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ABSTRACT

Due to the globalization of IC design in semiconductor industry and outsourcing of chip manufac-

turing, 3PIPs become vulnerable to IP piracy, reverse engineering, counterfeit IC, and hardware

Trojans. To thwart such attacks, ICs can be protected using logic encryption techniques. However,

strong resilient techniques incur significant overheads. SCAs further complicate matters by intro-

ducing potential attacks post fabrication. One of the most severe SCAs is PA attacks, in which

an attacker can observe the power variations of the device and analyze them to extract the secret

key. PA attacks can be mitigated via adding large extra hardware; however, the overheads of such

solutions can render them impractical, especially when there are power and area constraints. In

our first approach, we present two techniques to prevent normal attacks. The first one is based

on inserting MUX equal to half/full of the output bit number. In the second technique, we first

design PLGs using SiNW FETs and then replace some logic gates in the original design with their

SiNW FETs-based PLGs counterparts. In our second approach, we use SiNW FETs to produce

obfuscated ICs that are resistant to advanced reverse engineering attacks. Our method is based on

design a small block, whose output is untraceable, namely URSAT. Since URSAT may not offer

very strong resilience against the combined AppSAT-removal attack, S-URSAT is achieved using

only CMOS-logic gates, and this increases the security level of the design to robustly thwart all

existing attacks. In our third topic, we present the usage of ASLD to produce secure and resilient

circuits that withstand IC attacks (during the fabrication) and PA attacks (after fabrication). First,

we show that ASLD has unique features that can be used to prevent PA and IC attacks. In our three

topics, we evaluate each design based on performance overheads and security guarantees.
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CHAPTER 1: INTRODUCTION

Nowadays, the advances in field programmable gate array (FPGA), microprocessors, multimedia,

integrated circuits, Internet of Things (IOT), System on Chip (SoC), and digital signal processing

(DSP) have resulted in much more complicated circuits with billions of transistors. This one

allows companies to add much more features on a single silicon chip that help human beings

complete many tasks easily. CMOS scaling enable foundries to produce devices with small size,

ultra-low power, high performance, high density, super large memory storage. Unfortunately, The

ubiquity of the sophisticated technologies with CMOS technology scale-down leads to the potential

opportunities for the malicious user, because a more intricate and larger system makes it more

difficult to either detect or prevent hidden malicious hardware Trojans during the test and/or normal

operation [5–7]. Traditional testing tools, e.g.Automatic Test Pattern Generation (ATPG), can not

guarantee detecting malicious threats, especially for a very large scale design since generating all

test patterns are not possible. Therefore, it is very important to make sure that hardware chips are

secure regardless of the chip sizes.

Hardware attacks are not limited to the malicious user. Many kinds of serious hardware attacks

have been introduced last decade. Examples of such severe attacks are intellectual property (IP)

piracy, reverse engineering, integrated circuit (IC) counterfeiting, and IC overbuilding [8]. Unlike

software attacks, hardware attacks are hard to be prevented or detected. Hardware security is a

technique to protect the physical hardware device that the software is installed on it. As a con-

sequence, securing the hardware becomes mandatory and is not less important than securing the

software because if the hardware is not trustworthy, then the software is also not trustworthy [9].

This dissertation will concentrate on proposing techniques that can thwart serious hardware attacks

with low overhead and finally make the globalization of IC design flow secure against various se-

rious attacks.
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1.1 The Globalization of IC Design Flow

Integrated circuit (IC) design is a part of electronics engineering, including logic and circuit de-

sign methods that are required to create ICs with a minimum number of semiconductor electronic

components. Examples of the most preliminary electronic components are resistors, capacitors,

light-emitting diodes (LEDs), transistors, and inductors. Currently, modern ICs become extremely

complicated and contain many billions of transistors. The main purpose of producing a complex

IC is to involve as many applications as possible on the same chip so the product can be used to

perform many functions. Unfortunately, such complex IC cannot be tested and validated easily

during the fabrication process. To solve this dilemma, companies use a special procedure. Figure

1.1 (a) shows the main steps of this procedure [10]. These steps are called "IC design flow".

IC design flow starts from the idea of the chip, specifications, and product requirements all the way

down to the chip manufacturing. Typically, the first step is to represent the idea of the chip by logic

gates, namely netlist. Each netlist has many different logic gates that are connected through wires

(interconnections), and each type of the logic gates implements a different Boolean function [11].

The next step is the logic synthesis, which is used to convert the high level of the design description

to the optimized gate-level. Then, the gate-level design is transferred to layout (GDS II), where all

design components are mapped to geometric representation of wires, capacitors, transistors, and so

on. The layout is then given to the manufacturer to fabricate the design. Afterward, the individual

components of the chip are tested and packaged to make sure there are no errors and isolate the

defective parts. The chip is produced by putting the individual components together, and then the

whole chip is tested by the facility at the IC configuration department. If all the aforementioned

steps are passed successfully, then the IC is ready to be sold in the market [12,13]. This traditional

procedure is good only for companies that have their own fabrication equipment, e.g. Intel and

IBM.

2



In house IC design
Logic 

Synthesis

GDS II

IC Design

Export layout

Gate Level 

Design

Manufacturing

Testing and 

Packaging

Locate Fabrication

IC 

Configuration

IC Sales

Foundry

Market

In house IC design
Logic 

Synthesis

GDS II

IC Design

Export layout

Gate Level 

Design

Manufacturing

Testing and 

Packaging

Oversea 

Fabrication

IC 

Configuration

IC Sales

Foundry

Market

assembly &

test facility

Logic Design

Chip idea and 

specifications

Logic Design

Chip idea and 

specifications

Figure 1.1: Main processing steps in IC design flow: (a) conventional IC design flow, and (b)
globalization of IC design flow. Due to the offshore IC fabrication, IP owners do not have full
control over untrusted foundries to protect their designs.
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Unfortunately, since the complexity of the design becomes very large and needs modern manufac-

turing equipment, several fabless companies, e.g. Apple, only design the chips and then outsource

the chips to semiconductor foundry for fabrication to reduce the fabricating costs [14, 15]. Thus,

ICs might be imitated by an untrusted foundry or reversed engineering to be sold in markets ille-

gally. Consequently, IP owners do not have full control over untrusted foundries to protect their

designs, where they are susceptible in front of many attacks, such as reverse engineering, IP piracy,

and IC counterfeiting [16]. Figure 1.1 (b) shows the steps of the globalization of IC design flow.

1.2 Hardware Security Attacks

Since the ICs are sent to oversea for fabrication purposes, they are subject to many attacks [1, 17,

18]. Attack requirements are different based on what the attacker wants to achieve. We will talk

about each one, as follows:

1.2.1 Overproduction

An attacker in an untrusted foundry can illegally produce extra copies of a chip without knowledge

of designers or IP owners. Usually, these extra copies are manufactured out of the contract signed

between the IP owner and foundry. Since there is no previous cost of research and development on

the chip, attacker can earn more money than IP owner by selling the same chips [19–25].

1.2.2 Counterfeiting

Counterfeit hardware devices are exact copies of the genuine devices but with low quality. Such

devices are usually made from electronic parts that are recycled or no longer useful. Counterfeit
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ICs become the main challenge in academic research and many commercial products due to being

unreliable and insecure [18, 26]. Unfortunately, only a few countries (e.g., the USA and Japan)

have a rigorous set of rules and regulations to prevent IC piracy from exposing or stealing elec-

tronic products [27–29]. A report from Information Handling Services (IHS) company in the USA

showed that the untrusted ICs and the counterfeit chips have increased four-fold since 2009 [30].

The Group of Twenty (G-20) estimated the impact of IC piracy and counterfeiting reaches $1770

billion in 2015 [31].

1.2.3 Hardware Trojan

An attacker either in the design house or in the untrusted foundry may inject malicious circuits,

namely hardware Trojans, into the original hardware design that cannot be detected easily during

the design testing or normal operation [32]. Traditionally, there are two taxonomies of hardware

Trojans; combinational and sequential. The purpose of inserting a Trojan is to cause a malfunction

in the chip at a specific IC operation and/or leak sensitive information [33,34]. Each Trojan consists

of two parts; trigger and payload. The trigger is a circuit that employs to activate in very rare

conditions while the payload considers as a response or an act to the Trojan. Trojans can be inserted

in various phases of IC design flow, such as design, testing, packaging, synthesis, verification, and

fabrication. Different techniques have been proposed to prevent such threat [35]. However, Trojan

detection/prevention methods are not guaranteed, especially if the Trojan is inserted into a large

scale circuit.

1.2.4 Reverse Engineering

Reverse engineering is a process in which a design can be analyzed to see how it works in order to

duplicate/improve the system. It comprises of, but not limited to, extracting the design netlist [36],
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distinguishing the leveraged technology [37], recovering the functionality [38], getting layer im-

ages, and depackaging and delayering the IC [39]. Regrettably, exposing such information during

the process may allow attackers to recover the design of the chip. The target is different depend-

ing on what the attacker wants to do. For example, if the aim of the attacker is to unauthorizedly

duplicate the design, the target will be either gate-level or physical design. If the goal is to insert a

Trojan, then the target will be RTL or gate-level netlist.

1.2.5 IP Piracy

An attacker can reverse engineer the IP design and reproduce the chips. IP piracy is one of the

most severe attacks, in which an unauthorized person can duplicate the IP cores or exploits it

without having permission from the IP owner in order for him/her to sell them illegitimately in the

market as authenticities. Such threats can cause significant financial losses to the semiconductor

industry [40].

1.2.6 Side Channel Attacks

The secret key in a smart device can be revealed by side channel attacks (SCAs) through observ-

ing the power dissipation [41], photonic emissions [42], electromagnetic emissions [43], or time

analysis [44]. Power analysis attack (PAA) is more popular and powerful than others. The first

PAA was presented by Kocher et al. [45]. There are three types of PAA; simple power analysis

(the data are directly taken from the power dissipation), differential power analysis (the related

information is obtained from large number power traces, and then statistical analysis is used to

identify the differences in these traces), and correlation power analysis (CPA) (the real power is

correlated with the predicted power model to get the leakage data). CPA is more advanced and

faster than others [46]. Another combined attacks, namely fault-based side-channel attacks, using
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active and passive SCAs, have gained much attention. The idea of this attack is to inject a fault

into the hardware device to generate errors, in which faulty computations will reveal information

about the implemented device [47–50]. Note that this attack is more efficient and requires lower

computations to leak secret information than SCA.

1.3 Hardware Attack Prevention Techniques

The vulnerability of chip security during manufacturing spurs the research on countermeasure

methods. There are several techniques have been proposed to thwart hardware attacks. In this sub-

section, we will briefly discuss and show the strengths and weaknesses of each of these methods.

1.3.1 Metering

Hardware metering technique is a collection of protocols that help the IP owners control their

designs remotely during the post-fabrication stage [51, 52]. Metering could be either active (allow

the designer to enable or disable the chip) or passive method (allow the designer to monitor their

design passively through using physical identification, e.g. serial number) [19].

1.3.2 Split Manufacturing

The main idea of split manufacturing is to partition the circuit into two parts. The first part has the

main operation components (transistors, capacitors and so on) with few wires, called front-end of

line (FEOL), and the second one has the rest of the interconnection, namely the back-end of line

(BEOL). These two parts are fabricated in different foundries and then connected together [53–55].

Broadly, split manufacturing process depends on 2D integration [56], 2.5D integration [57], and

7



3D integration [58]. It is a good technique to prohibit IP piracy in an untrusted foundry.

1.3.3 Watermarking

Hardware watermarking is a signature of the IP owner, e.g., a unique IP owner constraint, that is

implanted into the design. Watermarking is a passive method that can only be used to detect IP

piracy but not prevent it [59]. Moreover, it can be implemented at the logic design, logic synthesis,

or physical design phase.

1.3.4 Camouflaging

Camouflaging is proposed to prevent reverse engineering attacks by replacing some gates in the

original design with corresponding camouflaged counterparts. Camouflaged gates look like the

original gates in the netlist but provide different functionalities, e.g., the same structure can be

either NAND or NOR gate based on the design configurations. This technique can be achieved by

adding dummy contacts [60], using diffusion programmable cells [61] or filler cells [62]. Camou-

flaging is achieved at the layout-design phase after the IC physical design. Therefore, it should be

supported by a trusted fabrication company to manufacture the camouflaged gates [63].

1.3.5 Power Analysis Attack Countermeasures

There are many power analysis attack (PAA) countermeasures, but the most two popular ones

are the masking [64] and hiding [65] techniques. Masking method targets to randomly mask the

intermediate values, which requires additional hardware resources, where large overhead requires

for masking complex operations. For hiding method, even though the performance penalty is not

that much large for different types of operations, there is a trade-off between the security and power
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dissipation. Increasing the noise power leads to increase the protection of the design, however,

the signal to noise ratio will be reduced since the noise will control the power [66]. Employing

a Sensing Amplifier Based Logic (SABL) [67] is more empirical technique to prevent PAA. A

protected design, namely Current Mode Logic (CML), is employed to produce approximately a

constant power dissipation at the output and thus PAA cannot identify the correct key. The above-

mentioned techniques require large overhead for high protection level, which is not good for IoT

applications since most of IoT devices are powered by battery [45].

IP

owner

In house IC design (Trusted area)

Logic 

Synthesis

Gate Level 

Design

Drive Logic 

locks and 

update the 

netlist

GDS II

IC Design IC Encryption Export layout

Manufacturing
Testing and 

Packaging

Untrusted Company

IC 

Configuration

Trusted Facility 

for Activating IC

IC

 Sales

MarketOversea Fabrication

Logic 

Design

Chip idea & 

specifications

Figure 1.2: The modifications in IC design flow when a logic encryption technique is used to
protect the design. The two red regions donate the two locations in which the IC get encrypted and
activated by IP owners

1.3.6 Logic Encryption

Logic encryption locks a netlist through adding logic gates into the original netlist with a valid

key. These added logic gates, namely key-gates, are inserted into the original netlist at different

locations based on the algorithm that the designer uses (more details regarding logic encryption

algorithms are mentioned in chapter 2). The key-gates could be XOR/XNOR gates [68], MUXes

[26,69], OR/AND gates [70], or a collection of these elements [71]. The functionality of the design

will not reveal unless the correct key is given. Logic encryption is considered as one of the best

techniques since it provides a fully protection against hardware attacks. Also, it presumes that all

processing steps in IC design flow are not trusted, except the design house. Figure 1.2 presents
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the IC design flow combined with the logic encryption technique. The Figure demonstrates where

the IC should be encrypted and activated. Instead of shipping the original netlist to the offshore

manufacturing foundry, a logic-gate level encryption technique is applied to protect the IP design

with low cost. Afterwards, the encrypted netlist is converted to Graphic Database System (GDS II)

stream format and then sent to a foundry for fabrication. Once the encrypted circuits successfully

pass the untrusted foundry, the key inputs should be driven by on-chip tamper-proof memory [72],

as shown in Figure 1.3. In other words, after retrieving the fabricated chips, in order to exhibit its

correct functionality (produce correct outputs), the valid key has to be supplied to the encrypted

design, which is done by a trusted facility to active the IC, for a certified IP owner to unlock

the chips. However, upon employing a wrong key, the encrypted design will show the wrong

functionality (produce wrong outputs). It is worth mentioning that the embedded secret key of

the encrypted circuit, after the fabrication, may be revealed by power analysis (PA) attacks [41].

Therefore, extra hardware resources should be added to mitigate PA attacks, more details regarding

this matter is discussed in Chapter 2. In the following, we clarify how logic encryption can protect

ICs from various IC attacks.

Tamper-proof 

memory

Encrypted 

circuit
Primary 

inputs

Primary 

outputs

Figure 1.3: A block diagram of the logic encryption representation

Hardware Trojans: A malicious insider may illegally pirate the IP core without the permission of

the designer and add a hardware Trojan into the design. Logic encryption can prevent an attacker

from inserting a Trojan by spurring the rare signals in the design and inserting key-gates at these

10



rare signals. There are many ways to find these rare signals, but the most popular and efficient one

is the Monte Carlo algorithm [73].

Reverse Engineering and IP Piracy: A malicious company can steal or pirate the encrypted

design by IC reverse engineering, but extracting the design by using reverse engineering is really

complicated and needs a lot of time and effort to be achieved. Also, since the secret key of the

encrypted design is unknown to the malicious company, the design will not function correctly.

Traditional logic encryption can easily prevent such attacks; however, if an attacker in an untrusted

company can get an activated IC from the market, then he or she can apply input patterns to the

activated IC and get the corresponding output patterns. By accessing the gate level of the encrypted

IC (obtained by reverse engineering) and observing the corresponding outputs, the attacker can find

the correct key of the encrypted circuit with a shortened time [74] [2]. We name these attacks as

advanced reverse engineering attacks and will discuss more in detail about these attacks and the

ways to prevent them in chapter 2.

IC Counterfeiting: Logic encryption can mainly be used to prevent IC piracy and many types of

IC counterfeiting, such as cloning a design with low quality, that deliberately depend on reverse

engineering [18].

Overproduction: An attacker in an untrusted foundry can easily overproduce or overbuild ICs

to make extra IC copies without the designer’s knowledge. However, the functionality of the

encrypted IC is unknown since the IC has not been activated by the secret key yet.

The hardware attack prevention techniques are different based on the attack model and security

goal. Table 1.1 gives a recapitulation of comparison among existing hardware attack prevention

techniques. The Table ensures that only logic encryption methods can full prevent IC attacks.
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Table 1.1: A comparison between different techniques that can be used to prevent IP piracy, IC
overproduction, reverse engineering attacks.

Technique Test facility Company Design integration End user 3PIP seller
Metering [19, 51, 75] Yes No No Yes No

Split manufacturing [53, 76] No Yes No No No
Watermarking [59, 77, 78] Yes No No Yes No
Camouflaging [60, 79–83] No No No Yes No

Logic encryption [1, 2, 4, 68, 69, 84–86] Yes Yes Yes Yes Yes

1.4 Contributions of the Dissertation

To produce a secure hardware design that can effectively prevent IC attacks during the fabrication,

a strong logic encryption technique should be leveraged. Also, a designer needs to add additional

hardware resources to make the IC resilient to side-channel attacks (SCAs). Therefore, enormous

overheads are required to produce a secure and resilient IC against all hardware attacks during and

after the fabrication. Regrettably, the large overhead may preclude the encrypted design from being

fabricated on a real silicon chip. Orthogonal to the previous works, we develop various techniques

that can offer a robust and secure design with ultra-low overhead compared to previous works. The

main contributions of this dissertation are as follows:

1.4.1 Strong Logic Encryption against Normal IC Attacks

1.4.1.1 Approach1: Traditional Encryption Using Multiplexers with LFSR

Random insertion of key-gates based traditional logic encryption cannot provide high security level

(50% Hamming distance (HD)) when incorrect keys are entered. Fault impact analysis based logic

encryption is an improvement on random insertion techniques; however, it has two limitations:

first, the complexity and the difficulty of getting around 50% HD for a design that is large or has
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many output bits; second, the huge performance overhead to implement RSA and the reliability of

PUF. From these two points, our contribution is described as follows:

• Ensuring that the HD is 50% (best case) once the number of output bits is even or close to

50% for the circuits having convenient output odd bits, for whatever the size of the circuit.

• Leveraging both the hardware Trojan idea and the linear feedback shift register (LFSR) ran-

dom generation, to generate suitable random keys, for the fully-encrypted design instead of

employing both RSA and PUF.

1.4.1.2 Approach 2: Conventional Encryption Using Hybrid CMOS and Emerging SiNW FETs

A state-of-the-art solution for logic obfuscation objectives is to leverage CMOS technology, but the

challenge is to obtain a high level of chip protection without a high cost penalty. The required per-

formance overhead for logic encryption purposes can exceed 25% when the number of inserted

key-gates (XOR/XNOR) is about 5% of the total number of gates in the combinational Inter-

national Symposium on Circuits and Systems (ISCAS)-85 benchmark [2]. In order to address

this issue, we propose a technique based on the new characteristic of emerging technology for IP

protection and hardware attack prevention. More specifically, we introduce the silicon nanowire

(SiNW) FET based polymorphic logic gate to help obfuscate the netlist to further improve IP pro-

tections. Different from previous efforts, this paper presents an in-depth theoretical analysis and

security evaluation with the proposed technique. The details of our contributions are listed as

follows:

• We first present the polymorphic logic gate based on emerging SiNW polarity-contrallable

FET and its advantages over conventional CMOS technology.
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• We then incorporate polymorphic logic gates for encrypting combinational circuits. A poly-

morphic gate based logic encryption algorithm is further proposed with theoretical analysis.

• We evaluate the proposed SiNW FETs and CMOS hybrid logic encryption, achieving a

hamming distance of 50% for most of the ISCAS’85 benchmark circuits.

• The performance penalty of the proposed technique has also been evaluated, where a much

smaller overhead is incurred compared to the previous literature. A genuine energy-efficient

logic locking is achieved.

1.4.2 Strong Logic Obfuscation against Advanced IC Reverse Engineering Attacks

In this work, we leverage SiNW polymorphic logic gates (PLGs) augmented with a light-weight

resilient-SAT circuit to produce an obfuscated design that requires small overhead and is more

secure. The contributions of this work are as follows:

1 PLGs designed using emerging SiNW FETs are exchanged with some logic gates in the orig-

inal circuit, starting from the large gate input size [87]. To further reduce the performance

overhead, we exchange PLGs starting from the small gate input size. Unlike the work in [88],

these PLGs are designed to cover/mimic all gate sizes and types in the original netlist for

any logic circuit.

2 We introduce an untraceable light-weight Resilient SAT (URSAT) circuit that provides a

defense against SAT attack. URSAT also prevents an adversary from tracking and removing

the URSAT output signal, thus avoiding resilient attacks. URSAT is built using different

input sizes of AND/OR PLGs [87]. To make URSAT more general, we use 2-input AND/OR

PLGs with larger-input AND/NAND PLG at the last stage in URSAT block.
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3 Even though URSAT is secure against many attacks, it may not achieve strong resilience

against the combined AppSAT-removal attack. We propose S-URSAT designed using only

CMOS-logic gates to strongly thwart the combined AppSAT-removal attack. Also, the inter-

nal signals and the output signal of S-URSAT are more changeable when incorrect keys are

applied, and this increases the security level of the proposal against other attacks.

4 Finally, we evaluate the performance overhead of our designs and show that it has a very

small penalty.

1.4.3 Secure and Resilient Hardware Devices Using ASLD

In this work, we present a case study on how All Spin Logic Device (ASLD) can produce secure

and resilient circuits against IC attacks during the fabrication and PA attacks after the fabrication

with a small penalty. The contributions of this work are as follows:

1 We design simple PLGs that can be used to build up a secure circuit against IC attacks [89].

2 We design new efficient ASLD based logic gates to produce various polymorphic logic gates

(PLGs), such as inverter/buffer, AND/OR, NAND/NOR, and XOR/XNOR PLGs, with dif-

ferent input-sizes. Each PLG has a valid key-input. These PLGs are used to produce en-

crypted circuits by only replacing the traditional CMOS circuit with ASLD based PLGs.

The implemented circuit using ASLDs can be encrypted with a very complicate key without

any adding extra resources. Therefore, the design is extremely resilient to IC attacks.

3 The new designed ASLD based PLGs require much less energy dissipation and are much

faster than our previous implemented PLGs [89]. These improvements are achieved by im-

plementing PLGs with a different structure (XOR/XNOR), employing optimal ASL param-

eters, using the pipeline technique, and adding ASL-buffers at necessary locations.
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4 We extract a new unique feature of ASLD, in which the power dissipation of all read/write

operations from/to nanomagnet unit is constant. This new feature of ASLD with the new

designed PLGs enables us to implement resilient design against PA attacks with a small

performance penalty. To evaluate the strength of the proposed technique, we implement a

resilient ASLD-based Advanced Encryption Standard (AES) circuit as an example, where

different kinds of ASLD logic gates with different input-sizes are generated, by fixing the

key input of the designed PLGs to VDD or GND based on the required gate. Then, we attack

the first round in AES with a correlation power analysis to guess the secret key information.

The results show that the secret key cannot be revealed by PA attacks.

5 We also evaluate and compare the energy and area of our proposal with 14 nm CMOS tech-

nology. The energy dissipation and the required area of the proposal are retrieved using our

own developed ASLD library.

1.5 Organization of the Dissertation

The outline of the dissertation is organized as follows: Chapter 1 summarizes the work of the

dissertation, including the introduction for hardware security attack and defense methods, and the

dissertation contributions. Chapter 2 provides a brief overview of related works that specifically

talk about logic encryption attacks and defenses in section 2.2, side channel analysis attacks and

defenses in section 2.3, and fundamental of emerging devices in section 2.4. Chapter 3 presents

two approaches. In section 3.1, we present approach 1 that ensures producing 50% HD for any

input patterns while section 3.2 elucidates approach 2 that produces robust encryption with much

lower overhead compare to approach 1. Strong logic obfuscation against advanced IC reverse

engineering attacks is given in chapter 4. Chapter 5 presents secure and resilient hardware devices

using ASLD. Finally, we conclude in chapter 6.
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CHAPTER 2: PRELIMINARIES

2.1 Traditional Logic Encryption

Rogue copy, mask theft, overproduction, and overbuilding are the main reasons to secure the IC

from various assailants leveraging the logic encryption approaches. The cipher design can be done

via inserting few gates to the original design to conceal the functionality, while the decipher can

be rendered once the owner provides the circuit by a correct external key-bit inputs.

Logic encryption can mainly be classified into two types: sequential and combinational. For se-

quential, new states with transitions have to be added to the original Finite State Machine (FSM) to

produce a boosted and security-enhanced FSM that provides a strong secured circuit [19]. In [90]

and [91], the authors proposed two modes: obfuscated and normal. By inserting some state el-

ements to the original FSM, the obfuscated mode is produced to create a counterfeit state. The

functionality is always wrong unless the correct sequence of the key bits is applied. An untrusted

foundry is not able to figure out the correct sequence of the new FSM without knowing the whole

state transition graph which means going through all the possible cases. Also, the design goes in

an unknown state when the sequence of the key is pulled out. Sequential logic encryption methods

are not mature enough compared to combinational logic encryption

Combinational logic encryption techniques are more popular than sequential encryption methods,

where most of the recent works concentrate on combinational encryption. In general, traditional

combinational encryption techniques were presented based on three different methods: (1) random

insertion of key-gates (RIKG) [1, 68], (2) maximization the hamming distance between the incor-

rect and correct outputs when wrong keys are applied (MHD) [22, 69], and (3) interference graph

among the inserted key-gates (IGI) [2]. In RIKG, the design can be encrypted via randomly insert-
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ing XOR/XNOR key-gates into the original circuit. Roy et al. [1,68] proposed a chip-locking sys-

tem for active IC metering, while targeted to make physical tampering infeasible. The chip-locking

framework inserts XOR/XNOR key gates with fan-ins connected to the bits of keys that activate

the circuit. The insertion is achieved at randomly selected locations before physical synthesis but

after logic synthesis. In MHD, Baumgarten et al. [22] used lookup table-based locking units that

hinder attempts to reverse-engineer functionality from the mask prospectives. It demonstrates how

logic encryption can be propagated to the field programmable gate array (FPGA) domain. The

authors attempt to insert the key-gates in a way that maximizes the relationship between correct

and corrupt output patterns once wrong keys are applied. Similarly, Rajendran et al. [92] proposed

fault analysis-based logic encryption that formalizes the fault impact of a given netlist and incor-

porates XOR/XNOR gates at the selected locations. A wrong key ensures the corrupting of output

values. A continuing work [69] includes a multiplexer as logic cone for the encryption.

2.2 Analytical IC Reverse Engineering: Threats and Defense Techniques

It is conceivable that an attacker can obtain a functional IC (e.g., by purchasing one from the

market) and then provide arbitrary inputs to the IC and observe the corresponding outputs for these

inputs. Attackers may also be able to obtain encrypted IC netlist as a black box either through

reverse engineering or IP theft from an untrusted foundry. Access to a gate-level netlist of the

encrypted IC and the ability to query the output for arbitrary input is sufficient to default many

logic locking techniques [2, 74].
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Figure 2.1: logic locking techniques: (a) encryption based on random insertion [1], and (b) strong
encryption [2].

2.2.1 Pre-SAT: Sensitization Attack and Defenses

The encrypted IC becomes vulnerable to sensitized key-based attacks if the key-gates are inserted

randomly or without interference graph among them, where the key values could be isolated to

primary outputs using Automatic Test Pattern Generation (ATPG) tools [2]. For example, in the

simple locked design illustrated in Figure 2.1 (a), both K1 and K2 are stored in a secure memory,

and an assailant cannot access them. By supplying a specific input pattern, generated by ATPG

tools, e.g. ”0X11”, both K1 and K2 values will be exposed on the outputs, F1 and F2, respectively.

To prevent such threats, interference graph among the inserted key-gates should be adopted to make

the attack execution time exponential, such as incorporating two key-gates to the same gate in the

original circuit as illustrated in Figure 2.1 (b). However, this technique requires larger overhead

than others, and the complexity of this algorithm is typically high.
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2.2.2 SAT and Post-SAT: Attacks and Defenses

SAT attack is more powerful than any other existing threats [74]. The attack applies distinguishing

input patterns (DIPs) to an activated chip and observes their corresponding output patterns. Then,

at each iteration, SAT attack excludes a single or a bunch of incorrect key-bit(s) from the encrypted

chip. After applying all distinguishing input/output (I/O) pairs, one unique key can satisfy all these

I/O pairs, which implies that this key (KE) should be the secret key of the encrypted chip.

Adding a cryptography, e.g. AES, to a circuit can prevent any kind of attacks as long as the secret

key of the cryptography is long enough (> 64 key-bits). However, the performance overhead

will increase significantly. Interestingly, it has been experimentally proven [74] that the execution

time of SAT attack grows exponentially if the ciphered circuit has a Tree-of-AND (TOA) structure

between the primary inputs of the ciphered netlist and the key-bits. Accordingly, inserting a tiny

design having some XOR/XNOR gates (between the key-bits (KA) and the primary inputs) and

few AND gates as a tree can prevent SAT attack, with a small penalty, as shown in Figure 2.2 (a).

TOA works as a one-function output, in which its output signal (S-O/P), denoted as a red line in

Figure 2.2 (a), will be constant for all key combinations (2KA-1), except one key. This technique

was implemented with more theoretical analysis in [3], referred to as Anti-SAT, in [85], denoted

as SAT-Attack Resistant Logic Locking (SARLock), and in [81].

In Anti-SAT technique, a light-weight circuit was incorporated. This circuit has two complemen-

tary blocks, G1 and G2, where each requires n key-gates. The two block outputs are fed to an

AND gate, and the AND gate output is connected with one primary output to XOR gate. Another

2 n key-gates are inserted to hide Anti-SAT; one is employed to increase the interconnection be-

tween G1 and G2, and the second is utilized to increase the interconnection between the Anti-SAT

block and the original circuit. In SARLock technique, a comparator with a mask is incorporated

to corrupt the output of the circuit unless the correct key is provided. Also, a scrambling circuit is
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added to scramble KE and KA and hence prevents an attacker from breaking SARLock by flipping

its output and applying a wrong key equal to an input pattern.
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Figure 2.2: SAT prevention techniques: (a) traditional TOA: provides one-functional output, (b)
Anti-SAT: produces a non-corruptibility for all key combinations, except one key [3], (c) SFLL-
HD: gives correct output only when the keys are equal to the protected input cubes [4], and (d)
SFLL-flex: flips the outputs for some set of input cubes.

Anti-SAT was shown to be vulnerable to AppSAT and Signal Probability Skew (SPS) [93] attacks.

In AppSAT attack, random input patterns are applied to the encrypted circuit, and the correspond-

ing output patterns are compared with the correct output patterns that are obtained from the acti-

vated circuit. Once the AppSAT attack finds a key that matches the correct outputs for that random
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input patterns, the AppSAT attack will terminate SAT and this key will approximately satisfy all

I/O pairs. SPS attack can identify and remove G1 and G2 blocks since they are inputs on a gate (the

last AND gate in Anti-SAT technique) that has the maximum different signal probabilities. Simi-

larly, the SPS attack can work as a tracking signal (TS) attack to detect the output signal of TOA

block. Therefore, the Anti-SAT output signal can be detected and removed by TS attack since the

value of the Anti-SAT output (S-O/P) is constant for all key combinations, except one. Although

the 2 n key-gates that are used to obfuscate Anti-SAT can reduce the effectiveness of these attacks,

the AppSAT guided removal attack (AGR) successfully broke the obfuscated Anti-SAT [93]. The

main idea of this attack is to make AppSAT attack recover the correct key-bits of the traditional

encrypted circuit as well as the key-bits that are used to obfuscate G1 and G2 blocks. Then, the

removal attack (SPS) is applied to remove Anti-SAT since it will act as one-point function (TOA)

after the AppSAT recovers a part of the total key-bits. The Anti-SAT structure [84] has been re-

obscured using withholding and wire entanglement techniques to further mitigate AppSAT and

SPS attacks, as shown in Figure 2.2 (b).

SARLock was shown to be vulnerable to double DIP (D-DIP) [94], AppSAT [95,96], Bypass [97],

and TS attacks. D-DIP algorithm is used to corrupt the combined SARLock and rule out more and

more incorrect keys at each iteration. Bypass attack selects two random keys for two encrypted

circuits. Then, all DIPs that cause different outputs for the two selected keys are recorded. The cor-

rect corresponding outputs for those DIPs are recovered from the activated circuit. Afterwards, one

of those selected keys is considered as the correct key, where an additional block is incorporated to

recover the correct output at those DIPs. AppSAT and TS attacks can break SARLock block since

it also works as TOA. TTLock [98] is an improvement on SARLock, where the original circuit is

modified in a way to flip the output for a specific input pattern. Then, a block circuit is inserted,

namely restore logic, to recover the correct output for that specific input pattern. An attacker can-

not recover the original circuit encrypted using TTLock technique if he or she removes the S-O/P
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signal. As a consequence, this technique is resilient to removal attack (SPS/TS attacks). Another

improvement on TTLock, namely SFLL, [4] is achieved to further mitigate D-DIP, Bypass, and

AppSAT attacks. The SFLL has two versions, SFLL based hamming distance (SFLL-HD) and flex

(SFLL-flex). In general, each of these two versions utilizes many protected input patterns to in-

crease the security level of the encrypted circuit; however, it requires large overhead. SFLL offers

a trade-off between the security level of the design against the SAT attacks and the removal at-

tack resilience. Figure 2.2 (c) and (d) show the SFLL-HD and SFLL-flex techniques, respectively.

A similar proposal to SFLL has been introduced by Shamsi et al. but with lower performance

overhead [99]. Unfortunately, SFLL was also shown to be vulnerable against a newly formulated

attack, coined as Functional Analysis on Logic Locking (FALL) attack [100, 101]. An automated

synthesis framework [102], called SFLL-fault, is proposed to further reduce the SFLL cost. How-

ever, such implementation has two limitations: (1) the locked output is obtained by modifying the

original output at protected input cubes, where a synthesis tool is employed to mix the protected

inputs into the flipped output. There is no theorem or formal proof that the synthesis tool can al-

ways accomplish this while preserve indistinguishability with the original circuit. Therefore, such

implementation may not be secure since ATPG induced faults can likely be fingerprinted [103].

Mitigating such vulnerabilities has been addressed in [104], where a cryptography-based encryp-

tion technique has been presented. Unfortunately, incorporating cryptography incurs significant

overhead. (2) the technique is not general as SFLL-HD and using SFLL-fault to protect a large

number of cubic input patterns is challenge. Therefore, such technique may be good only for very

large scale circuits, e.g., SoC [102]. Ideally, a scheme should be applicable to small circuits with-

out loss of security because one conceivable way of using logic locking is to protect only a small

security-critical part of the system. This can reduce the power, timing, and area overheads imposed

by logic locking.

Note that the removal (SPS, TS, and AGR) attacks are strong due to the natural behaviour of TOA,
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in which the internal signals (that are close to the last gate in the TOA) and the output signal of the

TOA are barely changed when incorrect keys are provided. To be more specific, the input signals

and the output signal at the last gate in TOA circuit are constant for all key combinations, except

one. Such signals always have the lowest or highest signal skew values. Therefore, the removal

attacks can easily detect and remove the TOA structure. Once the TOA circuit is removed, the

encrypted circuit will again become vulnerable to SAT attack. These attacks can be prevented if

the input signals and output signal (S-O/P) at the last gate in the inserted block, e.g. Anit-SAT or

SARLock, are changeable and cannot be tracked or detected. In this paper, we will experimentally

show how these signals in our new designs are changeable for most of the key combinations. Note

that there is another type of removal attack, namely sensitization-guided SAT (SGS) attack. This

attack is used to break TOA structure that is embedded inside the original circuit, in which the

sensitization attack is used to get the DIPs. Then, SAT attack is used to break the encrypted circuit.

Using TOA structure is not the only way to prevent SAT attack. Shamsi et al. proposed a cyclic

logic locking [105] to prevent SAT attack without the need to add a tree structure via creating a

logic loop in the combinational circuit. The cyclic loop requires adding extra dummy gates and

wires. The proposed technique is strong against traditional SAT-attacks; however, it has been bro-

ken by cycle SAT (CycSAT) algorithm based attack using different acyclic constraints [106]. Apart

from using Boolean circuit behavior (e.g., TOA and cyclic logic locking schemes) to prevent SAT

attack, parametric delay-based logic locking (DLL) is presented by Y. Xie et al [107]. DLL lever-

ages tunable delay key-gates (TDKs) to obfuscate a design with two keys; one key is to encrypt

the circuit functionality and the second is to control the time. Once incorrect keys are given, the

encrypted circuit will produce wrong output and degrade the performance. Chakraborty et al. pre-

sented a new attack, coined as TimingSAT, to break the DLL technique [108]. TimingSAT attack

uses pre-processor to analyze graph timing of DLL and then calls SAT solver to find the correct

key. Recent work has also proposed a Satisfiability Modulo Theory (SMT) solver based attack that
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enables the attacker to express constraints that cannot be easily expressed in propositional logic,

such as graph representation, timing, and power [109]. Even though this attack successfully breaks

some schemes of logic encryption techniques, e.g., DLL and cyclic logic locking, SMT attack fails

to decrypt any scheme based on the TOA structure, e.g., Anti-SAT, SARLock, and SFLL tech-

niques [110]. This is because SMT attack still uses SAT solver to find the secret key and therefore

needs exponential time to break the TOA schemes.

2.3 Physical Attacks and Defenses

After the encrypted ICs get fabricated in an untrusted company, the secret key of the encrypted cir-

cuits should be stored in on-chip tamper-proof memory [72], which is not accessible to an attacker,

by either a trusted facility [69] or a public key cryptography [24]. However, still the encrypted cir-

cuit may be subject to other advanced physical attacks. In general, there are three types of physical

attacks: invasive (i.e., microprobing, physical reverse engineering tool, and the frontside/backside

attacks), semi-invasive (i.e., fault-injection attacks), and non-invasive (i.e., power, timing, or elec-

tromagnetic analysis attacks) [111–113]. These attacks are powerful since they can extract sen-

sitive information from secure ICs [114, 115]. Invasive attacks require expensive equipment and

expert attacker to directly access specific internal parts in the chip (components or wires that carry

sensitive information). Non-invasive attacks require cheap tools and do not physically damage the

chip. Semi-invasive attack requirements are somewhere between non-invasive and invasive attacks.

They do not require very expensive equipment and do not damage the chip, but they require expert

attacker to depackaging the chip [116]. More information will be discussed regarding the potential

physical attacks on our designs and other proposed techniques and the possible solutions.
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2.4 Emerging Devices

Many researchers tend to utilize emerging devices, as an alternative to traditional CMOS method-

ology, in many applications in order to achieve lower power dissipation, smaller area and better

performance. Several emerging devices have been experimentally demonstrated over the past few

years, such as FinFETs [117], carbon nanotube [118], spin transfer torque [119], and ReRAM

[120–122]. In this dissertation, we focus on ASLD and SiNW due to being the most promising

devices for hardware security.

2.4.1 Spintronic Devices

While CMOS scaled-down reaches the end due to the physical limitations and the expensive cost,

spintronic devices have been presented as an alternative to traditional CMOS technology. In the

spintronic device, electron spin is utilized as a state variable for data storage and information

processing. A magnetic field could be used to switch the magnetization direction of a nanomagnet

at the cost of large energy and area consumption. Alternatively, switching a nanomagnet with

current-induced spin-transfer torque (STT) is more power-efficient, and easier to control [123–

126]. Hence, spintronic devices achieve lower power dissipation, smaller area, higher density,

zero leakage current, non-volatile storing element, and faster switching. To further improve the

performance of the spintronic devices and mitigate the consuming power when the device is off,

CMOS-transistors are added to the nano-magnets instead of directly connecting the nano-magnets

to the VDD supply [127]. This could be called Hybrid Spintronic-CMOS. Spintronic devices

are suitable for the implementation of lightweight cryptography, image detection and processing,

and machine learning [128–131]. However, differences between the read and write currents are

generated, which increase the possibility of PA attacks [132].
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The first proposal for spin-based logic in semiconductors was introduced by Dery et al. [133].

The proposed design contains non-local spin signals, which require a high amplification circuit to

enlarge these signals and produce a sufficient current to switch the nanomagnets. An improvement

on this work [134], namely All Spin Logic device, was achieved to switch a nanomagnet, which

could be an input for the next stage, by employing the non-local spin signal without any extra

hardware (amplification circuit). All Spin Logic Device (ASLD) is one of the best spintronic

device candidates due to its unique properties: small area, no spin-charge signal conversion, zero

leakage current, non-volatile memory, high density, low operating voltage, and its compatibility

with conventional CMOS technology. Besides the ASL device, other emerging devices may also

be leveraged to protect IC designs. For instance, the new generation of spintronic device, namely

Domain Wall Motion (DWM). Even though this device can be used to implement different Boolean

functions in-memory as polymorphic gates with ultra-low power and small area, it is not suitable

for a large scale circuit since the layout of the design will be very complex, and the DWM reliability

is a concern. The reason is that the DWM in not mature, and many researchers have worked on

improving its reliability and scalability for a large circuit. It may really be a good candidate for

future work.

2.4.2 Emerging Silicon NanoWire FETs

One of the issues we should discuss first is the phenomenon of ambipolarity, which is defined

as the placement of both positive and negative charge carriers under bias constraints. It enables

a designer to change the polarity of the device. A good example of leveraging ambipolarity is

found in silicon nanowire [135], graphene [136], and carbon nanotubes [137], which have already

been fabricated [138,139]. Schottky barriers allow device functionality to be changed based on the

external signal values. Among all of the above-mentioned devices, we concentrate on a vertically-

stacked silicon nanowire FET, which includes two Gate-All-Around (GAA) electrodes [139].
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Figure 2.3: Three-dimensional scheme of the SiNW FETs with the characteristics of two separate
gates, namely, the control gate (CG) and polarity gate (PG) to form either a p-channel metal-oxide-
semiconductor (PMOS) or a n-channel metal-oxide-semiconductor (NMOS) field effect transistor.

The three-dimensional structure of Vertically-stacked GAA SiNWs is demonstrated in Figure 2.3.

The benefit of using this structure is that it enhances electrostatic regulation. This device has two

gates, namely control and polarity gates. In general, the transistor can be switched on and off based

on the value of the supplied voltage at the control gate, while the polarity gate is used to swap the

n and p channels, which is located between the Drain and Source junctions [139, 140]. There are

several emerging devices that have polarity control features, such as carbon nanotube CNT FETs,

SiNW FETs, nanoelectromechanical (NEM) relays, Graphene SymFET, and so on. This work is

focused on SiNW FET because it is compatible with the modern CMOS. It should be noted that

designing reconfigurable logic gates are not limited to emerging transistors only, e.g., SiNW FETs,

Graphene transistors, or ASL. One can get similar characteristics using only CMOS transistors,

but it requires a larger number of transistors as discussed in [141–143].
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CHAPTER 3: STRONG LOGIC ENCRYPTION AGAINST NORMAL IC

ATTACKS

3.1 Approach1: Traditional Encryption Using Multiplexer Insertion

Researchers have deduced that the logic encryption based on random XOR/XNOR insertion is vul-

nerable because it cannot achieve around 50% Hamming distance (HD) between the correct and

corrupt outputs. Furthermore, the design functionality might be correct even when some of the

wrong keys are entered in the ciphered design for some input patterns [69]. Fault impact analysis

is an improvement on random insertion. Even though it can fulfill 50% HD for some benchmark

circuits, it cannot grantee performing around 50% HD for any design, especially for those circuits

with a large amount of gates and output bits. More specifically, in the fault impact analysis, the al-

gorithm is going through each gate in the circuit to determine the location of the most impacted gate

on the output and inserting the XOR/XNOR gate at each iteration. If the IC chip has a large number

of gates, then the algorithm needs several months to achieve around 50% HD, which is practically

impossible, and the performance overhead might be very large. Furthermore, in the fault impact

analysis approach, both Rivest–Shamir–Adleman (RSA) cryptography and the physical unclonable

function (PUF) have been utilized to boost the security. The hardware implementation of RSA is

very expensive, which can override the area of VIRTEX5–XC5VLX50T device to implement such

cryptography with only 32 bits of its key size [144]. Moreover, although PUF has low cost and

provides unique keys for the chip, it is susceptible to environmental and operational condition vari-

ations, such as temperature, aging and humidity [145, 146], so that a noteworthy error correction

process has to be employed 1.

1 c© 2017 Electronics. Part 1 of this chapter is reprinted, with permission, from [147]
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Figure 3.1: (a) Simple multiplexer. (b) Multiplexer to encrypt or decrypt the output bit. (c) Control
the output value by the key bit.

3.1.1 Logic Encryption Using Multiplexers with LFSR

In this section, we demonstrate our methodology to secure a circuit design by leveraging multi-

plexers as key gates in a way that the output is corrupted by around 50% unless the correct key is

supplied. The operation of the multiplexer is to propagate one of the input signals to the output

based on the input selection. For instance, if the input selection is zero, then the output F is equal

to input A, otherwise F is equal to input B.

Figure 3.1a demonstrates a two-to-one basic multiplexer diagram. Equation (3.1) explains the

Boolean operation. A and B are two inputs, while selection is the chosen input and F the output.
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Figure 3.1b illustrates an example of how the output can be determined by the key bit. If the key

input is one, the Encryption/Decryption output (E/D_O/P) is equal to the complementary of the

original output to encrypt the design; however, to decrypt the design, the E/D_O/P is equal to the

original output (O/P) when the key input is zero. The functionality of the circuit can be changed

based on the key value.

F = A . Selection + B . Selection (3.1)

Since the true random number generator (TRNG) is costly and not fast for several applications,

such as creating keys and padding for encryption techniques, the linear feedback shift register

(LFSR) is broadly employed to generate a pseudo random number generator (PRNG) instead,

as in [148]. Generally, the LFSR is fast and inexpensive because it demands only a shift register

operation and an XOR or an XNOR operation, as shown in Figure 3.1c. We employ the LFSR to

generate pseudo random keys with half of the key bits ones and the other half zeros to increase the

security level of the design. Basically, there are two types of LFSR: standard LFSR (also called

internal feedback LFSR) and modular LFSR (referred to as external feedback LFSR) [149]. We

choose the external feedback with 128 bits as a maximum length of the LFSR (number of flip-

flops), and we consider the initial value of the LFSR as a constant value. The LFSR counts to

2n− 1 as a maximum number (periodicity) where n is the number of D Flip Flops (DFFs). An

attacker needs more than five years to get all of the LFSR possible values once the length is larger

than 63 bits [150]. We use Table 3 in [150] to get the polynomial equation with the maximum

length LFSR counter, where the taps are an XNOR gate among bits 99, 101, 126 and 128.

The hardware Trojan mainly consists of two parts; trigger and payload. Trigger is the bare con-

dition to activate the Trojan, while the payload is the act of the Trojan (the payload contains

XOR/XNOR gates). We use this idea to conceal/expose the functionality of the design, and we
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refer to it as the “hardware logic unit (HLU)”. The user key is considered as an input to a trigger;

meanwhile, the payload is regarded as the activation of the design. Figure 3.2a illustrates the key

idea of leveraging the HLU to protect the design, where K1, K2, ..., Kn are the user key bits, A

is the target to give the initial values of each MUX and EN is to enable the LFSR generator. The

functionality of the circuit will be correct if the output of the trigger is activated by supplying the

valid user key. Meanwhile, the activation (A) will give the default of the MUX selections. Other-

wise, the output will always be wrong. The fault analysis mode was used to affect as many outputs

as possible, but it does not affect half of the output for every circuit. We insert the MUXs, at the

output, in two ways based on the number of output bits in order to hit around 50% HD. The logic

encryption based on MUX insertion is classified as follows:

3.1.1.1 MUX Insertion Based on Half Output Bits

To insert the multiplexers, we need to count the number of output bits in the design. Then, we ran-

domly select and complement half of the output bits, as well as inserting an MUX with these two

(output bit and its complementary) as inputs and a key bit as a selection. Due to the insertion, the

Hamming distance between the correct and corrupt outputs is always 50% when the number of

output bits is even or close to 50% when the number is odd. Even though the HD is around 50%,

the design is not secure enough since the input key selections for all inserted MUXs are weak (all

of the input key values have to be ones), which means that the key is very easily exposed to the

attackers. In order to make the key more secure and increase the ambiguity of the attackers, we

randomly create half of the input key bits as zeros and the other half as ones, then flip the value of

the key bit once it is zero to make sure that all of the outputs of MUXs are equal to the comple-

mentary of the original output bits. Instead of changing the key bit value, one can invert the output

of the MUX (but it also needs one more inverter) or exchange the inputs of the MUX when the key

bit value is zero.
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Figure 3.2: (a) Hardware logic unit (HLU) idea to protect the design. (b) Flip the key bit value.

To make the design much more secure, RSA cryptography and PUF were proposed in [92] to

provide a fully-encrypted design. This was done without actual evaluation for the power, area

and delay overheads, where the overhead of RSA cryptography is too large and the reliability

issue of PUF is a concern. Instead of using RSA and PUF, we implement the HLU idea and the

LFSR pseudo-random generation with some constraints to ensure that each generated random key

consists of half zeros and half ones. The detailed constraints for the LFSR are: (1) making less

than half of the initial values of the LFSR as ones to accelerate the generation of half zeros and half

ones of the key value; (2) checking whether the new pattern has half zeros and half ones; if not, it

neglects the pattern and picks up the next pattern, and so on, until reaching the correct pattern; (3)

providing the MUX selection with the correct pattern. If the value of the key bit is zero, it must be

inverted before providing it to the MUX selector, which is an additional simple condition after the

key generation. Figure 3.2b displays the completed flipping key bit technique.
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Figure 3.3: Logic encryption based on half multiplexer (MUX) insertions. o/p, Comp, n and Enc
are the output, the complementary, the number of the output bits and encryption, respectively.

The maximum protection level can be achieved by combining the inserted MUXs, the HLU idea,

flipping the key bits and distributing its values. The output will keep malfunctioning with random

keys unless the valid user key is provided. With the right key, the output of the trigger will be

activated, and the payload will set the activation (A). Once A is set, the value of the secret key will

be provided to the MUX selections, and the functionality of the circuit will be correct. Otherwise,

the LFSR enable (EN) will be activated to generate random key patterns with half zeros and half

ones. Figure 3.3 shows the whole protected design based on half MUX insertions, where o/p,
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Comp, n and Enc are the output, the complementary, the number of the output bits and encryption,

respectively. Assuming that n is an odd number, half of the output number is considered as (n−1)/2.

Although this technique is efficient against various threats, such as IP piracy and counterfeiting, it

might be vulnerable to an attacker who may figure out the functionality of an IC based on some

exposed output bits. To prevent experienced attackers, we then propose the full MUX insertion

technique.

3.1.1.2 MUX Insertion Based on All Output Bits

To maximize the protection of an IC from various attackers, we propose to insert an MUX at each

output bit, as shown in Figure 3.4. The inputs of the MUX will be the original output bit and its

complementary, along with a key bit for the selection of each MUX. The values of the key bit

selection must be random with half zeros and half ones to produce 50% HD. Since each output bit

and its complementary are connected to a MUX with a random key bit selection, each output bit of

the IC is changeable once the key is changed. In this case, not only the HD between the corrected

and corrupted outputs is around 50%, but also the value of each output bit is variable.

An assailant cannot figure out the functionality of the design because each output bit will be varied

by changing the supplied key via the LFSR generator, which is used to generate random keys

(each key is generated to have randomly half zeros and half ones, as mentioned). Since the key

value is unpredictable due to the random generation, each output bit will be consequently arbitrary.

Once the correct user key is inserted, the output of the payload will be set, and then, the enable

(EN) of the LFSR generator will be disabled, while the activation signal (A) will be activated to

initialize the values of the MUX’s selections. Then, the functionality of the circuit will be correct.

If the value of one bit in the user key is incorrect, the corrupted output ratio will still be around

50%.
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Figure 3.4: Logic encryption based on full MUX insertions.

Although inserting MUX at each output bit will obviously maximize the protection of the design, as

well as the ambiguity of an attacker, the power and area overheads will largely increase. Therefore,

this technique is more suitable either for large circuits that include a large amount of output bits or

for an expensive IC chip. In both half and full MUX insertions, if there is an inverter at an output,

we replace it by an MUX with switching its inputs. Furthermore, all components of the encrypted

circuit (in half and full MUX insertion techniques) are made at a pre-layout stage.
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3.1.2 Results

3.1.2.1 Experimental Results

Both the IEEE International Symposium on Circuits and Systems (ISCAS)-85 (combinational) and

ISCAS-89 (sequential) benchmarks are employed to analyze our methodology. The C language is

used to randomly select and add key gates (or replace an inverter with a key gate if the gate at

the output is an inverter) for both half and full MUX insertions. The performance is evaluated by

Synopsys Design Compiler.

The Verilog language is also leveraged to design two LFSR random generations; one of them is

used to generate 1000 random patterns for the inputs of each netlist, and the second is utilized to

generate random keys with equal probability, so the value of the output bits will be controlled by

these key bits (each selected output bit is inverted when each key bit is set). We adopted the 1000

random input patterns that the first LFSR generated for the original netlist, and the output results

were saved in an array. Afterwards, we supplied the same 1000 random input patterns to the same

netlist with a random key that the second LFSR generated, and the results were also saved in an

array. We make the initial value of the second LFSR as a constant value. In order to evaluate

the Hamming distance between the corrected output when the key selection is at the default value

(the valid key is given) and the corrupted output when the second LFSR key generator provides a

random wrong key with equal probability to the MUX selections, we designed a shift register to

provide each random key bit for each of the 1000 random input patterns starting from the first key

bit till the last one in the register.
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Table 3.1: number of MUX insertions based on half and full output numbers with the Hamming
Distance evaluating and comparing with random and Fault Impact Analysis approaches

Benchmark number of XOR/
XNOR insertions

number of Half / Full
MUX insertions

Hamming Distance
Random Fault Impact Full / Half MUX

C880 28 13/26 19 50 50
C1355 42 16/32 26 50 50
C3540 22 11/22 23 50 50
C6288 27 16/32 32 50 50
C7552 89 54/108 13 46 50
S641 29 12/24 37 50 50

S1196 - 7/14 - - 50
S1238 - 7/14 - - 50
S5378 106 24/49 29 50 49
S9234 39 19/39 14 50 48.72

3.1.2.2 Hamming Distance Evaluation

The inserted MUX method based on half and full output bit numbers is compared with both the

random and fault impact analysis-based on XOR/XNOR insertion approaches, and the illustrated

outcomes for the minimum required number of inserted MUX key gates to achieve the hamming

distance (for each benchmark circuit) are depicted in Table 3.1, where sequential circuits S1196

and S1238 were not tested by the random and fault impact methods.

The use of the random insertion method did not achieve 50% HD, while the fault impact analysis

achieved 50% HD, but not for any circuit and not for any input patterns, especially when the num-

ber of output bits is very high (more than 100 output bits), such as the combinational benchmark

circuit C7552 , besides the complexity of the fault impact algorithm to find the highest impact

gates on the output, which will take a very long time to test the whole design for a large circuit,

such as C7552. In contrast, our methodology ensures that the HD will be 50% or close to it (such

as S9234) once the design has an even or odd output bit number, relatively.
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Figure 3.5: (a) MUX insertions based on the half output number for different ISCAS-85 and
ISCAS-89 benchmark circuits. (b) MUX insertions based on the full output number for different
ISCAS-85 and ISCAS-89 benchmark circuits.

In addition, we evaluated the HD for all of the benchmarks that are mentioned in Table 3.1.

For each benchmark, we only picked up one random key that was generated by the LFSR ran-

dom key generation and fed it to each netlist to evaluate the HD between the correct and corrupt

outputs based on half and full MUX insertions. Figure 3.5a, b demonstrates the analyzed HD for
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the ISCAS-85 and ISCAS-89 benchmarks based on the full and half MUX insertions for logic

encryption, where the minimum required length of LFSR to achieve the HD in the figure is equal

to the number of output bits. The HD for these benchmarks is 50%, except for S9234, which is

48.72% due to having an odd output number.
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Figure 3.6: The Hamming distance when five different random keys were supplied for C880.

In our work, not only the functionality of the circuit is incorrect when the wrong user key is entered,

but also the Hamming distance is always 50% or close to it, for whatever the input test patterns,

the wrong input key and the size of the circuit are, unless the correct user key is inserted. To analyze

the effectiveness of the random keys that the LFSR generated, we tested the C880 benchmark with

five random keys using the full MUX insertion technique. First, we supplied 1000 random input

patterns to the original C880 and monitored the correct output, then we supplied each key bit in

each of these random keys with the same 1000 random inputs starting from the first bit until the

last one by leveraging a shift register, to evaluate the HD for these five random keys. The HD

was always 50% with different output patterns, as shown in Figure 3.6. This means that all of the
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output bits are always changeable and cannot be predicted, even if there is only one bit in the user

key that is incorrect.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0
0 . 0

2 . 0 x 1 0 1 7

4 . 0 x 1 0 1 7

6 . 0 x 1 0 1 7

8 . 0 x 1 0 1 7

1 . 0 x 1 0 1 8

1 . 2 x 1 0 1 8

1 . 4 x 1 0 1 8

ke
y

T i m e

 k e y

Figure 3.7: Random key generation, each having half zeros and ones.

3.1.2.3 Random Key Generation

The selections of all MUXs must be provided with the right key bit values at any time for whatever

the input patterns are to maximize the protection of the circuit. LFSR always provides the MUX

selections with these values to corrupt half of the output bits when the enable signal (EN) is set.

Once the valid key (user key) is inserted, the payload will provide the selections of the MUXs

with their default values, and the functionality of the circuit will be correct. To make sure that the

generated keys by the LFSR are random with equal probability, we observed and saved the outputs
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of the LFSR in a file only for the first 2000 numbers by making its initial length 60 bits (each

output key has 30 zeros and 30 ones), and the outputs are as shown in Figure 3.7.
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Figure 3.8: Comparing the power-delay overhead of random, fault analysis and full/half MUX
insertions for logic encryption.

3.1.2.4 Delay, Power and Area Performances

We measured the delay, power and area overheads for each benchmark circuit using the Synopsys

design compiler as a tool with the 45-nm CMOS library. Since the MUXs were inserted only at

the output of the netlist, the delay overhead (timing path) is almost zero for all of the benchmark

circuits. Meanwhile, the power and area overheads for each benchmark depend on the number of

output bits. Increasing the number of output bits will significantly increase the overheads for the

area and power. Figures 3.8 and 3.9 show the power-delay product and area overheads for all of the

benchmark circuits that are listed in Table 3.1 with the corresponding number of MUX insertions

that are mentioned in Column 3.
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Figure 3.9: Comparing the area overhead of random, fault analysis and full/half MUX insertions
for logic encryption.

From the figures, we can see the full MUX insertions consuming power and area approximately

twice a half of the MUX insertions. The reason is obviously because the number of MUX insertions

in full insertion is twice a half MUX insertions. It is worth noting that the half and full MUX

insertions save area more than 2× and 3.6× and the power-delay product with more than 2× and

3.4× on average, respectively, compared to fault impact analysis.

Furthermore, in order to enhance the security level for the design by generating a unique key for

each IC, Rajendran et al. in [92] employed the PUF circuit and RSA encryption asymmetric cryp-

tography. The RSA overhead will be very high (it overrides the area of VIRTEX5, as mentioned in

Section 3.1), where the authors only proposed using PUF with RSA cryptography without a true

evaluation for the delay, power and area overheads.
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Figure 3.10: Comparing the power overhead of full and half MUX insertions for logic encryption.

Instead of using RSA and PUF, we adopt both HLU and LFSR as a different technique to protect

the secret key and generate random keys with 0.5 probability for each one, respectively, as men-

tioned in Section 3.1.1.1. Both the HLU and the LFSR random key generation are designed and

synthesized with the full and half MUX insertions using Xilinx ISE. We also evaluate the delay,

power and area overheads for the whole design, including all components. Figures 3.10 and 3.11

demonstrate the total power and area overheads for the whole design, which are appropriate for

several benchmark circuits, but are not suitable for other benchmarks, such as C880 and S641, due

to the small area compared with S9234 and C6288. Moreover, the delay (timing path) overhead is

very small for most of the benchmarks, except for C6288, which was 8.49%.
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Figure 3.11: Comparing the area overhead of full and half MUX insertions for logic encryption.

3.1.3 Discussion

3.1.3.1 Durability of the Logic Encryption

The most substantial part in the encrypted circuit is the valid key. Once it is known by an attacker,

the functionality will be revealed despite how strong the encryption technique is. The attackers

can utilize many different ways to expose the functionality of the circuit, but the most dangerous

attacks are in the following:

3.1.3.1.1 Using the Brute Force Algorithm

An attacker can use the traditional brute force algorithm to get the right key and expose the func-

tionality of the circuit. The number of different combinations that an attacker needs to decipher the
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design can be computed by Equation (3.2), where K is the key size, and the input test patterns are

different from one circuit to another. If the length of the user key is large enough, such an attack

becomes infeasible. However, increasing the key size means inserting more gates (each new key

needs an inserted XOR/XNOR gate), which leads to a great increase of the power, area and delay

overheads, where the designer has the limitation of increasing the key size. In our work, increasing

the user key size will not increase the performance overhead that much, since the user key size will

only increase in the trigger part (see Figure 3.2a). Adding a new key bit to the user key requires

only to add either an inverter or a wire if the designer needs the value of the new key bit to be zero

or one, correspondingly.

Number o f di f f erent combinations = 2K ∗ input test patterns (3.2)

3.1.3.1.2 Removing Both LFSR and MUX Key Gate Insertions

An attacker can remove the LFSR random generator and the inserted MUX key gates to get the

original design. Then, he or she can copy the IC illegally. However, the attacker can not get the

correct functionality by removing the LFSR and the MUX key gate insertions for two reasons:

(1) The MUXs are not only inserted at the outputs, but also some of them are exchanged with

inverters in the original design. In this case, the attacker will not know whether the inserted MUX

at each output is added or replaced by an inverter. If the original circuit has no inverters at all of the

outputs or each primary-output has an inverter, then the attacker can easily get the original IC. In

this case, a designer can use another way to prevent such an attack by adding inverters before some

of the inserted MUXs and combining them with their previous gates. For example, Figure 3.12a

shows an original circuit, and Figure 3.12b shows the encrypted circuit with three different key

values as “K1K2K3=011”. An attacker cannot know whether an inverter is added and combined

with the last gate before the inserted key gate or not. Furthermore, we consider adding or replacing
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the key gates at the outputs as a minimum requirement to achieve 50% HD. One can increase the

ambiguity of the attacker by randomly adding more key gates and replacing others with inverters

through the circuit with keeping the correct value of the key bit (without changing the correct

value of the internal net signal after the insertion). (2) The synthesis tools can also help prevent

an attacker from realizing whether there is an inverter added since the synthesis tools use inverters

through the regular synthesis of a design (not for logic locking purposes).
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Figure 3.12: (a) Example for an original circuit; (b) the encrypted circuit using the MUX key-gate
insertion technique.
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3.1.3.2 Limitations and Future Works

Although using the LFSR random generation produces random keys with 0.5 probability, it will not

guarantee generating each key during each clock cycle, especially when the number of output bits

in the design is too large (larger than 100). In this case, the old generated key will still be used by

the selections of the MUXs until the new generated key by the LFSR is created, even when a new

input pattern is supplied. Besides, the power, area and delay overheads increase for a circuit having

a large number of output bits. In [151], Dubeuf et al. utilized dynamic scrambling to change the

order of instructions before storing them in the main memory and after reading from it to protect

the system from several types of Trojans. A designer can use one register with 0.5 probability of a

random key as an initial value, where the length of the register is the same as the number of output

bits, then scrambles the key value before providing it to the MUX selections and makes a rotate

right or left operation after each clock cycle to change the initial value in the register and to ensure

generating a new random key for each input pattern.

Even though the half and full MUX insertion techniques achieve 50% HD for most of the bench-

mark circuits with a reasonable cost, both might not be strong enough against an experienced

assailant. More specifically, the MUX insertion method based on the half output number gives

lower power, area and delay overheads, but it might be vulnerable to the uniformity distribution

attack. A proficient attacker could get the correct functionality of the design based on some true

output bits, since half of the output bit number is always exposed. For instance, an attacker can

input a constant vector with the wrong user key and makes the clock run for a long number of

cycles, where the LFSR will switch the outputs. Afterwards, he or she will realize that some of the

outputs are constant and tries to infer the internal functionality. Furthermore, the MUX insertion

at each output bit is very strong against many types of attacks, including this one, because each

output bit in the design will become changeable once a random key is supplied to the selections of
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the MUXs. Nevertheless, both half and full MUX insertion approaches are vulnerable against the

LFSR tracking attacks.

Since the initial value of the LFSR is constant and the LFSR sequence can be tracked, an attacker

can use the temporal repeatable response to figure out the functionality of the design. For instance,

an attacker can first supply a constant input vector (e.g., Input vector A (I_A)) with the wrong user

key and then record the secured output in an array Secured Output A (SOA(t)). After that, he or

she can reset the circuit, use another input vector (e.g., Input vector B (I_B)) and record the output

in another array Secured Output B (SOB(t)). Next, the attacker compares the two secured output

vectors and produces a post-process data as follows: SOA(t) XOR SOB(t) = OA(t) XOR OB(t),

where OA(t) and BO(t) are the correct outputs for the input vectors IA and IB, respectively because

the key is the same in both cases (due to the temporal repeatable response of the LFSR). Finally, he

or she can take SOA(t) as a reset response and generate new outputs for other inputs (Input vector

C (I_C), Input vector D (I_D), Input vector E (I_E), etc.), and from the post-processing results, he

or she might infer the correct functionality of the circuit. Preventing an attacker from tracking the

LFSR may be achieved by using a dynamic scrambling to scramble the seed value of the LFSR,

where its configuration bits should be coming from a true random number generation. In this way,

an attacker cannot use the temporal repeatable response to track the LFSR because its initial value

will be changed by the dynamic scrambling.

In addition, the designer can leverage our dynamic scrambling proposal instead of employing

LFSR random generation for two purposes: (1) reduce the performance overhead; (2) expedite

creating a new random key with 0.5 probability and then providing the selections of the MUXs

with the new one. The direction of the rotating operation and the configuration of the dynamic

scrambling should be changed for each IC to evade the rogue duplicating by the untrusted com-

panies and/or adversaries. Figure 3.13 manifests the way of using the rotating operation with the

dynamic scrambling.
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3.2 Approach 2: Conventional Encryption Using Hybrid CMOS and Emerging SiNW FETs

3.2.1 Designing Polymorphic Gates Using SiNW FETs

Polymorphic electronics, which were first introduced in [141], are based on the idea of having

multiple functionalities built in the same cell and deciding the input–output relation by means of

a controllable factor in the circuit. For instance, a polymorphic gate presented in [141] would be

an AND gate when the supply voltage (VDD) is 3.3 V and it functions as an OR gate when VDD

is lowered to 1.5 V. Such multi-functional gates would prove useful in a number of applications

[152, 153]. Circuits that change functionality with temperature variation can find use in aerospace

50



applications, or those that respond to VDD variation could be used to change functionality when

the battery is low. In addition, polymorphic electronics could be beneficial in evolvable, intelligent

or self-checking hardware [143]. For security objectives, adding polymorphic gates to a digital

circuit can hide the real functionality of the circuit. Since the circuit functions correctly only in

a certain configuration of the control signals known to the designer, even if the adversary knows

the whole netlist (including the dummy and true contacts), he or she will not be able to utilize

the circuit in his or her own design [92]. Carefully encrypting logic in this way can ensure that

it will take too long for the adversary to find the key (a vector constructed from all the morphing

signals of the polymorphic gates). Therefore, the polymorphic gate becomes a good candidate for

integrated circuits protection against IP piracy 2.

Table 3.2: A summary of developed polymorphic gates.

Polymorphic Gates Techniques # of Transistors Publications
XOR/NAND 3.3/0V External signal 9 [143]
NOR/NAND 1.8/3.3V VDD 6 [141]

OR/AND 3.3/1.2V VDD 8 [142]
XOR/AND/OR 1.5/3.3/0.0V External signals 10 [142]

OR/AND 0.0/3.3V External signals 6 [142]
AND/NAND/XOR/NOR 1.8/0.0/1.1/0.9V External signals 11 [142]

OR/AND 125/27 C Temperatures 6 [142]
NOR/NAND exchanging key and key 4 Our Work

Various polymorphic logic gates using CMOS technology are implemented via leveraging several

techniques, such as external signals, different temperatures, and multiple VDD values. Table 3.2

shows a brief recapitulation of implementing different polymorphic logic gates. In [141], poly-

morphic logic gates were achieved using a smart algorithm. However, on applying an external

signal, the designs encounter a problem through the simulation test, which is producing constant

current at the output signal of the polymorphic gates, e.g., NOR/NAND. Moreover, connecting

2 c© 2017 Electronics. Part 2 of this chapter is reprinted, with permission, from [88]
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many stages of polymorphic gates in series causes another problem because, in some cases, their

inputs might be connected to VDD or ground (GND). A more empirical technique is to use differ-

ent VDD values, which has been already done [141]. However, employing many VDD values is

not a feasible solution, especially with the new scaling technology, where the ranges of VDD are

restricted. Designing XOR/NAND polymorphic gate with nine transistors [143] is considered as a

good technique for emerging devices.
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Figure 3.14: Different logic gates using complementary metal oxide semiconductor (CMOS) and
silicon nanowire (SiNW) devices: (a) traditional CMOS NAND gate (b) silicon nanowire field
effect transistors (SiNW FETs) NAND gate (c) conventional CMOS NOR gate (d) SiNW FETs
NOR gate.

Now, we present our technique to implement different polymorphic gates for IP protection fea-

tures employing the polarity control signal of the SiNW FET device. SiNW FET is very similar

to CMOS except for the addition of the polarity gate between the drain and source junctions. As

demonstrated in Figure 3.14, the structure of both a NAND and a NOR gate is not different in

CMOS and SiNW devices. By only swapping the value of the control signal, denoted as key/key
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in Figure 3.14b,d, a designer can easily exchange the functionality of a gate with the same struc-

ture without any other extra resources. More precisely, in Figure 3.14b, if the key value is zero

and the key value is one, the logic gate works as a NAND gate, while it works as a NOR gate

when the values of key/key are interchangeable (see Figure 3.14d). Note that swapping the VDD

and GND signals in any CMOS based logic produces the complement of the original function at

the output. However, full voltage level at the output will not be achieved due to the presence of

PMOS in the pull-down network or NMOS in the pull-up network. Consequently, key-bits can

be formalized via only gathering the key and key signals to a wire with an inverter. As a result,

ICs can be encrypted by exchanging some logic gates in the original circuits with different poly-

morphic logic gates with much less area and Power and Delay Product (PDP) penalties, instead

of incorporating XOR/XNOR gates or multiplexers as key-gates, which increase the performance

overhead extensively as in [69]. Different functionalities with the same structure using CMOS

could also be accomplished, but at the penalty of larger number of transistors as mentioned in

Table 3.2. Recently, many spintronic device-based PLGs have been presented as an alternative to

conventional CMOS-based PLGs to accomplish a smaller area and lower power consumption. The

first spintronic device-based PLGs have been introduced using ASLD [89]. The new generation

of spintronic devices (DWM, GSHE, and MTJ) have been leveraged to also produce PLGs. These

new generations of devices require lower power and smaller area compared to traditional ASLD.

Examples of these devices are Domain wall motion (DWM)- [154, 155], giant spin-Hall effect

(GSHE) switch- [156, 157] and hybrid SHE-Magnetic Tunnel Junction (MTJ)-based PLGs [158].

Unlike ASLD, these devices (DWM, GSHE, and MTJ) require the controlling CMOS transistors

(for write/read) that essentially impose excessive area, power, and most importantly a two-cycle

delay operation to convert and transfer the spin current (Is) to the next device (next PLG) [159].

This one is true because the Is in these new generations of spintronic devices is very small and

cannot be used to drive the next PLG. In the first cycle, the CMOS circuit is required to realize

a voltage divider with a sensing amplifier to read-out the output voltage (as ’0’ or ’1’), and the
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second one is needed to convert the output voltage from the first CMOS circuit to current (+ or -

current) and then supply this current to the next state (next PLG). Therefore, the delay and power

overheads will be large after adding these two circuits, and the whole design works as a sequential

circuit. Improvements on ASLD-based PLGs have been achieved to significantly reduce the energy

dissipation (power-delay product) and the required area via using optimal ASLD parameters, using

the pipeline technique, and adding ASL-buffers at necessary locations throughout the design [160].

It is worth mentioning that the new generations of spintronic devices are slower than CMOS by

about 20X before adding the two CMOS circuits. Therefore, these devices may be good in some

applications that do not require high frequency.

3.2.2 SiNW in Logic Encryption

A design could be encrypted via inserting different types of key-gates though different locations in

an original circuit, such as look up tables (LUTs), multiplexers, XOR/XNOR and AND/OR gates.

The locked chip with XOR/XNOR insertion is stronger against the most serious threats [74] than

any other types of key-gates. However, building an XOR/XNOR gate requires a higher number

of transistors than other gates, such as AND, OR, etc. As a result, the performance overhead will

elevate significantly, especially for a small scale circuit (<800 gates) where the power and area

overheads might override the original circuit size. For instance, by adding few XOR/XNOR key-

gates (less than 5% of the total number of gates in an original circuit), the penalty of the power and

area is approximately larger than 31% and 20% for the majority benchmark circuits, respectively

[92]. It is worth mentioning that this amount of adding ratio is not enough to prevent the brute

force attack, where the key-size should at least be larger than 64 bits [68]. With the scaling of

CMOS technology, it becomes more expensive to achieve similar security level by compromising

the performance. Due to the defects of existing work, we would like to present our improved

method to implement logic locking using emerging transistors.
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3.2.2.1 Fundamental of Logic Locking

A simple demonstration of logic locking is shown in Figure 3.15. The original logic gate is two-

input AND gate. An exclusive-OR gate is further added to combine the original output f with a

locking enable signal k. Then, the locked netlist consists of two logic gates, AND gate and XOR

gate, respectively. The locked Boolean logic function is given in Equation 3.3.

flock = f ·K+ f ·K, f = ab. (3.3)

a

b

f

k

flock f :

 k : 
flock :

Original function

Locking enable

Locked function

Figure 3.15: A simple example of logic locking.

When K = 0, it functions as the original AND logic gate. Meanwhile, when K = 1, it locks the

original AND gate and works as a NAND gate. With triggered key (K = 1), the output will report

all the four input vectors as failing patterns. It is important to note that K = 1 is not dedicated to

lock the function. For instance, when an XNOR gate is incorporated, the locking key is switched

to K = 0. The choice of either XOR or XNOR gate relies mainly on the definition of key value,

where normally K = 1 is more favorable. Furthermore, the key-bit (K) could be configured as

one or zero (based on the designer’s desirability). For instance, if the inserted key-gate is XOR,

K should be set as zero to recover the correct functionality. However, one can configure such key

to one for the correct functionality by only adding an inverter before or after the inserted XOR

key-gate. Chakraborty et al. [90] introduced a methodology of defining logic cone, in which more
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logic elements are included so that the number of failing input patterns will increase accordingly.

This scenario will not be covered in our work due to the larger area overhead.

3.2.2.2 Encrypted Logic Circuit Leveraging Polymorphic Logic Gates

Since inserting key-gates that are designed using traditional CMOS technology for logic encryption

purposes leads to a high performance overhead, our technique is to select gates in an original circuit

that have a high impact on output and then exchange them with polymorphic logic gates designed

using SiNW.

A simple example of obfuscating a circuit using our proposal is shown in Figure 3.16. The original

design has two 2-AND, 2-NAND, and 2-OR gates with five primary input and two primary output

signals as demonstrated in Figure 3.16a. To encrypt this circuit, a designer can replace one OR

and one NAND gate with AND/OR and NAND/NOR polymorphic logic gates, respectively, as

shown in Figure 3.16b. The two polymorphic gate keys, referred to as (K1) and (K2) in Figure

3.16b, are specified as “00” to recover the correct functionality. For any other K1 or/and K2

value(s) (incorrect key values), the encrypted design will produce the wrong output. An attacker

cannot know what the original gates are before the replacements since the original gates before the

exchanged AND/OR polymorphic gates could be either AND or OR gates, and they could be either

NAND or NOR gates before the exchanged NAND/NOR polymorphic gates. Note that each of the

two incorporated polymorphic gates has an inverter (to create a uniform key-bit as mentioned in

Section 3.2.1). As a result of using this approach, the performance penalty should be much less

than inserting XOR key-gates.

The locked design should produce corrupt outputs for most of the combination incorrect key values.

Otherwise, the encryption technique will be vulnerable [92] to an attacker who might figure out

the correct functionality. Consider the same encrypted circuit in Figure 3.16b. On applying input
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pattern “00110”, the correct output of the circuit, which is “10”, will be revealed once the correct

value “00” of K1 and K2 is supplied . In contrast, the design will produce incorrect outputs “01”

at F1 and F2, respectively, if both K1 and K2 values are “11”, and therefore the Hamming distance

between the correct and corrupt outputs will be 100%. In this case, the first polymorphic gate

switches from original OR to AND gate, and the second one switches from NAND to NOR gate.

Moreover, if the value of either K1 or K2 is ‘1’, the output signal of F1 and F2 will be either “00”

or “11”, respectively, where for each case the Hamming distance will be 50%.
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Figure 3.16: An example of encrypted a circuit using polymorphic logic gates designed using
SiNW FETs (a) an original circuit (b) encrypted circuit via exchanging some gates in the original
circuit with polymorphic logic gates, where both of AND/OR and NAND/NOR polymorphic gates
are incorporated) (c) three possible polymorphic logic gates produce six different logic gates.

In additional to these two polymorphic gates, another XOR/XNOR polymorphic gate is designed

as shown in Figure 3.16c. The XOR/XNOR polymorphic gate could be swapped to XNOR/XOR

gate. Adding more reconfigurable gates is important to increase the ambiguity of an attacker from

identifying or comprehending the structure of the original circuit. The three possible aforemen-

tioned polymorphic gates have been leveraged for the encryption purposes. The detailed security

evaluation will be discussed further in the following section.
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3.2.2.3 Security Metrics

Before the discussion of the detailed implementation, it is essential to explain the security metrics

on evaluating the proposed logic locking technique.

As expected, the attacker is not aware of the key values for encryption and decryption. An extensive

test plan might be launched in order to retrieve the correct keys from the attackers’ perspective,

thereby decrypting the protected IP. Certainly, increasing the key size can increase the effort of an

attacker. By applying the wrong key values on the encrypted design, the attacker will get wrong

outputs.

To further formalize the security metric, we assume, as the authors in the fault impact analysis

assumed [69], that the IC design consists of T primary input bits, Y primary output bits and M

encryption key bits. Let N = {0, 1}. Assume that a valid input x ∈ NT and a corresponding correct

output z∈NY . Let k ∈NM be the correct key values. A function f with encryption variables should

be defined as two scenarios:

• On employing the valid secret key k, the function produces correct outputs for all input test

patterns.

• On employing the incorrect secret key values, the function generates wrong outputs corre-

spondingly:

f(x,w) =


z∀× ∈ NT,z ∈ NY, when w = k,

z′∀× ∈ NT,z′ ∈ NY,but z′ 6= z,when w 6= k.
(3.4)

To define the security metrics, Hamming distance (HD) has been commonly adopted. The defini-
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tion of Hamming distance is a number used to denote the difference between two binary strings. By that

means, the wrong output z′ can be quantitatively differentiated from the correct output z by apply-

ing HD measurement. For instance, when HD(z, z′) = 0, the corner case shows that the outputs of

encrypted netlist function independently of the locking key. It indicates that the applied encryption

is drastically weak. If HD(z, z′) = Y (the number of output bits), z′ is complementary to z, which

is also weak in case an attacker tries to reverse the output value [69].

Consequently, it is substantial for the defender to identify the system and define the encryption

mechanism such that the attacker is unable to recover the correct functionality. With the minimized

correlation between the wrong and the correct outputs, a maximum ambiguity can be generated for

the attacker. Let B be the number of output-bit combinations corresponding to certain HD between

the correct and wrong outputs. If HD(z, z′) = P, then B is calculated as
(Y

P

)
.

Similar to cryptography, a larger B would imply greater ambiguity, thereby improving the robust-

ness. Clearly, B is maximum when P = Y/2 (or HD(z, z′) = Y/2). Therefore, the security metric

for logic locking/encryption technique should be defined in a way that the Hamming distance is

evaluated between the output bits by employing the correct key values and the wrong key values.

A Hamming distance of half of the output-bit number (HD = Y/2 or 50% of Y) indicates the most

robust implementation.

3.2.2.4 Algorithm for Insertion of Polymorphic Logic Gates

It is substantial to formalize the previous analysis into a universal method. Algorithm 1 is proposed

to choose the optimized locations for incorporating polymorphic logic gates.

In general, the algorithm has two inputs-netlist and keysize, while the output is the locked netlist

with inserted key. The encryption algorithm starts with inputting one key bit into an original netlist.
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Algorithm 1 Logic Locking Algorithm
1: Input: Netlist, keySize
2: Output: Encrypted netlist with key
3: for i← 1 to KeySize do
4: for each gateJ at the out put o f the netlist do
5: Call the GATE and update the netlist;
6: if Corrupted Out put ≥ (T hreshold) then
7: Call the CAL_HD;
8: else
9: Call the GATE;

10: end if
11: end for
12: for each gatek ∈ netlist do
13: Call the GATE and compute the corrupted output;
14: end for
15: Select the highest impact gate on output;
16: if (KeySize = MAX) or (Inc HD = smallest) then
17: Call the GATE;
18: Terminate;
19: end if
20: Call CAL_HD
21: end for
22: function CAL_HD:
23: Increment i;
24: Accumulate the corrupted output;
25: if HD == 50% then
26: Terminate;
27: else if HD > 50% then
28: Compare the HD at exchanging gateJ−1 with gateJ;
29: Select the exchanging gate that is closer to 50 % HD;
30: Terminate;
31: end if
32: end function
33: GATE: case (gate):

{
NAND ⇐⇒ NOR ;
OR ⇐⇒ AND ;
XOR ⇐⇒ XNOR ; }

Each selected gate close to the output will be calculated regarding certain test patterns. If incorrect

output bits are 50% different from correct output bits, i.e., HD = Y/2, the algorithm will terminate

and output the encrypted netlist. When HD = 50% is not satisfied for gates close to output, the

selection will iteratively go over the remaining gates in the netlist and calculate the highest impact
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(HD = 50%).

Note that two conditions are required, increasing-rate HD≤ 0.01% and KeySize == MAX (MAX is

128 bits in this paper), respectively. When HD is increased by 0.01% every iteration, we will ter-

minate the program. The reason is because HD almost hits the limit, and it merely adds extra

overhead by incorporating more encryption key. The for loop continues incrementing the key size

until a desired HD is satisfied.

Two functions CAL_HD and GATE are also attached following the abstracted main pseudocode.

CAL_HD enables the computation of Hamming distance, while GATE selects the potential ex-

changing gates. As mentioned, three different polymorphic logic gates are employed, resulting in

six various cases.

3.2.3 Results

3.2.3.1 Experimental Setup

In this section, we provide empirical results regarding the implementation penalty and the security

level of the proposed approach. The effectiveness of our proposal has been evaluated using com-

binational benchmark circuits from ISCAS’85 benchmark suites [161]. We leverage the Synopsys

Hailey Simulation Program with Integrated Circuit Emphasis (HSPICE) for the circuit simulation

to design and simulate the SiNW based polymorphic logic gates. Afterwards, the Java language is

utilized to implement the algorithm of the proposed logic locking technique. One thousand ran-

dom input patterns are applied to the encrypted netlist to further evaluate the Hamming distance.

The Synopsys Design Compiler, including both silicon nanowire 20 nm and CMOS 20 nm tech-

nologies, is used to further evaluate the performance overhead of all ISCAS’85 benchmark circuits.
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Figure 3.17: Hamming distance of ISCAS’85 (International Symposium on Circuits and Systems)
benchmark circuits.

3.2.3.2 Security Evaluation

To evaluate the security of logic locking, a Hamming distance based metric is mostly applied

in [22, 69, 92, 147]. Figure 3.17 shows the Hamming distance analysis of ISCAS’85 benchmark

circuits using our proposed algorithm. Approximately 50% Hamming distance is achieved for all

benchmark circuits. The slope of the traces implies the effectiveness of logic locking technique.

If the slope is steeper, a smaller amount of key gates is required for encryption purposes, thereby

reducing the performance overhead.

The majority of benchmark circuits hits the 50% mark in less than 40 key gates, except for one out-

liner C5315, which needs 95 key gates. Furthermore, as shown in Figure 3.17, when an encrypted

circuit reaches 50%, its Hamming distance value does not swerve more by incorporating more key

gates. In other words, the minimum number of key gates for achieving 50% HD is defined as the

encryption threshold. The defender can intentionally increase the key gates for extra obfuscation
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without changing the robustness of the logic locking.

Table 3.3: The number of polymorphic logic gates to achieve 50% Hamming distance using our
proposed scheme compared to previous techniques.

Benchmark
Circuits

# of XOR
PLGs

# of NAND
PLGs

# of AND
PLGs

# of XOR/XNOR
Gates [68, 92]

Hamming Distance (%)
Ran [68] FA [92] PLGs

C17 - 3 - 6 42 51 53
C432 - 10 1 17 29 50 50.06
C499 16 - - 40 26 50 50
C880 - 18 13 28 19 50 48.3

C1355 - 32 1 42 26 50 50
C1908 - 23 4 28 26 50 49.9
C3540 - 8 13 22 23 50 49.9
C5315 - 4 91 97 15 44 45.6
C6288 - 26 1 27 32 50 50

Table 3.3 shows the detailed results of security evaluation. The previous random and fault analysis-

based logic encryptions are included for the comparison. The number of required key gates using

a polymorphic logic gate is listed between the second and fourth columns. The fifth column shows

the number of required XOR/XNOR gates used in previous random and fault analysis works. It is

apparent that our proposed technique embraces more variants for key gates besides XOR/XNOR

gates. NAND/NOR and AND/OR based polymorphic gates virtually are more favorable for most

benchmark circuits. It can be seen that the required number of the polymorphic logic gates is

less than the conventional XOR/XNOR based key gates, which implies the effectiveness of our

proposed technique. The last column of Table 3.3 shows the achieved Hamming distance using our

technique, where 50% HD is mainly accomplished. Only benchmark circuit C5315 with 45.6%

HD is better than both random and fault analysis based methods.
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3.2.3.3 Performance Overhead

As we discussed, our proposed polymorphic gates mechanism should display a dramatic advan-

tage in less performance overhead, i.e., area and power-delay product overheads, mainly resulting

from the polymorphic gates not adding additional logic gates into original circuits. However, it is

expected that our technique would incur certain performance overhead, since SiNW FET is more

energy-hungry than its CMOS counterpart due to the unique polarity controllable feature of the

emerging device.

Figure 3.18 shows the area overhead of all benchmark circuits with logic locking technique.

The number of logic gates corresponds to the results listed in Table 3.3. Similar to the previous

work [92], we do not include the overhead of peripheral circuits, such as key-bit generator. Appar-

ently, the polymorphic gate based logic locking has drastically lower area consumption than the

other two techniques. When the circuit scale increases, the overhead is merely negligible for our

proposed technique. C499 circuit has almost zero area overhead, mainly because the key gate is an

XOR/XNOR polymorphic gate, which has less area for SiNW FET than for CMOS.

Figure 3.19 shows the power-delay product (PDP) penalty of all benchmark circuits. It maps to the

number of gates added for encryption listed in Table 3.3. Except for the C499 circuit, all benchmark

circuits are more favorable to NAND/NOR and AND/OR polymorphic gates. It is obvious that

the polymorphic gate based logic locking hardly provokes any overhead on power-delay product,

where <1% overhead applies to every benchmark circuit. On the other hand, random and fault

analysis encryption techniques display a considerable power-delay overhead upon original circuits,

where >25% penalty occurs at the majority of benchmark circuits.
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Figure 3.18: Area overhead of random, fault analysis and polymorphic gate based logic locking.
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3.2.4 Discussion

3.2.4.1 Attacker’s Perspectives

The goal of an attacker is to expose the secret key of an encrypted circuit. Once the key is revealed,

there is no meaning for the encryption since with the correct key the attacker can copy an IC, insert

a hardware Trojan, and/or overbuild an IC illegally without designer’s license. The most serious

attacks and remedies on logic encryption techniques are discussed below.

3.2.4.1.1 Applying Brute Force Attacks

An assailant could expose the valid key of an encrypted circuit by applying all possible cases of

the key-bits unless the key-size is long enough. A defender can prevent the brute force attacks

via increasing the key length. In the XOR/XNOR insertion approaches, enlarging the key-size

means increasing the number of the injected key-gates since each new key-bit is an input of each

added key-gate leading to an increase in the performance overhead substantially. In our proposal,

besides the smaller performance penalty due to the exchanging gates, a hardware engineer can

freely enlarge the key-size to a maximum of two times if the key-bits are not gathered to a line

with an inverter for each exchanged gate, as demonstrated in Figure 3.14.

3.2.4.1.2 Can An Attacker Identify The Key Since The SNW Structure Is Different from CMOS

Structure?

Unlike traditional logic locking using XOR gates, the polymorphic gates used as ‘lock’ gates can

be easily identified by an attacker in the GDSII of the chip, due to the difference in their lay-

out/fabrication features as compared to the rest of the chip (conventional CMOS). Though this
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may not completely compromise the security of an IP, it certainly makes it easier for an attacker

to identify the ‘key’ if he/she has access to an unlocked chip, because then the attacker knows

exactly where and what to look for. However, the attacker cannot get the key even the structure of

the SNW is different from CMOS for two reasons (1) In SNW, the same structure can give differ-

ent functionalities based on the value of the key. A designer can randomly exchange more gates

through the circuit without changing the value of the internal net in the original circuit since the

overhead is very small to maximize the ambiguity of the attacker. (2) the only difference between

the structure of CMOS and the SiNW is the polarity gate, which is only a few nanometer. So, it is

really difficult for an attacker to figure out the difference for a large scale circuit.

3.2.4.2 Key Generations

Previously, Rajendran et al. [92] applied a Physically Unclonable Function (PUF) circuit and

Rivest–Shamir–Adleman (RSA) encryption unit to generate the keys for logic encryption. How-

ever, area consumption of the two cryptographies might override original netlist with only hundreds

of logic gates. For instance, ISCAS’85 C17 to C1355 circuits have less than 400 logic gates. To

tackle this issue, we adopted the common encryption technique in system on chip (SoC) design,

called dynamic scrambling [151]. The encryption and decryption mechanisms for the key genera-

tion are presented in Figure 3.20.

On the rising edge of a Fetch operation (i.e., for a new instruction), the random generator sets a new

scrambler configuration. This configuration is saved in a new segment of memory given by a first

input first output (FIFO) and the address used is saved with the scrambled data in random memory.

Concurrently, each time a new configuration is requested to unscramble data, the configuration is

read in the memory at the address given by the random memory and the data is unscrambled. This

address is saved in a FIFO that stores all empty memory addresses. When a configuration value is
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read, the memory block that holds the value should be overwritten to avoid risk of reuse.

True random generation
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Scrambling design
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True 

Key
separatorMixer
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Figure 3.20: Scrambling technique used for (a) scrambling and (b) descrambling.

More specifically, the designer provides the input of the dynamic scrambling by the secret key of

the circuit, and the random generation is used to generate new configuration bits. The scrambling

output bits are randomly combined with the configuration bits via a Mixer to produce the user

key. The end-user uses this key to decrypt the circuit, where the user key will be separated into

the configuration bits and the scrambling output bits. The incoming configuration bits will be

compared with the configuration bits in the chip that the designer already burns in a non-volatile

memory and the rest of the incoming bits (scrambling output bits) will be fed as inputs to the

dynamic unscrambling. In this case, the encrypted chip will only be activated by the secret key if

both of the comparator output and the unscrambling key are correct.

3.2.4.3 Testing in an Untrusted Foundry

Since the complexity of the design becomes very large and needs different types of equipment as

well as fabricating process involvement [162], many companies design the ICs and then fabricate
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them at other companies. Thus, ICs might be imitated by the untrusted company so the company

could sell them in the markets illegally or insert a Trojan inside the chips [8]. As a result, the

developers have no control over untrusted foundries to protect their designs, where they are sus-

ceptible in the face of several attacks [16]. IP owners can protect their design from counterfeit ICs

and other attacks in a company during the test using the Secure Split-Test (SST) method before

sending the ICs to the trusted facility for configuring its functionality [24]. SST protocol is based

on communicating and exchanging generated keys between the foundry and the designer, where

only the IP owner can know whether the IC is passing the test successfully or not. An improvement

on SST is achieved, namely CSST, which gives a simple communication between the IP owner and

the foundry as well as providing more protection than the traditional SST. In this technique, the

designer has full control over the chip, and only he or she can understand and analyze the result of

the locked chip [163].

3.2.4.4 Beyond SiNW FETs

Besides the proposed SiNW FETs, other emerging transistors might also be employed to protect IP

designs. For instance, the recently proposed negative capacitance FET (NCFET) [164] is embed-

ded with the property of tunability. By adding a ferroelectric layer in the gate stack of a MOSFET,

NCFET is able to reduce the switching slope to a value less than 60 mV/dec, which shows potential

for ultra low-power design. Meanwhile, since it can be configured in a way that may or may not

have hysteresis loop, one NCFET can virtually function in two modes: memory cell and Boolean

logic cell. The difference between two modes is determined by the thickness of ferroelectric lay-

ers, which is on the sub-nanometer scale. Once the NCFET fabrication is done, it is extremely

difficult to distinguish which mode NCFET stays because the reverse engineering cannot have the

advanced SEMs to identify the devices.
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3.3 Proposed Techniques against Advanced Attacks

3.3.1 Approach 1 against Sensitization Attack

Sensitization attack can easily propagate the values of the secret key to outputs since the MUXes

in the half and full MUX insertion techniques are inserted close to the outputs. Therefore, the key

values can be revealed with less computational time compared to other techniques, e.g. random

insertion-based or fault analysis-based encryption. However, the full protected chip, e.g. MUX

insertion with HLU and LFSR, makes the execution time of the sensitization attack exponential

with the number of key-user since the values of the MUXes are not directly connected to the

key user. The relationship between the values of the MUX key and the user key are not linearly.

Therefore, this technique can successfully prevent this attack.

3.3.2 Approach 1 against SAT Attack

The full protected chip of half and full MUX insertion can provide so resilience to SAT attack, but

since the size of the key user is not long enough, SAT attack may break the design. Our future

work is to fully test and develop this technique against SAT attack.

3.3.3 Approach 2 against Sensitization Attack

In our proposed encryption-based SiNW polymorphic gates, even though sensitization attacker

cannot propagate the key values of the encrypted circuit to output, he or she may sensitize a path

from the output of a polymorphic gate to an output on the working device, and, therefore, the logic

function may be determined by applying different patterns to the polymorphic gate’s input (using

ATPG). Once the logic function is determined, a key bit guess can be made on an unprogrammed
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device and the same vectors run again. If the output remains the same, then the key bit guess is

correct; otherwise, the opposite value must be the correct assignment. Therefore, one needs to

employ ‘interference graph’ to make the task difficult [2].

3.3.4 Approach 2 against SAT Attack

We tested our SiNW PLG-based traditional logic encryption against SAT attack. Unfortunately,

the SAT-attack took less than two seconds to break the c7552 circuit with less than 60 iterations.

The only way to strongly prevent this attack is to incorporate untraceable resilient SAT circuit into

the encrypted circuit. More information regarding this matter will be discussed in the incoming

chapter.

3.4 Summary

In the MUX insertion technique, multiplexer insertion-based logic encryption has been presented.

Compared to previous literature, the fault impact analysis approach will not guarantee achieving

a 50% Hamming distance for any circuit, and the execution time of its algorithm is very long and

unacceptable in practice for a large chip. On the other hand, our methodology can accomplish

50% (or close to it) Hamming distance between the corrupted and corrected outputs, even if one

bit in the user key is incorrect, unless all of the right valid key bits are supplied, and it is very

fast. Moreover, instead of using both RSA cryptography and PUF, we employed the HLU and the

LFSR random generator to protect the secret key and generate random keys with 0.5 probability,

respectively. The power, area and delay overheads are gradually decreased for a large circuit that

has appropriate output bits, such as C6288 and S9234. In conclusion, our proposed technique

can outperform the previous state-of-the-art work in terms of less performance overhead while
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achieving a higher security level.

In the hybrid SiNW-CMOS based traditional encryption, we have demonstrated that the usage of

emerging transistor, i.e., SiNW FETs, can help improve the logic locking design by preserving

lower power and area consumption compared to conventional CMOS technology. Specifically, the

SiNW-based polymorphic gates work as logic key units to encrypt the combinational circuits. A

smart placement algorithm is formalized and it shows that 50% of Hamming distance between the

correct and wrong output bits can be achieved through a security assessment. We showed that,

besides the traditional criteria for emerging devices such as area, power, delay and non-volatility,

security may serve as a new criterion to thoroughly judge the pros and cons of any emerging

devices. Using this new standard, we plan to revisit existing emerging transistors to have a full

comparison between emerging technologies and CMOS technology. Meanwhile, we believe that

more research outcomes are expected in this area where unique properties of emerging transistors

can help in enhancing the circuit security.
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CHAPTER 4: STRONG LOGIC OBFUSCATION AGAINST ADVANCED

IC REVERSE ENGINEERING ATTACKS

4.1 Strong Encryption Against Reverse Engineering Attacks

4.1.1 PLG-based Fast Traditional Logic Encryption

It is well known that a 2-input XOR gate consumes at least eight transistors in conventional CMOS

technology. The large size of a XOR gate consumes more area and is power hungry compared

to other basic logic gates, such as AND/OR or NAND/NOR gates. As presented in previous

works [1, 68], the power and area overheads are typically high, while the overheads for more

secure design, e.g. SLO technique, are even higher than other logic locking techniques when the

number of inserted key-gates (XOR/XNOR) is about 5% of the total number of gates in ISCAS’85

benchmark circuits 1

As mentioned, the large overhead of conventional logic locking may preclude its application on

silicon chips. To further reduce the surcharge, instead of incorporating more key-gates (e.g.,

XOR/XNOR gates [68]) for logic encryption, our technique is to replace some gates in the original

netlist with SiNW based PLGs. To fully elaborate our proposed technique, C17 benchmark circuit

is adopted. Original C17 circuit consists of six NAND logic gates with five primary inputs and two

primary outputs shown in Figure 4.1 (a). As explained at the beginning of this subsection, a SiNW

NAND gate can be easily switched into SiNW NOR gate using polymorphic technique. Conse-

quently, we replace two original NAND gates by two PLGs, which each has an extracted locking

key as in Figure 4.1 (b). It is important to note that the replacement does not add much overheads.

1 c© 2017 IEEE. Part of this chapter is reprinted, with permission, from [87]
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The added inverter wiring is very small compared with the inserted XOR/XNOR as a key-gate. We

then define that when K1 and K2 are both zero, it is the original netlist with the correct outputs.

Otherwise, the PLG switches to a NOR gate, most likely resulting in wrong outputs.
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Figure 4.1: PLG based logic locking technique: (a) original C17 circuit, and (b) modified C17 with
two NAND/NOR PLGs.

For instance, applying the input pattern of "01000" with K1 = 0 and K2 = 0, a correct output

"00" is produced for the C17 circuit. When K1 = 1 and K2 = 1, the two PLGs switch from

the original NAND gates to NOR gates, consequently resulting in "11" at the outputs. However,

when one PLG encrypts with either K1 = 1 or K2 = 1, wrong outputs "01" or "11" are produced,

respectively. Three different key configurations generate two wrong output patterns.

We replace some gates in the original netlist with the three different PLGs, AND/OR, NAND/NOR,

and XOR/XNOR. Each type of PLG is designed with a different number of inputs ranging from 2

to 8 to cover/mimic a large number of gate types in the original netlist. We replace 5% from the

total number of gates (for small circuits) and 100 gates (for large circuits) in the original netlist

with three different types of PLGs. Out of those gates, 75% of them are AND/OR, 20% of them

are NAND/NOR, and 5% are XOR/XNOR gates, starting from small gate input sizes (instead of
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starting from large gate input size as in [87]) to further reduce the overhead surcharge. If the

original circuit does not have a gate type equivalent to one of these three PLGs, its specified ratio

will be distributed between the rest of the PLGs. Among all replaced gates in the original circuit

with PLGs, we replace the largest ratio of AND/OR gates to increase the ambiguity of an attacker

from identifying the location of URSAT scheme since a large number of AND/OR PLGs has been

used to build URSAT.

Another two SiNW based PLGs, Inverter/Buffer (I/B) and AND/NAND, have been implemented

to build the RSAT block and prevent an attacker from identifying/tracking the RSAT block/its

output signal. More information regarding this matter will be clarified in the next section. Note

that I/B and AND/NAND PLGs could also be used to help encrypt a netlist through exchanging

inverter/buffer and AND/NAND gates in the original circuit with the I/B and AND/NAND PLGs,

respectively. Also, note that, in our previous work [88], we only used three simple PLGs to encrypt

a netlist. These PLGs cannot be used to cover/mimic all gate types and sizes in the netlist as in

this work, and therefore the work in [88] cannot be used to encrypt all logic circuits. Moreover,

the work in [88] is vulnerable to IC reverse engineering attacks.

4.1.2 Untraceable Light-weight Resilient SAT (URSAT)

We implement a small light-weight circuit using SiNW FET based PLGs, namely URSAT, and add

a reconfigurable signal (R-S) to prevent SAT, D-DIP, AppSAT, Bypass, and removal (SPS and TS)

attacks. The R-S is a wire coming from an internal net in the encrypted circuit and connected to the

key input of the PLG in URSAT. First, we design two additional types of PLG; inverter/buffer (I/B)

and AND/NAND PLGs. The I/B PLG is important to reduce the performance penalty, instead of

using XOR/XNOR as a key-gate, and the AND/NAND PLG is important to prevent SAT attack.

Otherwise, SAT attack will rule out more than one key-bit at each iteration, leading to a reduction
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in the iteration number by about 2n/2, where n is the number of baseline keys. More information

will be covered in section 4.2.2.
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Figure 4.2: (a) Two more PLGs, I/B and AND/NAND PLGs, (b) URSAT circuit, (c) integrating
URSAT to the encrypted circuit with R-S based on two different approaches to prevent removal
(SPS and TS) attacks, and (d) preventing SPS and TS attacks from tracking and detecting Anti-SAT
block.

We combine one CMOS-inverter with SiNW to produce I/B PLG, as shown at the top-left of

Figure 4.2 (a). I/B PLG works as an inverter when the key value is ’0’, otherwise it performs as a
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buffer. Afterwards, this obfuscated gate is connected with a NAND gate to produce AND/NAND

PLG, as depicted at the bottom of Figure 4.2 (a). AND/NAND PLG performs as an AND gate

if the key value is ’0’, while it works as a NAND gate if the key value is ’1’. Also, an AND

gate can be connected with I/B PLG to produce AND/NAND PLG, via only changing the location

of the CMOS-inverter to the other side, and this will increase the ambiguity of an attacker from

discovering the correct key. By using these two obfuscated gates with the previously designed

PLGs, we build URSAT circuit against SAT attack, as illustrated in Figure 4.2 (b). A set of I/B

PLGs is inserted between the primary inputs (Xi) and the key-bits (Ki). The outputs of these I/B

PLGs are fed to 2-input AND/OR PLGs, and then the outputs of the AND/OR PLGs are connected

to AND/NAND PLG. The input number of the AND/NAND PLG used at the last stage in the

URSAT circuit depends on the number of the coming signals from the outputs of the AND/OR

PLGs in the previous stage + one signal, coming from NANDing Xi. Each incoming signal to

the AND/NAND PLG comes from a sub-tree of AND/OR PLGs that has only 8 baseline key-bits.

Note that the values of the internal signals in URSAT will be changeable due to the switching

between AND/OR PLGs, which is impossible to be detected by SPS attack. Increasing the input

number of the AND/NAND PLG at the last stage in URSAT is necessary to prevent SPS attack

since it can be identified when its inputs have maximum different signal probabilities. The output

signal of URSAT (S-O/P) is connected to inserted XOR/XNOR PLG with a primary output wire

coming from the encrypted circuit. Also, Xi signals are NAND-ed, and the NAND output signal

is connected to the AND/NAND PLG in URSAT. In this case, the iteration number of SAT attack

will increase exponentially with the number of baseline URSAT key-bits.

To prevent TS attack from detecting and removing the S-O/P signal, we connect the two key inputs

of the AND/NAND and XOR/XNOR PLGs to a random internal signal (NT1) coming from the

encrypted circuit, as shown in Figure 4.2 (c) (highlighted as ’1’ in a red circle). When the value

of NT1 is ’0’, the AND/NAND PLG will configure to an AND gate, and the inserted XOR/XNOR
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PLG (between the S-O/P signal and the selected output signal from the encrypted circuit) will

configure to a XOR gate (signified by the green color in Figure 4.2 (c)). However, the AND/NAND

PLG will work as a NAND gate and the XOR/XNOR PLG will function as a XNOR gate if the NT1

value is ’1’ (signified by the blue color in Figure 4.2 (c)). As a consequence, the value of the S-O/P

signal will change, based on the values of NT1, Xi, and Kn, and hence preventing TS attack. Note

that, in URSAT, since I/B and AND/NAND PLGs are not used in the encrypted circuit (portions

with KE), if an attacker has insight on URSAT encryption scheme, the attacker can then identify

URSAT block from searching for I/B and/or AND/NAND PLGs. The URSAT logic cone can then

be traced from I/B and/or AND/NAND PLG outputs and removed from the netlist. Such attacks

can easily be prevented by exchanging buffer/inverter and AND/NAND gates in the original circuit

with I/B and AND/NAND PLGs, respectively.

Based on the above description, if an attacker feeds the key-bits of the AND/OR PLGs with con-

stant values or recovers the correct keys of these PLGs via using AppSAT attack, then the value of

the S-O/P signal will be almost the same as the value of NT1 for a large number of URSAT key

combinations. However, it is hard for an attacker to successfully identify the S-O/P signal for two

reasons; first, there might be many two-signals in the encrypted circuit that have the same values.

Also, to achieve this goal, the attacker has to use the brute force search which is infeasible for a

large scale circuit; and second, he or she cannot know exactly which one is for URSAT, especially

after the logic synthesizing. However, this assumption might help an attacker decrypt the circuit.

To enhance security, an additional gate could be employed to generate a new different URSAT

output signal. For example, inserting an additional XOR gate whose two inputs come from two

random net signals in the encrypted circuit, and its output signal is connected to the key-input of

both AND/NAND and XOR/XNOR PLGs as a R-S, as demonstrated in Figure 4.2 (c) (denoted

inside a red dot ellipse in the encrypted circuit as number 2).

This approach could also be used to prevent SPS/TS attacks in Anti-SAT and SARLock techniques
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with small overhead. For example, instead of connecting the incoming signals in these techniques

to only one gate (last gate), these signals can be connected to an AND and a NAND gates, and the

two gate outputs are fed to a multiplexer (MUX) whose output is S-O/P. Then, the S-O/P signal

is connected with one of the primary outputs in the encrypted circuit to a XOR gate and a XNOR

gate, and the two outputs of the XOR and XNOR gates are fed to another MUX. By connecting

the two selector wires of those MUXes to either a random internal signal or an output gate whose

two inputs come from two random signals, the S-O/P signal will change based on the value of the

selected random signal(s). A simple example of utilizing the aforementioned technique to prevent

removing Anti-SAT method that has 24 baseline keys is shown in Figure 4.2 (d). A designer

can first partition each of G1 and G2 blocks into three parts, and each of 8 baseline key-bits is

connected to one of these parts. In this case, the maximum skew value of each incoming signal to

the last AND or NAND gate will be less than 256, instead of being approximately 16×106, and

hence prevent SPS attack. Meanwhile, the S-O/P signal will change based on the value on the

selected random net(s), resulting in prohibiting TS attack. The yellow shadow box in Figure 4.2

(d) illustrates the configuration of the S-O/P signal with the two possible connections for R-S.

It is important to mention that the output signal (F’) of the I/B PLG, as demonstrated at the top-left

of Figure 4.2 (a), will be slightly degraded when the I/B PLG functions as a buffer. This happens

due to the fact that the pMOS is poor in the pull-down network, and the nMOS is poor in the pull-

up network. However, the input voltages of the control and polarity gates are compatible with the

supply voltage (VDD), resulting in making the I/B PLG fully capable for the implementation of

multilevel static logic. More information regarding this matter is provided in [165]. However, in

order to produce a strong non-degraded signal, we add a CMOS-inverter after the I/B PLG output

and change the location of the CMOS-inverter at the key input from the gate of the lower SiNW-

transistor to the upper SiNW-transistor, as demonstrated at the top-right of Figure 4.2 (a)). This

new I/B PLG can be used to drive a large fanout or generate many stages of a ring oscillator.
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4.1.3 Strong URSAT Using only CMOS-Logic Gates (S-URSAT)

The main idea of URSAT is to make the internal and the output signals of URSAT block inconstant

when wrong keys are applied. The generated key-bits from the AND/OR PLGs in URSAT with

the R-S will be able to prevent SPS, TS and AppSAT attacks from decrypting the circuit. The

URSAT circuit can also be implemented using only CMOS-logic gates; however, the URSAT still

has an issue, in which its output signal acts almost the same as the selected internal signal from the

encrypted circuit for a large number of key combinations. Also, a large number of the AND/OR

PLG key-bits could be revealed by AppSAT attack. This reduces the design resilience against AGR

attack.

Instead of depending on the key-bits of PLGs to prevent SPS, TS, and AppSAT attacks, we achieve

some modifications on TOA structure to produce strong untraceable resilient SAT (S-URSAT),

which is able to thwart AGR as well as SPS, TS, and AppSAT attacks. The modifications are to

divide TOA into many stages and connect the outputs of each stage with unique inputs to MUXes.

The details of implementing S-URSAT are as follows: (1) XOR gates are inserted between the

distinguishing inputs (X) and the baseline key-bits of S-URSAT. (2) Each of 4 XOR gate outputs

is connected to AND gate. Then, the output of each AND gate is connected with unique primary

input to a MUX, and here the first stage is achieved. Each unique input is a primary input of the

original circuit that is used only one time in the whole S-URSAT design. The output signals from

the first stage are propagated to next stage, and also 4-input AND gates with MUXes and unique

inputs are used, until we get maximum 4-output signals. The MUX can be implemented using

different kind and number of gates, e.g. three NAND gates with inverter, or two AND and one OR

gates with inverter. The configuration of the key can be modified by only changing the location of

the inverter or switching the order of the MUX input signals. (3) Each of 4 distinguishing inputs

is ORed, and then a MUX is inserted between each OR gate output and a unique input to create
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multi-stages of OR-tree. The final OR output is connected with the last generated outputs from

AND tree in (2) to the last AND gate in S-URSAT. The maximum input number of each AND/OR

gate in S-URSAT is 4, except the last one in each stage (which may have 5 inputs if there is one

wire left from the incoming signals from the previous stage). (4) Finally, the S-URSAT output

(S-O/P) is created by connecting the last AND gate output with a unique input to a MUX. Then,

the S-O/P is fed with an inverted primary output, coming from the original circuit, to an XOR

gate and an XNOR gate, and another MUX is added to get the encrypted output. The inverted

output is obtained by flipping the gate at that primary output, which is selected randomly, e.g. if

the gate at the selected output is an AND gate, it will be flipped to a NAND gate. Note that the

maximum number of inputs of each AND/OR gate can be reduced to 2 inputs, except for the last

AND/OR which may have 3 inputs. Accordingly, the key size of S-URSAT will increase. Figure

4.3 illustrates the details of implementing S-URSAT that has 16 baseline key-bits, and the general

algorithm for the S-URSAT is demonstrated in algorithm 2.

Note that in URSAT, the key inputs of the AND/NAND and XOR/XNOR PLGs are connected

to a reconfigurable signal (R-S), while in S-URSAT, each output of the AND and OR gates in

each stage is connected with a unique input to a MUX that has an external key-bit. Consequently,

this should be the best approach, compared to the two approaches in URSAT, since obviously the

output of the S-URSAT block will be totally independent and changeable when incorrect keys are

applied, as will be explained in section 4.2. The encrypted circuit will give the correct output for the

combinational input patterns only when the correct key is given, and thus the S-URSAT provides

resilience against existing reverse engineering attacks. It is worth mentioning that the XOR and

XNOR gates with a MUX can be built with a fewer number of transistors by using only one 3-input

XOR gate, where the inputs are the S-O/P, flipped primary output, and the corresponding key. Note

that, the S-URSAT circuit cannot be easily identified, especially after the logic synthesizing, since

it is fully interconnected with the original circuit and the XOR/XNOR and MUX key-gates can
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be implemented using different basic logic gates. Also, the designer can increase the ambiguity

of an attacker from identifying the S-URSAT through replacing some inverter/buffer gates in the

original circuit with XOR/XNOR and MUX key-gates.
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Figure 4.3: Implementing S-URSAT that has 16 baseline key-bits and connecting its output to an
inverted output in the original circuit.

Connecting the second input of each MUX in S-URSAT to a unique input is not chosen randomly.

To be more specific, we connect the second input of each inserted MUX in each stage to three dif-

ferent locations; (1) random internal net, (2) unique primary output, and (3) unique primary input.

We realize that connecting them to unique primary inputs offers more resilience than connecting

them to random internal nets or unique primary outputs. Practically, when the second input of each

MUX is connected to either a random net or a unique primary output, AppSAT attack successfully

decrypts a portion of the encrypted circuits that have a small number of baseline keys (< 10 bits).
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Algorithm 2 Strong Untraceable RSAT Algorithm

1: Input: Netlist, keySize;
2: Output: Encrypted netlist with key;
3: Randomly select primary inputs equal to the keySize;
4: for i← 1 to KeySize do
5: Insert 2-input XOR (input[i], key[i]);
6: end for
7: for i← 1 to NumberO fCreatedOut putWire do
8: if Number of created output wires >4 then
9: Create 4-input AND gate;

10: Insert MUX(unique input, created gate output);
11: if One created output wire left then
12: Connect that wire to the previous AND gate;
13: end if
14: end if
15: end for
16: Get the last AND/MUX output wire(s);
17: for i← 1 to NumberO f Dips do
18: if Number Of Dips or createdOutputWires >1 then
19: if Number of Dips or createdOutputWires >4 then
20: Repeat 9-13 with OR gates, instead of AND;
21: else
22: Create OR gate with the reset incoming wires;
23: Insert MUX(unique input, created gate output);
24: end if
25: end if
26: end for
27: Get the last OR/MUX output wire;
28: Connect the OR/MUX wire with the AND/MUX wire(s) to AND gate;
29: Insert MUX(unique input, created gate output);
30: Connect the S-O/P signal with the flipped primary output to XOR and XNOR gates;
31: Insert MUX(XOR output, XNOR output);

Also, the values of the selected random nets or the selected primary outputs from the original cir-

cuit are not necessary changed when certain input patterns change. This may help removal attack

identify/detect the S-URSAT block. On the other hand, AppSAT attack fails to decrypt any en-

crypted circuit when the second MUX inputs are connected to unique primary inputs. This will

also make sure that the internal and output signals of the S-URSAT will change when the input
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patterns change since they will directly feed from the primary input patterns when wrong keys are

applied. Furthermore, both traditional SAT and D-DIP attacks need at least 2n + m number of

iterations to decrypt a circuit encrypted using S-URSAT, where m changes based on the size of the

baseline key-bits and the topology of the original circuit. More information regarding the security

analysis of S-URSAT, supported by experimental results, is provided in subsection 4.2.2.

4.1.4 Security Analysis of URSAT and S-URSAT

To validate the security of URSAT, we implement a small URSAT circuit, as shown in Figure 4.4.

For simplicity, (1) we configure the I/B and the AND/OR PLGs to be a buffer and an OR when

k is ’0’, respectively, and (2) we connect the R-S to ’0’ so the AND/NAND and the XOR/XNOR

PLGs function as AND and XOR gates, respectively. As a result, the correct key will be "100".

Table 4.1 shows the truth table for URSAT block. For each input pattern with key combinations,

the URSAT produces 4 wrong outputs, except when all input patterns are ones, where the NAND

gate will cancel all other incoming inputs to AND/NAND PLG. If we add one more AND/OR PLG

with two I/B PLGs, the URSAT will cause 16 wrong outputs. In general, the number of produced

wrong outputs can be formulated as in Eq. 4.1. The number of wrong outputs that URSAT causes

makes AppSAT terminate with a large number of error bits. This also emphasizes that the URSAT

works as TOA only when the correct key is applied (as also shown in Table 4.1). Note that we used

the NAND gate with all primary input X for simplicity purposes. A designer can choose different

logic gates and can also integrate them with random signals coming from the encrypted circuit

using MUXes.

# Y = 2(2 ∗ #AND/OR PLGs) ∀~x(~x ∈ X ,~x 6= 1) (4.1)
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Figure 4.4: A simple example of implementing URSAT

Table 4.1: Truth table for URSAT in Figure 4.4

PPPPPPPPPx1x2
key

000 001 010 011 100 101 110 111

00 0 1 1 1 0 0 0 1
01 1 0 1 1 0 0 1 0
10 1 1 0 1 0 1 0 0
11 0 0 0 0 0 0 0 0

For more secure design, instead of NANDing all of Xi signals together, each 2 Dips can be con-

nected to OR gate, and then the OR outputs with random signals could be connected to MUXes to

create a tree of OR gate. Regrettably, the URSAT depends only on the key-bits of the AND/OR

PLGs to change the values of the internal signals and produce high corruptibility. A large number

of the incorrect recovered key-bits by AppSAT is from the early stages in URSAT. In other words,

AppSAT attack may quickly exclude the incorrect key-bits at the AND/OR PLGs that are close

to AND/NAND PLG since they produce a very high corruption. This might help removal attack

identify URSAT block. Therefore. the URSAT may not be fully resilient against AGR attack.

In S-URSAT, unique inputs with MUXes are manipulated to change the internal signals in each

stage. Since the input patterns should change during the test, the values of internal signals will be

random. Also, the values of the unique inputs may not produce wrong outputs, e.g. when the value

of the unique input has few or large zeros. Therefore, the AppSAT attack will terminate with a key

85



that has a large number of wrong key-bits at the MUXes. This error will increase when the unique

inputs and MUX key-bits are increased, as will be experimentally shown in the next section.

4.2 Experimental Results

In this section, we present in details the experimental evaluation to demonstrate the effectiveness

of the proposed logic obfuscation technique with URSAT and S-URSAT.

4.2.1 Experimental Setup

Our experiments use combinational (ISCAS’85) [161], sequential (ISCAS’89) [166], and ITC’99

[167] benchmark circuits. We summarize the details of the benchmarks used in our experiment

in Table 4.2, where the last column shows the area size of the original benchmarks using 20nm

CMOS. Synopsys HSPICE is adopted for circuit-level simulation to characterize SiNW based

PLGs. We use Java to achieve our proposed logic obfuscation. To show the advantages of SiNW-

over CMOS-based logic encryption, we randomly exchange 5% of the total number of gates in the

original circuit (C1355-S9234) with SiNW-based PLGs and compare the penalties with randomly

inserting 5% CMOS-XOR/XNOR logic gates (see Figure 4.9). Then, we evaluate the penalties

of randomly exchanging 100 gates with SiNW-based PLGs for different large benchmark circuits

(C5315-B22), each augmented with URSAT, and the penalties of S-URSAT (see Figure 4.10 and

4.11). URSAT and S-URSAT are implemented using only SiNW and CMOS-logic gates, respec-

tively. We evaluate the URSAT and the S-URSAT techniques against SAT, D-DIP, AppSAT, and

removal attacks based on the tools utilized [74, 94, 95]. Xilinx ISE Design Suite-14.7 tool is used

to observe and track the URSAT/S-URSAT output signals with some other signals in the proposed

design (see Figure 4.6 and 4.7). The CPU time is set to 10 hours as in [74]. SAT, D-DIP, and App-
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SAT attacks are executed on a server that has Core i7 CPU at frequency 3.5GHz with 32GB RAM.

The ABC tools [168] are used to convert the bench circuits to verilog for evaluation purposes. All

converted verilog circuits are synthesized using Synopsys Design Compiler with 20nm CMOS and

20nm SiNW technologies. We set up the timing constraints as follows: (1) input delay = output

delay = 0.2 ns, (2) load capacitor (CL) = 10pF, and (3) clock period = 10 ns 50% duty cycle. The

area, power, and delay overheads are retrieved accordingly.

Table 4.2: The details of the benchmark circuits used in this work

Benchmarks Inputs Outputs Logic gates Inv and Buf Area
C5315 178 123 1413 894 357.62
C7552 207 108 2102 1410 395.74
S5378 214 213 1004 1775 295.23
S9234 247 250 2027 3570 387.3

S13207 700 790 2573 5406 622.15
S15850 611 684 3448 6327 817.74
S35932 1763 2048 12204 4181 2165.3
S38417 1664 1742 8709 13548 2323.59
S38584 1464 1730 11448 7957 2990.22

B14 277 299 4917 430 1335.68
B15 485 519 6540 482 2026.17
B17 1451 1511 21129 1628 6622.58
B18 3307 3293 64603 5310 19354.25
B20 522 512 11051 906 3097.2
B21 522 512 11154 980 3104.5
B22 735 725 15957 1372 4382.1

4.2.2 Security Evaluation for the Newly Proposed Technique

We tested our PLGs based traditional logic obfuscation. Unfortunately, SAT attack took less than

two seconds with only a few iterations to break the C5315 circuit. Therefore, each of URSAT and

S-URSAT is integrated with the original and obfuscated circuits. In this subsection, we analyze
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and evaluate the proposed designs against the most serious reverse engineering threats.
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Figure 4.5: Execution times and number of iterations that SAT attack needs to decrypt different
circuits + URSAT.

4.2.2.1 SAT, D-DIP, AppSAT, and Bypass attack resilience

We integrate each of the benchmark circuits with URSAT that has different key-sizes (8, 10, 12,

and 14 bits). These encrypted circuits are evaluated against SAT attack, and both the number of

iterations and the execution time that SAT attack needs are reported. Figure 4.5 shows the number

of iterations that the SAT attack needs to break the circuits encrypted using URSAT, where this

number is represented by the blue dot line in the Figure. There is only one blue dot line in the

Figure, which implies that SAT attack needs exactly the same number of iterations (2n) to break

any encrypted circuit. With a small number of key-size, e.g. < 10 bits, all of the encrypted circuits

are broken with a small number of iterations. However, this number grows exponentially when the

key-size of the URSAT is increased linearly. Note that the aforementioned key-size number is the
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baseline, which is only the number of key-bits that are directly connected with the primary inputs

to I/B PLGs. The URSAT has a few more key-bits that are generated from the AND/OR PLGs.

The required time for SAT attack to break these encrypted circuits is also reported in Figure 4.5.

We implement AND/OR PLG, instead of AND/NAND PLG at the last stage in URSAT block,

and the iteration number of SAT attack reduces to approximately 2n/2. We investigate the reason

and realize that SAT attack rules out more than one key at each iteration. This is the main reason

behind leveraging AND/NAND PLG at the last stage in URSAT block and therefore increases the

iteration number of SAT attack exponentially with the number of URSAT key-bits. We also test

URSAT against D-DIP based attack, and we realize that such attack needs exactly the same number

of iterations that SAT attack needs with about the same execution time.

The C1355 circuit is encrypted (by exchanging 27 different gates in the C1355 with PLGs) and

connected with URSAT block that has only 16 key-bits as a baseline. SAT and D-DIP attacks timed

out without breaking it within 10 hours. We rerun the experiment for the statistical significance,

and both attacks still fail to decrypt it.

Moreover, we connect each of the 16 different circuits with S-URSAT that has 4 different key-sizes,

so the total number of the encrypted circuits is 64. These circuits are evaluated against both SAT

and D-DIP attacks. The first 8 columns in Table 4.3 illustrate the number of iterations that both

attacks need to break the encrypted circuits. Even though the two attacks require different number

of iterations to decrypt a similar encrypted circuit, the minimum required number of iterations for

each attack is larger than the exponential number of the baseline key-bits by m (# Iterations =

2n +m), where m increases based on the key size and the selected inputs from the original circuit.

It is important to mention that integrating a traditional encrypted circuit with S-URSAT will barely

increase the number of SAT iterations over the produced iterations’ number with S-URSAT block

alone.
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Table 4.3: Number of required iterations for SAT, D-DIP, and AppSAT attacks to break different
circuits incorporated with S-URSAT, which has different baseline key-bits, and number of pro-
duced error bits for AppSAT. -B and -T in the Table are stand for baseline keys and total keys,
respectively.

circuits
#Iterations for SAT #Iterations for D-DIP #Iterations for AppSAT and #Error bits

8-B 9-B 10-B 11-B 8-B 9-B 10-B 11-B 8-B
Err

9-B
Err

10-B
Err

11-B
Err

15-T 16-T 19-T 20-T 15-T 16-T 19-T 20-T 15-T 16-T 19-T 20-T
C5315 274 533 1059 2080 277 543 1037 2080 84 7 96 5 156 4 108 9
C7552 280 520 1070 2088 271 583 1056 2085 96 8 180 8 60 12 72 8
S5378 284 550 1046 2083 276 543 1053 2101 84 7 84 7 60 8 72 10
S9234 292 576 1268 2597 333 788 1270 2879 96 5 84 7 144 9 84 10

S13207 309 570 1095 2226 301 589 1103 2122 132 6 132 5 84 10 60 11
S15850 281 530 1065 2139 289 528 1096 2219 96 5 144 6 60 7 60 9
S35932 286 524 1044 2178 273 542 1106 2106 132 7 120 6 72 12 96 10
S38417 283 528 1058 2092 298 642 1128 2554 156 5 96 7 72 7 144 11
S38584 279 565 1117 2225 259 550 1095 2216 120 7 60 9 120 10 120 9

B14 267 534 1083 2174 275 655 1129 2211 60 7 144 5 60 9 96 7
B15 275 542 1055 2107 304 537 1042 2109 108 4 60 7 108 10 60 10
B17 258 513 1036 2067 263 526 1046 2107 156 5 60 7 96 11 60 10
B18 292 596 1171 2196 291 559 1143 2260 72 5 108 4 108 8 60 11
B20 300 533 1080 2137 310 609 1081 2209 108 6 228 8 72 10 84 10
B21 283 522 1054 2203 309 584 1192 2619 60 5 144 8 60 9 60 12
B22 262 531 1057 2079 359 577 1157 2304 108 6 72 7 132 8 60 9

Table 4.4: Results of AppSAT attack against circuits integrated with URSAT having different
baseline key-bits.

circuits
Number of AppSAT iterations and number of produced error bits

8-B
Error

9-B
Error

10-B
Error

11-B
Error

12-B
Error

13-B
Error

14-B
Error

14-T 15-T 17-T 18-T 21-T 22-T 24-T
C1355 96 6 180 4 108 6 168 5 84 6 132 8 107 8
C5315 103 0 132 5 84 6 156 9 60 8 60 9 100 7
S5378 104 0 132 4 72 9 132 7 132 10 84 4 103 6
S9234 102 0 132 5 60 3 72 7 84 5 72 7 98 9

We also test URSAT and S-URSAT against AppSAT attack. The AppSAT terminates with a high

error rate of the recovered key-bits. Since the AppSAT terminates the SAT attack when there

are no errors for a certain number of input patterns, the URSAT key-bits (including the key-bits

of the AND/OR PLGs) and the S-URSAT key-bits (including the key-bits of the MUXes) will
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not be recovered correctly, resulting in high error rate. We implement AppSAT with the setup

parameters as reported in [95] (settlement threshold – chosen to be 5, the number of inputs sampled

– chosen to be 50, and the number of SAT attack iterations – chosen to be 12). The number of

AppSAT iterations and the generated error bits in the recovered key, for different circuits integrated

with S-URSAT that has different baseline key-sizes, are shown in the last 8 columns in Table

4.3. The AppSAT attack fails to decrypt any encrypted circuit even with a very small number

of the baseline key-bits. While Table 4.4 demonstrates the number of AppSAT iterations and the

generated error bits, for different circuits integrated with URSAT. The AppSAT attack decrypts

most of the encrypted circuits that have only 8 baseline key-bits and fails to decrypt any other

encrypted circuits that have larger baseline key-sizes.

Note that the Bypass attack cannot break S-URSAT technique since it produces wrong outputs for

a large number of input patterns. When a wrong key is applied, the S-URSAT will be controlled

by the unique primary inputs and therefore the Bypass attack should record all of the input patterns

that cause wrong outputs. For a large baseline key-size, e.g. 64 bits, the unique primary inputs

will be very large, which is infeasible for Bypass attack to record the patterns of such large inputs.

The S-URSAT will give the correct I/O pairs only when the correct key is provided. Therefore, the

key inputs of the MUXes should be correctly configured and should not be any random keys. The

number of the MUX keys can be increased largely by reducing the input-size of the AND and OR

gates in S-URSAT to 2, except for the last gate which may have 3 inputs. Also, the URSAT can

mitigate Bypass attack since it will produce incorrect outputs at certain input patterns with wrong

configurations at the AND/OR PLG key-bits. Therefore, the Bypass attack should record a large

number of input patterns, which is impracticable.
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Figure 4.6: Preventing TS attack from tracking and detecting URSAT output.

4.2.2.2 Removal Attack Resilience

4.2.2.2.1 SPS and TS Attack Resilience

As mentioned, the SPS/TS attacks are used to identify and remove the TOA block via tracking the

input signals and the output signal at the last gate in TOA block. Once the TOA is removed, the

encrypted circuit becomes vulnerable to SAT attacks. These attacks can be prevented by imple-

menting URSAT and integrating it with a netlist. Then, one of the two proposed R-S approaches

should be used, e.g. connecting the R-S to a random internal signal coming from the original cir-

cuit. The output of the proposed technique, URSAT circuit+R-S, will be changeable but may act

almost the same as the selected random signal if an attacker applies a constant key value.

More practically, we incorporate URSAT, which has 32 baseline key-bits, into the combinational

benchmark circuit, C432. Then, random input patterns with random wrong keys are applied to

observe the URSAT output signal with some other signals, and a sample of the results is shown

in Figure 4.6. G341-S is the internal net signal (G341) coming from the original circuit C432.
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C432-O/P is one of the C432 primary output signals. SAT-O/P is the output signal of the URSAT

block. P-O/P is the output signal of the inserted XOR/XNOR PLG whose two inputs are C432-O/P

and SAT-O/P. Figure 4.6 shows that the output of the URSAT block is swinging from zero/one for

most of the key combinations. This output signal changes based on the values of the incoming

signals to the last PLG in URSAT and the value of G341-S. The G341-S is used to configure the

last AND/NAND PLG in the URSAT block as an AND gate and the inserted XOR/XNOR PLG

as an XOR gate once its value is zero. Otherwise, the two PLGs will function as a NAND and an

XNOR gates, respectively, when the G341-S value is one. As a result, the output of the URSAT

block cannot be tracked by SPS/TS attacks. In addition, the values of the incoming signals to the

last AND/NAND PLG in URSAT change based on the values of the AND/OR PLG key-bits. If an

attacker feeds the key-bits of the AND/OR PLGs with constant values, the output of the URSAT

will still change but will act almost the same as the selected internal signal, as we previously

reported in [87] Figure 4. In this case, the maximum skew value of each incoming signal to the last

AND/NAND PLG will be less than 256 since each one of them comes from 8 baseline key-bits.

This skew value is obviously small and cannot be detected by removal attack since the minimum

skew value of a signal should be larger than 1024 to be successfully identified by such attack [93].

Also, each incoming signal to the last PLG will be skewed to zero or one if the AND/OR PLGs on

each incoming signal path are configured to AND or OR gates, respectively. Therefore, with this

small skew value (256) and the unknown relationship between the incoming signals, SPS attack

will fail to detect the URSAT block. Note that increasing the baseline key-bits of URSAT will

not increase the skew value of any incoming signal to the last PLG. For instance, to enlarge the

baseline key-size by 8 bits more, another signal, coming from a new sub-tree of PLG that has 8

baseline key-bits, will be fed to the last AND/NAND PLG. Also note that applying a constant key

to the AND/OR PLGs is not easy to be achieved, since the original circuit should be first encrypted

by the traditional obfuscation technique and then integrated with URSAT block. Thus, the keys of

the AND/OR PLGs in URSAT will be mixed with the keys of the encrypted circuit, and this will
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make identifying the keys of AND/OR PLGs harder.
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Figure 4.7: Preventing TS attack from tracking and detecting S-URSAT output.

The second R-S approach, which is adding an extra gate, e.g. an XOR gate, might be used to get

better security since the output of the R-S (the output of the added XOR gate) will be different

from the two selected internal signals from the benchmark circuit (the two inputs of the added

XOR gate). Note that a designer can absolutely choose other different gates, e.g. AND, OR etc.,

rather than the XOR gate.

Traditionally, S-URSAT offers more resilience against SPS and TS attacks than URSAT since its

internal and output signals always change when a wrong key is provided. In other words, when

random input patterns with incorrect keys are applied, the values of the applied input patterns will

convey to the internal signals in S-URSAT and its output signal. Therefore, the values of S-URSAT

signals will always change when the input patterns are changed.

Practically, S-URSAT is integrated with the original benchmark circuit, C5315. We set the baseline

key-size of the S-URSAT to 64 bits, so the total number of the generated key-bits will be 107 bits.

We also use the same constraints as in URSAT (applying random input patterns with random keys).

The S-URSAT output signal (SAT-O/P) and two other signals (P-O/P and G144-O/P, which is one
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of the C5315 primary outputs) are observed. A sample of the results is shown in Figure 4.7, where

these three signals are totally independent. The values of these signals change based on the values

of the incoming signals from the previous stages in S-URSAT, the supplied input patterns, and

the key-bits of S-URSAT. Therefore, the S-URSAT output signal is hard to be either tracked or

detected. Moreover, this technique produces higher corruptions at the primary output than the

URSAT when incorrect keys are applied, as evidenced by the P-O/P and the original output signals

in Figures 4.6 and 4.7. Note that this implementation does not reduce the resilience of S-URSAT

against SAT attacks, as shown in the previous subsection.

4.2.2.2.2 AGR Attack Resilience

The main idea of AGR attack is to recover the correct key-bits that product high corruptibility

by AppSAT and then applies the SPS or TS attack to remove the TOA block. For example, in

Anti-SAT technique, the AppSAT attack is first applied to get the correct key-bits of the traditional

encrypted circuit and the contributed key-bits that are used to obfuscate G1 and G2 blocks. Then,

SPS attack is applied to detect and remove Anti-SAT since it will work as one-point function after

the AppSAT recovers a part of the total key-bits.

In our work, the first step of AGR attack is to recover the correct key-bits of the AND/OR PLGs

in URSAT and the key-bits of the MUXes in S-URSAT by AppSAT attack. Then, The inconstant

S-O/P signal in URSAT should be detected and removed by removal attack. However, the S-O/P

signal is not easy to be detected since it is controlled by the R-S, which is always changed during

the normal operation. The URSAT and S-URSAT will work as a one-point function (TOA) if

and only if the key-bits of the AND/OR PLGs and the key-bits of the MUXes are successfully

recovered. We observe the key-bits of the AND/OR PLGs in URSAT, and we unfortunately realize

that the AppSAT attack can successfully recover a large number of the AND/OR PLG key-bits.
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Table 4.5: Number of error recovered key-bits by AppSAT attack over the total number of
AND/OR PLG key-bits in URSAT and MUX key-bits in S-URSAT.

PPPPPPPPPTech
baseline

8-B 9-B 10-B 11-B 12-B 13-B 14-B

URSAT 0/6 0/6 0/7 1/7 2/9 3/9 1/10
S-URSAT 2/7 2/7 5/9 4/9 4/9 4/9 6/11

The AND/OR PLG key-bits are not connected with other control signals coming from the original

circuit. As a result, increasing the AND/OR PLG key-bits will not guarantee an increase in the

number of error bits in the recovered AND/OR key-bits by AppSAT attack. AppSAT attack can

recover more correct key-bits of the AND/OR PLGs if its setup parameters are slightly increased.

If AppSAT attack successfully recovers the AND/OR PLG key-bits, the removal attack will be able

to identify URSAT if and only if he can find the inconstant S-O/P signal that acts the same as the

selected random signal, which is hard to be achieved as we explained in section 4.1.2, paragraph 4.

Therefore, URSAT may not be fully secure against AGR attack. In S-URSAT, the AppSAT attack

fails to recover a large number of the MUX key-bits, and therefore this technique can successfully

thwart AGR attack. The manipulated unique primary inputs with the key-bits of the MUXes make

AppSAT attacks recover the key-bits at the MUXes with a larger number of error bits compared

to the AND/OR PLG error bits in URSAT. As a consequence, the number of the error bits will

increase as soon as the number of the MUX key-bits is increased. Experimentally, we integrated

C1355 circuit with URSAT and S-URSAT, where each one of them has different baseline key-

sizes, ranging from 8 to 14 bits. Table 4.5 illustrates the number of incorrect recovered key-bits

by AppSAT over the total number of key-bits that are generated from either AND/OR PLGs in

URSAT or MUXes in S-URSAT.
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4.2.2.3 Sensitization Attack Resilience

Sensitization attack can be prevented by making interference graph among the inserted key-gates,

and therefore muting a key-bit will not lead to propagate the value of the second key-bit to an

output [2]. In our proposal, an attacker cannot sensitize the key values of the locked design since

all of the key-bits (baseline + shared key-bits) in URSAT and S-UIRSAT converge to one wire. To

be more specific, if the attacker wants to propagate a key-bit to an output, the rest of key-bit values

should be known since all the keys are connected to the same path. Since these key values are not

known, the complexity of such attack will not be better than the brute force.

4.2.2.4 Physical attack resilience

The only possible attacks during the chip fabrication in an untrusted company are the analyti-

cal reverse-engineering attacks, but, after the fabrication, the encrypted circuit could possibly be

threatened by physical attacks. Below are the possible physical attacks on the encrypted circuit

and the defense strategies.

4.2.2.4.1 Read-out sensitive data from key-gates

An attacker can use a scanning electron microscope in Passive Voltage Contrast (PVC) mode to

read-out data stored in non-volatile memory cells, and, based on the electrons accumulated in the

floating gate, the attacker can identify the value of the stored data [115]. Such attacks will not be

able to learn the key of the encrypted circuit from the key-gates, e.g., PLGs, MUX, XOR/XNOR

gates, since the key-gates that are implemented using CMOS- and SiNW-transistors are volatile.

Once the chip is off, the data in the key-gates will be gone, and therefore there is no way for the

attacker to know the key. It is worth mentioning that this attack could be possible on spintronic

device-based PLGs since spintronic devices are non-volatile. However, it seems to be very hard
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for this attack to read-out the data from these devices since they are much smaller than CMOS

(typically spintronic devices are 20-50X smaller than CMOS [160]).

4.2.2.4.2 Identifying the PLGs and removing the URSAT/S-URSAT blocks

An attacker can use advanced reverse engineering equipment and tools to recover the layout of

the obfuscated circuit (PLGs + URSAT/S-URSAT) by depackaging, delayering, and imaging the

obfuscated circuit. Since SiNW-based PLGs and all other existing PLGs offer different function-

alities with the same structure, the attacker cannot identify the original functionality of the PLG.

For example, in Figure 3.14, same structure can function as either a NAND or NOR gate based on

the key configuration. Moreover, by recovering the layout of the obfuscated circuit, the attacker

may distinguish the URSAT/S-URSAT location and remove it. A designer can easily prevent

such attack by (1) connecting the URSAT/S-URSAT output signal (S-O/P) to many randomly se-

lected outputs in the encrypted circuit and flipping the gate at half of the selected outputs, and

(2) increasing the entanglement between the URSAT/S-URSAT and the encrypted circuit through

adding some MUXes. One input of each inserted MUX is a random internal wire coming for the

encrypted circuit, and the second MUX input is one of the AND/OR PLG output signal in URSAT

(or MUX output signal in S-URSAT) at each stage. This will also increase the corruptions in the

encrypted circuit once incorrect key is given. In case of URSAT, at each flipped output, the re-

configurable signal (R-S) should configure the last AND/NAND PLG in URSAT and the inserted

XOR/XNOR PLG to either NAND/AND PLG and XOR/XNOR PLG or to AND/NAND PLG

and XNOR/XOR PLG, respectively. Figure 4.8 shows the details of preventing an attacker from

removing URSAT/S-URSAT.
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Figure 4.8: Preventing physical attack from removing URSAT/S-URSAT block.

4.2.2.4.3 Power analysis attacks

Side channel analysis attacks (SCAAs) are the most serious threats on the encrypted circuit since

they can learn the secret key of the encrypted circuit when the chip is under the test or during the

normal operation and without the need to access the memory that stores the secret key. SCAAs can

reveal the secret key via observing the power dissipation [41], electromagnetic emissions, timing

analysis [169], or photon density [170]. All these attacks are severe due to the same reason, which

is the natural behavior of the CMOS (and SiNW) devices during the operation. For instance,

the device consumes power from VDD only when the output changes from ’0’ to ’1’ or ’1’ to

’0’, while during the two other transitions (0 to 0 or 1 to 1), there is no power dissipation. The

only way to effectively prevent such attacks, in CMOS- and SiNW-based PLGs, is to add extra

hardware resources. For example, in CMOS, a resilient circuit, called Current Mode Logic (CML),

can be used to produce approximately a constant power consumption at the device’s output and

here prevent SCAAs. Unfortunately, This method is expensive due to requiring large overhead.

Interestingly, SiNW can be used to implement CML circuit by adding a few SiNW-transistors (1-
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3 depending of the PLG type) [171]. In the new generation of spintronic devices (GSHE, DWM,

STT, and MTJ), the read-from and write-to these devices are asymmetric, where the write current is

much larger than the read current. Therefore, implementing PLGs using such devices will be much

more vulnerable to side channel attacks than CMOS (or SiNW) [132]. Note that the read current

from these devices cannot be increased since the stored data in these devices might be changed

accidentally, while reducing the write current will not guarantee storing the new data correctly. The

differences between the two-write and two-read (’0’ or ’1’) currents make the device vulnerable to

SCAAs. Based on our knowledge, only ASLD can prevent these attacks due to naturally generating

identical current during the switching.

4.2.3 Area, Power, and Delay Penalties

Figure 4.9 (a) shows the area overhead of ISCAS’85 and ISCAS’89 benchmark circuits that are

encrypted by exchanging 5% of the total number of gates in each original circuit with PLGs, and

inserting 5% random XOR/XNOR key-gates. The number of the produced keys for each circuit is

on the top of each bar. Even though the area overhead of the proposed approach is not very small,

it is still much better than incorporating XOR/XNOR key-gates. The area overhead is somewhat

large for the following reason: we exchange the higher percentages of AND/NAND/OR/NOR

gates in the original circuits with their corresponding PLGs since the original circuits have higher

percentages of those gates. Replacing such gate types requires higher performance overhead than

other gates, e.g. XOR/XNOR gates. This is due to the fact that the XOR/XNOR SiNW PLG re-

quires only four transistors while it consumes at least eight transistors in CMOS. The average area

overhead of replacing with PLGs is less than inserting XOR/XNOR gates by about 4×. Figure 4.9

(b) shows the power overhead of combinational and sequential benchmark circuits for exchanging

5% and inserting 5% of the total number of gates in the original circuit. It is apparent that PLGs

based logic obfuscation barely increases the power overhead. The delay overhead of exchang-
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ing 5% PLGs is very small for most of the benchmark circuits compared to the random inserting

XOR/XNOR gates, as illustrated in Figure 4.9 (c).
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Figure 4.9: A comparison between the penalty of exchanging 5% of the total gate number with
PLGs and randomly inserting 5% XOR/XNOR gates: (a) Area, (b) power, and (c) delay overheads.

It is worth mentioning that the selected benchmarks in Figure 4.9 have small size. Replacing 5%

from the total number of gates in the original circuit is not good for large scale circuits since the

produced key-bits will be very big and this requires a large memory size.
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Figure 4.10: The penalty of exchanging 100 gates of the total gate number with PLGs + URSAT:
(a) Area, (b) power, and (c) delay overheads.

Therefore, for larger circuits, we evaluate the total area, power, and delay overheads of exchanging

100 gates + URSAT block. Figure 4.10 shows the performance penalty of exchanging 100 gates

with PLGs + URSAT block that has different baseline key-sizes (key-size = 32 and 64 bits). The

average area, power, and delay overheads for encrypted benchmarks + 64 URSAT key-bits for the

five mid-size benchmarks, S35932-B15, are 5.53%, 1.99%, and 2.43%, while for the five larger-
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size benchmarks, B17-B22, are 2.41%, 0.57%, and 0.81%.
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Figure 4.11: The penalty of integrating S-URSAT with different key-sizes to different circuits: (a)
Area, (b) power, and (c) delay overheads.

Note that the total number of key-bits in this approach is the produced key-bits from the exchanging

gates plus the URSAT key-bits. For instance, the total number of key-bits for encrypted S9234 +

32 baseline key-bits of URSAT is: 100 (from exchanging 100 different logic gates in the original

103



circuit with PLGs) + 32 (baseline key-bits of URSAT) + 28 (key-bits of AND/OR PLGs, where

each of the 28 PLGs has 2 inputs, except the last one which has 5 inputs (R-S)) = 160 key-bits.

Moreover, a designer can get a better secure circuit with small overhead by implementing the

S-URSAT technique using only CMOS-logic gates. We evaluate the area, power, and delay over-

heads of S-URSAT technique that has different baseline key-sizes (KA = 32 and 64). Figures 4.11

(a), (b), and (c) show the area, power, and delay penalties of S-URSAT, respectively. The aver-

age area, power, and delay overheads for 64 baseline key-bits of S-URSAT for the five mid-size

benchmarks, S35932-B15, are 5.03%, 2.60%, and -2.26%, while for the five larger-size benchmark

circuits, B17-B22, are 2.37%, 1.18%, and -1.93%. The Figure shows that S-URSAT offers delay

improvements in most of the encrypted benchmark circuits. As known, adding extra hardware

resources, i.e., logic gates, to a circuit will always increase the required area and power dissipation

but not necessarily increase the delay since during the compilation the Design Compiler does a lot

of optimizations on the design. Also, the input and output signals of the added design, S-URSAT,

are directly connected with the input and output signals of the original circuit. During the compi-

lation, this helps to improve the performance in many circuits since the delay is calculated as the

longest path from the input to the output. In general, the delay depends on the topology of the

circuit, the locations of the added design, and the type of the optimization algorithm that is used by

the Compiler. For instance, even though B18 is much larger than C7552, the delay improvement

in C7552 is much better than the one in B18. Moreover, the setup slack for all circuits is positive,

which means there is no timing violation in any circuit. Finally, there is a relationship between the

switching power and delay. When the delay reduces, the power should increase. This appears very

clear in some of the encrypted circuits, i.e., B14, B17, and B22. In these circuits, when the delay

improved largely by adding S-URSAT with 64 baseline key-bits compared to adding S-URSAT

with 32 baseline key-bits, the power dissipation of adding S-URSAT with 64 key-bits increased by

more than 2× (about 2.6× on average). Note that the total number of key-bits for this approach is
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the baseline key-bits of the S-URSAT (KA) plus the key-bits of the MUXes (KB). As mentioned,

the number of S-URSAT key-bits can be increased by reducing the input size of each inserted AND

and OR gates to 2 inputs, except the last gate.

4.3 Discussions

4.3.1 URSAT and S-URSAT Vs Other Techniques

It is worth to elucidate why URSAT and S-URSAT are resilient against removal and AppSAT at-

tacks compared to SARLock and Anti-SAT. SARLock and basic Anti-SAT are implemented to

produce one-function output in order to maximize the number of SAT iterations (2n− 1); how-

ever, they are vulnerable to removal and AppSAT attacks. The obfuscated Anti-SAT, which is

achieved via adding 2 n additional key-gates (n XOR/XNOR and n MUX key-gates), gives some

resilience against removal, Bypass, and AppSAT attacks. However, it is less resilience against

SAT attack than basic Anti-SAT, e.g. SAT attack needs less iteration number and execution time

to break obfuscated Anti-SAT. Also, it is vulnerable to AGR attack due to the following reasons:

(1) the Anti-SAT output is directly connected with a primary output to an XOR gate (this will limit

switching the Anti-SAT output signal since no input signal(s) with key-bits are used to switch the

Anti-SAT output signal as in S-URSAT), (2) the n XOR/XNOR key-gates that are inserted at the

inputs of G1 and G2 blocks could not produce high corruptibility at Anti-SAT output due to the

natural behaviour of TOA, and (3) the n MUX key-gates that are inserted between the internal

wires of the original circuit and Anti-SAT do not provide strong resilience. A large number of the

MUX outputs are connected to internal signals in the original circuit, which will not affect/change

any signal in Anti-SAT when a wrong key is applied. The rest of the MUX outputs are connected

to internal signals in Anti-SAT, which can produce a high corruptibility. However, AGR attack can

easily recover the key-bits of the MUXes.
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The S-URSAT produces a strong non-corruptibility output, which is resilient against AppSAT and

removal attacks. More precisely, when a wrong key is provided, the internal signals and the output

signal of S-URSAT will be fed by unique primary inputs. Thus, these signals will always change

and cannot be tracked, as explained in Figure 4.7. The S-URSAT also gives correct output patterns

for a few number of input patterns with incorrect keys. As a consequence, when AppSAT attack

finds a key that provides the correct output patterns for specific random input patterns, the attacker

will terminate. This key cannot satisfy all of the input/output pairs because the S-URSAT does not

work as a one-function output, and the recovered key will have a number of error bits. When the

key-bits of S-URSAT increase, this error will increase largely even when the setup parameters of

AppSAT are increased. More practically, we incorporated S-URSAT having 64 baseline key-bits

(so totally 107 bits) to C5315 circuit. We increased the number of setup parameters in AppSAT

attack to 10× (threshold – 50, inputs sampled number – 500, and the SAT iteration number –

120). The AppSAT attack terminated after about 16 hours with 6000 iterations and 47% error

rate (50 incorrect recovered key-bits). In URSAT, when wrong keys are applied, the PLGs will be

configured as OR gates and the internal signals in URSAT will change, while the output signal of

URSAT will always change whether the key-bits of PLGs change or not since it is controlled by

the R-S. Furthermore, when the PLGs configure to OR gates, the URSAT will also produce correct

corresponding output patterns for certain input patterns, and the AppSAT attack will terminate with

a key. This recovered key cannot satisfy all I/O pairs, resulting in producing error bits. However,

increasing the setup parameters of AppSAT helps recovering more correct key-bits at AND/OR

PLGs, and this benefits AGR attack only if the removal attack can successfully detect S-O/P signal,

which is not easy to be achieved, as explained in subsections 4.1.2 and 4.2.2.2.

In order for AppSAT attack to get the correct key of a circuit encrypted using URSAT/S-URSAT,

the setup parameters should be increased linearly when the key size of the encrypted circuit is

increased. However, the execution time and the iteration number of AppSAT attack will also
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increase exponentially but less than the required one by SAT attack. Practically, C1355 circuit

was incorporated with URSAT and S-URSAT, each has different baseline key-sizes. Then, the

setup parameters of AppSAT were linearly increased by the same number of the original setup

(12 50 5) if the AppSAT attack fails to get the correct key. The required number of iterations

and the execution time of AppSAT to get the correct key are shown in Figure 4.12, where x in

the Figure represents the values of the setup parameters for AppSAT. The AppSAT attack requires

less number of iterations compared to SAT and D-DIP attacks; however, the attack still needs

exponential number to break either URSAT or S-URSAT. Also, the attack needs larger number

of iterations and longer execution time to break S-URSAT than URSAT. This is because unique

inputs from the original circuit are utilized in each S-URSAT stage, besides the MUX key-bits.

To successfully recover the correct key from URSAT/S-URSAT, the values of the original setup

parameters (x) should be first increased twice when the number of baseline key-bits of URSAT/S-

URSAT is only 8 bits. Then, these values should be increased one time once the number of key-bits

of URSAT is increased by 2 while they should be increased approximately twice when the key-bit

number of S-URSAT is increased by 2, as illustrated in Figure 4.12.
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Based on the above discussions, S-URSAT is more resilient than URSAT since SAT and D-DIP

attacks need more number of iterations to break S-URSAT. Moreover, only the AND/OR PLG

key-bits in URSAT control its internal signals, while both the unique primary inputs and the MUX

key-bits at each stage in S-URSAT control the internal signals and the output signal of S-URSAT.

As a result, AppSAT fails to break any circuit encrypted with S-URSAT, and removal attack cannot

detect the S-URSAT signals since these signals are totally controlled by the unique inputs and the

MUX key-bits. Table 4.6 summarizes existing logic locking techniques, where OH, L, M, S, V-

S symbols refer to overhead, large, medium, small, and very small, respectively. To conclude, in

order for a defense mechanism to successfully prevent reverse engineering attacks, it should satisfy

the following conditions:

1 Producing high corruptibility on applying certain input patterns with incorrect keys to pre-

vent AppSAT and Bypass attacks.

2 Making the internal and output signals of the technique changeable when incorrect keys are

applied to prevent removal attacks.

3 Producing low corruptibility for a large number of input patterns to prevent both traditional

SAT and D-DIP attacks.

4.3.2 Is the encrypted design using S-URSAT alone fully secure?

Like other existing techniques, e.g. TOA, SARLock, and Anti-SAT, the original netlist still needs

to be encrypted using traditional logic encryption techniques, and then S-URSAT block should

be incorporated to produce fully secure chip. Note that, even though S-URSAT provides higher

corruptibility than other existing techniques, e.g. TOA, SARLock, and Anti-SAT, it is still not

sufficient to produce fully secure chip, especially against physical attacks that may identify and

remove S-URSAT. Since the traditional logic encryption techniques using CMOS logic-gates are
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typically costly and slow down the performance speed, as clarified in Figure 4.9, a designer can

encrypt the original circuit using PLG-based traditional Logic encryption and then integrating the

S-URSAT block.

Table 4.6: A comparison between our designs and other techniques

PPPPPPPPPTechs
attacks Sen SAT D-DIP AppSAT ByPass SPS/TS AGR FALL CycSAT TimingSAT SMT

OH
[2] [74] [94] [95] [97] [93] [93] [100] [106] [108] [110]

Random [68] 3 3 3 3 7 7 3 7 3 3 3 M
FLL [69] 3 3 3 3 7 7 3 7 3 3 3 M
SOL [2] 7 3 3 3 7 7 3 7 3 3 3 M

MUX-Locking [147] 7 3 3 3 7 7 3 7 3 3 3 M
SiNW-CMOS [88] 3 3 3 3 7 7 3 7 3 3 3 V-S

One-point* [85] 7 7 3 3 3 3 3 7 7 7 7 S
TTlock* [98] 7 7 7 3 3 7 7 7 7 7 7 S
Anti-SAT* [3] 7 7 7 3 7 3 3 7 7 7 7 S

SFLL* [4] 7 7 7 7 7 7 7 3 7 7 7 L
DLL [107] 7 7 7 7 7 7 7 7 7 3 3 M

Cyclic* [105] 7 7 7 7 7 7 7 7 3 7 3 M
RAND-PLG (RP) 7 3 3 3 7 7 3 7 3 3 3 V-S

URSAT+RP 7 7 7 7 7 7 P 7 7 7 7 S
S-URSAT+RP 7 7 7 7 7 7 7 7 7 7 7 S

3: Successful attack, 7: Unsuccessful attack, P: Only recover partial of the key, e.g., key-bit values of
AND/OR PLGs in URSAT. Now, after recovering the key-values of the AND/OR PLG by AppSAT, the
attacker needs to detect the S-O/P signal that will be acting the same as the selected random net, but it is
hard to be achieved, as explained in section 4.1.2, paragraph 4. *: These technique should be integrated
with the encrypted circuit, e.g. random, FLL, and SOL, to prevent other attacks, e.g. some types of physical
attacks. Therefore, the overhead will be large.

4.4 Summary

We have demonstrated that the usage of emerging transistors, such as SiNW FETs, can help im-

prove the logic locking design by preserving lower power consumption and smaller area than

conventional CMOS counterpart. Specifically, the SiNW-based polymorphic logic gates (PLGs)

function as logic key units to encrypt the combinational circuits. In addition to traditional crite-

ria such as power, delay, and area, security may serve as a new criterion to examine the pros and
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cons of emerging transistor and/or memory technologies. The proposed technique offers high level

security against IP piracy, reverse engineering, and tracking signal based attacks via exchanging

some logic gates in the original circuit with PLGs and incorporating URSAT. Since URSAT tech-

nique may not be fully secure against AGR attack, we implement S-URSAT using only CMOS-

logic gates to strongly prevent such attack. The combined S-URSAT and PLG-based encryption

increases the security level of the design to robustly thwart all existing attacks.
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CHAPTER 5: SECURE AND RESILIENT HARDWARE DEVICES

USING ASLD

To build a hardware design that is fully protected from IC attacks (during the fabrication in an

untrusted foundry) and very resilient against PA attacks (after the fabrication process), a designer

needs to add extremely large hardware resources, as follows: (1) inserting sufficient number of

key-gates to produce encrypted design, (2) adding addition circuit that resists key information

leakage to produce resilient design, and (3) incorporating non-volatile memory to store the secret

key of the encrypted circuit. Figure 5.1 explains the required modification on the IC design flow

to generate a secure and resilient chip 12.

5.1 Hardware Device after the Fabrication: Attacks and Defenses

In chapter 3 and 4, we explained in details how to prevent IC attacks. Now, after the fabrication, the

secret key of a secure hardware device can be revealed through observing the power dissipation,

electromagnetic emissions, or time analysis [44]. PA attack is more popular and powerful than

others. The first PA attack was presented by Kocher et al. [45]. There are three types of PA attack;

simple power analysis (the data are directly taken from the power dissipation), differential power

analysis (the related information is obtained from large number power traces, and then statistical

analysis is used to identify the differences in these traces), and correlation power analysis (CPA)

(the real power is correlated with the predicted power model to get the leakage data). CPA is more

advanced and faster than other [46].

1 c© 2017 IEEE. Part of this chapter is reprinted, with permission, from [89]
2 c© 2018 IEEE. Part of this chapter is reprinted, with permission, from [160]
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In CMOS technology, the PA attacks can reveal the secret key of a secure hardware device, e.g.

cryptography, via measuring and analyzing the power consumption of the data dependence (inter-

mediate data at specific operations) during the voltage transitions. For instance, the device con-

sumes power from VDD only when its output switches from ‘0’ to ‘1’, and from ‘1’ to ‘0’. While

during the two other degenerated transitions (‘0’ to ‘0’ or ‘1’ to ‘1’), no power is required [67].

In the spintronic devices, the operations of write-to and read-from MTJ are asymmetric. For in-

stance, if the previously stored data in the MTJ is ‘0’ and the new data is ‘1’, the write current will

go from low to high. In contrast, when the previously stored data is ‘1’ and the new data is ‘0’,

the write current will go from high to low. For the two other states (‘0’ to ‘0’ and ‘1’ to ‘1’), the

current will be constant [132].

These differences between the write and read currents make the device vulnerable to PA attacks.

The new generation of spintronic devices, Hybrid Spintronic-CMOS devices including Magnetic

Tunnel Junction (MTJ), have been utilized to overcome Moore’s law limitation as well as preserve

higher performance with a lower cost. This technique is achieved by adding a transistor on the

top of each nanomagnet to reduce the power dissipation and speed up the device. However, the

differential power at the output of the Hybrid Spintronic-CMOS device and asymmetric read/write

operations in MTJ will increase. Therefore, this increases the device vulnerability to PA attacks

since the power dissipation at the output of the device will be significantly different.

There are many PA attack countermeasures, but the most two popular ones are the masking [64]

and hiding [65] techniques. The masking method targets to randomly mask the intermediate val-

ues, which requires additional hardware resources and significant overhead. For the hiding method,

even though the performance penalty is not that much for different types of operations, there is a

trade-off between security and power dissipation. Increasing noise power can boost the protec-

tion of the design. However, the signal to noise ratio will be reduced [66]. Employing a Sensing

112



Amplifier Based Logic (SABL) [67] is a more empirical technique to prevent PA attacks. More-

over, Current Mode Logic (CML) [172] can be employed to protect the circuit from PA attacks

by producing approximately constant power dissipation at the output. Unfortunately, the above-

mentioned techniques require tremendous power and area overhead for a high protection level.
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Figure 5.1: Main IC flow steps to generate secure and resilient design using CMOS and ASLD
technologies: The yellow and blue boxes donate the locations of using SABL (or CML) and mask-
ing (or hiding) techniques, respectively, and the two green boxes describe the locations of using
logic encryption method where each of these four places requires extra resources.

Typically, SABL or CML technique is applied at the time of generating the logic gates, and the

masking or hiding technique is deployed at the gate level netlist. The yellow and blue regions at

the top part of Figure 5.1 show where the extra resources are required for implementing SABL

or CML and masking or hiding, respectively. While in our proposal, shown at the bottom part of

Figure 5.1, the IC is protected from IC and PA attacks without adding any additional hardware

resources.
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5.2 Evaluations and Analyses of ASLD

5.2.1 ASLD as Logic Gates and Data Storage

5.2.1.1 Fundamental operation of ASLD

Emerging devices have been used in many applications to outperform CMOS technology in terms

of power dissipation and performance. Several emerging devices have been fabricated over the

past few years, such as FinFETs [117], carbon nanotube [118], and spin transfer torque [119].

The first proposal for spin-based logic in semiconductors was introduced by Dery et al. in [133].

The proposed design contains non-local spin signals, which require an amplification circuit to

enlarge these signals and produce sufficient current to switch the nanomagnets. An improvement

in this work [134], namely the All Spin Logic device, was achieved to switch a nanomagnet, which

could be the input for the next stage, through the non-local spin signal. Thus, no extra hardware

(amplification circuit) is needed. The ASLD model contains four main components, including the

nanomagnetic (ferromagnetic) unit, interface element, isolator, and non-magnetic channel. The

nanomagnet is used as a storing element. The interface element between the nanomagnetic unit

and non-magnetic channel amplifies the injected spin current from the nanomagnet to the non-

magnetic channel. The isolator separates the input and output ports.

Figure 5.2 shows the ASLD in details. Figure 5.2 (a) represents the basic ASLD. A basic ALSD

comprises the nanomagnetic unit to store the binary data, an isolation layer between the input

(with low spin polarization factor) and output (high spin polarization factor) ports, and one non-

magnetic channel. Figure 5.2 (b) shows a simple ASLD with two magnets. These two magnets

are polarized in the same direction and connected through a non-magnet channel. The channel

is made from nickel or copper due to high spin-flip length. The maximum length of the channel
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relies on spin-flip length, which is used to identify the maximum distance that the spin current

travel (more details about the channel length is described in [173]). On applying negative VDD,

the charge current will flow from GND to VDD, and the electrons will flow from VDD to GND.

Electron Spins in the same direction of M1 will pass while others will be blocked by M1 (electrons

get filtered). Since the output of M1 has high spin polarization and the output of M2 has low

spin polarization, M1 will dominate the spin current, and the passed spins will accumulate in the

channel.
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Figure 5.2: ASLD technique (a) Layout of ASLD (b) a simple layout of ASLD with two magnets.

Meanwhile, M2 will receive a large spin current from M1. The direction of M2 will not be changed

because both M1 and M2 have the same magnetization direction. Therefore, the whole design will

work as a buffer. In contrast, on applying positive VDD, the electrons will flow from the ground

to the M1. As a consequence, spins with the opposite direction of the magnet will accumulate in

the channel. Meanwhile, only the spins with the same direction of M1 will pass out of M1 while

the spins with the opposite direction will be moved through the channel to switch the direction

of M2. Therefore, the device will work as inverter [173]. Note that the Landau-Lifshitz-Gilbert

(LLG) should be applied at the output of each implemented ASLD to model the magnetic field of

the output magnetics.
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5.2.1.2 ASLD as PLGs

The main idea of using the polymorphic logic gates (PLG) is to obtain different logic gates with

the same structure. For instance, a PLG in [87] using SiNW technology can perform as an AND

or OR gate when the VDD is ‘1’ or ‘0’ logic, respectively, which is useful in many applications,

such as aerospace purposes and intelligent system. For IP protection, the designer can conceal the

functionality of the circuit by inserting PLGs. The functionality will not be exposed even if an

assailant can get the encrypted design by reverse engineering because only the designer knows the

correct configuration signals for the PLGs.

The ASLD can naturally perform as a majority gate (MG) operation. The principle of the MG is

that the value of the primary output relies on the values of the majority inputs. As a result, the

ASLD can implement any logic gate. For instance, a designer can easily get an N-input NOR gate

by making the directions of the fixed and output magnet layers apart. By inverting the direction of

the fixed layer, the design operates as an N-inputs NAND gate. To get AND and OR gates, one

more magnet layer has to be added at the primary output.

As a result, the ASL device allows us to change the functionality of the circuit with the same

structure and without any extra hardware by making one of the primary input as an external key.

As shown in Figure 5.3 (a), the structure of ASLD can perform as four different gates with the

same circuit, such as AND, OR, NAND, and NOR, using only four magnets. Where A and B

are the primary inputs, Key (K) and VDD are used to change the functionality of the circuit. The

design can be switched from AND to OR by only changing the value of the key from ‘0’ to ‘1’,

and set VDD positive. On applying negative VDD, the design can work as a NAND or a NOR

gate if the value of the key is ‘0’ or ‘1’, respectively. Instead of making the VDD as a key to get a

NAND or a NOR gate, one can apply only positive VDD and add one more magnet at the output

of the AND or the OR gate, respectively. This way will avoid us using the VDD as a key.
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Table 5.1: Truth table of the ASLD-based PLGs in Figure 5.3

ASLD configurations
K VDD polarity operation

Fig. 5.3 (a) 0 pos AND
Fig. 5.3 (a) 1 pos OR
Fig. 5.3 (a) 0 neg NAND
Fig. 5.3 (a) 1 neg NOR
Fig. 5.3 (b) 0 pos XOR
Fig. 5.3 (b) 1 pos XNOR

Two options have already be introduced by Augustine et al. [173] to design a universal Full Adder

(FA). The first one requires 44 magnetic units (using many NAND gates as majority gates), which

is very expensive. The second way requires two-stage of MGs to implement a 3-input XOR gate

as a sum of FA. The idea that the author used to implement the sum of the FA is to implement

3-input MG and then implement 5-input MG whose inputs are two inverted outputs, coming from

the first 3-input MG, and the 3-input of the first implemented MG. In this case, the design will

work as a three-input XOR gate (sum of FA). We Previously [89] realized that the structure can

also function as an XOR or an XNOR gate by only making one of the primary input as an external

key with magnetic free layer, in which it will be an XOR gate if the key is ‘0’ or an XNOR gate
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when the key is ‘1’. Even though this XOR/XNOR PLG requires a small number of magnets, its

energy consumption and delay are more than twice the normal MG. This is because the output of

the first MG should be stored temporarily. Then, this output is inverted, and two copies of it feed

as two new inputs with the three primary inputs to another 5-input MG. Therefore, it will delay the

whole stage in the circuit by more than twice since the output of this XOR/XNOR needs two clock

cycles to reveal. More details regarding this implementation are clarified in [89].

Apart from using this approach, we use two 3-input MGs based on ASLD to implement XOR/XNOR

PLG, as shown in Figure 5.3 (b). We implement the first MG as AND/OR MG (denoted inside a

red dotted rectangle as MG1 in 5.3 (b)) and the second one as NOR/NAND MG (denoted inside a

red dotted rectangle as MG2 in 5.3 (b)). Afterward, the outputs of those two MGs are inverted by

adding one more ASLD with negative VDD at the output of each MG. Finally, we insert another

ASLD to build the new XOR/XNOR PLG with a valid key-bit. The design will perform as an XOR

gate if the value of the key (K) is ‘0’ (hence the first inverted MG will be NAND and the second

is OR), while it will function as an XNOR gate if the key value is ‘1’ (hence the first inverted

MG will be NOR and the second will be AND). The summarization of our simulation results, for

different ASLD devices based PLGs, is described in Figure 5.4. To implement the normal basis

LUT, we first design the decoder with the logic gates that we designed. Then, the output of the

decoder is AND-ed with the data bits of the LUT to generate the output of the LUT. The ASLD

is nonvolatile, and therefore the shift register can be realized by connecting multiple nanomagnets

in series. Using the same topology introduced by Yuhao Wang et al. [128], we add redundant

bits shift to perform circularly shifting. More details regarding the implementation of encrypted

circuits using ASLD is provided in the next section.
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5.2.2 PA Attack Prevention Using ASLD

In traditional CMOS, different input data to the same operations consume different powers due

to the switching statement (‘0’ to ‘1’ or ‘1’ to ‘0’), while the MTJ-based spintronic logic unit

produces four power differences in the current values. These values make the design vulnerable

to PA attacks. On the other hand, the principle operation of ASLD is based on the magnetization

direction of the spin current that flips the orientation of the magnet at the target or not, which always

consumes constant power. More specifically, the ASLD device always consumes approximately

the same power whether the supply voltage is positive or negative according to the targeted flipping

of the magnet. This could be considered as a unique property in hardware security applications. A

designer can implement a very resilient lightweight cryptographic algorithm, such as AES, DES,

ECC, etc, using ASLD with high performance (small area with low switching power) against PA

attacks without the need to add extra hardware resources. The PA attacks cannot figure out the

correct secret key of an implemented cryptography designed using ASLD since the switching of

the magnetization direction at each output stage depends on the direction of the generated spin

current during the operation, as mentioned in the previous subsection. The spin current value that

is required to switch the magnet is the same for both directions.

To verify the above-mentioned theory analysis, the Current-In-Plane (CIP) non-local spin valve

model [174] is adopted to characterize ASLD. A simple two-input XOR/XNOR PLG, as illustrated

in Figure 5.3 (b), is designed using the HSPICE simulator. We supply 2.664 mA of current for

the duration of 8 ns to each nanomagnet with three sequences of input data (input A and input

B normalized moments with a key-bit) to the design. The sequence of the output data response

(output normalized moment) with the output current value is observed and reported, as shown in

Figure 5.4. The simulation results of the design emphasize that the value of the output current has

not changed during the four possible switching transient statements (‘0’ to ‘1’, ‘1’ to ‘0’, ‘0’ to
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‘0’, and ‘1’ to ‘1’) at the output of the XOR/XNOR PLG. This could provide a highly resilient

design against PA attacks. Note that the output current waveform in Figure 5.4 shows some spikes,

which are generated due to the coupling noise, that is because ALSD does not have a capacitor at

the output as in CMOS technology.
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Figure 5.4: The ASLD simulation results show unchangeable output current during the switching
of the XOR/XNOR PLG based ASLD.

The ASLD has two limitations; first, the spin current cannot be transferred to a long-distance or

distributed to many paths or outputs (fan-out) since the value of the spin current is very small.
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Second, the ASLD is slow compared to CMOS. The switching delay can be reduced via increasing

the supplied voltage; however, the power consumption will be increased as well. In other words,

the energy dissipation will be large. Since we are looking to design resilient AES with lower power

and smaller area, we keep the small supplied voltage and utilize the pipeline technique to improve

the energy of the design. In the next section, we provide some techniques to overcome these two

limitations based on the work in [175].

5.3 Strong Logic Encryption and PA attack-Resilience

5.3.1 Robust Encryption against IC Attacks

Traditional logic encryption can only be achieved by adding key-gates (XOR/XNOR, MUX, and/or

AND/OR gates). The overhead of power and area is more than 31% and 20%, respectively, when

the number of inserted key-gates is only about 5% of the total number of gates [68]. Encrypting a

circuit with a small number of keys, about 128 bits, will make strong reverse engineering attacks,

such as sensitization, SAT, and D-DIP attacks, decrypt the encrypted circuit easily. These attacks

can be prevented if the key-size is increased to a few thousand. However, increasing the key-size to

such a number prevents the chip from being fabricated on real silicon due to the enormous power

and area overhead. Besides this overhead, a large non-volatile memory should be added to store

the secret key of the encrypted circuit.

Interestingly, by using ASLD technology, the circuit can be encrypted without adding any extra

resources since each simple 2-input gate based ASLD can provide free key-bit. Note that each of

the generated keys is already connected to a nanomagnetic unit. Therefore, there is no need to

add extra memory since the keys can easily be stored in these nanomagnetic units. Unfortunately,

implementing a large scale circuit using ALSDs suffers two problems. First, the spin current is too
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small, so it cannot be distributed to large fan-out or transferred for a long distance. Second, the

ASLD is slower than CMOS device. Even though the switching time can be reduced by increasing

the current supply through the resistor, this will increase the power dissipation. These two problems

have been overcome by adopting the pipeline technique and connecting all nanomagnetic units at

each stage together.

The pipelining technique is commonly wide used in many applications to speed up the design,

especially in modern computer systems and architectures. In traditional CMOS design, the pipeline

can be achieved by incorporating flip-flops or registers between the stages, which increases power

and area overhead significantly since each D flip-flop requires at least 12 transistors. In ASLD, the

pipeline can be done by inserting ASLD buffer-gates only at the required paths in the stages, which

incurs little power and area penalties since each added ASLD buffer-gate is very small compared to

D flip-flop. Therefore, we leverage the pipeline to speed up the implemented circuit based ASLD

with low overhead. Furthermore, the charge current in ASLD flows from VDD to GND (or GND to

VDD based on the supply voltage) and its value does not decrease during the switching operation

because the resistor value of the magnet is very small (few Ω). Consequently, the end terminal of

the device can be used to connect all ASLDs in the same stage with one power supply. Since not

all of the pipeline stages toggle at the same time (e.g. the output of a certain ALSD is input to

the next stage), two clock phases are added, in which odd stages are performed first and then even

stages sequentially. Also, note that the spin current is very small and cannot be transferred to a

long-distance or drive in many paths (fanout). Therefore, we add ASLD as a buffer-gate once the

gate output is connected to many paths, or the distance between two ASLDs is longer than the Spin

flip length of the channel (λs f ) (more details regarding this matter is in [176]). The added ASLD

buffers and the usage of the pipeline technique render the circuit work at a low current supply

(2.664 mA) with much higher energy-efficiency.
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Figure 5.5: Example of implementing an encrypted circuit using ASLD (a) original circuit in
CMOS (b) implementation of the circuit using ASLD with inserting buffer once the output has
many fanout (c) incorporating two phase-clocks and applying the pipeline to generate efficient
encrypted circuit with valid keys.

Figure 5.5 gives an example to summarize the aforementioned improvements on a circuit designed

using ASLD. A simple logic circuit designed using CMOS is shown in Figure 5.5 (a). The circuit

has four different logic gates (AND, NAND, OR, and NOR gates) with an inverter. The implemen-

tation of this circuit using ASLD is shown in Figure 5.5 (b). The output of the ASL NAND-gate

is connected to two paths. The upper path has an inverter, which neglects the need for adding

a buffer. In the second path, a buffer is inserted before the ASL AND-gate to enhance the spin

current (the inserted ASL buffer-gate is donated in orange color in Figure 5.5 (b)). To apply the

pipeline technique, the end terminals of all devices in each stage are connected to one clock-phase,

and buffers are inserted in the required locations, as illustrated in Figure 5.5 (c), where all of the

necessary inserted buffers are donated in the orange color. For each odd stage, clock-phase1 (CK1)

is employed while for each even stage clock-phase2 (CK2) is added. Therefore, the ASLD based

encrypted circuit has 4 key-inputs without adding any extra hardware since each 2-inputs ASL-

logic gate offers one free key-bit. Such optimized strategy helps speed up the design with a very

small performance penalty. The security analysis of this design is discussed in sub-section 5.4.3.
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Figure 5.6: Implementing efficient ASLD based encrypted netlist

The flow-chart in Figure 5.6 shows the steps of implementing efficient circuit against IC and PA

attacks. The first step is to synthesize the original verilog circuit using Synopsys Design Compiler.

Then, Java has been used to generate ASLD based the encrypted circuit by replacing each CMOS-

logic gate with its corresponding ASL-PLG. All ASL-PLGs have been stored in the ASLD library.

The ASLD library has various PLGs (e.g. inverter/buffer, AND/OR, NAND/NOR, XOR/XNOR

PLGs), each PLG has different input-sizes. The key-size of the encrypted circuit is equal to the

number of gates in the original circuit since each designed ASLD-PLG has one key-input. After-

ward, buffers are inserted between the stages of the PLGs. A buffer is inserted once the distance

between the sender and the receiver ASLDs is longer than the Spin-flip length of the channel

(λs f ) [176], or the output signal goes to more than two paths. To apply the pipeline with the gener-
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ated multi-phase clock, the gates at each level in the design have been specified. Then, a two-phase-

clock is generated at each stage (level), and buffers are inserted in different necessary locations.

The two-phase-clock generation is achieved using the global optimization algorithm [177].

5.3.2 PA Attack Resilience

As mentioned, the secret key of a hardware device can be revealed by PA attacks due to the dif-

ferential power during the switching at the normal operation. PA attacks should choose a good

location in the IC to attack. We take AES cryptography as an example since it is very secure to

transfer data among users. AES has two vulnerable locations to PA attacks [44]; one is at the last

round (LR) and the second is at the first round (FR), as shown in Figure 5.7. The attacker at the LR

can calculate the ciphertext as SR(SSB_LR) ⊕ KL and then recover the original key via reversing

the key-schedule routine. The more critical place to be attacked is at the FR since the original

key is directly XOR-ed with the PT, and the target data can be computed as SSB_FR(K0⊕PT).

Where KL is the generated round key at LR, and K0 is the original key. Therefore, we assume

during our evaluation on ASLD-based AES that the point of the PA attacks is at the FR. The PT,

SSB, and K0 are 16 bytes. Measuring the whole 16 bytes one time to recover the key will be very

time-consuming. However, if one byte of SSB_FR and K0 is revealed, the rest of the bytes can

be recovered accordingly using the divide and conquer method, in which one byte is observed at

a time. Note that the main requirements of implementing AES are XOR-gate, shift register op-

erations, and LUT. These components are already elucidated in detail in subsection 5.2.1. It is

important to mention that the key-bits of the cryptography can be increased significantly by adding

the generated key-bits from the logic gates in the cryptography to its secret key-bits as an assistant

key (generated from the PLGs during the traditional logic encryption). The assistant key will not

increase the cryptography criteria, e.g. the strict avalanche criterion (SAC) [178], but will make

the cryptography very strong against brute force and PA attacks.
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Figure 5.7: Block diagram of the AES with two points of PA attack.

5.4 Results

In this section, we elucidate the simulation results in detail to demonstrate the effectiveness of our

proposed technique leveraging ASLD as PLGs to produce a secure and resilient circuit against IC

and PA attacks. We also show a comparison between ASLD and CMOS in the required area and

energy dissipation for the entire design.
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5.4.1 Experimental Setup

The combinational ISCAS’85, sequential ISCAS’89, and ITC’99 benchmark circuits are used in

our experiments. The CIP non-local spin valve model is leveraged to design different PLGs (in-

verter/buffer, AND/NAND/OR/NOR, and XOR/XNOR) with different input-sizes, the shift reg-

ister, and the LUT. All these components are built and simulated using the Synopsys HSPICE

simulator. We use the Synopsys Design Compiler to synthesize the Verilog code of the origi-

nal netlist. We develop an in house modified ASLD library to perform technology mapping with

the technology parameter in [179]. We use Java to produce the ASL-based encrypted circuit,

where the program takes each of the original benchmark circuits with all ASL-based PLGs as in-

puts. The evaluation against different reverse engineering and PA attacks is achieved using the

tools in [74, 94, 180]. For evaluation, we firstly convert each ASL-based encrypted circuit to Ver-

ilog gate-level circuit using Java, where each PLG is replaced by two gates with a multiplexer,

e.g. inverter/buffer PLGs are replaced with CMOS-inverters, buffers, and multiplexers. Then, the

Berkeley ABC tool is used to convert the encrypted circuits from Verilog to bench to evaluate them

against SAT and D-DIP attacks. SAT and D-DIP attacks are ran on a cluster that has CPU 3.5GHz

Core i7 and RAM 32GB. All benchmark circuits are synthesized using Synopsys Design Compiler

with our developed ASLD and 14nm CMOS libraries.

5.4.2 Performance and Device Parameters

Even though the required voltage to switch the magnetization direction of ASLD (or other spin-

tronic devices) is very small, the switching time is typically longer than CMOS. In ASL, the

switching time can be reduced by increasing the supply voltage, but the power dissipation will

also increase accordingly. Therefore, the metrics to evaluate a design implemented using the spin-

tronic device are based on the energy (Power delay produce (PDP)) and the area. To accelerate
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the proposed technique and enhance energy performance without increasing the supply voltage,

we employ the pipeline technique. We use the ASLD supply input current of 2.664 mA. The setup

parameters of the ASLD based physics framework are shown in Table 5.2.

Table 5.2: Simulation parameters of ASLD

Parameter setup value
Effective damping Alpha (α) 0.01

Spin-flip length of the channel (λ ) 500 nm
Interconnection resistivity (ρN) 7 Ω-nm

Nano-magnet area (A) 30X10 nm2

Interconnection element Cu
Anisotropy field HK 12.2 KOe

Saturation magnetization (MS) 800 emu/cm3

Magnet volume (V) 45X15X1 nm2

Spin polarization ratio (P) 0.1/0.90

We evaluate the required energy and area of different benchmark circuits and compare them with

CMOS. The key size has been set to be equal to the total number of gates in each netlist to get

the maximum required energy and area. Figure 5.8 (a) shows a comparison between original

CMOS-benchmark circuits and ASL-based encrypted circuits. On average, the required area size

using ASLD is about 40X less than the required one by CMOS technology. We also compare the

required energy by CMOS and ASLD for different benchmark circuits at 45 MHz and 100 MHz,

and the results are as shown in Figure 5.8 (b) and (c), respectively. When the frequency operation

is at 45 MHz, the ASLD outperforms CMOS by 0.56X (56%). However, CMOS is better than

ASLD by 4.3X when the frequency operation is at 100 MHz. Therefore, ASLD is very good for

applications that not required a very high-frequency operation.

128



C 5 3 1
5

C 7 5 5
2

S 1 3
2 0 7

S 1 5
8 5 0

S 3 5
9 3 2

S 3 8
4 1 7

S 3 8
5 8 4 B 1 4 B 1 5 B 1 7 B 1 8 B 2 1 B 2 2 A E S1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

Ar
ea 

(mm
2 )

 C M O S
 A S L

(a)

C 5 3 1
5

C 7 5 5
2

S 1 3
2 0 7

S 1 5
8 5 0

S 3 5
9 3 2

S 3 8
4 1 7

S 3 8
5 8 4 B 1 4 B 1 5 B 1 7 B 1 8 B 2 1 B 2 2 A E S1 0 0

1 0 1

1 0 2

1 0 3
En

erg
y (

pJ
)  C M O S

 A S L

(b)

C 5 3 1
5

C 7 5 5
2

S 1 3
2 0 7

S 1 5
8 5 0

S 3 5
9 3 2

S 3 8
4 1 7

S 3 8
5 8 4 B 1 4 B 1 5 B 1 7 B 1 8 B 2 1 B 2 2 A E S

1 0 0

1 0 1

1 0 2

En
erg

y (
pJ

)

 C M O S
 A S L

(c)

Figure 5.8: A comparison between circuits implemented using CMOS and ASLD (a) Area, (b)
energy at 45 MHz, and (c) energy at 100 MHz.

5.4.3 Security Analysis of the Proposed Techniques

In this section, we will briefly discuss the resilience of our proposal against PA and IC attacks. This

approach produces a secure and resilient design and does not require any hardware resources, e.g.

non-volatile memory, logic key-gates, and SABL. An attacker can perform different techniques to

get the secret key of an encrypted circuit, as in the following:
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5.4.3.1 Leveraging brute force attack

The secret key of an encrypted IC can be revealed via an attacker on supplying all of the key

combinations if the length of the key is not large. Such an offense can be prohibited by enlarging

the size of the secret key. In conventional CMOS technology, increasing the size of the secret key

requires more inserted key-gates (because one of each inserted-gate input has to be a key-bit). This

will largely increase the performance overhead, especially for small scale benchmarks, where the

total overhead of a small encrypted circuit might override the original circuit-size. In our proposal,

implementing a circuit using ASLD can give a key-bit for any 2-inputs logic gate without any extra

hardware. Therefore, one can freely increase the size of the key to maximum N times, where N is

the number of gates in the original circuit. For a large scale circuit, the locations and the required

size of the key-bits can be specified by the designer. All other extra key inputs should be connected

to VDD or GND based on the configuration of the original gate.

5.4.3.2 Sensitization attack

Sensitization attack can be prevented by making a relationship among the key-gates. If an attacker

wants to propagate a key-bit to an output, a large number of dependent key-bits should be known.

In tradition encryption using CMOS technology, each inserted key-gate has only two inputs; one

represents the key-bit, and the second is connected to an internal net. In ASLD-based encryption,

each key-bit is connected with at least two other inputs to an original gate. Therefore, generating a

pattern to propagate a key-value to output will be much harder. Also, the selected key-bits should

be chosen in sequence to make such attack works almost the same as the brute force. For instance,

the simple encrypted circuit using ASLD in Figure 5.9 has 5 key-bits. The key-bit of G1 and G2

is connected to one key-bit (K1), and the key-input of G5 is connected to VDD to show how a

designer can reduce the key-size. The key-bit of each of the rest gates is connected to an external

130



key. Now, to propagate the value of K1, K3, or K5 to output 2 (O2), the two other keys should

be known. Similarly, if we want to propagate K1, K2, or K4 to O1, also the two rest keys should

be known. Also, it is much harder to generate a pattern that can propagate a key-value to an

output since each key-gate has at least two inputs besides the key-input. Note that most of the

real-complex ICs have gates with large fan-in. This increases the ambiguity of such attack much

harder to find a key-bit.

X1
G1

G2
G4

G6

G7

X2

X3

X5

O1

O2

G3

G5

X4

K1

K5

K2 K4

K3

‘VDD’

Figure 5.9: Preventing sensitization attack from propagating key values to outputs

5.4.3.3 SAT and D-DIP attacks

The best-proposed technique to prevent these two attacks is to incorporate large TOA block with

some modifications on the original netlist. However, it requires a very large overhead and offers a

trade-off between removal and SAT attack resilience. Also, for high protection level, its key size

should be long enough, e.g. > 512, and it should keep working at low corruptibility. Otherwise, it

will be subject to FALL attack [100].

If the key-size of the traditional encrypted circuit can be increased to > 3k, these two attacks

will fail to decrypt such complex circuit. Unfortunately, this technique cannot be achieved using
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Table 5.3: Results of SAT and D-DIP attacks against circuits encrypted using ASLDs with different
baseline key-size, where Bs and TO are bits and timeout, respectively.

circuits
Execution time of SAT Execution time of D-DIP

128 Bs 256 Bs 512 Bs 1024 Bs 2048 Bs 128 Bs 256 Bs 512 Bs 1024 Bs 2048 Bs
C5315 1.7 2.33 7.96 364.98 TO 2.12 6.03 47.44 347.5 TO
C7552 2.05 4.7 28.5 993.8 TO 2.16 6.37 74.54 1487.82 TO

CMOS since the area and power overhead will be enormous, especially for a small-scale circuit.

The ASLD-based encrypted circuit is naturally resilient to both SAT and D-DIP attacks since

the key-size of the traditional encrypted circuit can be enlarged up to the total number of gates

in the original circuit. Practically, we convert the two smallest ASLD-based encrypted circuits,

C5315 and C7552, to CMOS encrypted bench circuits to evaluate them against SAT and D-DIP

attacks. Table 5.3 shows the execution time that both attacks need to decrypt these two circuits.

When the key-size is smaller than or equal to 1k, both attacks can successfully decrypt them.

However, both fail to break either benchmark when the key-size is set to 2k within three days. We

repeated the experiment for statistical value, and both attacks still failed to decrypt either one. Note

that the proposed ASL-based encrypted circuit is already resilient against other attacks (removal,

approximate SAT, and ByPass attacks) since there is no additional block, e.g. TOA, has been

integrated with the proposed technique.

5.4.3.4 PA attack resilience

We test our proposal using the CPA since it is more accurate and requires less number of traces to

figure out the correct key. The simulation results of the ASLD XOR-gate are not enough to prove

that the proposal can prevent PA attacks. To further evaluate the resilience of our technique, we

target the intermediate data in the SBOX at the first round since it is the only part that directly treats

with the original secret key, as shown in Fig. 5.7. We assume that the attacker can get access to the
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primary inputs of the proposed AES, supply the input data (PT), and observe the power dissipation.

We select one byte from the output result of the SBOX as a point of attack.

The power model can be created using either the Hamming weight (HW); (it is a simple model to

calculate the estimated power dissipation for each set bits (count the number of set bits in the data

word)), or the hamming distance (HD); it is the relationship between the previous and the new data

in the data set (the data set before and after the SBOX). Each of these power models has different

properties. For stronger evaluation, we test the proposed AES against PA attacks using both the

HW and HD models. Each model is built based on the work in [180], where 1% Additive White

Gaussian Noise (AWGN) has been included. We apply each of the possible PT values, each with

all possible combinational key values to create the two hypothetical power models. Afterward, we

apply the correct key of AES and measure real power consumption. We sample the real power

with 4ns sampling period. The power models are compared with the real power. Then we calculate

the correlation between the sampled power and the two generated hypothetical models utilizing

Equation 5.1. The highest resilient AES against PA attacks can be achieved if the correct key trace

is mixed with the incorrect key traces while it is considered very weak if the correct key is stepped

away from the incorrect keys.

Corr(p∗ c) =

256
∑

k=1
(tk,p,c− tp,c).(hk,p,c−hp,c)√

256
∑

k=1
(tk,p,c− tp,c)2.

256
∑

k=1
(hk,p,c−hp,c)2

(5.1)

Figure 5.10 (a) shows the correlation outcomes of applying the correct key and incorrect keys on

the proposed AES using the HW, while Figure 5.10 (b) shows the outcome results based on the
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Where:

• p∗ c: number of PT (256) * number of traces (17).

• k: number of guess key (256).

• t: real power.

• h: hypothetical power model.

HD. Note that implementing ASLD-based AES with different key-sizes will not affect on the PA

attack-resilient AES since we took all possible cases on the selected byte as the point of attack and

the guessed key. In fact, implementing an IC using ASL-based encryption makes it secure against

IC attacks (during the fabrication) and PA attacks (after the fabrication).
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Figure 5.10: CPA attack vs the execution time: (a) correlation-based on the HW (b) the HD.

The secret-key size of a cryptography implemented using ASLD can be enlarged via adding as-

sistant key-bits that are generated from the logic gates in the cryptography. The assistant key-bits
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increase the resilience of the cryptography against PA and brute force attacks significantly. It is

worthwhile to mention that the previous works [181, 181] have proposed to implement AES with-

out taking into consideration the vulnerability of the design against PA attacks. Preventing such

attacks requires a large surcharge for a high protection level of AES designed using only CMOS

technology. Meanwhile, implementing resilient AES against PA attacks using hybrid Spintronic-

CMOS devices, including MTJ has not been presented yet.

5.5 Summary

In this paper, we have investigated the usage of ASLD that can help improve in hardware security

application domains. We extract and evaluate the unique properties of ASLD, which can be uti-

lized to implement different PLGs and provide unchangeable power dissipation without external

resources during the transient statements. We also leverage the pipeline technique to enhance the

performance of the design, instead of increasing the power supply. The proposal has been evalu-

ated against both reverse engineering and power analysis attacks. Our analyses, supported by the

evaluation results, emphasize that ASLD-based encrypted circuit can provide a highly secure and

resilient design against IC and PA attacks with a smaller area and lower energy. In our technique,

the untrusted foundry cannot break the encrypted design, during the fabrication using reverse engi-

neering tools, and the secret key cannot be learned, after the chip fabrication based on the leakage

information. As a result, the proposed technique could be a good candidate for the internet of thing

applications.
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CHAPTER 6: CONCLUSION and FUTURE WORK

The increasing cost of nanoscale device manufacturing has resulted in the proliferation of “fabless”

integrated circuit (IC) design houses which outsource the production of ICs to overseas foundries.

While there are many benefits to the de-verticalization of semiconductor manufacturing, it also

poses some threats. In particular, untrusted foundries increase the risks of hardware Trojan, IC

piracy, counterfeiting, and reverse engineering: resulting in intellectual property (IP) theft and

overproduction [25, 182, 183]. Each of these threats can cause significant financial losses to the

semiconductor industry [40]. To thwart such attacks, many countermeasure techniques have been

presented, such as metering, split manufacturing, watermarking, and camouflaging. However,

these methods can only prevent certain hardware attacks.

Interestingly, it has been shown that logic encryption can successfully mitigate the most severe

IC hardware attacks that can possibly be leveraged by an untrusted overseen company since logic

encryption assumes all parts in IC design flow untrusted, except the in-house design. Moreover,

after the encrypted circuits successfully pass the untrusted foundry, the key inputs should be driven

by on-chip tamper-proof memory [72]. Unfortunately, the embedded secret key of the encrypted

circuit, including the smart devices, e.g., cryptographies, can be revealed by power analysis (PA)

attacks [41, 45]. Therefore, extra hardware resources should be added to mitigate PA attacks.

In chapter 3, we present two traditional logic encryption techniques, half/full MUX insertion and

hybrid CMOS-SiNW. The MUX insertion based logic encryption offers high security ( 50% HD)

for whatever the circuit size is. Also, random key generation circuit has been designed using

LFSR with hardware units to increase the security level of the encrypted circuit, in which the

locations of the corrupted outputs will change on applying wrong keys. To get 50% HD when a

wrong key is provided with very small overhead, instead of incorporating key-gates, three simple
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PLGs, designed using SiNW, are exchanged with corresponding gates in most of the ISCAS’85

combinational circuits.

In chapter 4, SiNW PLG-based traditional encryption is augmented with a small block, whose

output is untraceable, namely URSAT. This technique can prevent most of the existing IC attacks,

such as sensitization, SAT, and AppSAT, and removal attacks. Although URSAT is secure against

many attacks, it may not offer strong resilience against the combined AppSAT-removal attack. To

strongly thwart this attack, we propose S-URSAT designed using only CMOS logic gates. The

compounded S-URSAT and PLG-based encryption increases the security level of the design to

robustly thwart all existing attacks.

Chapter 5 presents comprehensive secure hardware circuits that withstand all IC attacks (during

the fabrication) and PA attacks (after the fabrication). We firstly design and implement optimized

ASLD-based PLGs that require very small energy dissipation and are much faster than traditional

ASLD gates. These ASLD-based PLGs are used to produce encrypted circuit by only replacing the

traditional CMOS logic gates with ASL based PLGs. The implemented circuit using ASLDs can

be encrypted with a very complicate key without any adding extra resources. Therefore, the design

is extremely resilient to IC attacks. The improvements on ASLD-based encrypted circuit have been

achieved by employing optimal ASL parameters, using the pipeline technique, and adding ASL-

based buffers at necessary locations. Moreover, we show that ASLD has another unique feature,

which is identical power dissipation through the switching operations. This feature enables us to

implement resilient designs against PA attacks with a small performance penalty. Finally, each

presented technique in all of our works has been experimentally evaluated in terms of performance

overheads and security guarantees.

Most of our work are based on protecting combinational logic circuits. However, the modern real

word ICs are typically a mix of combinational circuits, final state machines, scan chains, and se-
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quential circuits. In the future work, we suggest the research directions focus on building a fully

protected hardware design that has all of the aforementioned components. Some of other inter-

esting future work is to develop a high performance and secure monolithic 3D architecture design

against hardware attacks with small cost using split manufacturing technique. Another possible

future work is to produce a comprehensive secure system by combining the software and hardware

protection techniques. This area is really interesting since the hardware developers are focusing

on protecting the hardware design without taking into account the software possible attacks. Sim-

ilarly, for the software developers. The most promising technique to prevent all hardware and

software attacks could be achieved if the hardware and software security methodologies are mixed

somehow together.
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