136 research outputs found

    Simulation of networks of spiking neurons: A review of tools and strategies

    Full text link
    We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin-Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.Comment: 49 pages, 24 figures, 1 table; review article, Journal of Computational Neuroscience, in press (2007

    GPU-based implementation of real-time system for spiking neural networks

    Get PDF
    Real-time simulations of biological neural networks (BNNs) provide a natural platform for applications in a variety of fields: data classification and pattern recognition, prediction and estimation, signal processing, control and robotics, prosthetics, neurological and neuroscientific modeling. BNNs possess inherently parallel architecture and operate in continuous signal domain. Spiking neural networks (SNNs) are type of BNNs with reduced signal dynamic range: communication between neurons occurs by means of time-stamped events (spikes). SNNs allow reduction of algorithmic complexity and communication data size at a price of little loss in accuracy. Simulation of SNNs using traditional sequential computer architectures results in significant time penalty. This penalty prohibits application of SNNs in real-time systems. Graphical processing units (GPUs) are cost effective devices specifically designed to exploit parallel shared memory-based floating point operations applied not only to computer graphics, but also to scientific computations. This makes them an attractive solution for SNN simulation compared to that of FPGA, ASIC and cluster message passing computing systems. Successful implementations of GPU-based SNN simulations have been already reported. The contribution of this thesis is the development of a scalable GPU-based realtime system that provides initial framework for design and application of SNNs in various domains. The system delivers an interface that establishes communication with neurons in the network as well as visualizes the outcome produced by the network. Accuracy of the simulation is emphasized due to its importance in the systems that exploit spike time dependent plasticity, classical conditioning and learning. As a result, a small network of 3840 Izhikevich neurons implemented as a hybrid system with Parker-Sochacki numerical integration method achieves real time operation on GTX260 device. An application case study of the system modeling receptor layer of retina is reviewed

    Plasticity and Adaptation in Neuromorphic Biohybrid Systems

    Get PDF
    Neuromorphic systems take inspiration from the principles of biological information processing to form hardware platforms that enable the large-scale implementation of neural networks. The recent years have seen both advances in the theoretical aspects of spiking neural networks for their use in classification and control tasks and a progress in electrophysiological methods that is pushing the frontiers of intelligent neural interfacing and signal processing technologies. At the forefront of these new technologies, artificial and biological neural networks are tightly coupled, offering a novel \u201cbiohybrid\u201d experimental framework for engineers and neurophysiologists. Indeed, biohybrid systems can constitute a new class of neuroprostheses opening important perspectives in the treatment of neurological disorders. Moreover, the use of biologically plausible learning rules allows forming an overall fault-tolerant system of co-developing subsystems. To identify opportunities and challenges in neuromorphic biohybrid systems, we discuss the field from the perspectives of neurobiology, computational neuroscience, and neuromorphic engineering. \ua9 2020 The Author(s

    Efficient Implementation of Stochastic Inference on Heterogeneous Clusters and Spiking Neural Networks

    Get PDF
    Neuromorphic computing refers to brain inspired algorithms and architectures. This paradigm of computing can solve complex problems which were not possible with traditional computing methods. This is because such implementations learn to identify the required features and classify them based on its training, akin to how brains function. This task involves performing computation on large quantities of data. With this inspiration, a comprehensive multi-pronged approach is employed to study and efficiently implement neuromorphic inference model using heterogeneous clusters to address the problem using traditional Von Neumann architectures and by developing spiking neural networks (SNN) for native and ultra-low power implementation. In this regard, an extendable high-performance computing (HPC) framework and optimizations are proposed for heterogeneous clusters to modularize complex neuromorphic applications in a distributed manner. To achieve best possible throughput and load balancing for such modularized architectures a set of algorithms are proposed to suggest the optimal mapping of different modules as an asynchronous pipeline to the available cluster resources while considering the complex data dependencies between stages. On the other hand, SNNs are more biologically plausible and can achieve ultra-low power implementation due to its sparse spike based communication, which is possible with emerging non-Von Neumann computing platforms. As a significant progress in this direction, spiking neuron models capable of distributed online learning are proposed. A high performance SNN simulator (SpNSim) is developed for simulation of large scale mixed neuron model networks. An accompanying digital hardware neuron RTL is also proposed for efficient real time implementation of SNNs capable of online learning. Finally, a methodology for mapping probabilistic graphical model to off-the-shelf neurosynaptic processor (IBM TrueNorth) as a stochastic SNN is presented with ultra-low power consumption

    Brain Disease Detection From EEGS: Comparing Spiking and Recurrent Neural Networks for Non-stationary Time Series Classification

    Get PDF
    Modeling non-stationary time series data is a difficult problem area in AI, due to the fact that the statistical properties of the data change as the time series progresses. This complicates the classification of non-stationary time series, which is a method used in the detection of brain diseases from EEGs. Various techniques have been developed in the field of deep learning for tackling this problem, with recurrent neural networks (RNN) approaches utilising Long short-term memory (LSTM) architectures achieving a high degree of success. This study implements a new, spiking neural network-based approach to time series classification for the purpose of detecting three brain diseases from EEG datasets - epilepsy, alcoholism, and schizophrenia. The performance and training time of the spiking neural network classifier is compared to those of both a baseline RNN-LSTM EEG classifier and the current state-of-the art RNN-LSTM EEG classifier architecture from the relevant literature. The SNN EEG classifier model developed in this study outperforms both the baseline and state of-the-art RNN models in terms of accuracy, and is able to detect all three brain diseases with an accuracy of 100%, while requiring a far smaller number of training data samples than recurrent neural network approaches. This represents the best performance present in the literature for the task of EEG classificatio

    Dimensions of Timescales in Neuromorphic Computing Systems

    Get PDF
    This article is a public deliverable of the EU project "Memory technologies with multi-scale time constants for neuromorphic architectures" (MeMScales, https://memscales.eu, Call ICT-06-2019 Unconventional Nanoelectronics, project number 871371). This arXiv version is a verbatim copy of the deliverable report, with administrative information stripped. It collects a wide and varied assortment of phenomena, models, research themes and algorithmic techniques that are connected with timescale phenomena in the fields of computational neuroscience, mathematics, machine learning and computer science, with a bias toward aspects that are relevant for neuromorphic engineering. It turns out that this theme is very rich indeed and spreads out in many directions which defy a unified treatment. We collected several dozens of sub-themes, each of which has been investigated in specialized settings (in the neurosciences, mathematics, computer science and machine learning) and has been documented in its own body of literature. The more we dived into this diversity, the more it became clear that our first effort to compose a survey must remain sketchy and partial. We conclude with a list of insights distilled from this survey which give general guidelines for the design of future neuromorphic systems

    Analogue VLSI study of temporally asymmetric Hebbian learning

    Get PDF

    Neuromorphic audio processing through real-time embedded spiking neural networks.

    Get PDF
    In this work novel speech recognition and audio processing systems based on a spiking artificial cochlea and neural networks are proposed and implemented. First, the biological behavior of the animal’s auditory system is analyzed and studied, along with the classical mechanisms of audio signal processing for sound classification, including Deep Learning techniques. Based on these studies, novel audio processing and automatic audio signal recognition systems are proposed, using a bio-inspired auditory sensor as input. A desktop software tool called NAVIS (Neuromorphic Auditory VIsualizer) for post-processing the information obtained from spiking cochleae was implemented, allowing to analyze these data for further research. Next, using a 4-chip SpiNNaker hardware platform and Spiking Neural Networks, a system is proposed for classifying different time-independent audio signals, making use of a Neuromorphic Auditory Sensor and frequency studies obtained with NAVIS. To prove the robustness and analyze the limitations of the system, the input audios were disturbed, simulating extreme noisy environments. Deep Learning mechanisms, particularly Convolutional Neural Networks, are trained and used to differentiate between healthy persons and pathological patients by detecting murmurs from heart recordings after integrating the spike information from the signals using a neuromorphic auditory sensor. Finally, a similar approach is used to train Spiking Convolutional Neural Networks for speech recognition tasks. A novel SCNN architecture for timedependent signals classification is proposed, using a buffered layer that adapts the information from a real-time input domain to a static domain. The system was deployed on a 48-chip SpiNNaker platform. Finally, the performance and efficiency of these systems were evaluated, obtaining conclusions and proposing improvements for future works.Premio Extraordinario de Doctorado U
    corecore