

Fig. 5.13 Key scheduling part.

scheduling for the decryption is represented by
k
(r−1)
0 = k

(r)
0 +KeyEx(k

(r)
2 + k

(r)
3)

k
(r−1)
1 = k

(r)
0 + k

(r)
1

k
(r−1)
2 = k

(r)
1 + k

(r)
2

k
(r−1)
3 = k

(r)
2 + k

(r)
3

. (5.45)

Figure 5.13 shows the key scheduling datapath architecture, where the KeyEx components are

unified for encryption and decryption. Note here that most of adders (i.e., XOR gates) for com-

148 5 Design of Efficient AES Hardware

Table 5.5 Synthesis results for conventional and our AES hardware architectures with

area optimization

Area Latency Max. freq. Throughput Efficiency

(GE) (ns) (MHz) (Gbps) (Kbps/GE)

TSMC 65-nm

Satoh et al. [127] 13,671.75 78.10 140.85 1.64 119.88

Lutz et al. [78] 20,380.50 68.50 145.99 1.87 91.69

Liu et al. [77] 12,538.75 85.25 129.03 1.50 119.75

Mathew et al. [87] 20,639.50 97.68 112.61 1.31 63.49

This study 15,242.75 46.97 234.19 2.73 178.78

NanGate 45-nm

Satoh et al. [127] 12,560.99 31.57 348.43 4.05 322.78

Lutz et al. [78] 20,000.66 20.30 492.61 6.31 315.26

Liu et al. [77] 11,829.34 34.43 319.49 3.72 314.28

Mathew et al. [87] 17,573.33 41.80 263.16 3.06 174.25

This study 13,814.69 16.94 649.35 7.56 546.96

NanGate 15-nm

Satoh et al. [127] 14,526.01 4.36 2,524.17 29.37 2,022.04

Lutz et al. [78] 23,391.49 4.57 2,185.84 25.44 1,087.37

Liu et al. [77] 13,847.25 4.74 2,321.05 27.01 1,950.46

Mathew et al. [87] 21,361.00 5.32 2,066.93 24.05 1,125.95

This study 15,468.97 2.65 4,144.22 48.22 3,117.44

puting k
(r+1)
1 , k

(r+1)
2 , and k

(r+1)
3 should be nonintegrated to make the critical path shorter than

that of the round function part. The input key is initially mapped to the tower field, and all of

the computations (including AddRoundKey) are performed over the tower field. The ENC/DEC

signal controls the input to RotWord and SubWord using a 32-bit AND gate. The upper 2-in-1

multiplexer selects an initial key or a final round key as the input to Initial key register, the middle

2-in-1 multiplexer selects a key stored in Initial key register or a round key as the input to Round

key generator, and the lower 2-in-1 multiplexers select encryption or decryption path. The round

constant addition is performed separately from RotWord and SubWord to reduce the critical path

delay. As a result, the critical path delay of the key scheduling part becomes shorter than that of

the round function part.

5.3.4 Performance evaluation

Tables 5.5 and 5.6 summarize the synthesis results of our AES encryption/decryption architec-

ture by Synopsys Design Compiler (Version D2010-3) with the TSMC 65-nm and NanGate 45-

and 15-nm standard-cell libraries [4,5] under the worst-case conditions, where Area indicates the

5.3 High throughput/gate AES hardware 149

Table 5.6 Synthesis results for conventional and our AES hardware architectures with

area-speed optimization

Area Latency Max. freq. Throughput Efficiency

(GE) (ns) (MHz) (Gbps) (Kbps/GE)

TSMC 65-nm

Satoh et al. [127] 14,516.50 56.87 193.42 2.25 155.05

Lutz et al. [78] 22,883.25 33.90 294.99 3.78 165.00

Liu et al. [77] 13,970.50 60.17 182.82 2.13 152.27

Mathew et al. [87] 23,298.49 65.45 168.07 1.96 83.94

This study 15,807.00 34.10 322.58 3.75 237.47

NanGate 45-nm

Satoh et al. [127] 13,386.67 24.42 450.45 5.24 391.55

Lutz et al. [78] 22,417.01 14.40 694.44 8.89 396.52

Liu et al. [77] 12,443.66 28.27 389.11 4.53 363.86

Mathew et al. [87] 19,243.67 31.90 344.83 4.01 208.51

This study 14,582.99 13.53 813.01 9.46 648.73

NanGate 15-nm

Satoh et al. [127] 16,924.74 3.31 3,322.26 38.66 2,284.17

Lutz et al. [78] 25,692.49 2.08 4,799.85 61.44 2,391.28

Liu et al. [77] 15,768.43 3.65 3,014.14 35.07 2,224.29

Mathew et al. [87] 23,789.48 4.03 2,729.18 31.76 1,334.95

This study 17,232.00 1.80 6,117.70 71.19 4,131.14

circuit area estimated on the basis of a two-way NAND equivalent gate size (i.e., gate equivalents

(GEs)); Latency indicates the latency for encryption, which is estimated by the circuit path de-

lay of the datapath under the worst low condition; Max. freq. indicates the maximum operation

frequency obtained from the critical path delay; Throughput indicates the throughput at the maxi-

mum operation frequency; and Efficiency indicates the throughput per area, which corresponds to

the product of the area and latency in this nonpipelined design*8. To perform a practical perfor-

mance comparison, an area optimization (which maximizes the effort of minimizing the number

of gates without flattening the description) was applied in Tab. 5.5, and an area-speed optimiza-

tion (where an asymptotical search with a set of timing constraints was performed after the area

optimization) was applied in Tab. 5.6.

In these tables, the conventional representative datapaths [77,78,87,127] were also synthesized

using the same optimization conditions. The source codes for these syntheses were described by

*8 Design Compiler generated a static power consumption report for each architecture. However, the report dose not

consider the effect of glitches while tower-field inversion circuits are known to include non-trivial glitches [96].

Therefore, we did not mention the power consumption report to avoid misleading.

150 5 Design of Efficient AES Hardware

the authors referring to [77, 78, 87, 127], except for the source codes of Satoh’s and Canright’s

S-boxes in [33, 127] that can be obtained from their websites [35, 139]. For a fair comparison,

the datapaths of [78] and [87] were adjusted to the round-based nonpipelined architecture corre-

sponding to the our datapath. Note that only the inversion circuit over a PB-based GF ((24)2)

in [87] was not described faithfully according to the paper*9. Latency and Throughput were cal-

culated assuming that the datapath of [78] requires 10 clock cycles to perform each encryption

or decryption and the others require 11 clock cycles. This is because the initial key addition and

first-round computation are performed with one clock cycle for [78]. Area was calculated without

the initial key, round key, and data registers to compare the datapaths more clearly. Note also

that the key scheduling parts of [78] and [87] were implemented with the one presented in this

subsectionbecause there is no description for the key scheduling parts. (For [78], the isomorphic

mapping from GF (28) to GF ((24)2) was removed for applying to the round function part.)

The results in Tab. 5.5 show that our datapath achieves the lowest latency (i.e., highest through-

put) compared with the conventional ones with tower-field inversion circuits owing to the lower

critical path delay. Moreover, the circuit area is not the largest owing to fewer selectors. Note that

the latency is consistent with the throughput because these circuits are not pipelined. Although

all operations are translated to the tower field in our architecture, the area and delay overheads of

MixColumns and InvMixColumns are suppressed by the unification technique. In addition, even

with a tower-field S-box, our architecture has an advantage with regard to the latency over Lutz’s

one with table-lookup-based inversion, as indicated in Tab. 5.6. As a result, our architecture is

more efficient in terms of the throughput per area than any conventional architecture. More pre-

cisely, our datapath is approximately 53–72% more efficient than any conventional architecture

under the conditions of the three CMOS processes. The results also suggest that our architecture

would perform an AES encryption or decryption with the smallest energy. Moreover, the cutoff

of an inactive path by a demultiplexer would further reduce the power consumption caused by a

dynamic hazard, but this could not be evaluated by the logic synthesis and still remains for the

future study.

The performance of the architecture in [87] was relatively lower for our experimental conditions

because its critical path includes InvMixColumns to compute MC−1(Kr) and therefore becomes

longer than those of other designs. In addition, InvMixColumns over a tower-field is more area-

consuming than that over an AES field. This suggests that the architecture in [87] is not suitable

*9 According to [87], the GF (24) inversion in the circuit can be implemented with a TXOR + 3TNAND delay,

where TXOR and TNAND are the delays of the XOR and NAND gates, respectively. However, there is no

detailed description to realize such a circuit. Therefore, using the best of our knowledge, we described the circuit

by a direct mapping based on the PPRM expansion, which is an algebraic normal form frequently used for designing

GF arithmetic circuits [96, 125].

5.4 Efficient DPA-resistant AES hardware 151

for an on-the-fly key scheduling implementation. The architectures in [77,127] have smaller areas

than our architecture; however, our architecture has a higher throughput. The increasing ratio of

the throughput is larger than that of the circuit area because the architectures in [127] and [77] use

InvMixColumns to compute MC−1(Kr) and require several additional selectors, respectively.

The above comparative evaluation was done with ours and some conventional but representa-

tive datapaths. There are other previous works focusing on efficiency (i.e., throughput per gate)

by round-based architectures. However, such previous works do not provide a concrete imple-

mentation and/or exhibit better performance than the abovementioned conventional datapaths.

For example, a hardware AES implementation with a short critical path was presented in [101],

which employed an RRB to reduce the critical path delay of SubBytes/InvSubBytes and Mix-

Columns/InvMixColumns. However, we could not evaluate the efficiency by ourselves because

of the lack of a detailed description. Another AES encryption/decryption architecture with a

high throughput was presented in [77]. However, the architecture had a lower throughput/area

efficiency compared to the architecture in [127] according to that paper. Moreover, AES archi-

tectures that support either encryption or decryption such as in [97, 142] are not evaluated in this

subsection.

The design in this section employs a round-based architecture without block-wise parallelism

such as pipelining. The modes of operations with block-wise parallelism (e.g., the ECB and

CTR modes) are also available owing to the trade-off between the area and the throughput by

pipelining [62]. A simple way to obtain a pipelined version of our round datapath is to unroll

the rounds and insert pipeline registers between them. The datapath can be further pipelined by

inserting registers into the round datapath. Our round datapath can be efficiently pipelined by

placing the pipeline register at the output of the inversion with a good delay balance between

the inversion and the following circuit. For example, the synthesis results for our round datapath

using the area-speed optimization with the NanGate 45-nm standard-cell library indicated that

the inversion circuit had a delay of 0.63 ns, and the remainder had a delay of 0.67 ns. As a

result, pipelining would achieve a throughput of 17.37 Gbps, which is nearly twice that without

pipelining. Thus, our round datapath is also suitable for such a pipelined implementation.

5.4 Efficient DPA-resistant AES hardware
5.4.1 Overview

In this subsection, we first design a compact AES S-box based on GMS and then design a more

efficient DPA-resistant AES hardware architecture. The GMS-based AES S-box is designed with

a combination of the state-of-the-art GMS construction [122] and the algebraic characteristics of

152 5 Design of Efficient AES Hardware

f2

f1

f0

a0

a1

a2

c2

c1

c0
m

m

m

Fig. 5.14 Overview of circuit of function t = 2 meeting first-order non-completeness.

AES S-box*10. The designed hardware employs a byte-serial architecture commonly used for

GMS-based AES in order to tolerate the overheads of circuit area and random number generation

[18, 39, 93]. In such architectures, the latency overhead caused by the pipeline registers of GMS

is also non-negligible. The conventional works perform SubBytes, ShiftRows, and MixColumns

at serial timings despite of pipelined SubBytes, which indicates that an extra latency occurs in

every round due to the pipelining, and results in the loss of energy. In contrast, the AES hardware

designed in this section exploits a new register-retiming technique to perform the above operations

in a partially parallel manner with a modest increase of circuit area. In addition, our AES hardware

performs all the operations over tower field for a further reduction of latency (i.e., pipeline-stage).

Furthermore, our architecture saves the cost of GMS applied to the key scheduling unit according

to the report of [120] which shows that it has no DPA-leaks. With the results of logic synthesis,

we confirm that the AES hardware designed in this section has a smaller area and 11–21% lower

latency than conventional architectures. In addition, we evaluate the DPA-leakage of our AES

hardware implemented on an FPGA. The t-test result shows that there is no obvious first-order

DPA-leak from the proposed architecture within 500,000 traces. While this section focuses on the

first-order security, the concept of our design can be applied to the higher-order security.

5.4.2 GMS with d+ 1 input shares

As mentioned before, GMS was presented as a provably-secure countermeasure against DPAs

including advanced DPAs exploiting power consumption caused by glitches [83, 92], and can

be considered as a subset of GMS. While many conventional countermeasures require to use

specific tools and/or libraries (e.g., symmetric layout) [138], the usage of GMS makes it possible

to design DPA-resistant hardware with the standard design tools including standard cells and

automatic layout. In recent years, some related works on GMS have been reported. They include

its extension to higher-order DPAs [17,122], DPA-resistant cryptographic hardware designs based

*10 In this subsection, we call TI GMS because TI is a subset of GMS.

5.4 Efficient DPA-resistant AES hardware 153

a0

a1

b0

b1

r0 r1 r2

c0

c1

c2

c3

Fig. 5.15 First-order GMS-based GF (2m) multiplier with two input shares.

on GMS. [18, 39, 93, 120], and GMS-friendly (i.e., GMS-friendly) cryptography where GMS can

be efficiently applied to the S-box. [25].

There were two known methods to construct circuits satisfying dth-order non-completeness.

The difference of the two is the numbers of input shares. The first construction method was

proposed in [103], where the number of input shares is given by td + 1, where t is the algebraic

degree of circuit function, and the number of output shares is given by σ′ =
(
σ
t

)
(e.g., σ′ = σ when

d = 1), as described before. For example, Fig. 5.14 shows an overview of a circuit satisfying the

first-order non-completeness when t = 2 (e.g., an two-input AND gate and a multiplier), where fφ
indicates the function of the circuit that computes cφ. The number of input shares is 3 (= 1×2+1),

and each fφ has 2 inputs. Given that cφ is independent of aφ in Fig. 5.14, the circuit is thought to

be secure under first-order DPAs from the viewpoint of first-order non-completeness. Note that,

in this case, the numbers of input and output shares are the same (i.e., σ = σ′ = 3); however, they

become different when d ≥ 2.

It was shown that the above GMS with td+ 1 input shares was useful especially for designing

hardware architectures of lightweight ciphers [120] such as PRESENT [19] and LED [57] (as

described in Section 1.4.5). This is because such ciphers employ an S-box whose algebraic degree

is at most three, which leads to an efficient GMS construction with simple one-stage pipelining

where the number of input and output are equal. In addition, all the output shares can be satisfied

with the uniformity property in the GMS-based S-box in PRESENT and LED, which means that

any on-the-fly random number generation is not required during one block encryption.

The second construction method was recently proposed in [122], where the number of input

shares is given by d + 1. To construct GMS-based S-box of higher algebraic degree, such as in

AES, a multi-stage pipelining and an on-the-fly random number generation are required because it

is known that there is no GMS construction satisfying the uniformity property [18,93]. The GMS

with d + 1 input shares is more useful for designing compact and efficient hardware architecture

154 5 Design of Efficient AES Hardware

Stage 3

Stage 2

Stage 1a c (= a-1)

Fig. 5.16 Three-stage expression of tower-field GF (28) inversion circuit.

for such a cipher. Actually, in [39], a more compact GMS-based AES hardware was designed with

d + 1 input shares. For example, Fig. 5.15 shows a first-order GMS-based GF (2m) multiplier

with 2 (= d + 1) input shares, where a0, a1, b0, and b1 are the input shares, c0, c1, c2, and c3 are

the output shares, “mult” denotes a nonshared GF (2m) multiplier, and r0, r1, and r2 are fresh

masks for remasking. The multiplier performs c = a× b under the first-order non-completeness,

where a = a0 + a1, b = b0 + b1, and c = c0 + c1 + c2 + c3. More precisely, each output share

cj is independent of either a0 or a1 (b0 or b1), which means the multiplier meets the first-order

non-completeness. The number of output share for the GMS is given by at least (d+ 1)t.

5.4.3 Our design

We first design a GMS-based AES S-box, which mainly determines the performance and secu-

rity of AES hardware. We then design an efficient byte-serial AES hardware architecture which

employs new register-retiming and tower-field arithmetic to reduce the latency without large area

overhead.

First-order GMS-based AES S-box
Until now, some GMS-based inversion (i.e., S-box) circuits were proposed in the literature

[18, 39, 93]. In order to describe the GMS-based inversion ciruits, Fig. 5.16 shows an abstract

block diagram of tower-field inversion consisting of three stages. The algebraic degrees of Stages

1, 2, and 3 are given by two, three, and two, respectively. The major difference of the conventional

circuits is the numbers of pipeline-stages and input shares. The inversion circuit in [93] was based

on the GMS with td + 1 input shares and a four-stage pipeline architecture inserting pipeline

registers inside Stage 2 in addition to boundaries between Stages 1, 2, and 3. While the inversion

circuit in [18] also employed the GMS with td+ 1 input shares, it was based on a three pipeline-

stage architecture where Stage 2 was given as a combinational circuit with algebraic degree three.

Since the tower-field inversion is efficiently decomposed to three stages in terms of the algebraic

expression [96], such three-stage pipeline architecture also makes the GMS-based inversion circuit

more efficient. On the other hand, a more compact GMS-based inversion circuit with four-stage

5.4 Efficient DPA-resistant AES hardware 155

Shared

GF((22)2)

inversion
a1

Shared

GF((22)2)

multiplier

a0

Sqr. Sc. P
ip

e
lin

e
 reg

iste
r

Sqr. Sc.

P
ip

e
lin

e
 reg

iste
r

Shared

GF((22)2)

multiplier

Shared

GF((22)2)

multiplier

c1

c0

c2

c3

Stage 1 Stage 2 Stage 3

Fig. 5.17 Proposed first-order GMS-based tower-field inversion circuit.

pipelining was designed in [39] on the basis of GMS with d+ 1 input shares. Note here that two

more pipeline stages between the inversion and each mapping (i.e., ∆f and ∆l) are inserted for

GMS-based inversion circuits in order to satisfy dth-order non-completeness.

This section designs a further compact and efficient GMS-based inversion circuit based on a

combination of GMS with d + 1 input shares and the above algebraic characteristics of tower-

field inversion. More precisely, the inversion circuit designed here exploits a three-stage pipeline

technique similar to [18], and the input of each stage is given by two shares. While the pos-

sibility of such a design was mentioned in [39], there was neither description nor evaluation in

the literature. Figure 5.17 illustrates the proposed first-order GMS-based S-box which performs

(c0+c1+c2+c3) = (a0+a1)
−1 using three clock cycles where Stages 1, 2, and 3 correspond to

those of Fig. 5.1, respectively. Note here that paths with fresh masks for remasking are omitted for

simplicity, but Stages 1, 2, and 3 require 12-, 28-, and 24-bit random numbers for remasking [39],

respectively. The block “Shared GF ((22)2)” multiplier denotes the GMS-based multiplier shown

in Fig. 5.15. The block “Sqr. Sc.” performs squaring and scaling operations over GF ((22)2)

in a nonshared manner. Finally, the block “Shared GF ((22)2) inversion” performs GF ((22)2)

inversion under the first-order non-completeness by a combinational circuit. As stated in [39],

the number of output shares is given by (d + 1)t, which would have an impact on the circuit

area. However, each subfunction of Shared GF ((22)2) inversion can be efficiently factored and

implemented using OR (or NOR) gates, which makes Stage 2 smaller. An example of logical

expression for Shared GF ((22)2) inversion is described in Appendix.

Our GMS-based S-box was evaluated with Synopsys Design Compiler version D-2010.03 and

TSMC 65-nm standard CMOS technology. Table 5.7 shows the synthesis results of the con-

ventional and our first-order GMS-based S-boxes, where Area denotes circuit area estimated by

156 5 Design of Efficient AES Hardware

Table 5.7 Performance evaluation of first-order GMS-based AES S-boxes

Area [GE] Clock cycles Area-Latency Randomness

compile ultra S-box Inversion product [bit]

Moradi et al. [93] No data 4,244 5 4 21,220 44

Bilgin et al. [18] 2,835 2,224 4 3 8,896 32

Cnudde et al. [39] 1,977 1,872 6 4 11,232 54

This study 1,425 1,342 5 3 6,710 64

∆f ∆f

∆f

c0

c1

c2

c3

s0

s1

∆
-1

∆
-1

a0 a1

Fig. 5.18 Proposed byte-serial AES hardware architecture.

two-input NAND equivalent gate size (GE: Gate Equivalents), Clock cycles denotes the number

of clock cycles required to perform S-box and inversion operations, Area-Latency product denotes

the product of Area and Clock cycles (of S-box), and Randomness denotes the number of random

bits required in a clock cycle. The columns compile and ultra in Area were obtained by the

commands compile and compile ultra, respectively. For comparison, the values of conven-

tional methods were derived from a table in [39]. We can confirm that our S-box achieved the

smallest area without latency overhead while more randomness is consumed. In other words, our

S-box is especially effective if random number generation is not critical.

New byte-serial AES hardware architecture
Figure 5.18 shows the proposed byte-serial AES hardware architecture with the above 1st-order

GMS-based inversion circuit. The proposed architecture basically has an eight-bit datapath. In

Fig. 5.18, the arrow without bit-width information denotes an eight-bit data flow. The blocks

5.4 Efficient DPA-resistant AES hardware 157

“State array” and “Key array” denote register arrays to store the intermediate values and round

keys, respectively. The block “GMS-based inversion” denotes the GMS-based inversion circuits.

Note that paths of random numbers for remasking are omitted. The blocks “∆f” and “∆−1”

perform the isomorphic mapping and inverse mapping, respectively. Note that the output of ∆f

should be stored into the register “R” for satisfying non-completeness in the following inversion.

Two State arrays are required to store (d + 1)-shared intermediate value. On the other hand,

since it is known that the key scheduling function has no DPA-leaks [120], we do not apply GMS

to the Key array. SubWord in the key scheduling function is performed by a nonshared S-box

in [33]. Here, the S-box should be gated using AND gates to reduce dynamic power consumption,

where the gating is controlled by one-bit signal “KS en.” Note that though the SubWord can also

be performed using GMS-based inversion, we use a distinct non-pipelined S-box to suppress the

latency due to the pipelined Inversion. Note also that our architecture would be designed with a

higher-order GMS-based inversion circuit in the similar manner.

Our architecture performs all operations (i.e., AddRoundkey, SubBytes, Shift-Rows, Mix-

Columns, and key scheduling) over the tower field to reduce the number of pipeline stages (i.e.,

latency). Therefore, the isomorphic mappings are performed only at the input and output of the cir-

cuit. In addition, a new register-retiming technique, where the affine transformation in SubBytes

is performed in State array, is introduced to further reduce the latency of the pipeline architecture.

Consequently, the latency for two clock cycles are reduced by the above architectural design.

Figure 5.19 shows the internal structure of State array, which mainly consists of eight-bit reg-

isters and logic circuits for affine transformation and MixColumns. (Key array is omitted because

it can be implemented in the same manner as [93].) We applied the above register-retiming tech-

niques to our State array. The State array in Fig. 5.19 is different from that of [93] because of the

following three features: (i) the SubBytes of the last byte and ShiftRows are simultaneously per-

formed in one clock cycle, (ii) MixColumns of the second and third colomns and the next round

SubBytes are executed in parallel, and (iii) the SubBytes of the last four bytes and MixColumns

are simultaneously performed. While the conventional State array has distinct paths only for

ShiftRows, our State array performs ShiftRows and one-byte shift simultaneously using a unified

path indicated in gray by allowed lines in Fig. 5.19 thanks to the feature (i). The output of S2 is

given to GMS-based inversion instead of S0 according to the feature (ii). Finally, by the feature

(iii), affine transformation is performed at “Aff” in parallel during the byte shift (for the 0th–11th

bytes) or MixColumns (for 12th–15th bytes). It is possible to unify the affine transformation and

the MixColumns in the same manner as the previous section; however, we do not apply the uni-

fication technique to our architecture it does not contribute to the increase of efficiency (i.e., the

product of circuit area and latency). Note here that MixColumns should be gated as well as S-box

158 5 Design of Efficient AES Hardware

c0

c1

s0

Fig. 5.19 State array.

for SubWord.

Figure 5.20 shows the timing diagrams of (a) conventional [93] and (b) our byte-serial AES

hardware architectures, where “SubBytes l,” “Inversion l,” “Aff l,” “SR,” “MC ε,” and “KS ε”

denote the lth SubBytes, lth byte inversion, lth byte affine transformation, ShiftRows, εth column

MixColumns, and εth byte SubWord in key scheduling, respectively. The blocks in gray denote

operations of the previous or next round executed in parallel to the round of interest. From Fig.

5.20, we can confirm that our architecture achieves 20 clock cycles for one round operation while

the conventional one requires 25 clock cycles because of the effect of the above resister-retiming

and tower-field arithmetic techniques.

5.4.4 Evaluation

Performance evaluation
To conduct a performance evaluation, we synthesized our AES hardware with Synopsys Design

Compiler and TSMC 65 nm standard CMOS as above. Table 5.8 shows the synthesis result of our

AES hardware in Fig. 5.18. For comparison, Tab. 5.8 also shows those of the conventional ones

derived in the same manner as Tab. 5.7. Note that Area of This study includes the area required

for all the components in Fig. 5.18 and a control unit implemented with a 10-bit shift register

and a five-bit counter. From Tab. 5.8, we confirmed that our hardware achieved 11–21% lower

5.4 Efficient DPA-resistant AES hardware 159

(a)

(b)

Fig. 5.20 Timing diagrams of (a) Conventional [93] and (b) proposed byte-serial AES

hardware architectures.

latency than the conventional ones. Though additional path selectors for register-retiming and

MixColumns over tower fields would have an influence on the circuit area [33], our AES hardware

achieved the smallest circuit area because of the proposed S-box and nonshared Key array. This

also indicates that the circuit area can be further reduced by performing ShiftRows in a distinct

clock cycle and/or replacing the tower-field MixColumns with AES-field one in exchange for

increasing 10 clock cycles. Table 5.8 also shows the estimated power consumption based on gate-

level timing simulation, where Power-Latency product indicates the product of Power and Clock

cycles. The values of the conventional works were calculated using a table in [93]. The scaled

values of Power and Power-Latency product in the parentheses are derived by dividing the original

ones by the square of process rate (i.e., (180/65)2). (The architecture in [93] was synthesized with

180 nm standard CMOS.) Note that it is quite difficult to compare power consumption estimation

of hardware architectures in a fair manner, which heavily depends on the used technology and

estimation method. However, the results roughly indicate that the lower latency would directly

lead to lower energy of one block encryption. Thus, we confirmed the effectiveness of our design.

Experimental evaluation of DPA-leakage
The DPA-resistance capability of our S-box was evaluated with an experiment using an FPGA

implementation.

160 5 Design of Efficient AES Hardware

Table 5.8 Performance of AES hardware architecture based on first-order GMS

Area [GE] Clock Area-Latency
Power [µW]

Power-Latency

compile ultra cycles product product

Moradi et al. [93] 11,114 11,031 266 2,956 K 24.12 (3.14) 6,415 (835)

Bilgin et al. [18] 8,119 7,282 246 1,997 K No data

Cnudde et al. [39] 6,681 6,340 276 1,844 K No data

This study 6,321 6,053 219 1,376 K 3.06 670

Fig. 5.21 Experimental setup.

Figure 5.21 shows the experimental setup consisting of a Side-Channel Attack Standard Eval-

uation Board (SASEBO-G) [3] and an oscilloscope Tektronix DPO7254. The designed AES

hardware was implemented on an FPGA (Xilinx Virtex II Pro) on the SASEBO-G, and the power

variation was sampled with the sampling rate of 1GS/s.

We evaluated the resistance and vulnerability of the AES hardware by Test Vector Leakage As-

sessment (TVLA) based on Welch’s t-test (a.k.a. non-specific t-test) [130]. The TVLA examines

t-values which indicate the existence of dth-order DPA-leakage exploitable by the attackers.

Figures 5.22(a) and 5.23(a) show examples of power traces at around the nineth with and with-

out a pseudo random number generator (PRNG) implemented on the FPGA, respectively. When

the PRNG is turned on, the GMS works. We can find the small spikes between the big spikes in

Fig. 5.23(a) because AES and PRNG are asynchronously active. Thus, the PRNG would not have

a significant impact on the following TVLA result.

Figures 5.22 and 5.23 show the (b) first-order and (c) second-order TVLA results. We used

10,000 and 500,000 traces for Figs. 5.22 and 5.23, respectively. It is known that the absolute

5.5 Conclusion 161

0 2000 4000 6000 8000 10000
0

50

100

150

200

250

Sample point

V
o

lt
a

g
e

(a) Raw trace.

0 2000 4000 6000 8000 10000
−150

−100

−50

−4.5
0

4.5

50

100

Sample point

t-
v
a
lu
e

(b) First-order.

0 2000 4000 6000 8000 10000
−20

−4.5

0

4.5

20

40

Sample point

t-
v
a
lu
e

(c) Second-order.

Fig. 5.22 Measurement and TVLA results without PRNG.

0 2000 4000 6000 8000 10000
0

50

100

150

200

250

Sample point

V
o

lt
a

g
e

(a) Raw trace.

0 2000 4000 6000 8000 10000
−5

−4.5
−4

−3

−2

−1

0

1

2

3

4
4.5
5

Sample point

t-
v
a
lu
e

(b) First-order.

0 2000 4000 6000 8000 10000
−15

−10

−4.5

0

4.5

10

15

20

Sample point
t-
v
a
lu
e

(c) Second-order.

Fig. 5.23 Measurement and TVLA results with PRNG.

t-value of more than 4.5 indicates a high confidence in the existence of exploitable DPA-leakage.

The results suggest that our design is resistant to the first-order DPAs under the condition of

500,000 traces by means of the first-order GMS. On the other hand, we can see the second-order

leakage in both Figs. 5.22 and 5.23 due to the limitation of the first-order GMS. Thus, we could

validate the DPA resistance of the designed AES hardware n the experimental condition with

500,000 traces.

5.5 Conclusion
This chapter designed highly efficient AES hardware. Since the designed hardware utilizes

redundant GF arithmetic, higher-degree functions, logic-level optimizations, and/or pipelining,

the conventional methods including the existing GF-ACG cannot be applied to them. On the

ohter hand, the proposed formal design method can design and verify them. Thus, the proposed

formal design method is useful even for designing such state-of-the-art and high-performance

cryptographic hardware.

163

6
Conclusion

This dissertation studied a formal design of cryptographic hardware from three viewpoints of

theory, implementation, and application.

Chapter 2 introduced the basics on cryptographic hardware design. We described that modern

cryptographic algorithms are closely related to GF arithmetic, and therefore the design of GF

arithmetic circuits are quite important in designing cryptographic hardware. We also described

the conventional design and verification methods of arithmetic circuits, and their difficulties in

designing and verifying GF arithmetic circuits. Finally, we introduced the existing formal design

method based on GF-ACG, and described the issue on its application to practical cryptographic

hardware.

Chapter 3 presented a new formal design methodology of cryptographic hardware. We pro-

posed the new GF-ACG which can handle a wider variety of GF arithmetic circuits including

practical ones based on redundant GF representations and with pipelining. We then introduced

two equivalence checking methods for GF-ACG based on ND for the first order predicate logic

and a PPRM expansion, respectively. They can be efficiently applied to GF arithmetic circuits

which cannot be completely verified by the conventional algebraic formula evaluation method.

164 6 Conclusion

Furthermore, we presented a new verification algorithm combining the two equivalence check-

ing methods with the conventional algebraic method. We demonstrated the effectiveness and

efficiency of the proposed methodology through its applications to parallel multipliers, AES hard-

ware, and tamper-resistant cryptographic hardware.

Chapter 4 produced an automatic generation systems of GF arithmetic circuits for cryptographic

hardware. The proposed system could generate verified multipliers over GF (pm), where p =

2, 3, 5, 7, 11 and 2 ≤ m ≤ 256. In addition, the system could also generate SCA-resistant GF

multipliers based on GMS and verify the SCA resistance property formally by newly proposed

algorithms proposed in this dissertation. The performance of the proposed system was evaluated

through experimental multiplier generations. As a result, we confirmed that the proposed system

could synthesize more than 10,000 GF multipliers including large ones with 256-bit inputs within

a practical time, and the proposed system would be useful for designing practical cryptographic

hardware such as symmetric key ciphers, ECC, and PBC.

Chapter 5 designed highly efficient AES hardware as applications of the propose design

methodology. We first designed a highly efficient GF (28) inversion circuit and an AES S-box

based on a combination of redundant and non-redundant GF representations. We then designed

a high throughput/gate AES hardware compressing encryption and decryption detapaths. The

designed hardware architecture could be applied and useful to other modern ciphers because it

exploits datapath optimization techniques. We also designed an SCA-resistant AES hardware

based on GMS, which achieves a higher efficiency than the conventional ones by the optimization

techniques similar to the above. The above hardware can be designed using the proposed formal

design methodology while they utilized redundant GF arithmetic, higher-degree function, logic-

level optimization, and/or pipelining. Thus, we confirmed that the formal design methodology

would be useful for such state-of-the-art and practical cryptographic hardware design.

Although this dissertation focused on AES as applications, our methodology can be applied

to other cryptographic algorithms based on GF arithmetic. Further applications to other ciphers

would remain in the future work. In addition, our methodology would be useful for designing

cryptographic algorithm because the proposed methodology uses GF equations to representing GF

arithmetic algorithms. Moreover, it is also desirable to develop cryptographic hardware resistant

to implementation attacks other than SCAs (e.g., FIAs) using the proposed methodology. The

circuit description using GF equations would also be helpful for formalization and verification of

resistance against other implementation attacks.

165

Bibliography

[1] Arithmetic module generator for GF parallel multipliers, http://www.aoki.ecei.

tohoku.ac.jp/arith/gfamg/

[2] Risa/Asir (Kobe distribution) download page, http://www.math.kobe-u.ac.jp/

Asir/asir.html

[3] Side-channel attack standard evaluation board (SASEBO), http://www.rcis.aist.

go.jp/special/SASEBO

[4] NanGate FreePDK15 open cell library (Jan 2016), http://www.nangate.com/

?page_id=2328

[5] NanGate FreePDK45 open cell library (Jan 2016), http://www.nangate.com/

?page_id=2325

[6] Al Fardan, Nadhem J.and Paterson, K.G.: Lucky thirteen: Breaking the TLS and DTLS

record protocols. In: IEEE Symposium on Security and Privacy (S&P). pp. 526–540. IEEE

(2013)

[7] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Ca-

mallia: A 128-bit block cipher suitable for multiple platforms—design and analysis. In:

Selected Areas in Cryptography. Lecture Notes in Computer Science, vol. 2012, pp. 39–56.

Springer (2001)

[8] Bardet, M.: On the complexity of a Gröbner basis algorithm. Algorithms Seminar 2002–

2004 38, 85–92 (2005)

[9] Barreto, P.S.L.M., Lynn, B., Scott, M.: Efficient implementation of pairing-based cryp-

tosystems. Journal of Cryptology 17, 321–334 (2004)

[10] Bassham III, L.E.: The advanced encryption standard algorithm validation suite. N.I.S.T.

Information Technology Laboratory, Computer Security Division (2002)

[11] Beaulieu, R., Treatman-Clark, S., Shors, D., Weeks, B., Smith, J., Wingers, L.: The SIMON

and SPECK lightweight block ciphers. In: Design Automation Conference (DAC). pp. 1–6.

ACM/EDAC/IEEE, IEEE (2015)

166 Bibliography

[12] Belaı̈d, S., Coron, J.S., Fouque, P.A., Gérard, B., Kammerer, J.G., Prouff, E.: Improved

side-channel analysis of finite-field multiplication. In: Cryptographic Hardware and Em-

bedded Systems (CHES). Lecture Notes in Computer Scienece, vol. 6917, pp. 395–415

(2015)

[13] Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security

signatures. Journal of Cryptographic Engineering 2, 77–89 (2012)

[14] Biham, E., Carmeli, Y., Shamir, A.: Bug attacks. In: Advances in Cryptology—CRYPTO

2008. Lecture Notes in Computer Science, vol. 5157, pp. 221–240. Springer (2008)

[15] Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.

Springer (1993)

[16] Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Advances

in Cryptology—CRYPTO 1997. Lecture Notes in Computer Science, vol. 1294, pp. 513–

525 (1997)

[17] Bilgin, B., Gierlichs, B., Nikov, V., Rijmen, V.: Higher-order threshold implementations.

In: Advances in Cryptology—ASIACRYPT 2014. Lecture Notes in Computer Science, vol.

8874, pp. 326–343. Springer (2014)

[18] Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for threshold imple-

mentations illustrated on AES. IEEE Transactions on Computer-Aided Design of Integrated

and Systems 34(7), 1188–1200 (2015)

[19] Bogdanov, A., Knudsen, L., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin,

Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Cryptographic Hard-

ware and Embedded Systems (CHES). Lecture Notes in Computer Science, vol. 4727, pp.

450–466. Springer (2007)

[20] Boneh, D., DeMillo, R., Lipton, R.: On the importance of checking cryptographic protocols

for faults. In: Advances in Cryptology—EUROCRYPTO 1997. Lecture Notes in Computer

Science, vol. 1223, pp. 37–51 (1997)

[21] Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. Advances in

Crypto;pgy—CRYPTO ’01, Lecture Notes in Computer Science 2139, 213–229 (2001)

[22] Boneh, D., Di Cresenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with key-

word search. In: Advances in Cryptology—EUROCRYPT 2004. Lecture Notes in Com-

puter Science, vol. 3027, pp. 506–522. Springer (2004)

[23] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal of

Cryptology 17, 297–319 (2004)

[24] Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Le-

ander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçin, T.:

167

PRINCE—a low-latency block cipher for pervasive computing applications. In: Advances

in Cryptology–ASIACRYPT 2013. LNCS, vol. 7658, pp. 208–225 (2012)

[25] Boss, E., Grosso, V., Güneysu, T., Leander, G., Moradi, A., Schneider, T.: Strong 8-bit

Sboxes with efficient masking in hardware. In: International Conference on Cryptographic

Hardware and Embedded Systems (CHES). Lecture Notes in Computer Science, vol. 9813,

pp. 171–193. Springer (2016)

[26] Boyer, J., Matthews, P., Peralta, P.: Logic minimization techniques with applications to

cryptology. Journal of Cryptology 47, 280–312 (2013)

[27] Boyer, J., Peralta, R.: A small depth-16 circuit for the AES S-box. In: Information Secutiry

and Privacy Research. IFIP Advances in Information and Communication Technology, vol.

376, pp. 287–298. Springer (2012)

[28] Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions

on Computers C-35(8), 677–691 (Aug 1986)

[29] Bryant, R.E.: Graph-based algorithms for Boolean function manipularion. IEEE Transsac-

tions on Computers C-35(8), 677–691 (1986)

[30] Bryant, R.E., Chen, Y.A.: Verifcation of arithmetic circuits with binary moment diagrams.

In: 32nd Design Automation Conf. pp. 535–541. IEEE/ACM (1995)

[31] Buchberger, B.: Some properties of Gröbner-bases for polynomial ideals. SIGSAM Bull.

10(4), 19–24 (1976)

[32] C. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other

systems. In: Advances in Cryptology—CRYPTO 1996. Lecture Notes in Computer Sci-

ence, vol. 1109, pp. 104–113. Springer (1996)

[33] Canright, D.: A very compact S-box for AES. In: Cryptographic Hardware and Embedded

Systems (CHES). Lecture Notes in Computer Science, vol. 3659, pp. 441–455. Springer

(2005)

[34] Canright, D., Batina, L.: A very compact ”perfectly masked” S-box for AES (corrected).

IACR Cryptology ePrint Archive 2009, 11 (2009)

[35] Canright, D.: Canright web page, \url{http://faculty.nps.edu/drcanrig/}

[36] Chen, Y., Bryant, R.: ACV: an arithmetic circuit verifier. Proc. of the 1996 IEEE/ACM Int.

Conf. on Computer-Aided Design pp. 361–365 (1997)

[37] Chen, Z., Zhou, Y.: Dual-rail random switching logic: A countermeasure to reduce side

channel leakage. In: International Workshop on Cryptographic Hardware and Embedded

Systems (CHES). Lecture Notes in Computer Science, vol. 4249, pp. 242–254. Springer

(2006)

[38] Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concurrent systems

168 Bibliography

using temporal logic specifications. ACM Transactions on Programming Languages and

Systems 8(2), 244–263 (1986)

[39] Cnudde, T.D., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking AES

with d+1 shares in hardware. In: International Conference on Cryptographic Hardware and

Embedded Systems (CHES). Lecture Notes in Computer Science, vol. 9813, pp. 194–212.

Springer (2016)

[40] Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer-Verla, 2nd

edn. (1996)

[41] Cox, D.A., Little, J.B., O’Shea, D.: Using Algebraic Geometry, Graduate Texts in Mathe-

matics, vol. 185. Springer-Verlag (1998)

[42] Cryptographic competitions: Caesar: Competition for authenticated encryption: Se-

curity, applicability, and robustness (2016), https://competitions.cr.yp.to/

caesar.html

[43] Cryptography Research and Evaluation Commitees (CRYPTREC): CRYPTREC Home-

page (2017), \url{http://www.cryptrec.go.jp/english/index.html}

[44] Ding, J., Yang, B.Y.: Multivariate public key cryptography. In: Bernstein, D.J., Buchmann,

J., Dahmen, E. (eds.) Post-Quantum Cryptography. pp. 193–241. Springer

[45] Doulcier-Verdier, M., Dutertre, J.M., Fournier, J., Rigaud, J.B., Robisson, B., Tria, A.:

A side-channel and fault-attack resistant AES circuit working on duplicated complemented

values. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE

International. pp. 274–276. IEEE (2011)

[46] Drechsler, R. (ed.): Advanced Formal Verification. Kluwer Academic Publishers (2004)

[47] Drolet, G.: A new representation of elements of finite fields GF (2m) yielding small com-

plexity arithmetic circuits. IEEE Transactions on Computers 47(9), 938–946 (1997)

[48] Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: From probing attacks to

noisy leakage. In: Advances in Cryptology—EUROCRYPT 2014. Lecture Notes in Com-

puter Science, vol. 8441, pp. 423–440. Springer (2014)

[49] Duong, T., Rizzo, J.: Here come the ⊕ ninjas (2011), \url{https://www.nist.

gov/}

[50] Duursma, I., Lee, H.S.: Tate pairing implementation for hyperelliptic curves y2 = xp−x+

d. In: Advances in Cryptology—ASIACRYPT 2003. Lecture Notes in Computer Science,

vol. 2894, pp. 111–123. Springer (2003)

[51] Duursma, I., Sakurai, K.: Efficient algorithms for the Jacobian variety of hyperelliptic

curves y2 = xp − x + 1 over a finite field of odd characteristic p. In: Coding Theory,

Cryptography and Related Areas. pp. 73–89. Springer (1998)

169

[52] Dworlin, M.: NIST special publication 800-38D—recommendation for block cipher modes

of operation: Galois/Counter Mode (GCM) and GMAC. Tech. rep., National Institute of

Standards and Technology (NIST) (2007), http://dl.acm.org/citation.cfm?

id=2206251

[53] Ekdahl, P., Johansson, T.: A new version of the stream cipher SNOW. In: Selected Areas in

Cryptography (SAC). Lecture Notes in Computer Science, vol. 2595, pp. 47–61. Springer

(2001)

[54] Gao, S.: Normal bases over finite fields. Citeseer (1993)

[55] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained

access control of encrypted data. In: ACM conference on Computer and Communication

Security (ACM-CCS). pp. 89–98. ACM (2006)

[56] Grabher, P., Page, D.: Hardware acceleration of Tate pairing in characteristic three. In: In-

ternational Workshop on Cryptographic Hardware and Embedded Systems (CHES). Lec-

ture Notes in Computer Science, vol. 3659, pp. 398–411. Springer (2005)

[57] Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Cryptographic

Hardware and Embedded Systems (CHES). Lecture Note in Computer Science, vol. 6917,

pp. 326–341 (2011)

[58] Halbutogullari, A., Koç, C.: Mastrovito multiplier for general irreducible polynomials.

IEEE Transactions on Computers 49(5), 503–518 (May 2000)

[59] Hammad, I., El-Sankary, K., El-Masry, E.: High-speed AES encryptor with efficient merg-

ing techniques. IEEE Embedded Systems Letters 2, 67–71 (2010)

[60] Hirotomo, M., Mouri, K., Morii, M.: Generalized polynomial ring representation over

GF (2m) and its application. IEICE Transactions on Fundamentals of Electronics, Com-

munications and Computer Sciences (Japanese Edition) J89-A(10), 790–800 (2006)

[61] Hitachi Ltd.: MUGI pseudorandom numbner generator specification ver 1.2 (2001),

http://www.hitachi.com/rd/yrl/crypto/mugi/mugi_spe.pdf

[62] Hodjat, A., Verbauwhede, I.: Area-throughput trade-offs for fully pipelined 30 to 70 Gbits/s

AES processors. IEEE Transactions on Computers 50(4), 366–372 (2006)

[63] Homma, N., Saito, K., Aoki, T.: A formal approach to designing cryptographic processors

based on GF (2m) arithmetic circuits. IEEE Transactions on Information Forensics and

Security 7(1), 3–13 (Feb 2012)

[64] Homma, N., Saito, K., Aoki, T.: Toward formal design of practical cryptographic hardware

based on Galois field arithmetic. IEEE Transactions on Computers 63(10), 2604–2613 (Jun

2014)

[65] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware againgst probing

170 Bibliography

attacks. In: Advances in Cryptology—CRYPTO 2003. Lecture Notes in Computer Science,

vol. 2729, pp. 461–481. Springer (2003)

[66] Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF (2m) using

normal bases. Information and Computation 78, 171–177 (1988)

[67] Jeon, Y., Kim, Y., Lee, D.: A compact memory-free architecture for the AES algorithm

using resource sharing methods. Journal of Circuits, Systems, and Computers 19(5), 1109–

1130 (2010)

[68] Katti, R., Brennan, J.: Low complexity multiplication in a finite field using ring represen-

tation. IEEE Transactions on Computers 52(4), 418–427 (2003)

[69] Katz, J., Sahai, A., Waters, B.: Predicate encryption supproting disjunctions, polynomial

equations, and inner products. In: Advances in Cryptology—EUROCRYPT 2008. Lecture

Notes in Computer Science, vol. 4965, pp. 146–162. Springer (2008)

[70] Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177), 203–209

(1987)

[71] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in Cryptology—

CRYPTO 1999. Lecture Notes in Computer Science, vol. 1666, pp. 388–397. Springer

(1999)

[72] Koren, I.: Computer arithmetic algorithms 2nd Edition. A K Peters (2001)

[73] Lamport, L.: ”sometime” is sometimes ”not never”: on the temporal logic of programs. In:

Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles Of Program-

ming Languages. pp. 174–185. ACM, New York, NY, USA (1980)

[74] Langley, A.: RFC 7539 - ChaCha20 and Poly1305 for IETF protocols - IETF tools (2015),

\url{https://tools.ietf.org/html/rfc7539}

[75] Lee, E., Lee, H.S., Lee, Y.: Eta pairing computation on general divisors over hyperelliptic

curves y2 = xp − x+ d. Journal of Synbolic Computation 43, 452–474 (2005)

[76] Lin, S.Y., Huang, C.T.: A high-throughput low-power AES cipher for network applications.

In: The 12th Asia and South Pacific Design Automation Conference (ASP-DAC 2007). pp.

595–600. IEEE (2007)

[77] Liu, P.C., Chang, H.C., Lee, C.Y.: A 1.69 Gb/s area-efficient AES crypto core with com-

pact on-the-fly key expansion unit. In: 41th European Solid-State Circuits Conference (ES-

SCIRC 2009). pp. 404–407. IEEE (2009)

[78] Lutz, A., Treichler, J., Gürkaynak, F., Kaeslin, H., Basler, G., Erni, A., Reichmuth, S.,

Rommens, P., Oetiker, P., Fichtner, W.: 2Gbit/s hardware realizations of RIJNDAEL and

SERPENT: A comparative analysis. In: Workshop on Cryptographic Hardware and Em-

bedded Systems (CHES). Lecture Notes in Computer Science, vol. 2523, pp. 144–158.

171

Springer (2002)

[79] Lv, J., Kalla, P.: Formal verification of Galois field multipliers using computer algebra

techniques. In: VLSI Design (VLSID), 2012 25th International Conference on. pp. 388–

393. IEEE (2012)

[80] Lv, J., Kalla, P., Enescu, F.: Verification of composite Galois field multipliers over

GF ((2m)n) using computer algebra techniques. In: IEEE International High Level De-

sign Validation and Test Workshop (HLDVT). pp. 136–143. IEEE (2011)

[81] Lv, J., Kalla, P., Enescu, F.: Efficient Gröbner basis reductions for formal verification of

Galois field multipliers. In: Proceedings of the Conference on Design, Automation and Test

in Europe. pp. 899–904. EDA Consortium (2012)

[82] M. Jabir, A., K. Pradhan, D.: A graph-based unified technique for computing and repre-

senting coefficients over finite fields. IEEE Transactions on Computers 56(8), 1119–1132

(Aug 2007)

[83] Mangrad, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-

ware implementations. In: Workshop on Cryptographic Hardware and Embedded Systems

(CHES). Lecture Notes in Computer Science, vol. 3659, pp. 157–171. Springer (2005)

[84] Manna, Z., Pnueli, A.: Temporal verification of reactive systems (1987)

[85] Massey, J., Omura, J.: Computational method and apparatus for finite field arithmetic

(1986), uS Patent

[86] Mathew, S., Satpathy, S., Suresh, V., Anders, M., Himanshu, K., Amit, A., Hsu, S., Chen,

G., Krishnamurthy, R.K.: 340 mV–1.1V, 289 Gbps/W, 2090-gate nanoAES hardware

accelerator with area-optimized encrypt/decrypt GF (24)2 polynomials in 22 nm tri-gate

CMOS. IEEE Journal of Solid-State Circuits 50, 1048–1058 (2015)

[87] Mathew, S.K., Sheikh, F., Kounavis, M.E., Gueron, S., Agarwal, A., Hsu, S.K., Himan-

shu, K., Anders, M.A., Krishnamurthy, R.K.: 53 Gbps native GF (24)2 composite-field

AES-encrypt/decrypt accelerator for content-protection in 45 nm high-performance micro-

processors. IEEE Journal of Solid-State Circuits 46, 767–776 (2011)

[88] Matsui, M.: The first experimental cryptoanalysis of the Data Encryption Standard. In:

Advances in Cryptology—CRYPTO 1994. Lecture Notes in Computer Science, vol. 839,

pp. 1–11. Springer (1994)

[89] McGrew, D.A., Viega, J.: The Galois/Counter Mode of operation (GCM) (2005),

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/

gcm-revised-spec.pdf

[90] Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J.,

Dahmen, E. (eds.) Post-Quantum Cryptography. pp. 147–191. Springer

172 Bibliography

[91] Moradi, A., Alexander, W.: Assessment of hiding the higher-order leakages in hardware—

What are the achievements versus overheads? In: Workshop on Cryptographic Hardware

and Embedded Systems (CHES). Lecture Notes in Computer Science, vol. 9293, pp. 453–

474. Springer (2015)

[92] Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis collision

attack. In: Workshop on Cryptographic Hardware and Embedded Systems (CHES). Lecture

Notes in Computer Science, vol. 6225, pp. 125–139. Springer (2010)

[93] Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: A very com-

pact and a threshold implementation of AES. In: Advances in Cryptology—EUROCRYPT

2011. Lecture Notes in Computer Science, vol. 6632, pp. 59–88. Springer (2011)

[94] Morioka, S., Katayama, Y., Yamane, T.: Towards efficient verification of arithmetic algo-

rithms over Galois fields GF (2m). Proc. 13th Conf. on Computer Aided Verification LNCS

2102, 465–477 (2001)

[95] Morioka, S.: Verification of AES component H/W optimization using a PPRM-based for-

mal method. In: Computer Security Symposium 2012. pp. 765–772. No. 3, CSEC (2012),

Japanese edition

[96] Morioka, S., Satoh, A.: An optimized S-Box circuit architecture for low power AES design.

In: Cryptographic Hardware and Embedded Systems (CHES). Lecture Notes in Computer

Science, vol. 2523, pp. 172–186. Springer (2002)

[97] Morioka, S., Satoh, A.: A 10 Gbps full-AES crypto design with a twisted-BDD S-Box

architecture. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 12, 686–

691 (2004)

[98] Mukhopadhyay, D., Sengar, G., Chowdhury, R.D.: Hierarchical verification of Galois field

circuits. IEEE Transaction on Computer Aided Design of Integraded Circuits and Systems

26(10), 1893–1898 (2007)

[99] Mullin, R.C., Onyszchuk, I.M., Vanstone, S.A., Wilson, R.M.: Optimal normal bases in

GF (pn). Discrete Applied Mathematics 22(2), 149–161 (1989)

[100] National Institute of Standards and Technology (NIST): Advanced Encryption Stan-

dard (AES) FIPS Publication 197 (2001), \url{http://csrc.nist.gov/

publications/fips/fips197/fips-197.pdf}

[101] Nekado, K., Nogami, Y., Iokibe, K.: Very short critical path implementation of AES with

direct logic gates. In: Advances in Information and Computer Security (IWSEC). Lecture

Notes in Computer Science, vol. 7631, pp. 51–68. Springer (2012)

[102] New European Schemes for Signatures, Integrity, and Encryption (NESSIE): The

homepage of the NESSIE project (2017), \url{https://www.cosic.esat.

173

kuleuven.be/nessie/}

[103] Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear func-

tions in the presence of glitches. Journal of Cryptology 24, 292–321 (2011)

[104] NIST: National Institute of Standards and Technology—U.S. Department of Commerce

(2017), \url{https://www.nist.gov/}

[105] Nogami, Y., Nekado, K., Toyota, T., Hongo, N., Morikawa, Y.: Mixed bases for efficient

inversion in F((22)2)2 and conversion matrices of SubBytes of AES. In: Cryptographic

Hardware and Embedded Systems (CHES). Lecture Notes in Computer Science, vol. 6225,

pp. 234–247. Springer (2010)

[106] Nogami, Y., Nekado, K., Toyota, T., Hongo, N., Morikawa, Y.: Mixed bases for efficient

inversion in F((22)2)2 and conversion matrices of SubBytes of AES. IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences 94(6), 1318–1327

(2011)

[107] Nogami, Y., Saito, A., Morikawa, Y.: Finite extension field with modulus of all-one poly-

nomial field and representation of its elements of for fast arithmetnic operations. IEICE

transactions on fundamentals of electronics, communications and computer sciences E86-

A(9), 2376–2387 (2003)

[108] Nyberg, K.: Differentially uniform mappings for cryptography. In: Advances in

Cryptology—EUROCRYPT 1993. Lecture Notes in Computer Science, vol. 765, pp. 55–

64. Springer (1993)

[109] Okamoto, K., Homma, N., Aoki, T.: A hierarchical graph-based approach to generating

formally-proofed Galois-field multipliers. In: Workshop on Security Proofs for Embedded

Systems (PROOFS). pp. 98–109 (2013)

[110] Okamoto, K., Homma, N., Aoki, T.: A graph-based approach to designing parallel mul-

tipliers over Galois fields based on normal basis representations. In: 43th International

Symposium on Multiple-Valued Logic (ISMVL 2013). pp. 54–59. IEEE (2015)

[111] Okamoto, K., Homma, N., Aoki, T., Morioka, S.: A hierarchical formal approach to veri-

fying side-channel resistant cryptographic processors. In: Hardware-Oriented Security and

Trust (HOST). pp. 76–79. IEEE (2014)

[112] Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from

the decisional linear assumption. In: Advances in Cryptology—CRYPTO 2010. Lecture

Notes in Computer Science, vol. 6223, pp. 191–208. Springer (20010)

[113] Omondi, A.R.: Computer Arithmetic Systems: Algorithms, Architecture and Implementa-

tions. Prentice Hall (1994)

[114] Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis resistant

174 Bibliography

description of the AES S-box. In: Fast Software Encryption. Lecture Notes in Computer

Science, vol. 3557, pp. 413–423. Springer (2005)

[115] Page, D., Smart, N.P.: Hardware implementation of finite fields of characteristic three.

CHES 2002, Lecture Notes in Computer Science 2523, 529–539 (Aug 2002)

[116] Parhami, B.: Computer Arithmetic: Algorithms and Hardware Designs. Oxford University

Press (2000)

[117] Pavlenko, E., Wedler, M., Stoffel, D., Kunz, W., Dreyer, A., Seelisch, F., Greuel, G.M.:

STABLE: A new QF-BV SMT solver for hard verification problems combining Boolean

reasoning with computer algebra. In: Conference on Design, Automation and Test in Eu-

rope (DATE). pp. 1–6. EDA Consortium, IEEE (2011)

[118] Pnueli, A.: The temporal logic of programs. In: Symposium on Foundations of Computer

Science. pp. 46–67. IEEE Computer Society Press (1977)

[119] Popp, T., Mangard, S.: Masked dual-rail pre-charge logic: DPA-resistance without rout-

ing constraints. In: International Workshop on Cryptographic Hardware and Embedded

Systems (CHES). Lecture Notes in Computer Science, vol. 3659, pp. 172–186. Springer

(2005)

[120] Poschmann, A., Moradi, A., Khoo, K., Lim, C.W., Wang, H., Ling, S.: Side-channel resis-

tant crypto for less than 2,300 GE. Journal of Cryptology 24, 322–334 (2011)

[121] Prowitz, D.: NATURAL DEDUCTION—A Proof-Theoretical Study. Almqvist & Wiksell

(1965)

[122] Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating mask-

ing schemes. In: Advances in Cryptology—CRYPTO 2015. Lecture Notes in Computer

Science, vol. 9215, pp. 764–783. Springer (2015)

[123] Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J., Rohatgi, P.: Efficient Rijndael

encryption implementation with composite field arithmetic. In: Cryptographic Hardware

and Embedded Systems (CHES). Lecture Notes in Computer Science, vol. 2162, pp. 171–

184 (2001)

[124] Sahai, A., Waters, B.: Fuzzy indentity-based encryption. In: Advances in Cryptology—

EUROCRYPT 2005. Lecture Notes in Computer Science, vol. 3494, pp. 457–473. Springer

(2005)

[125] Sasao, T.: And-Exor expressions and their optimization. In: Sasao, T. (ed.) Logic Synthesis

and Optimization. The Kluwer International Series in Engineering and Computer Science,

vol. 212, pp. 287–312. Kluwer Academic Publishers (1993)

[126] Sasao, T.: Representations of logic functions using EXOR operators. In: Representations

of discrete functions, pp. 29–54. Springer (1996)

175

[127] Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware architec-

ture with S-box optimization. In: Advances in Cryptology—ASIACRYPT 2001. Lecture

Notes in Computer Science, vol. 2248, pp. 239–254. Springer (2001)

[128] Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware architec-

ture with S-box optimization. In: Advances in Cryptology—ASIACRYPT 2001. Lecture

Notes in Computer Science, vol. 2248, pp. 239–254. Springer (2001)

[129] Savas, E., Koç, K.C.: Finite field arithmetic for cryptography. IEEE Circuits and Systems

Magazine 10(2), 40–56 (Aug 2010)

[130] Schneider, T., Moradi, A.: Leakage assesment methodology—A clear roadmap for side-

channel evaluations. In: Workshop on Cryptographic Hardware and Embedded Systems

(CHES). Lecture Notes in Computer Science, vol. 9293, pp. 495–513. Springer (2015)

[131] Shibutani, K., Isobe, T., Hiwatiri, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:

An ultra-lightweight blockcipher. In: Cryptographic Hardware and Embedded Systems

(CHES). Lecture Notes in Computer Science, vol. 6917, pp. 342–357. Springer (2011)

[132] Shinsaku, K., Toshiaki, T., Kouichi, S.: K2: a stream cipher algorithm using dynamic

feedback control. In: International Conference on Security and Cryptography (SECRYPT).

vol. 1, pp. 204–213 (2007)

[133] Silverman, J.H.: Fast multiplication in finite fields GF (2N). In: Workshop on Crypto-

graphic Hardware and Embedded Systems (CHES). Lecture Notes in Computer Science,

vol. 1717, pp. 122–134. Springer (1999)

[134] Srandaert, F.X., Örs, S.B., Preneel, B.: Power analysis of an FPGA—implementation of Ri-

jndael: Is pipelining a DPA countermeasure? In: International Workshop on Cryptographic

Hardware and Embedded Systems (CHES). Lecture Notes in Computer Science, vol. 3156,

pp. 30–44. Springer (2004)

[135] Stankovic, R., Drechsler, R.: Circuit design from Kronecker Galois field decision diagrams

for multiple-valued functions. In: 27th International Symposium Multiple-Valued Logic.

pp. 275–280. IEEE (1997)

[136] Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A lightweight block

cipher for multiple platforms. In: Selected Areas in Cryptography (SAC). Lecture Notes in

Computer Science, vol. 7707, pp. 339–354. Springer (2012)

[137] Suzuki, D., Saeki, M., Ichilawa, T.: DPA leakage models for CMOS logic circuits. In:

Workshop on Cryptographic Hardware and Embedded Systems (CHES). Lecture Notes in

Computer Science, vol. 3659, pp. 366–382. Springer (2005)

[138] Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA resistant

ASIC or FPGA implementation. In: Design, Automation and Test in Europe Conference

176 Bibliography

and Exhibition (DATE). vol. 1, pp. 246–251 (2004)

[139] Tohoku University: Cryptographic hardware project, http://www.aoki.ecei.

tohoku.ac.jp/crypto/

[140] Trichina, E.: Combinational logic design for AES SubBytes transformation on masked data

(2003), http://eprint.iacr.org/2003/236, Cryptology ePrint Archive, Report

2003/236

[141] Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and countermeasures.

Journal of Cryptology 23, 37–71 (2010)

[142] Verbauwhede, I., Schaumont, P., Kuo, H.: Design and performance testing of a 2.29-GB/s

Rijndael processor. IEEE Journal of Solid-State Circuits 38, 569–572 (2003)

[143] Wu, H.: Low complexity bit-parallel finite field arithmetic using polynomial basis. In:

Workshop on Cryptographic Hardware and Embedded Systems (CHES). Lecture Notes

in Computer Science, vol. 1717, pp. 280–291. Springer (1999)

[144] Wu, H., Hasan, A., Blake, I.F.: Highly regular architectures for finite field computation

using redundant basis. In: Workshop on Cryptographic Hardware and Embedded Systems

(CHES). Lecture Notes in Computer Science, vol. 1717, pp. 269–279. Springer (1999)

[145] Yashima, J., Takenaka, M., Shimoyama, T.: On validation tests for block cipher modules.

In: 26th CSEC Group Meeting. pp. 83–89. No. 75, IEICE (2004), Japanese edition

177

List of Publications

Journals
1. Rei Ueno, Naofumi Homma, and Takafumi Aoki, “Automatic generation system for

multiple-valued Galois-field parallel multipliers,” IEICE Transactions on Information and

Systems, Vol. E100-D, No. 8, pp. 1603–1610, August 2017.

2. Rei Ueno, Naofumi Homma, Takafumi Aoki, and Sumio Morioka, “Hierarchical formal

verification combining algebraic transformation with PPRM expansion and its application

to masked cryptographic processors,” IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Science, Vol. E100-A, No. 7, pp. 1396–1408, July 2017.

3. Rei Ueno, Naofumi Homma, Yukihiro Sugawara, and Takafumi Aoki, “Formal approach

to verifying Galois field arithmetic circuits of higher Degrees,” IEEE Transactions on Com-

puters, Vol. 66, No. 3, March 2017.

4. Rei Ueno, Naofumi Homma, and Takafumi Aoki, “A formal verification method of error

correction code processors over Galois-field arithmetic,” Journal of Multiple-Valued Logic

and Soft Computing, Old City Publishing, Vol. 26, Issue 1/2, pp. 55–73, February 2016.

5. Rei Ueno, Naofumi Homma, and Takafumi Aoki, “Efficient DFA on SPN-based block

ciphers and its application to the LED block cipher,” IEICE Transactions on Fundamentals

of Electronics, Communications and Computer Science, Vol. E98-A, No. 1, pp. 182–191,

January 2015.

International conferences
6. Akira Ito, Rei Ueno, Naofumi Homma, and Takafumi Aoki, “On the detectability of hard-

ware Trojans embedded in parallel multipliers,” IEEE 48th International Symposium on

Multiple-Valued Logic (ISMVL 2018). (to appear)

7. Manami Suzuki, Rei Ueno, Naofumi Homma, and Takafumi Aoki, “Quaternary debiasing

for physically unclonable functions,” IEEE 48th International Symposium on Multiple-

178 List of Publications

Valued Logic (ISMVL 2018). (to appear)

8. Hirokazu Oshida, Rei Ueno, Naofumi Homma, and Takafumi Aoki, “On masked Galois-

field multiplication for authenticated encryption resistant to side channel analysis,” 9th In-

ternational Workshop on Constructive Side-channel Analysis and Secure Design (COSADE

2018). (to appear)

9. Rei Ueno, Naofumi Homma, and Takafumi Aoki, “Design of highly efficient tamper-

Resistant AES processor based on 1st order TI,” 12th International Workshop on Security

(IWSEC), Hiroshima, Japan, May 2017. (Invited talk)

10. Rei Ueno, Naofumi Homma, and Takafumi Aoki, “A systematic design of tamper-resistant

Galois-field arithmetic circuits based on threshold implementation with (d + 1) input

shares,” IEEE 47th International Symposium on Multiple-Valued Logic (ISMVL 2017),

pp. 136–141, Novi Sad, Serbia, May 2017.

11. Wataru Kawai, Rei Ueno, Naofumi Homma, Takafumi Aoki, Kazuhide Fukushima, and

Shinsaku Kiyomoto, “Practical power analysis on KCipher-2 software on low-end micro-

controllers,” Security for Embedded and Mobile Systems (SEMS), IEEE Euro Security and

Privacy Workshops (EuroS&P Workshops), pp. 113–121, Paris, France, April 2017.

12. Rei Ueno, Naofumi Homma, and Takafumi Aoki, “Toward more efficient DPA-resistnat

AES hardware architecture based on threshold implementation,” 8th International Work-

shop on Constructive Side-channel Analysis and Secure Design (COSADE 2017), Lecture

Notes in Computer Science 10348, Springer, pp. 50–64, Paris, France, April 2017.

13. Manami Suzuki, Rei Ueno, Naofumi Homma, and Takafumi Aoki, “Multiple-valued debi-

asing for physically unclonable functions and its application to fuzzy extractors,” 8th Inter-

national Workshop on Constructive Side-channel Analysis and Secure Design (COSADE

2017), Lecture Notes in Computer Science 10348, Springer, pp. 248–263, Paris, France,

April 2017.

14. Rei Ueno, Naofumi Homma, and Takafumi Aoki, “Automatic generation of formally-

proven tamper-resistant Galois-field multipliers based on generalized masking scheme,”

IEEE/ACM 20th Design, Automation and Test in Europe Conference and Exhibition (DATE

2017), pp. 973–983, Lausanne, Switzerland, March 2017.

15. Rei Ueno, Sumio Morioka, Naofumi Homma, and Takafumi Aoki, “A high through-

put/gate AES hardware architecture by compressing encryption and decryption

datapaths—Towared efficient CBC-mode implementation,” 18th International Con-

ference on Cryptographic Hardware and Embedded Systems (CHES 2016), Lecture Notes

in Computer Science 9813, Springer, pp. 538–558, Santa Barbara, CA, USA, August

2017.

179

16. Rei Ueno, Yukihiro Sugawara, Naofumi Homma, and Takafumi Aoki, “Formal design of

pipelined GF arithmetic circuits and its application to cryptographic processors,” IEEE 46th

International Symposium on Multiple-Valued Logic (ISMVL 2016), pp. 217–222, Sapporo,

Japan, May 2016.

17. Wataru Kawai, Rei Ueno, Naofumi Homma, Takafumi Aoki, Kazuhide Fukushima, and

Shinsaku Kiyomoto, “Side channel security evaluation for KCipher-2 software on smart

cards,” 25th International Workshop on Post-Binary ULSI Systems, pp. 9–12, Sapporo,

Japan, May 2016.

18. Rei Ueno, Naofumi Homma, Yukihiro Sugawara, Yasuyuki Nogami, and Takafumi Aoki,

“Highly efficient GF (28) inversion circuit based on redundant GF arithmetic and its appli-

cation to AES design,” 17th International Workshop on Cryptographic Hardware and Em-

bedded Systems (CHES 2015), Lecture Notes in Computer Science 9293, Springer, pp. 63–

80, Saint-Malo, France, September 2015.

19. Rei Ueno, Naofumi Homma, Yukihiro Sugawara, and Takafumi Aoki, “Formal design of

Galois-field arithmetic circuits based on polynomial ring representation,” IEEE 45th In-

ternational Symposium on Multiple-Valued Logic (ISMVL 2015), pp. 48–53, Waterloo,

Canada, May 2015.

20. Yukihiro Sugawara, Rei Ueno, Naofumi Homma, and Takafumi Aoki, “System for auto-

matic generation of parallel multipliers over Galois field,” IEEE 45th International Sympo-

sium on Multiple-Valued Logic (ISMVL 2015), pp. 54–59, Waterloo, Canada, May 2015.

21. Rei Ueno, Kotaro Okamoto, Naofumi Homma, and Takafumi Aoki, “An efficient approach

to verifying Galois-field arithmetic circuits of higher degrees and its application to ECC

decoders,” IEEE 44th International Symposium on Multiple-Valued Logic (ISMVL 2014),

pp. 144–149, Bremen, Germany, May 2014.

Awards
22. Kenneth C. Smith Early Career Award in Microelectronics (May 23, 2017), Rei Ueno;

“Formal design of pipelined GF arithmetic circuits and its application to cryptographic

processors,” IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL 2016).

(Authors: Rei Ueno, Yukihiro Sugawara, Naofumi Homma, and Takafumi Aoki)

23. IEEE student travel-award (ISMVL 2015), Rei Ueno; “Formal design of Galois-field arith-

metic circuits based on polynomial ring representation,” IEEE 45th International Sympo-

sium on Multiple-Valued Logic (ISMVL 2015). (Authors: Rei Ueno, Naofumi Homma,

Yukihiro Sugawara, and Takafumi Aoki)

Formal Design of Cryptographic Hardware
by

Rei Ueno

Graduate School of Information Sciences, Tohoku University

January 2018

Copyright c⃝ 2018 Rei Ueno,

All Rights Reserved.

