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Abstract

Modeling non-stationary time series data is a difficult problem area in AI, due to the

fact that the statistical properties of the data change as the time series progresses.

This complicates the classification of non-stationary time series, which is a method

used in the detection of brain diseases from EEGs. Various techniques have been

developed in the field of deep learning for tackling this problem, with recurrent neural

networks (RNN) approaches utilising Long short-term memory (LSTM) architectures

achieving a high degree of success. This study implements a new, spiking neural

network-based approach to time series classification for the purpose of detecting three

brain diseases from EEG datasets - epilepsy, alcoholism, and schizophrenia. The

performance and training time of the spiking neural network classifier is compared

to those of both a baseline RNN-LSTM EEG classifier and the current state-of-the-

art RNN-LSTM EEG classifier architecture from the relevant literature. The SNN

EEG classifier model developed in this study outperforms both the baseline and state-

of-the-art RNN models in terms of accuracy, and is able to detect all three brain

diseases with an accuracy of 100%, while requiring a far smaller number of training

data samples than recurrent neural network approaches. This represents the best

performance present in the literature for the task of EEG classification.

Keywords: artificial intelligence, classification, time series, spiking neural network,

recurrent neural network, LSTM, Electroencephalogram (EEG), epilepsy, alcoholism,

schizophrenia

II



Acknowledgments

I would like to thank my supervisor, Dr. Basel Magableh, for the ample guidance, ad-

vice, and attention provided over the course of the conducted research. I am extremely

grateful and this dissertation would not have been possible without his help.

Additionally, I would like to thank Dr. Luca Longo for his assistance in formulat-

ing the original research project proposal. His contribution helped me determine an

appropriate direction for my dissertation.

Finally, I would like to express my gratitude to my parents and to my girlfriend for

offering their unyielding support and encouragement while I undertook this research

project.

The complete statistical programming code used for this dissertation is available

at the following URL:

github.com/HristoStoevAI/TUDublinDissertation

III



Contents

Declaration I

Abstract II

Acknowledgments III

Contents IV

List of Figures VIII

List of Tables X

List of Acronyms XI

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Research Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Research Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7 Document Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Literature Review 14

2.1 Data with Temporal Components . . . . . . . . . . . . . . . . . . . . . 14

IV



2.1.1 Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 EEG Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Event-Based Data . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 ANN Neuron Model . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 ANN Decision-Making . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 ANN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 Learning in ANNs . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Learning in RNNs . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Spiking Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 SNN Implementation Approaches . . . . . . . . . . . . . . . . . 25

2.4.2 Spike Train Generation . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Spiking Neuron Models . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.4 Learning Rules in SNNs . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Summary, Limitations and Gaps in Literature Review . . . . . . . . . . 37

3 Design and Methodology 39

3.1 Data Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 EEG recordings of healthy adolescents and adolescents with

symptoms of schizophrenia . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 EEG recordings of alcoholics and control subjects . . . . . . . . 40

3.1.3 EEG of healthy subjects and subjects with epilepsy . . . . . . . 41

3.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Data Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Dataset Construction . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3 Dataset Balancing . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.4 Data Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

V



3.4 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 SNN Model Architecture . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Baseline RNN Model Architecture . . . . . . . . . . . . . . . . . 49

3.4.3 State-of-the-Art RNN Model Architecture . . . . . . . . . . . . 50

3.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Implementation and Results 55

4.1 Data Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Hyperparameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 SNN Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Number of Training Epochs . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Final Model Implementations . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.1 Final Baseline RNN Implementations . . . . . . . . . . . . . . . 59

4.4.2 Final State-of-the-Art RNN Implementations . . . . . . . . . . . 61

4.4.3 Final SNN Implementations . . . . . . . . . . . . . . . . . . . . 62

4.5 Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.1 Baseline RNN Results . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.2 State-of-the-Art RNN Results . . . . . . . . . . . . . . . . . . . 68

4.5.3 SNN Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Evaluation, Analysis and Discussion 80

5.1 Comparison of Classifiers Results . . . . . . . . . . . . . . . . . . . . . 80

5.2 Hypothesis Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Hypothesis 1 - Accuracy . . . . . . . . . . . . . . . . . . . . . . 82

5.2.2 Hypothesis 2 - Training Time . . . . . . . . . . . . . . . . . . . 86

5.3 Summary of Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Strengths and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Considerations of Previous Research . . . . . . . . . . . . . . . . . . . 92

6 Conclusions 94

6.1 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

VI



6.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Contributions to Body of Knowledge . . . . . . . . . . . . . . . . . . . 96

6.4 Future Work and Recommendations . . . . . . . . . . . . . . . . . . . . 97

References 99

A 118

VII



List of Figures

2.1 Standard EEG electrode placements and channel names according to

the 5% scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 The MP Computational Neuron . . . . . . . . . . . . . . . . . . . . . 18

2.3 A Multi-Layer Perceptron with One Hidden Layer . . . . . . . . . . . . 19

2.4 A recurrent neuron, unrolled over time . . . . . . . . . . . . . . . . . . 21

2.5 RNN and LSTM cells . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Biological neuron structure . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 A typical feedforward spiking neural network architecture, with a single

hidden layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Schizophrenia Dataset Target Class Proportions . . . . . . . . . . . . . 40

3.2 Alcoholism Dataset Target Class Proportions . . . . . . . . . . . . . . . 41

3.3 Epilepsy Dataset Target Class Proportions . . . . . . . . . . . . . . . . 41

3.4 Baseline RNN Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 50

52figure.caption.43

3.6 Binary Classification Confusion Matrix . . . . . . . . . . . . . . . . . . 53

4.1 Final Keras Model Description for Schizophrenia Baseline RNN Classifier 60

4.2 Final Keras Model Description for Alcoholism Baseline RNN Classifier 60

4.3 Final Keras Model Description for Epilepsy Baseline RNN Classifier . . 61

4.4 Schizophrenia Baseline RNN Classifier - Confusion Matrix . . . . . . . 64

4.5 Alcoholism Baseline RNN Classifier - Confusion Matrix . . . . . . . . . 66

4.6 Epilepsy Baseline RNN Classifier - Confusion Matrix . . . . . . . . . . 67

VIII



4.7 Schizophrenia State-of-the-Art RNN Classifier - Confusion Matrix . . . 69

4.8 Alcoholism State-of-the-Art RNN Classifier - Confusion Matrix . . . . . 70

4.9 Epilepsy State-of-the-Art RNN Classifier - Confusion Matrix . . . . . . 72

4.10 Schizophrenia SNN Classifier - Confusion Matrix . . . . . . . . . . . . . 73

4.11 Alcoholism SNN Classifier - Confusion Matrix . . . . . . . . . . . . . . 75

4.12 Epilepsy SNN Classifier - Confusion Matrix . . . . . . . . . . . . . . . 76

4.13 Classifiers’ Test Accuracies Compared to Number of Training Epochs

(RNN Approaches) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.14 Classifiers’ Test Accuracies Compared to Number of Training Epochs

(SNN Approach) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.1 Final Keras Model Description for Schizophrenia State-of-the-Art RNN

Classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.2 Final Keras Model Description for Alcoholism State-of-the-Art RNN

Classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.3 Final Keras Model Description for Epilepsy State-of-the-Art RNN Clas-

sifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

IX



List of Tables

4.1 Hyperparameters Evaluated for the SNN Models . . . . . . . . . . . . . 56

4.2 Schizophrenia Baseline RNN Classifier Performance . . . . . . . . . . . 65

4.3 Alcoholism Baseline RNN Classifier Performance . . . . . . . . . . . . . 66

4.4 Epilepsy Baseline RNN Classifier Performance . . . . . . . . . . . . . . 68

4.5 Schizophrenia State-of-the-Art RNN Classifier Performance . . . . . . . 69

4.6 Alcoholism State-of-the-Art RNN Classifier Performance . . . . . . . . 71

4.7 Epilepsy State-of-the-Art RNN Classifier Performance . . . . . . . . . . 72

4.8 Schizophrenia SNN Classifier Performance . . . . . . . . . . . . . . . . 74

4.9 Alcoholism SNN Classifier Performance . . . . . . . . . . . . . . . . . . 75

4.10 Epilepsy SNN Classifier Performance . . . . . . . . . . . . . . . . . . . 76

5.1 SNN and LSTM Classifiers Comparison . . . . . . . . . . . . . . . . . . 81

5.2 SNN and LSTM Training Time Comparison (in seconds) . . . . . . . . 82

5.3 Schizophrenia WSR Test: SNN - Baseline LSTM . . . . . . . . . . . . . 83

5.4 Schizophrenia WSR Test: SNN - State-of-the-art LSTM . . . . . . . . . 84

5.5 Epilepsy WSR Test: SNN - Baseline LSTM . . . . . . . . . . . . . . . 85

5.6 Epilepsy WSR Test: SNN - State-of-the-art LSTM . . . . . . . . . . . 85

5.7 Schizophrenia WSR Test: SNN - Baseline LSTM . . . . . . . . . . . . . 87

5.8 Schizophrenia WSR Test: SNN - State-of-the-art LSTM . . . . . . . . . 87

5.9 Epilepsy WSR Test: SNN - Baseline LSTM . . . . . . . . . . . . . . . 88

5.10 Epilepsy WSR Test: SNN - State-of-the-art LSTM . . . . . . . . . . . 89

5.11 Hypotheses Tests Results . . . . . . . . . . . . . . . . . . . . . . . . . . 90

X



List of Acronyms

ANN Artificial Neural Network

RNN Recurrent Neural Network

SNN Spiking Neural Network

LSTM Long Short Term Memory

GRU Gated Recurrent Unit

HH Hodgkin-Huxley

LIF Leaky Integrate-and-Fire

SOTA State-of-the-Art

WSR Wilcoxon Signed Rank

EEG Electroencephalogram

AI Artificial Intelligence

TP True Positive

FP False Positive

TN True Negative

FN False Negative

XI



Chapter 1

Introduction

1.1 Background

What a peculiar privilege has this little agitation of the brain which we call ’thought’

(Hume, 1779).

Within the past decade, truly significant strides in progress have been made in the

field of AI, both in terms of the performance of its existing applications, and in terms of

the breadth of its potential uses. Computers are being taught to perceive, understand,

and learn from the world using newer, ever more powerful techniques. This evolution

in AI has made many tasks, once considered to be exclusively achievable by humans

due to their complexity, unpredictability or required creativity, to be fully or partially

automated.

At the same time, the wider adoption of applied AI in industry and consumer

products has made it play a more visible role than ever in people’s daily lives. AI

technologies have led to transformations in healthcare (Jiang et al., 2017), finance

(Culkin & Das, 2017), language processing (Young, Hazarika, Poria, & Cambria, 2018),

warfare (Bode & Huelss, 2018), autonomous vehicles (Tokody, Mezei, & Schuster,

2017), facial recognition (Taigman, Yang, Ranzato, & Wolf, 2014), and manufacturing

(B.-h. Li, Hou, Yu, Lu, & Yang, 2017), to name just a few areas. While nobody knows

precisely what the future has in store for AI, its potential has captured the interest

of the public and, more importantly, of industry and business. A study conducted by

1



CHAPTER 1. INTRODUCTION

venture capital firm Atomico found that European AI firms gathered $2.9B of funding

in 2019 alone and close to $10B since 2015, outperforming all other categories in the

tech sectors (Atomico & Slush, 2019).

The expansive growth of AI is based on developments in the field of Artificial Neu-

ral Networks. Originally conceived in the 1940s (McCulloch & Pitts, 1943), ANNs

were developed to replicate the information processing mechanics present in the hu-

man brain. The most sophisticated processing unit known to man, the functions of

the brain are highly energy efficient, massively parallel, and are able to facilitate fast,

generalisable learning with minimal supervision (Poo, 2018). ANNs attempts to cap-

ture this ability, but it hasn’t been until recent years that they have experienced a

significant growth in their capabilities. This has led to the emergence of the concept

of ’deep learning’, which employs the use of more complex topologies for AI models to

be able to tackle more difficult and complex problems

One particularly intriguing advance made in AI is the development of recurrent

ANN modelling techniques, such as the Recurrent Neural Network (RNN). Early ANNs

were exclusively feed-forward, meaning that they were not able to model the relation-

ship between the passage of time and the data. However, since humans perceive and

interact with their environment in a fundamentally temporal manner (Peuquet, 1995),

in order for AI to be truly useful to humans, it needs to be able to do the same. This

is the motivation behind the development of recurrent ANN models, and the LSTM

(Long Short Term Memory) architecture, a special type of RNN layer. LSTMs are

not only able to conduct information processing of temporal data, but also to extract

and store long-term memories from the data sequence using includes an additional set

of learning mechanisms (Hochreiter & Schmidhuber, 1997), which are then used to

influence the model’s future decisions. This allows LSTMs to solve many problems in

domains where temporal sequences of data are fundamental, and where past context

is needed in order to make decisions about the future of the sequence, such as text

and language processing.

This evolution in AI capabilities and applications is enabled to a large extent by

advancements made in computing hardware, primarily the widespread adoption of

2



CHAPTER 1. INTRODUCTION

GPU acceleration hardware. In particular, LSTMs are highly reliant on GPUs’ high

memory bandwidth since they incur a large memory overhead (Nowak, Taspinar, &

Scherer, 2017). This is particularly true for language modelling applications, where

often very large vocabularies of millions of words need to be represented within the

recurrent model, making learning difficult in the case of insufficient memory band-

width (X. Li, Qin, Yang, Hu, & Liu, 2016). Another type of acceleration provided

by GPUs is parallelisation, usually through Nvidia’s CUDA platform (Garland et al.,

2008). This has allowed the ANN learning process (known as ’training’) to progress

from traditionally being conducted on a single processor thread, to being carried out

simultaneously across multiple threads. GPU acceleration has dramatically sped up

learning in recurrent ANN models, which is generally quite computationally expensive.

One problem area where recurrent ANNs, specifically those with LSTM architec-

tures, have been particularly useful is in the classification of sequences of data. This

has applications in a number of domains (Karim, Majumdar, Darabi, & Harford, 2018),

such as diagnosis of disease from recorded biometrics, and gesture recognition. Quite

often, temporal data in the form of sequences collected from the environment tends

to exhibit certain characteristics, one of which is non-stationarity, meaning that the

statistical properties of the data, like its mean and variance, change as the sequence

progresses. Non-stationarity in particular makes modelling the sequence data using

parametric, non-AI methods problematic without first applying transformations on

the data (Amjad & Shah, 2016). Non-stationary sequence modelling is key in tasks

such as speech separation from ambient noise (Wöllmer, Zhang, Weninger, Schuller,

& Rigoll, 2013), and interpretation of EEG data (Klonowski, 2009), all of which are

important applications in the field of AI.

While RNN models and have proven to be highly capable of learning temporal

patterns from non-stationary sequences of data, they are not the only AI paradigm

that can conduct processing of memory information. One alternative is Spiking Neural

Networks (SNNs), which differ from conventional Artificial Neural Networks due to

their event-based nature. SNNs employ binary activation ‘spikes’ in time-space for

information processing, while ANNs use scalar data. While ANNs are only abstractly

3
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inspired by the brain’s learning methods, SNNs emulate its biology in a more stringent

manner, allowing them to replicate the brain’s excellent processing capabilities more so

than ANNs. For instance, SNNs are massively parallelizable, and this allows them to

match and even exceed the performance of conventional AI models, all while exhibiting

a lower energy and computational overhead (Pfeiffer & Pfeil, 2018).

1.2 Research Problem

In recent years, the application of SNNs for processing and learning from non-stationary

sequences of data has become an exciting research topic in the field of AI. This is pri-

marily due to the fact that SNNs demonstrate highly promising potential to alleviate

many of the limitations of more commonly-used recurrent ANN models. As stated

earlier, ANNs can be categorised into strictly feed-forward models, which are not able

to process information in sequences of data, and recurrent models, which are able to do

so. While recurrent ANNs have become very advanced in terms of their performance

and range of applications, their functionality still uses strictly feed-forward ANN as a

foundation. Essentially, one could conceptualise recurrent ANNs as being feed-forward

ANNs where sequence modelling abilities were inserted in addition to their base op-

eration, despite the fact that the original creators of the feedforward ANN did not

develop them with this usage in mind. As such, the method used by RNNs to pro-

cess temporal information is fundamentally inefficient. On the other hand, from the

very inception of the SNN, information processing of sequence data has always been a

central feature, since this is the form of information processing utilised by the human

brain, the emulation of which is the very motivation behind the creation of the SNN.

The efficiency advantage of SNNs over recurrent ANNs does not just stem from

the origins of the two approaches - it can be seen directly by comparing how the two

approaches represent the passage of time and learn from how it affects the sequence

data. Recurrent ANNs’ ability to recognise temporal patterns in sequence data stems

from the fact that, when ’unrolled’ over time, they are actually composed of many

strictly feed-forward ANN models, which are linked together in a dependent manner

4
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such that they can affect each other’s decision-making. This is a fundamentally ineffi-

cient approach to memory information processing, especially as the length of the data

sequence being modelled increases (Nowak et al., 2017). Even worse, in the case of

the LSTM architecture, the already inefficient recurrent ANN is augmented through

the use of computationally expensive memory gates and hidden states, which add an

additional cognitive load to the algorithm, resulting in the model taking even longer

to learn temporal patterns (Z. Li et al., 2019). SNNs, on the other hand, do not

rely on strictly feed-forward ANNs for information processing in any way whatsoever.

Even the most fundamental SNN architectures are able to effectively perform tem-

poral information processing by design, as a result of their event-based information

processing. On top of this, SNNs do not require additional mechanisms to extract and

learn long-term memories from data sequences, as is the case with LSTM-RNNs. This

is because SNNs make use of learning methods which are designed from the ground up

to be efficient at modelling patterns in sequences of data by incorporating the precise

timing between spiking events into the learning process. This is a completely differ-

ent approach to learning than the one used in RNNs, where the learning algorithms

do not directly incorporate the passage of time, but are simply modified versions of

those used in strictly feed-forward ANNs (Mozer, 1995). Research has shown that it

is precisely due to these differences in learning approaches that SNNs exhibit shorter

training times than recurrent ANNs when extracting temporal patterns present in

non-stationary sequences of data (Neil, Pfeiffer, & Liu, 2016).

SNNs also have a more well-defined roadmap for future research than RNNs, which

stems from their purpose to emulate the information processing of the human brain.

The brain is excellent at a number of facets of learning that are, so far, infeasible for

AI - it can multi-task, learn quickly with very little supervision and easily generalize

existing skills to solve wide ranges of problems (Poo, 2018). The ultimate goal of

the SNN approach to AI is to replicate these qualities of biological brains in com-

puting systems, and research in the literature is focused on this goal. On the other

hand, RNNs research lacks an overall goal such as this. The trend in RNNs is the

development of approaches and solutions to problems using architectures which are
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highly specialised to the task at hand, thus sacrificing generalisability. For instance,

two RNNs designed for speech recognition, and for text classification, respectively,

would require entirely different architectures and layer topologies. Therefore, novel

applications of RNNs require extensive trial and error to find the optimal architecture

for the problem. This inflexibility is another limitation that SNNs have the potential

to alleviate - even without being fully biologically accurate. SNNs are already more

suited to dynamic problem environments than RNNs because they can handle changes

in the input data shape or feature space, such as different data sampling rates that

change over time and across features. This is facilitated by their event-based process-

ing. RNNs, on the other hand, need to have their entire architecture re-evaluated and

their parameters re-trained in the event of such changes in the environment.

As to for which specific sequence data learning tasks the above advantages of SNNs

hold true, the research is not conclusive. This is particularly the case for modelling

non-stationary sequences of data, where the use of traditional modelling techniques

is problematic due to their requirement that the statistical properties of the data se-

quence remain stationary (Amjad & Shah, 2016). Despite the potential for SNNs to

become an alternative approach to AI learning from temporal data, studies directly

comparing the performance of SNNs and RNNs for time series classification have not

been conducted in the literature to this author’s knowledge. As a result, this research

aims to directly investigate whether or not an SNNs-based approach to time series

classification can be used instead of RNNs to avoid some of the current limitations

faced by implementations using the latter. Due to the lack of research in this problem

area, it was decided that an investigation would be academically useful. The research

problem studied in this project focused specifically on the problem of detecting brain

diseases using EEG recordings, as this is a type of non-stationary time series classifi-

cation. Additionally, many EEG datasets have been made available to researchers for

this purpose, eliminating the need for data collection as part of the research project.

6
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1.3 Research Question

To what extent do neural network models, built using a Spiking Neural Network,

have superior accuracy and/or training time to models built using a Recurrent Neural

Network when implemented for classification of non-stationary time series datasets?

1.3.1 Research Hypotheses

The following list outlines the hypotheses that are evaluated by this project in order

to answer the above research question:

Hypothesis 1: H0: Spiking Neural Network models do not have higher accuracy than Recurrent

Neural Network models when implemented for classification of non-stationary

time series data.

H1: Spiking Neural Network models have higher accuracy than Recurrent Neu-

ral Network models when implemented for classification of non-stationary time

series data.

Hypothesis 2: H0: Spiking Neural Network models do not have a faster training time than

Recurrent Neural Network models when implemented for classification of time

series data.

H1: Spiking Neural Network models have a faster training time than Recurrent

Neural Network models when implemented for classification of time series data.

1.4 Research Objectives

The research objectives for this project are as follows:
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1. Determine which Spiking Neural Network simulator package to use

A literature review will be the research method used to compile and compare each

of the potential options for the Spiking Neural Network simulator package. The

criterion for selecting the appropriate simulator package is which option offers

the most comprehensive and diverse implementations of network topologies and

supervised learning rules.

2. Determine the Spiking Neural Network topology and learning rule

This includes deciding on a spike encoding strategy and which supervised learn-

ing rules to use (Tavanaei, Ghodrati, Kheradpisheh, Masquelier, & Maida, 2019).

This will be done by conducting secondary research to determine the approach

that will lead to the best classification results. One important requirement for

the network topology and learning rule is that it is supported by the simulation

package decided on in Step 1.

3. Determine the baseline and state-of-the-art recurrent neural network

architecture

This will be done by reviewing the existing research on EEG classification using

RNNs and basing the RNN architecture decision on the most effective existing

implementations. Two model architectures will be selected - a baseline LSTM-

RNN approach, and the current state-of-the-art model for EEG classification

with LSTM-RNNs, and these will be determined by conducting secondary re-

search to determine the approach that will lead to the best classification results.

4. Develop the optimal SNN classification model for each dataset

This will be done using whatever simulator, topology and learning rule was

selected in Steps 1 and 2. This step also involves finding the optimal model

hyperparameters for modelling each of the three experimental datasets.
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5. Replicate the baseline and state-of-the-art RNN classification models

for each dataset

The baseline and state-of-the-art RNN topologies decided upon in Step 3 will

be developed using the deep learning library, Keras, as this allows for rapid

prototyping and fine-tuning of models.

6. The optimal classification models will be trained using the SNN and

RNN approaches on each of the three experimental EEG datasets

The optimal trained classifier models will then be used to collect the necessary

training times and classification performance metrics. Training will be conducted

until the models’ maximum performance is reached.

7. The performance metrics collected by evaluating the optimal SNN

and RNN classifiers will be analysed and compared

This will be done so that the research hypotheses described in Section 1.3.1

can be accepted or rejected based on the conclusions drawn from the available

experimental results.

1.5 Research Methodologies

The overall methodology used to conduct this research project is one of empirical

evaluation. The specific research methodologies used to investigate each hypothesis

outlined in Section 1.3.1 are described in this section.

Hypothesis 1: For each of the three experimental EEG datasets, the performance metrics (de-

scribed in detail in section 3.6) of the hyperparameter-optimized SNN and RNN

classifiers are calculated. The performance metrics for the RNN and SNN clas-

sifiers are compared, to determine whether or not there is a significant increase
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in classification performance when using the SNN-based model. This is quanti-

tative research. Statistical analysis will be used to determine if the difference in

performance metrics between the SNN and the RNN model is significant.

In order to ensure that the performance metrics and training times are reliable,

k-fold cross-validation is employed, as this reduces the chance of over-fitting the

model to the training data (Mitchell, 1997). Since there is no guarantee that

the mean of the performance metrics over each data fold is normally distributed,

and the samples are not independent, the non-parametric Wilcoxon Signed-Rank

test is used to determine if there is a statistically significant difference on model

classification performance by whether or not the architecture used was the RNN

or the SNN. If the p-value from the Wilcoxon Signed-Rank test is below 0.05,

there is a significant difference between the RNN and SNN performance met-

rics averaged over each fold. These findings relate to the research question as

they will discern whether models built using a Spiking Neural Network have a

superior performance than models built using an RNN when implemented for

classification of time series data.

Hypothesis 2: For each of the three experimental EEG datasets, the training times for the

hyperparameter-optimized SNN and RNN models are collected. The training

times for the RNN and SNN classifiers are then compared, to determine whether

or not there is a significant decrease in training time when using the SNN-based

model. The goal of this research is to determine whether classification using a

SNNs requires less training time than using an RNN architecture. This is quan-

titative research. Statistical analysis will be used to determine if the difference

in training time between the SNN model and the RNN model is significant.

In order to ensure that the collected training times are reliable, k-fold cross-

validation is employed, as this reduces the chance of over-fitting the model to

the training data (Mitchell, 1997). Since there is no guarantee that the mean of

the training times over each data fold is normally distributed, and the samples

are not independent, the non-parametric Wilcoxon Signed-Rank test is used to
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determine if there is a statistically significant difference on model training times

by whether or not the architecture used was RNN-based or SNN-based. If the

p-value from the Wilcoxon Signed-Rank test is below 0.05, there is a significant

difference between the RNN and SNN training times averaged over each fold.

These findings relate to the research question as they will discern whether models

built using a Spiking Neural Network have superior training times than models

built using an RNN when implemented for classification of time series data.

1.6 Scope and Limitations

The scope of this research is limited to the detection of brain diseases from EEG

datasets. The problem of EEG signal classification was chosen due to the nature of

EEGs - they are examples of non-linear, and non-stationary time series data. Three

different brain disease datasets are used, for the detection of schizophrenia, epilepsy,

and alcoholism. Each dataset contains sequence EEG data, measured for different

lengths of time, at different sampling rates, with different sample sizes and numbers of

features, and contained recordings from subjects with both positive and negative brain

disease diagnoses. Due to the differences in structure between each of three datasets,

the results of the research experiment, and the conclusions drawn from them, are

applicable to many different formats of recorded EEG data, making the experiment

academically useful. However, a limitation of this research would be that since each

of the three datasets used in the experiment features a strictly binary target variable,

generalising the conclusions beyond binary classification problems would be problem-

atic.

More generally, the research scope was limited specifically to the problem of EEG

classification. Conclusions drawn from the results of this research would not be ap-

plicable to other types of problems involving modelling sequence data with SNNs and

RNNs, such as prediction problems.

A significant limitation of this research is the lack of availability of neuromor-

phic hardware for academic use. Currently, the most efficient method of implementing
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SNNs involves using specialised VLSI hardware to enable analog computation (Indiveri

et al., 2011). This allows the researcher to assign physical quantities to represent the

internal decision-making properties of SNNs, such as the neuron membrane potential

(further discussed in section 2.4.3), reducing the total number of necessary compu-

tations, and allowing for a very efficient, low-power implementation. However, the

majority of research efforts towards the development of neuromorphic chips are made

in private corporations, rather than academic institutions, such as Intel’s Loihi chip

(Davies et al., 2018) and IBM’s TrueNorth chip (Hsu, 2014). These technologies are

not available for use by the general public. In academic spheres, the SpiNNacker

project (Furber, Galluppi, Temple, & Plana, 2014) is the only neuromorphic comput-

ing architecture that is available to researchers through cloud access, but access to the

SpiNNacker platform is only available through invitation and use-case approval. This

researcher made a use-case request for access to the SpiNNacker architecture, but the

request was not approved as of the time of writing of this dissertation. Outside of

these options, the rest of the hardware-implemented SNNs in the literature all make

use of custom hardware designed by the authors (Indiveri et al., 2011). This approach

was not feasible for this researcher. As a result, the experiment was conducted with

the use of a synchronous or ’clock-driven’ SNN simulation (Brette et al., 2007). It

should be kept in mind that this digital simulation approach to SNN implementation

leads to lower model efficiency than hardware-based analog models.

1.7 Document Outline

The following section provides a guide to the chapters in this dissertation, and moti-

vates their function.

• Chapter 2 provides a review of academic topics relevant to this research. Fields

reviewed include the nature of temporal data, a contextual analysis of feed-

forward ANNs, recurrent ANNs and memory architectures. The state-of-the-art

in abstract mathematical neuron models and data encoding methods for SNNs

are examined. This chapter also highlights the limitations and gaps present in
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the literature.

• Chapter 3 outlines the overall design of the experiments conducted in this re-

search. The data engineering process is described in detail, and the choice of

software used to run the experiment is motivated. The methodologies of the AI

models used in the research are also specified, including evaluation metrics and

model optimization.

• Chapter 4 consists of a report of the specific implementation of the conducted

experiment. This includes a description of the final, optimised architectures,

topologies and hyperparameters, for the RNN and SNN models. The final results

of the experiment are presented, in the form of the evaluation metrics described

in Chapter 3.

• In Chapter 5, the experimental results are evaluated, and their significance is

discussed. The classifiers are compared with one another, and the research hy-

potheses are evaluated based on the experiment results.

• In Chapter 6, the undertaken research project is summarised, and conclusions

are drawn from the experiment results. The contribution of the research towards

the field’s advancement is examined, and directions for further academic work

are suggested.
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Literature Review

This chapter consists of a review of the existing academic literature relevant to the

classification of event-based data, with a specific focus on RNN and SNN classifier

models. Firstly, the nature of temporal data is examined, and its unique characteristics

are outlined. The academic context of SNNs and RNNs is reviewed using an overview

of their precursor in the field of artificial intelligence, the ANN. The seminal literature

on RNN architectures is examined, and the motivation for LSTM models is outlined.

The academic state-of-the-art in SNNs is reviewed, with special attention being placed

on specific spiking neuron models and learning rules. The literature on the biological

inspirations behind SNNs is described only where it is relevant as motivation. The

spike encoding methods for generating spiking datasets are also reviewed.

2.1 Data with Temporal Components

On a fundamental level, AI algorithms operate by learning to represent the intricate

structures present in data, with the goal of using these learned representations for

pattern detection or classification (LeCun, Bengio, & Hinton, 2015). As such, the

choice of data used to train AI models is of central importance, with different data

characteristics and properties leading to different model inference capabilities. This

also applies to data that features a temporal component.

Temporal processes manifest themselves in nature very prominently. Phenomena
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observed in reality tends to evolve its characteristics over periods of time, and in order

to model and understand this, researchers need to make use of data that specifically

incorporates temporality. Such temporal data is particularly useful due to the fact that

interactions between humans and the environment are inherently temporal in nature

(Peuquet, 1995). In the field of data science, there are two important paradigms for

expressing the change of information in relation to the progression of time. These are

the concepts of the time series and of event-driven data.

2.1.1 Time Series

A time series is any dataset where the times at which observations occur are tracked

and included within the dataset itself (Brockwell & Davis, 2002). This can either be

codified explicitly using a feature in the dataset representing time, or implicitly, as is

in the case where the data is in the form of a sequence sampled at a certain rate. Time

series can be either continuous-time, where the sample time can be any continuous

point in time, or discrete-time, where the set of sample times is discrete (for instance,

if the samples are taken every second).

The underlying structure of time series data can exhibit different distributions,

such as linearity and stationarity. Linearity refers to data where the residuals are

independent and identically distributed, (Berg, Paparoditis, & Politis, 2010), while

stationarity describes processes where the statistical properties, such as mean and

variance, do not vary over time (Blanco, Garcia, Quiroga, Romanelli, & Rosso, 1995).

Many techniques for time series analysis rely on the assumption that the time series

is either linear or stationary, or both. The can make the interpretation of their results

problematic when they are applied to time series which do not follow these assumptions

(Manuca & Savit, 1996).

2.1.2 EEG Time Series

EEG (electroencephalogram) datasets are one particular type of non-linear (Lo, Tsai,

Lin, Lin, & Hsin, 2009) and non-stationary (Muñoz-Gutiérrez, Giraldo, Bueno-López,
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& Molinas, 2018) time series. EEG signals are recorded from human subjects, and

they reflect the dynamics of electrical activity in the brain which enables populations

of neurons to work in a synchronous manner (Ernst Niedermeyer, 2005). Essentially,

EEGs measure communications in networks of neurons.

EEG measurements are taken using electrodes, attached to the scalp of the subject,

with an electrode jelly applied between the electrode and the skin. The data gathered

from a single electrode corresponds to a single EEG channel. There are several different

electrode placement schemes in use in the EEG academic literature, but the most

comprehensive of these is known as the 5%, or 10-5 system, in which the total number

of electrode locations is around 345 (Oostenveld & Praamstra, 2001). This scheme

is shown in figure 2.1. The 5% placement system does not require that researchers

make EEG recordings at all of the listed electrode locations - it only defines the scalp

locations and standard channel nomenclature to be used. For instance, the 3 datasets

used in the experiment conducted in this research (outlined in section 3.2) feature

different numbers of channels (specifically 64, 16 and 1). The creation of an EEG data

requires that the EEG data collection takes place over a certain period of time, and

that the EEG signal is sampled at a certain rate, measured in Hertz.

Certain patterns in EEG data correlate with the function of both healthy and

unhealthy central nervous systems in humans (Ernst Niedermeyer, 2005). This has

led to the widespread use of such data for the diagnoses of brain diseases, such as

epilepsy, dementia, and neurological infections (Smith, 2005).

2.1.3 Event-Based Data

Another form of data that incorporates temporality is event-based data. The idea

behind event-based data is that data acquisition occurs only when an “event” of some

interest occurs, such as a notable change in a certain quantity being tracked (Tsividis,

2010). This is particularly useful in applications where energy and bandwidth resources

are scarce.

Spike trains are an example of event-based data.
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(Oostenveld & Praamstra, 2001)

Figure 2.1: Standard EEG electrode placements and channel names according to the

5% scheme.

2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a field of Artificial Intelligence algorithms, the

operation of which is inspired on an abstract level by the structures present in the

human brain (Jain, Jianchang Mao, & Mohiuddin, 1996). This inspiration comes

in the form of implementing computational models of biological neurons and axons,

which are the connections between neurons.

One application of ANNs which is particularly relevant to this research is their
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use in modelling non-stationary time series data. As outlined in section 2.1.2, this is

a problem domain with which other methods of time series analysis encounter issues

due to their underlying assumptions about data distributions. However, ANNs make

no such assumptions, and have been demonstrated to be able to model non-stationary

time series with high degrees of success (Kim, Oh, Kim, & Do, 2004).

2.2.1 ANN Neuron Model

(Jain et al., 1996)

Figure 2.2: The MP Computational Neuron

The basic computational neuron model in ANNs, known as the McCulloch and

Pitts (MP) neuron (pictured in Figure 2.2), is essentially an input/output device

(Hopfield, 1988). It works by calculating a weighted sum of its inputs, and applying

an activation function on the result, often a simple sigmoid function, though the choice

of activation function varies depending on the problem. Each input to the neuron is

weighted using a connection weight. The process of learning, or ’training’, in the ANN

involves making changes to precisely these connection weights.

2.2.2 ANN Decision-Making

The activation function of the neuron is what gives it its decision-making properties.

The use of a threshold-based activation function, such as the sigmoid function, allows

the neuron to model non-linear decision frontiers, which is something that linear sys-

tems are not able to do (Jain et al., 1996). McCulloch and Pitts (1943) demonstrated

that, in principle, if a number of MP neurons are connected in a certain manner, the
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neurons’ weights can be suitably optimised such that universal computation can be

performed.

2.2.3 ANN Architecture

(Manning, Sleator, & Walsh, 2013)

Figure 2.3: A Multi-Layer Perceptron with One Hidden Layer

The typical architecture used in non-recurrent ANNs is known as a feed-forward

network, where neurons are organised into layers and each neuron propagates its out-

put into the ensuing layer’s neurons. In the literature, these types of networks are also

known as Multi-Layer Perceptrons (MLPs) (Rumelhart & McClelland, 1987). MLPs

consist of a minimum of three layers of neurons: an input layer, at least one hidden

layer, and an output layer. The hidden layers allow the network to create complex

internal representations of the input, which is then propagated to the output layer.

The classification/prediction results of the model are then determined from the output

layer.

2.2.4 Learning in ANNs

ANNs are optimised by iteratively updating the connection weights between neurons

so that the final output of the network is as close as possible to the structures observed
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in the real data. This process is known as learning, or training. There exist a num-

ber of different categories of learning techniques used in ANNs, depending on what

information is available to the network (Mohri, Rostamizadeh, & Talwalkar, 2012):

• Supervised Learning:

This category of learning algorithm makes use of not just the training data for

learning, but also the target variable labels of the training data. This allows the

ANN to calculate the error of its predicted labels compared to the true labels

(known as the error signal) during learning, which can then be used to update the

network’s weights such that the error is reduced. Learning rules which operate

on this principle are known as Error-Correction rules (Jain et al., 1996). This

paradigm is the most common one used for classification problems.

• Unsupervised Learning:

In this case, the labels of the training data are not available to the network,

and the ANN attempts to learn to recognise some kind of underlying pattern

in the input data. The absence of the training data’s true target labels during

learning means that there is no way to use the model error during training. Ex-

amples of Unsupervised Learning problems include clustering and dimensionality

reduction.

In addition to the above paradigms, ANNs can be trained using Semi-Supervised

Learning, Reinforcement Learning, and Online Learning, among others (Mohri et al.,

2012).

Backpropagation

In the area of supervised learning, the Backpropagation algorithm is one of the most

important developments leading to the widespread use of neural network models.

Based on the Error-Correction principle, Backpropagation is a learning rule which

uses the chain rule to find the derivative of the loss function with respect to the

synaptic weights, and implements a Gradient Descent method for determining the op-

timum weights in a feedforward architecture (Rumelhart, Hinton, & Williams, 1988).
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Network optimisation with Backpropation starts by computing the changes for the

weights feeding into the output layer, and the process is repeated for each previous

layer, such that the error is propagated backwards through the network.

2.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a subset of ANNs which differ from traditional

feed-forward networks in that they employ a looping, or recurrent, mechanism. This

allows them to operate in a temporal manner. Hidden neurons in RNNs aren’t just

connected to the hidden neurons in the next layer, but also recurrently to themselves,

across all previous timesteps. These recurrent connections permit the hidden neurons

to take into account information from their temporally previous output, which in turn

shapes their subsequent behaviour.

The recurrent mechanism lets the RNN represent memory (Elman, 1990), which

sets recurrent architectures apart from simple feed-forward ones, which are memory-

less, meaning that their output is only a function of the current data, rather than of

both current and previous samples (Ma & Principe, 2019).

(Z. Zhang et al., 2018)

Figure 2.4: A recurrent neuron, unrolled over time

RNNs’ ability to process memories allow them to make use of the temporal context

present in time-series data. As a result, RNN models trained on such data are of

significant interest in fields that deal with elements that interact with each other
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in space and time, therefore having temporal features. These fields include video-

recognition (Le, Zou, Yeung, & Ng, 2011), robotics (Douillard, Fox, & Ramos, 2011),

and self-driving vehicles (X. Zhang, Jiang, & Wang, 2014), all important problem

areas in deep learning and fields where RNN applications are widespread.

In addition to this, said contexts can be of arbitrary length, due to RNNs’ recur-

rent nature which allows information to repeatedly cycle inside the network (Mikolov,

KarafiÃ¡t, Burget, CernockÃœ, & Khudanpur, 2010). This makes them much more

effective than feed-forward architectures at modelling behaviors which express them-

selves as temporal sequences, such as speech and language (Elman, 1990).

2.3.1 Learning in RNNs

The Backpropagation algorithm used for supervised learning with feed-forward neural

networks can be adapted to train RNNs, with the Backpropagation Through Time

(BPTT) algorithm. Derived from the classical Backpropagation algorithm (outlined

in section 2.2.4), it also relies on the use of the chain rule to calculate and backpropa-

gate the error gradient. In order to implement BPTT in RNNs, the network must first

be unrolled over time, essentially leading to the creation of a feed-forward network

for each timestep (Mozer, 1995). During optimisation, the gradient is backpropagated

through each of these different networks, which means that as the number of timesteps

increases, this method can become computationally expensive, and incur a very high

memory requirement (Nowak et al., 2017). Additionally, each of the individual net-

works in the unrolled RNN contains internal dependencies to the network from the

previous timestep, which introduces a bottleneck for GPU based training implemen-

tations (Hwang & Sung, 2015). This is because these internal dependencies limit the

number of parallel operations that can be conducted using GPU hardware.

RNNs encounter a significant issue when they are applied to the learning of long-

term temporal dependencies. Bengio, Simard, and Frasconi (1994) prove experimen-

tally that learning these long-term dependencies with RNNs using gradient descent

becomes increasingly inefficient as the temporal span of the dependencies becomes

longer. In addition to this, the effect of noise on learning increases along with the
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length of the dependencies. Also, RNNs encounter the ’vanishing gradient’ problem,

causing error signals propagated backwards in time to decay (Hochreiter, 1998), mak-

ing long-term dependencies hard to learn with the BPTT algorithm due to insufficient

weight changes.

2.3.2 LSTM

(Donahue et al., 2014)

Figure 2.5: RNN and LSTM cells

The vanishing gradient issue seen in RNNs can be alleviated by making use of the

Long Short Term Memory (LSTM) network architecture (Hochreiter & Schmidhuber,

1997), which can capture long-term dependencies in excess of 1000 timesteps, while

not diminishing the network’s ability to model short-term structures. The LSTM

architecture achieves this by keeping the error gradient flowing back through time

constant. LSTM cells employ a hidden state, which tracks the internal memory con-

tents of the cell. In addition to this, three different memory gates are used to control

the information flow into and out of the CEC. These memory gates are the ’forget’

(Gers, Schmidhuber, & Cummins, 2000), ’input’ and ’output’ gates.
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2.4 Spiking Neural Networks

SNNs are a cutting-edge development in the field of machine learning, which are in-

tended to more accurately imitate the biology of the human brain, as opposed to

the abstract representation used by ANNs. The general motivation behind this ap-

proach is to capture the human brain’s capabilities for multi-tasking, learning with

minimal supervision and generalizing learned skills, all done with high computational

and energy efficiency (Poo, 2018).

(Wang, Lu, & Wen, 2017)

Figure 2.6: Biological neuron structure

In SNNs, information is not represented as matrices of scalars, as is the case with

ANNs, but as sequences of binary events, or spikes. These spikes are inspired by the

actions of Event-Related Potentials (ERPs) in the brain, which are voltages present

in the brain in response to specific stimuli (Blackwood & Muir, 1990). Sequences of

spikes over time are referred to as ’spike trains’, and their temporal nature makes them

a very powerful method of encoding information. In particular, the nature of spike

trains makes them particularly efficient for representing temporal data. The advantage

of using data encoded as spikes is that it can enable SNNs to process complex inputs

faster than with scalar data (S. Thorpe, 1990).

Spike trains are not just an efficient method of encoding temporal information. The

literature on neural information processing shows that the precise timing of ERPs, and

their impact on the membrane potential, is an integral part of information processing

in the brain (Bohte, 2004a). As such, significant research efforts have been made to
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implement approaches mirroring the brain’s biological learning methods in SNNs.

In addition to this, the event-based information processing in SNNs occurs on a

massively parallel scale, allowing many neurons to communicate and process spike

sequences simultaneously. This is similar to the phenomenons observed in biologi-

cal brains, (White & McDonald, 2002) where multiple, independent neural systems

continually process information and influence behavior simultaneously and in parallel.

This event-based processing presents another advantage to using SNNs as opposed

to traditional ANNs - while ANNs have to update the activation value of every neu-

ron in the network at every timestep, SNNs only update activation values when a

neuron ’spikes’ (Neil et al., 2016), or when the ERP reaches a certain threshold.

This sparse computation makes them more computationally and energy efficient than

ANNs. Additionally, Maass (1996) demonstrate that individual spiking neurons have

more processing power than the individual sigmoid neurons typically used in ANNs.

The literature on SNNs is extensive, and many different spiking neuron models

have been proposed by researchers. These are outlined in section 2.4.3. Additional,

researchers have constructed SNN architectures which incorporate a variety of non-

spiking layer types into the topology of the network. These hybrid models include

spiking deep belief networks (O’Connor, Neil, Liu, Delbruck, & Pfeiffer, 2013), spik-

ing convolutional networks (Cao, Chen, & Khosla, 2015), and reservoir-based spiking

networks (Schliebs, Hamed, & Kasabov, 2011), as well as spiking recurrent neural

networks (Buesing, Bill, Nessler, & Maass, 2011).

2.4.1 SNN Implementation Approaches

The modelling of SNNs provides a number of implementation challenges when com-

pared to ANNs. Broadly speaking, ANNs attempt to find a solution to a problem

where the decision frontier is non-linear, meaning that finding an analytical solution

to the problem would be too complex. To counter this, ANNs use numerical simu-

lations on digital computer hardware to find solutions to these problems (Schemmel,

Grubl, Meier, & Mueller, 2006). Another approach to this involves implementing the

neural network in analog, rather than digital hardware, on VLSI circuits, a concept
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(Ghosh-Dastidar & Adeli, 2009)

Figure 2.7: A typical feedforward spiking neural network architecture, with a single

hidden layer

known as neuromorphic computing (Mead, 1990). While this approach is not neces-

sary for ANN implementation, it is currently the most feasible way to model SNNs, as

having a physical neural network model allows for the assignment of physical quanti-

ties (such as voltage) to represent the physiological quantities which make biological

neurons such effective information processing units (such as the neuron’s spiking po-

tential). Digital models of SNNs would have to simulate these physiologically-inspired

quantities numerically, making them inefficient when compared to the physical model.

As a result of this, there are two main approaches for implementing SNNs for practical

applications - using on-chip training of SNNs with neuromorphic hardware, and using

SNN simulators on conventional hardware.

Neuromorphic platforms for SNN implementation include Intel’s Loihi chip (Davies
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et al., 2018), IBM’s TrueNorth chip (Hsu, 2014), and SpinNNaker (Furber et al., 2014).

However, access to this hardware was not available for this research, and as a result,

an SNN simulator was used.

SNN Simulators

Due to the limited availability of neuromorphic hardware for research of SNNs, a

number of SNN simulators have been developed by academics. Brette et al. (2008)

provide a detailed review and comparison of 8 SNN simulation environments prevalent

in the literature, though it does not cover the simulators that have been developed

since 2007. The following list describes the capabilities and intended use of several of

the most popular SNN simulators, including newer, cutting edge platforms.

1. GENESIS

GENESIS (the GEneral NEural SImulation System) is a spiking neuron sim-

ulator written in C, and is the first such simulator presented in the literature

(J. M. Bower & Beeman, 2012). Development in GENESIS is performed using its

own proprietary scripting language. Its purpose is to provide a platform for con-

ducting research into biological neural systems by constructing physiologically

realistic models (J. Bower & Hale, 1991). As a result, conducting experiments

in GENESIS may be excessively specific for researchers looking to model more

simplified neuron models, such as LIF.

2. NEURON

NEURON is another platform designed primarily for biologically-stringent sim-

ulation of nerve cells (Hines & Carnevale, 2013). The problems for which it is

most efficient are those involving the simulation of the neurophysiology of a small

number or single neurons. As such, it is less appropriate for the domain of neu-

ral networks involving many neurons, and more so for neurobiology. NEURON

does not make use of any particular mathematical model (described in section

2.4.3) for spiking neuron simulation, but rather deals with specific concepts at
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the neuroscience level. The NEURON simulator has also been extended to use

a Python interpreter (Hines, Davison, & Muller, 2009).

3. NEST

NEST is an open-source SNN simulator implemented in C++ (Gewaltig & Dies-

mann, 2007). It can be used only for simulation of homogeneous networks, where

all of the neurons are of the same mathematical neuron model. Despite this, the

NEST framework is very extensive, and supports the use of the LIF and HH

neuron models, though only for unsupervised learning through STDP. While the

framework originally required the use of a Typescript-derived SLI (simulation

language interpreter) for development, a Python-based interface to NEST was

later introduced, called PyNEST (Eppler, Helias, Muller, Diesmann, & Gewaltig,

2009).

4. Brian

The Brian simulator is the first SNN simulator written in pure Python (Goodman

& Brette, 2008). Its primary aim is improved ease-of-use over other simulators

available in the literature, as opposed to biological accuracy or simulation effi-

ciency. The package developers intend that Brian is used mostly as a tool for

learning and teaching computational modelling (Goodman & Brette, 2009). It

supports the use of the LIF, HH and Izhikevich neuron models, and does not

require that networks modelled with it are homogeneous. However, the current

version of Brian does not provide any methods for supervised learning.

5. ANNarchy

ANNarchy is an open-source, flexible neuron simulator, written in C++, with a

Python interface (Vitay, Dinkelbach, & Hamker, 2015). It also supports GPU

training. It was originally developed for the simulation of exclusively rate-coded

networks, where the precise spike timing is not considered during learning. How-

ever, it was later extended to permit simulation of precisely-timed spiking net-

works, as well as hybrid networks, using both rate-coded and precisely-timed
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components. It is able to simulate LIF, HH, and Izhikevich neuron models, but

it does not contain any supervised learning rules.

6. BindsNET

BindsNET is an open-source SNN simulation package written in C++, with a

Python wrapper (Hazan et al., 2018b), and is one of the few SNN simulators

designed for the express purpose of solving machine learning problems. Ad-

ditionally, the package uses PyTorch for its matrix computations to make its

simulations more efficient. One of the main advantages of BindsNET is that

it contains a host of different learning rules and spiking neuron models already

included in the package - it can be used for supervised, unsupervised, and rein-

forcement learning, using both Izhikevich and LIF neurons.

7. SpykeTorch

SpykeTorch is a simulation framework for SNNs written in Python. It’s ma-

trix calculations are conducted using PyTorch, which makes it highly efficient

and able to use GPU hardware for training. However, the package is limited to

network simulations with at most one spike per neuron (Mozafari, Ganjtabesh,

Nowzari-Dalini, & Masquelier, 2019). It is also not able to accommodate super-

vised learning problems, as there are no such rules programmed in the package.

Due to the massively parallel nature of SNNs, computer hardware implementations

of SNNs require vast amounts of electrical power and great lengths of time, which

hinders scientifically-useful experimentation.

2.4.2 Spike Train Generation

As outlined in section 2.1.3, SNNs make use of sequences of binary events, known

as spike trains. There are two main approaches to generating data in the form of

spike trains. The first of these involves the use of event-driven neuromorphic sensors

(Liu & Delbruck, 2010), which by design output data in the form of spike trains.
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Neuromorphic sensors have been designed for a number of different applications, in-

cluding computer vision (Costas-Santos, Serrano-Gotarredona, Serrano-Gotarredona,

& Linares-Barranco, 2007) and audio processing (Wen & Boahen, 2009). The second

method for generating spike train data is converting existing, non-spiking datasets

made up of scalar data into spike trains.

Scalar data (such as image pixel data, EEG voltages, etc.) can be encoded as a

spike train using a number of different approaches, which can be broadly categorised

within two types. The first of these is rate-based coding, which is based on the concept

that all of the information processed by the neuron can be represented simply using the

neuron’s firing rate, as opposed to using the precise timing between spikes (Adrian &

Zotterman, n.d.). This approach has been widely used in experiments on the operation

of neurons, and has a biological basis in the firing patterns of motor sensory systems.

However, research conducted by Stein, Gossen, and Jones (2005) indicates that

while simply encoding neural stimulus as a rate might be sufficient in motor sys-

tems, more sophisticated neural systems such as the somatosensory and visual systems

(Gollisch & Meister, 2008) rely on the precise spiking times to encode information.

This has led to the development of a second category of approaches to spike encoding,

known as temporal, or spike-time coding. Bohte (2004b) also show that the precise

timing, rather than the overall rate, of incoming spikes in animal brains encodes the

majority of information.

With respect to SNNs, the literature supports the use of temporal coding rather

than rate-based coding. Rate-based encoding models are more prevalent in the field of

indirect supervised training of SNNs (Mostafa, 2018), but since this approach involves

the training of ANNs using scalar data, it is not appropriate for processing event-based

data. On top of this, spiking models which utilise rate-coded data for information are

inefficient. In direct SNN training approaches, temporal coding is more appropriate,

as it allows for more sparse and information-dense neuron firing (Mostafa, 2018).

The literature on learning rules for SNNs also focuses nearly exclusively on the use of

temporal spike-trains for information processing, with all of the learning rules discussed

in section 2.4.4 relying on the temporal encoding scheme.
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Spike Encoding Strategies

There are several different methods available for encoding scalar data as spike trains.

These include:

• Rank Order Coding (S. Thorpe & Gautrais, 1998)

• Time to First Spike (Tuckwell & Wan, 2005)

• Threshold-Based (N. Kasabov, 2016)

• Step-Forward (SW) (N. Kasabov, 2016)

• Moving-Window (MW) (N. Kasabov, 2016)

• Ben’s Spiker Algorithm (Schrauwen & Van Campenhout, 2003)

Each of these encoding methods can be viewed as a method of data compression,

and each of them exhibits different characteristics of lossiness. In addition to this,

spike encoders often vary in the types of spike signals they are able to encode. One

important distinction in spike signals relevant to this is whether the signal is unipolar

or bipolar - in the case of EEG signals, it is unipolar. Petro, Kasabov, and Kiss (2019)

conduct a review of several spike encoding algorithms and determine that the most

effective method for encoding unipolar signals is BSA (Schrauwen & Van Campenhout,

2003).

2.4.3 Spiking Neuron Models

There exist in the literature a number of mathematical models for describing the ac-

tions of spiking neurons, which can be placed on a varying scale of biologically accuracy

when compared to the behaviour of physical neurons. All mathematical spiking neuron

models emulate biological neurons in that they activate (ie. spike) only when a certain

neuron action potential exceeds a threshold, though different models achieve this with

differing levels of detail (Pfeiffer & Pfeil, 2018), and selecting the appropriate model

often involves a trade-off between biological accuracy and computationally efficiency.
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In this subsection, the three spiking neuron models which are most prevalent in the

SNN literature are described. While there are many more varieties of neuron models,

these three represent the most seminal and influential approaches.

Hodgkin-Huxley

The first of these is the Hodgkin-Huxley (HH) model (Hodgkin & Huxley, 1952), which

explains the firing activity of a giant squid axon. The spiking activity in HH neurons is

determined by the contributions of several ionic currents to the action potential, which

are described by 4 non-linear differential equations (Kistler, Gerstner, & van Hemmen,

2000). While highly biologically accurate, HH is a complex model to implement, as

it requires the use of 16 parameters corresponding to membrane capacitance, ionic

conductivity, potentials and voltages of the currents involved (Meunier & Segev, 2002).

As a result, more abstract neuron models tend to be used by researchers for large-scale

spiking neural network studies (Herz, Gollisch, Machens, & Jaeger, 2006).

Leaky-Integrate-and-Fire

A model of spiking neuron that is highly prevalent in the literature (Burkitt, 2006)

is the Leaky-Integrate-and-Fire (LIF) model. Unlike the HH model, the LIF model

makes use of a single linear differential equation to model the evolution of the neuron’s

action potential (Gerstner, Kistler, Naud, & Paninski, 2014a). LIF neurons exhibit a

vital behaviour present in biological neurons - time-dependent memory. This is due to

the ’leaky’ component of the model, which allows the action potential of the neuron to

leak out during the time intervals between spikes (Dutta, Kumar, Shukla, Mohapatra,

& Ganguly, 2017). While this ’leaky’ characteristic is also present in the HH model

(Gerstner, Kistler, Naud, & Paninski, 2014b), the LIF model has a significantly lower

computational cost, requiring only 5 floating-point calculations per 1ms of neuron

simulation compared to HH’s 1200 calculations.

Additionally, there are several more sophisticated spiking neuron models that build

on the basic LIF model described above. This includes the LIF model with Adaptive

Spiking Thresholds, (Diehl & Cook, 2015), which increase the model’s biological plau-
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sibility by introducing a mechanism for limiting neurons’ spike rates. Essentially, LIF

neurons with Adaptive Spiking Thresholds cause a neuron’s spiking threshold to in-

crease after every spike. If a spike does not occur, the spiking threshold decays over

time back to its original value. A review of the spiking neuron models which add to

the standard LIF is conducted in Feng (2001).

Izhikevich

Another significant spiking neuron approach is the Izhikevich model (Izhikevich, 2003),

which represents a compromise between the biological accuracy of the HH model, and

the computation efficiency of the LIF model. Though the Izhikevich model consists

of just two equations and has only one nonlinear term, Izhikevich (2003) consider it

a ’canonical’ neural model, as with the correct parameter optimisation, it is able to

mirror the performance of even the most complex, biologically accurate spiking neuron

models, such as that of HH.

Izhikevich (2004) review 20 features prominent in biological spiking neurons which

contribute to the overall complexity of their spiking behaviour, with the aim of com-

paring the comprehensiveness of existing spiking neuron models by examining which

features they are able to represent. From the 11 different spiking neuron models

examined, only the Izhikevich model excels in both biological plausibility and com-

putational efficiency, with the authors being able to experimentally reproduce all 20

biological features. For other biologically accurate but less computationally efficient

models, such as the HH model, Izhikevich (2004) are unable to determine experimen-

tally if they exhibit all 20 biological features, as the authors failed to find the necessary

parameters for this purpose within a reasonable period of time.

(Diehl & Cook, 2015) that its ability to replicate biological neuron features does

The chosen spiking neuron

2.4.4 Learning Rules in SNNs

In order to perform optimisation of SNNs, specific learning rules are used. These rules

dictate how the weights of the spiking neurons are adjusted, which is identical to the
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role player by learning rules in ANNs. Learning rules can be split into a number

of categories, namely supervised, unsupervised, semi-supervised and reinforcement

learning.

Unsupervised Learning

The Rank Order learning rule, first described by S. J. Thorpe, Delorme, and van Rullen

(2001), assumes that earlier spikes carry more information, therefore only considering

the order of spike arrival when calculating weight changes. The rank order learning rule

is motivated by the idea that animal brains’ ability to rapidly process sensory inputs

is due to earlier input spikes carrying more information than later ones (S. Thorpe,

Fize, & Marlot, 1996). This concept is further supported by VanRullen, Guyonneau,

and Thorpe (2005), who underline the critical importance of first-spike time encoded

data in human sensory systems at the population level.

Another prominent learning rule is spike-timing dependent plasticity (STDP). In

the SNN literature, this learning rule receives a large amount of attention, as it has

been proven to mirror the biological processes used by animal brains for learning

and memory (Caporale & Dan, 2008). It also requires a spiking architecture for

implementation, and cannot be used for training ANNs. As such, research on STDP

has driven a lot of development in the field of spiking neuron models and networks.

STDP allows connected neurons to learn consecutive temporal associations from

data, forming chains of connections to represent patterns in the data.

Supervised Learning

In supervised learning, an artificial intelligence model is optimised by reducing the

error between the observed labels in the training data and the model’s predicted la-

bels. Artificial Neural Networks achieve this using the Backpropagation algorithm

(Rumelhart et al., 1988) which involves propagating the derivative of the loss func-

tion backwards through the network. However, SNNs encounter an issue with the

implementation of Backpropagation, being that SNNs use spike trains for information

processing, which are non-differential as they are a sequence of discrete events, repre-
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sented by a sum of Dirac delta functions (Tavanaei et al., 2019). Therefore, methods

for SNN supervised learning utilise approximations of the derivative.

1. SpikeProp

The SpikeProp learning rule (Bohte, Kok, & Poutré, 2001) is able to circumvent

the problem of non-differentiable spike trains by approximating the neurons’

spiking thresholds as a function, which allows the partial derivative of the re-

lationship between the input data and the resultant spiking time to be found.

However, the original SpikeProp learning rule as presented by Bohte et al. (2001)

is only able to optimise networks in which the neurons are constrained to emit

just a single spike. Ghosh-Dastidar and Adeli (2009) succeed in adapting the

SpikeProp algorithm for use with SNNs that exhibit multiple spikes per neuron.

This learning rule is dubbed Multi-SpikeProp.

2. ReSuMe

ReSuMe is a supervised learning rule for SNNs Ponulak and Kasiński (2009)

which is based on the Widrow-Hoff algorithm, an optimisation method origi-

nally developed for non-spiking neurons (Widrow & Hoff, 1988). The ReSuMe

algorithm is able to minimise the error between the target and output spike

trains without having to explicitly calculate the gradient, and unlike the original

SpikeProp algorithm, can process more than a single spike per neuron.

3. SPAN

The SPAN (spike pattern association neuron) learning rule is different from other

supervised rules in that it converts the SNN’s spike trains into analogue signals

before optimisation takes place. Like ReSuMe, it also based on the Widrow-Hoff

learning rule, but SPAN allows each neuron in the network to learn and memorise

more information. N. K. Kasabov (2019) demonstrates this experimentally by

comparing the classification accuracy of ReSuMe networks and SPAN networks

with equal numbers of spiking neurons, concluding that ReSuMe has less memory

capacity than SPAN.
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4. Clamping

In addition to the supervised learning rules above, the unsupervised STDP learn-

ing rule can be modified to perform unsupervised learning tasks. This is done

by ’clamping’ certain neurons to particular labels (Hazan et al., 2018a). Spiking

neurons in the hidden layer of the network are divided into groups, one group

for each class label present in the dataset, with each group containing the same

number of spiking neurons. During training, the class label of the current sample

is recorded and a random neuron in the corresponding group is selected. The

chosen hidden layer neuron is then induced to spike at every time step in the

presented sample sequence. This lets the neuron’s weights learn the features of

the input sample.

5. Indirect Training

Another alternative to supervised training of SNNs is indirect supervised train-

ing. This involves the training of conventional ANNs using scalar data, and then

transferring the learned model weights to an SNN with a specialised conversion

algorithm. While these models tend to achieve state-of-the-art classification per-

formance in the field of SNNs (Diehl et al., 2015), they are inefficient learners,

and encounter limited effectiveness in certain problem domains. Pfeiffer and

Pfeil (2018) detail the reasons behind these limitations. Firstly, only a subset

of artificial neuron activation functions can be converted to SNN - the sigmoid

activation function is an example of one that cannot. In the case of converting

CNNs, pooling operations are difficult to implement in SNNs. Additionally, con-

verted SNN models tend to require significantly more spikes than directly-trained

SNNs to achieve the same inference performance.

6. Teacher Forcing

A novel supervised learning paradigm for spiking neural networks, Teacher Forc-

ing (also known as Forced Teaching), allows the unsupervised STDP learning

rule to be adapted to perform unsupervised learning tasks (Legenstein, Naeger,

& Maass, 2005). Teacher Forcing is different from other supervised learning
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techniques in that it is not error-based, that is, the error between the target

and predicted spike trains is not used during training. Essentially, Teacher Forc-

ing works by ’clamping’ the output of the spiking neuron to the desired target,

which forces the synaptic weights of the neuron to converge to the target weights.

Legenstein et al. (2005) prove that spiking networks of LIF neurons with Adap-

tive Thresholds are able to learn any arbitrary transformation between input and

output spike trains when using this learning paradigm, making it an effective su-

pervised learning rule. This technique is inspired by a similar learning rule used

in reservoir computing (Paugam-Moisy, Martinez, & Bengio, 2008). Unlike other

techniques, the target behavior does not have to be specified as a closed form

differential equation for training. There is no batch learning implementation for

Teacher Forcing, and as such training with this approach uses with a batch size

of 1.

2.5 Summary, Limitations and Gaps in Literature

Review

The literature review in this study covered a number of topics relevant to the research

problem being investigated. These inlcluded outlines of the type of data being studied,

as well as AI methods such as ANNs, recurrent ANNs and SNNs for information

processing of time series data.

However, there are a number of gaps present in the literature relevant to this

research, such as in the area of spike encoging. While a number of effective encod-

ing strategies have been proposed, such as rank-order encoding, and HSA encoding,

representing data as temporal spike-trains tends to be a lossy process (Sengupta &

Kasabov, 2017). In fact, there are currently no lossless encoding techniques for spike

trains. This can be considered a significant gap in the literature on SNNs.

Even though there are many theoretical advantages to the use of SNNs over RNNs

for time series classification, there are no comparative studies in the literature that

prove or disprove the existence of these advantages experimentally. This is an impor-
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tant gap in the literature on SNNs that this research aims to fill.
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Chapter 3

Design and Methodology

This chapter describes the experiments used to generate the results from which a

conclusion to the research question was reached. The experiments conducted are

described, and the data, software and tools used are motivated and outlined.

3.1 Data Understanding

The research utilised a total of three EEG datasets. Each of these had a temporal

component, and also had binary target variables.

3.1.1 EEG recordings of healthy adolescents and adolescents

with symptoms of schizophrenia

The first of these is an EEG dataset from Moscow University (Gorbachevskaya &

Borisov, n.d.). It contains EEG time series data from 84 subjects, with 16 features,

one for each of the 16 EEG channels recorded. Each observation represents 1 minute

of recorded EEG amplitude (mkV), and since the sampling rate is 128 Hz, there are

7680 samples for each observation. The target variable represents whether or not the

subject exhibits symptoms of schizophrenia. The class balance in the target variable

is 46.43% healthy subjects and 53.57% subjects with schizophrenia. This data will be

referred to as the ’Schizophrenia Dataset’ for conciseness.
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Figure 3.1: Schizophrenia Dataset Target Class Proportions

3.1.2 EEG recordings of alcoholics and control subjects

The second dataset utilised is from a study by the Neurodynamics Laboratory of

the State University of New York Health Center (Lichman, n.d.), which investigates

whether genetic predisposition to alcoholism can be predicted from EEG data. This

EEG is recorded using 64 channels. The length of each trial is 1 second of EEG

amplitude, sampled at 256 Hz, with 256 samples for each trial. The target variable

is binary and shows if the recorded EEG is from an alcoholic subject or a control

subject. The class balance in the target variable is 20% healthy subjects and 80%

alcoholic subjects. Unlike the other 2 EEG datasets used in this study, this dataset

has predetermined training and test sets, each containing 100 observations. This data

will be referred to as the ’Alcoholism Dataset’ for conciseness.
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Figure 3.2: Alcoholism Dataset Target Class Proportions

3.1.3 EEG of healthy subjects and subjects with epilepsy

The third and final dataset used is from the University of Bonn (Andrzejak et al.,

2002), which records single-channel EEG information from subjects with and without

epilepsy. It consists of EEG time series data from 500 subjects, with readings lasting

23.5 seconds and containing 4097 data points. The original dataset also has 5 possible

categories, with 1 category being used to identify subjects with epilepsy, while the

other 4 all represent subjects without epilepsy. The class balance in the target variable

is 20% subjects with epilepsy, and 80% subjects without epilepsy. This data will be

referred to as the ’Epilepsy Dataset’ for conciseness.

Figure 3.3: Epilepsy Dataset Target Class Proportions

41



CHAPTER 3. DESIGN AND METHODOLOGY

3.2 Data Preparation

3.2.1 Data Encoding

No data encoding is necessary for training the RNN models, since all of the datasets

used in this research (described in Section 3.2) are already in a time series format.

However, Spiking Neural Networks utilise spike trains, which are sequences of neuron

firing times, as opposed to time series of real-valued data. For this reason, the three

datasets first were converted to spike trains before the Spiking Neural Network models

could be trained on the data.

As outlined in Section 2.4.2, the optimal method for encoding unipolar signals as

spike trains is BSA (Ben’s Spiker Algorithm). EEGs are unipolar, as it is impossible

to record a negative EEG voltage. Since the datasets in this research that need to be

encoded are all EEG time series, and these are by definition unipolar signals, the BSA

encoding algorithm was selected.

3.2.2 Dataset Construction

All of the datasets were constructed to have this common shape:

([Number of Observations], [Number of Dimensions], [Sequence Length])

The Schizophrenia Dataset is received in the form of 2 data archives, containing

39 and 45 text files respectively. Each text file contains the EEG data of a single

subject, with the first data archive representing healthy subjects and the second rep-

resent subjects with schizophrenia. Since the EEG time series is of length 7680, and

amplitude was measured at 16 different positions on the scalp, each subject’s EEG

text file contains 122880 amplitude values, as a sequence of 16 time series, one for

each EEG channel. The text files’ contents were converted from single arrays into

two-dimensional data matrices, and concatenated together to form the full dataset,

leading to a final data matrix of shape (84, 16, 7680).

The Alcoholism Dataset consists of a predetermined training and test set. Both the

training and test sets contain 10 subjects each, with each subject having 10 recorded
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EEG trials Each trial file has 4 columns, representing the trial number, sensor position,

sample number and sensor value. In total, each file contains 256 samples for each of

the 64 different sensor channels. The file contents were grouped by the sensor position

and converted into two-dimensional data matrices. Whether the trial was conducted

by an alcoholic or control subject was determined by the presence of either an ’a’ or

’c’ as the fourth character in the filename, and this was used to construct the array of

target labels. The final data matrix was of the shape (200, 64, 256).

The Epilepsy Dataset originally consisted of 5 sets (A, B, C, D, and E) of 100 files

each, one file for each subject. The folders each represent subjects that belong to a

certain class in the target variable. However, according to Andrzejak et al. (2002),

only subjects that belonged to class E experienced epileptic seizures. As such, the

dataset’s target variable was re-coded to be binary, with classes 2, 3, 4, and 5 all

becoming class 0. Each of the 100 files in each set contained just a time series of

length 4096. Unlike the other datasets used in this research, the Epilepsy Dataset

only has a single sensor channel. As such, the only dataset construction necessary was

to concatenate the contents of each text file into a single data matrix of shape (500,

1, 4096).

3.2.3 Dataset Balancing

In each of the three datasets, the target variable was not balanced equally between

positive and negative samples, though to differing degrees. This can cause problems

for models’ abilities to learn data structures, as having a target class be a minority

means that the model will have a lower recall (outlined in section 3.6) when predicting

this class. To counteract this, for each dataset, the training sets were balanced using

simple undersampling of the majority target class. This was not done for the test sets.

3.2.4 Data Splitting

The datasets were split into training sets and test sets, to validate the model’s per-

formance on data that was not used for learning. The splitting was conducted using

43



CHAPTER 3. DESIGN AND METHODOLOGY

stratified 10-fold cross-validation, ensuring that each split contained the same number

of positive and negative target values. The final evaluation metrics for each model

were calculated by averaging each individual fold’s evaluation metrics. This is espe-

cially important for the Schizophrenia and Epilepsy datasets, which have relatively

few observations.

3.3 Software

The choice of software to use for the experiment was influenced to a high degree by

the nature of the experiment.

1. SNN Simulator

As discussed in Section 2.4.1, it was determined that an SNN simulator frame-

work would be necessary in order to construct the SNN classification models. The

choice of which simulator to use is constrained by the nature of the experiment.

Since the classification of EEG datasets is a supervised learning problem, the

primary requirement for the simulator is the availability of supervised learning

methods. The only such package from those outlined in Section 2.4.1 is Bind-

sNET, which utilises a technique known as ’clamping’ to adapt the unsupervised

STDP learning rule into a supervised rule. In addition to this, BindsNET is

unlimited in the quantity of neurons it can simulate, and supports the use of

numerous different spiking neuron models, in a non-homogeneous network struc-

ture. As a result, the BindsNET simulator is used for this experiment.

2. Statistical Programming Language

For conducting data preprocessing and model construction, a statistical pro-

gramming language would need to be used. Since the SNN simulator that would

be used for the experiment, BindsNET, is Python-based, and due to the avail-

ability of a number of advanced deep learning libraries, Python was selected as

the statistical programming language for the experiment.

3. RNN Model Framework
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In order to construct the RNN models against which the SNN model would be

compared, a deep learning library would need to be used. This library would

have to support sequential modelling. Since Python was selected as the experi-

ment’s statistical programming language, the choice of deep learning library was

constrained to Python-based libraries. Keras was selected for this purpose, due

to it being a high-level deep learning framework, leading to faster prototyping

time.

3.4 Modelling

This section outlines the model architectures, layer topologies, and learning rules em-

ployed in both the RNN and SNN classification models. Additionally, the specific

hyperparameter optimisation process in each case was outlined.

3.4.1 SNN Model Architecture

Layer Topology

The architecture of the SNN model was inspired by a number of state-of-the-art clas-

sification models present in the literature.

The number of hidden layers in the SNN is an important architectural decision that

will influence the classification performance of the model. Even though it is standard

practice in ANN architectures, in the SNN literature, implementations do not tend to

utilise more than a single hidden layer. Ghosh-Dastidar and Adeli (2009) achieve a

classification accuracy of 94.8% on the Epilepsy Dataset (Andrzejak et al., 2002) using

one spiking hidden layer with 8 neurons, though unlike the experiment conducted in

this research, the classification was between a total of 3 target classes, rather than

2. Kulkarni and Rajendran (2018) also use an SNN with a single hidden layer and

8112 spiking neurons to achieve 98.17% accuracy on the MNIST test database. Even

in the unsupervised learning literature, multi-layer architectures are infrequent, with

classification research tending to use a single layer with a high number of neurons
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(Diehl & Cook, 2015) (Tavanaei & Maida, 2015). Research that investigates the clas-

sification performance of multi-layer SNNs includes Sporea and Grüning (2013), who

use 9 hidden spiking layers, each with 10 hidden neurons. The biggest disadvantage

of multi-layer SNNs comes from their optimisation. Each layer of spiking neurons

requires that its hyperparameters are tuned to their optimal values. However, the

parameters’ optimal values are different for each hidden layer (Kheradpisheh, Gan-

jtabesh, Thorpe, & Masquelier, 2018), and as a result, hyperparameter optimisation

for multi-layer spiking neurons is very computationally expensive. For the experiments

conducted in this research, only 1 hidden layer is used, as the literature states that it

is sufficient for classification model performance.

Spiking Neuron Model

The spiking neuron model used is another important element of the network archi-

tecture. The most prevalent spiking neuron models in the literature are outlined in

detail in section 2.4.3. The choice of which spiking neuron model to use in the current

research was limited to computationally efficient models, as the experiments relied

on the simulation of a spiking network containing hundreds of neurons. As a result,

the computationally expensive Hodgkin-Huxley neuron model was not considered for

use. However, despite the Izhikevich model’s superiority in biological accuracy over

other efficient neuron types (Izhikevich, 2004), Jolivet, Rauch, and Gerstner (2005)

demonstrate that LIF neurons with Adaptive Thresholds are sufficiently accurate sim-

ulators of neurons in the brain, with the threshold spiking voltage of LIF neurons

differing from recorded thresholds in biological neurons by a few millivolts only. Sim-

ilarly, the statistical structure of LIF spike outputs corresponds to that of the real

neuron. In addition to this, Valadez-God́ınez, Sossa, and Santiago-Montero (2020)

compare the simulation capacities of LIF, Izhikevich and HH models, and determine

that the conclusion reached by Izhikevich (2003) that the Izhikevich neuron model

is canonical had been accepted erroneously. As a result, LIF neurons with Adaptive

Thresholds are used for the hidden layer neurons. The chosen SNN simulation pack-

age, BindsNET, offers two different implementations of this neuron type - standard
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LIF neurons with Adaptive Thresholds, and neurons replicating the model used in

Diehl and Cook (2015). The latter are simply LIF neurons with Adaptive Thresholds

that are limited to spike only once per timestep. Neurons emitting more than a sin-

gle spiking per timestep can be caused if there are any input layer weights that are

higher than the postsynaptic neuron threshold. Preliminary results from using both

the regular Adaptive Threshold LIF neurons and those used by Diehl and Cook (2015)

suggest that the latter achieve a better overall model classification performance. The

Diehl and Cook (2015) neuron model is used in this research to form the first part of

the SNN’s hidden layer.

Lateral Inhibition

While having a single layer of many Adaptive Threshold LIF neurons can be an ef-

fective architecture for classification using SNNs, there is another element inspired by

biological neuron systems that has not been included at this stage, which is a mech-

anism for Lateral Inhibition. Lateral Inhibition is a concept in neurobiology which

has been proven to be a vital dampener of spiking activity in biological neuron sys-

tems (Tomita, 1958). Nabet (2018) describe the function of Lateral Inhibition as a

way of sharpening images in visual neuron systems. In the context of SNNs, Lateral

Inhibition works by completely inhibiting the spike activity of a spiking neuron’s sur-

rounding neurons within a specific distance. This helps the SNN learn more diverse

features (Mozafari et al., 2019). Lateral Inhibition can be achieved in SNNs by simply

adding an inhibitory layer of regular LIF neurons after the previous, excitatory layer

of Adaptive Threshold LIF neurons, with both layers containing the same number of

neurons. The connection between the excitatory and inhibitory layers is recurrent, and

the weights in the inhibitory layer are negative. Despite the fact that there are now

two layers in the network, their activity is synergistic, and they are both constrained

to have the same number of neurons. As such, they can be considered as forming a

single hidden layer.
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SNN Learning Rule

The final decision made about the SNN model’s architecture is what learning rule

would be used to train the network. The SNN supervised learning rules available in

academic literature are outlined in detail in section 2.4.4. The choice of which learning

rule to use was influenced primarily by what is available in the BindsNET package,

which was selected as the simulation framework for conducting the experiment in

section 3.4. Supervised Learning with BindsNET uses the Teacher Forcing technique,

a non-error based learning paradigm. BindsNET’s implementation of Teacher Forcing

works by modifying the unsupervised STDP learning rule to perform unsupervised

learning tasks. This is done by ’clamping’ certain neurons to particular labels (Hazan

et al., 2018a). Spiking neurons in the hidden layer of the network are divided into

groups, one group for each class label present in the dataset, with each group containing

the same number of spiking neurons. During training, the class label of the current

sample is recorded and a random neuron in the corresponding group is selected. The

chosen hidden layer neuron is then induced to spike at every time step in the presented

sample sequence. This lets the neuron’s weights learn the underlying features present

in the input sample.

The SNN model architecture resulting from these decisions is a spiking network

with a single hidden layer composed of N excitatory LIF neurons with Adaptive

Thresholds, which use the Teacher Forcing technique as their learning rule, and N

inhibitory LIF neurons, which are connected to the excitatory layer in a recurrent

manner. Since the Teacher Forcing technique is being used for learning, the batch size

is 1.

Hyperparameter Tuning

SNNs use several hyperparameters which affect how the model behaves and learns. In

order to ensure that the SNN model exhibits optimal classification performance, a grid

search is conducted to find the best values for these hyperparameters. This is referred

to as Hyperparameter Tuning.
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• Number of excitatory, inhibitory neurons

• Strength of synapse weights from excitatory to inhibitory layer

• Strength of synapse weights from inhibitory to excitatory layer

• Pre-synaptic events learning rate

• Post-synaptic events learning rate

• Input to excitatory layer connection weights normalization constant

• Batch size

3.4.2 Baseline RNN Model Architecture

Layer Topology

The layer topology of the baseline RNN model that would be used for this research was

determined by examining the literature on EEG classification using RNNs with LSTM

cells. Craik, He, and Contreras-Vidal (2019) conduct an extensive academic review of

RNN-based approaches to EEG classification, and note that all such implementations

use 2 LSTM layers. Specific research includes Kumar, Sharma, and Tsunoda (2019),

who use 2 LSTM layers, with a maximum of 200 hidden units in each, the reasoning

behind which is to reduce the computational complexity of the model. Tsiouris et

al. (2018) also use a similar architecture for emotion recognition based on EEG, with

2 LSTM layers, and a final Dense layer for classification. The baseline RNN model

used in this research uses the same layer topology, presented in Figure 3.4, without

the Dropout Layers, as they were removed by Tsiouris et al. (2018) to reduce model

complexity. The batch size is 10, and the activation function used in the LSTM layers is

the basic Sigmoid function. The loss function is the binary cross-entropy loss function.

This architecture (Tsiouris et al., 2018) was chosen as at the time of publication it

achieved state-of-the-art performance on the Epilepsy dataset used in this research.
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(Tsiouris et al., 2018)

Figure 3.4: Baseline RNN Topology

Hyperparameter Tuning

No hyperparameter tuning was conducted for the baseline RNN model. Since this step

was already conducted by Tsiouris et al. (2018), it was considered superfluous for this

research. As such, the exact hyperparameters used by Tsiouris et al. (2018) for EEG

classification were replicated in the baseline RNN implementation of this research.

3.4.3 State-of-the-Art RNN Model Architecture

In addition to the baseline RNN classifier, the current state-of-the-art RNN model

for EEG classification was also compared to the SNN approach. An extensive review

of the literature revealed the state-of-the-art time series classifier to be Karim et al.
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(2018), who develop an LSTM-RNN model which they then evaluate on 35 time series

classification datasets. The code for this model is provided by the researchers online,

allowing for their exact implementation to be replicated in the current study. Figure

3.5 shows the 35 time series classification datasets used by Karim et al. (2018) to

evaluate their RNN classifier. The green cells denote instances where Karim et al.

(2018) achieved the best accuracy. Specifically, the model achieves best performance

on two EEG datasets, one of which, denoted as ’EEG2’ in Figure 3.5, is the Alcoholism

dataset used in this research. The SOTA RNN is trained using a batch size of 128, as

per the original paper.

Since this classifier performs so well on time series classification problems, it was

selected as the state-of-the-art RNN classifier for this research, the results of which

would be compared against the SNN-based classifier.

3.5 Performance Evaluation

Traditionally, the results of classification models are represented using a confusion

matrix, as seen in figure 3.6. This confusion matrix displays important elements of the

results, which are also the starting point for more sophisticated evaluation techniques.

These are described below.

• Number of True Positives (TP): The number of observations in the positive

target class which were correctly classified as such by the model.

• Number of False Negatives (FN ): The number of observations in the positive

target class which were incorrectly classified as being in the negative target class

by the model.

• Number of False Positives (FP): The number of observations in the negative

target class which were incorrectly classified as being in the positive target class

by the model.

• Number of True Negatives (TN ): The number of observations in the negative

target class which were correctly classified as such by the model.
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(Karim et al., 2018)

Figure 3.5: Time Series Classification Datasets Tested by Karim et al. (2018) (Green

Denotes Best Performance)

To compare the performances of the SNN and RNN models on the three datasets,

a number of evaluation metrics were used. Each of these metrics is an indicator of

certain model characteristics, and the metrics’ utilities are outlined in this section.
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(Banda, Angryk, & Martens, 2013)

Figure 3.6: Binary Classification Confusion Matrix

Accuracy

Formula :
TP + TN

TP + TN + FP + FN

Accuracy refers to the number of correctly classified observations as a proportion

of the total number of observations in the dataset. However, this metric does not

discriminate between the model’s ability to classify positive and negative members of

the target class.

Precision

Formula :
TP

TP + FP

Precision refers to the number of correct positive classifications as a proportion of the

total number of positive classifications made by the model. It measures the classifier’s

ability to correctly identify positive members of the target class while not making the

mistake of labelling negative observations as positive.
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Recall

Formula :
TP

TP + FN

The recall metric (also known as sensitivity) is the proportion of the amount of pos-

itive target class members that are classified as such by the model. This represents

the model’s ability to correctly identify positive cases while avoiding false negative

classifications of these positive cases.

F1 Score

Formula : 2 ∗ Precision ∗Recall
Precision+Recall

The F1 score is the harmonic mean of the precision and recall metrics. This metric

allows for a balanced expression of the model’s recall and precision.
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Implementation and Results

This chapter describes in detail how the experiment was implemented. The specific ar-

chitectures of the final model are outlined. Additionally, the results of the experiment

are presented.

4.1 Data Splitting

K-fold stratified sampling was used to split the research data. In order to implement

this, the StratifiedShuffleSplit class from the sklearn.model selection module was used.

The splitting criteria were exactly the same for each of the three EEG datasets, as

well as for both the SNN and LSTM model implementations. This included using the

same random seed value for random data sampling. The motivation behind this was

to ensure that the evaluation metrics of the SNN and LSTM models could be directly

compared to each other.

The number of data folds created from the split was 4. Each of the data folds

contained a training and a test dataset. The proportion of training to test data was

80:20. Since the data splits are stratified, the proportion of positive and negative

target variables from the overall dataset was preserved in the individual folds.

In the case of the Alcoholism dataset, the data is already split into a training and

test set (Lichman, n.d.). In AI, it is convention to use the preexisting data splits

where available for classification problems. In addition to this, Karim et al. (2018)
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use the preexisting training/test split, so in order to accurately compare the accuracy

of the SNN approach to that of Karim et al. (2018), no custom data splitting of the

Alcoholism dataset was conducted.

4.2 Hyperparameter Selection

This section outlines the process used for finding the optimal hyperparameters for

modelling the three experimental datasets using the LSTM and SNN architectures.

4.2.1 SNN Hyperparameters

For the SNN models, hyperparameter optimisation was conducted as discussed in sec-

tion 3.5.1. Each of the three models used to fit the three experimental datasets had

its hyperparameters tuned separately according to what achieved the best relative

test performance on the dataset. The following Table 4.1 shows the different hyper-

parameters that were optimized for each classifier model, along with what specific

hyperparameter values were evaluated:

Hyperparameter Values Tested

Strength of synapse weights from excitatory to inhibitory layer 5, 25, 125

Strength of synapse weights from inhibitory to excitatory layer 5, 25, 125

Pre-synaptic events learning rate 0.1, 1

Post-synaptic events learning rate 0.1, 1

Number of Spiking Neurons 5, 10

Table 4.1: Hyperparameters Evaluated for the SNN Models

The hyperparameter optimization process employed in this research involved using

a Grid Search, implemented using the ParameterGrid class, from the sklearn.model selection

module. The above hyperparameters list forms 32 possible SNN combinations. Each

hyperparameter combination was then used to train an SNN classifier for 1 epoch,
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and the mean accuracy over the 4 data folds was calculated. Due to the high clas-

sification performance obtained after just 1 epoch of training, training with a higher

number of epochs was conducted during the hyperparameter optimization step. The

hyperparameter combination with the highest test accuracy was then selected for the

development of the final SNN model.

Schizophrenia Classifier

The Grid Search optimisation determined that a classifier with the following SNN

hyperparameters displayed the highest accuracy metric for the Schizophrenia Dataset:

• Strength of synapse weights from excitatory to inhibitory layer: 5

• Strength of synapse weights from inhibitory to excitatory layer: 125

• Pre-synaptic events learning rate: 1

• Post-synaptic events learning rate: 1

• Number of Spiking Neurons: 5

Alcoholism Classifier

The Grid Search optimisation determined that a classifier with the following SNN

hyperparameters displayed the highest accuracy metric for the Alcoholism Dataset:

• Strength of synapse weights from excitatory to inhibitory layer: 5

• Strength of synapse weights from inhibitory to excitatory layer: 5

• Pre-synaptic events learning rate: 0.1

• Post-synaptic events learning rate: 0.1

• Number of Spiking Neurons: 5
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Epilepsy Classifier

The Grid Search optimisation determined that a classifier with the following SNN

hyperparameters displayed the highest accuracy metric for the Epilepsy Dataset:

• Strength of synapse weights from excitatory to inhibitory layer: 25

• Strength of synapse weights from inhibitory to excitatory layer: 25

• Pre-synaptic events learning rate: 0.1

• Post-synaptic events learning rate: 0.1

• Number of Spiking Neurons: 5

4.3 Number of Training Epochs

For both RNN and SNN classification approaches, the optimal number of epochs used

for training of the final model needed to be determined. This is necessary to both

ensure that the final models had learned to classify the data as well as possible, and

to avoid without wasting time on additional training epochs that didn’t contribute to

the models’ overall classification performance.

The ’Early Stopping’ technique is typically used to determine the number of epochs

over which to train the model (Prechelt, 1998). However, it was decided that in order

to accurately replicate both the Baseline (Tsiouris et al., 2018) and SOTA (Karim et

al., 2018) RNN classifiers from the literature, the number of training epochs used in

the current research would be the same as those used in the original implementations.

Karim et al. (2018) use 250 epochs to train the SOTA RNN model, while Tsiouris et

al. (2018) use a maximum of 55 epochs. For consistency’s sake, it was decided that

the greater number of training epochs would be used for both the Baseline and SOTA

RNNs. As a result, each of the RNN classifiers was trained for a total of 250 epochs,

with the test set accuracy being recorded after each epoch of training. The model

was saved after every epoch where the test accuracy was improved upon. This saved

optimal model was then used for the final model evaluation. The high training epoch
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number of 250 helped avoid the scenario where the model parameters were trained

to a suboptimal state due to a local minima in the error surface, which is a common

problem with ANN learning using backpropagation (Fukumizu & Amari, 2000). The

problem of error surface local minima has also been observed in the supervised learning

of SNNs (Fujita, Takase, Kita, & Hayashi, 2008).

With respect to the SNN training, preliminary results showed that maximum ac-

curacy was achieved after a single full training pass of the dataset (or after a single

’epoch’). Therefore, each SNN classifier was only trained for a maximum of a single

epoch.

4.4 Final Model Implementations

4.4.1 Final Baseline RNN Implementations

Functions were developed to calculate the Precision, Recall, and F1 metrics using the

true and predicted labels. Keras callback functions were used to track the training

time of the model. The Unix time is recorded when the epoch starts and when it ends,

and the difference is returned. The model is trained and evaluated for each of the 4

data folds. The optimizer used is the Adam optimizer, and the model architecture and

hyperparameters are the same as those outlined in section 3.4.2. The loss function used

was the binary cross-entropy loss function. The final evaluation metrics are calculated

by averaging the metrics from each data fold.
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Schizophrenia Dataset

Figure 4.1: Final Keras Model Description for Schizophrenia Baseline RNN Classifier

As seen in Fig. 4.1, the final baseline RNN Keras model used to model the Schizophre-

nia dataset features a total of 1,996,157 trainable parameters. For each of the 4 data

folds, the model is trained on 62 samples, and validated on 17 samples. The model

input shape is (10, 64, 7680).

Alcoholism Dataset

Figure 4.2: Final Keras Model Description for Alcoholism Baseline RNN Classifier

As seen in Fig. 4.2, the final baseline RNN Keras model used to model the Alcoholism

dataset features a total of 234,301 trainable parameters. For each of the 4 data folds,
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the model is trained on 100 samples, and validated on 100 samples. The model input

shape is (10, 16, 256).

Epilepsy Dataset

Figure 4.3: Final Keras Model Description for Epilepsy Baseline RNN Classifier

As seen in Fig. 4.3, the final baseline RNN Keras model used to model the Epilepsy

dataset features a total of 1,078,653 trainable parameters. For each of the 4 data folds,

the model is trained on 160 samples, and validated on 100 samples. The model input

shape is (10, 1, 4096).

4.4.2 Final State-of-the-Art RNN Implementations

The functions developed to calculate the Accuracy, Precision, Recall, and F1 metrics of

the Baseline RNN classifier were reused for the same purpose for the State-of-the-Art

RNN classifier. Additionally, the training time was also tracked using Keras callback

functions. These were all recorded in text documents as the training progressed. The

final Keras model descriptions for the State-of-the-Art RNN implementations can be

found in Appendix A as follows:
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Schizophrenia Dataset: Appendix A.1

Alcoholism Dataset: Appendix A.2

Epilepsy Dataset: Appendix A.3

4.4.3 Final SNN Implementations

If a model is being trained, the following process is used to determine the neural

network object to be used. If the current epoch is the first, a new network is initialised

following the topology defined in 3.4.1. If the current epoch is not the first, then a

new network object is not created, preserving the model weights determined from the

first epoch of training. After the model training has completed, it is saved to the local

memory. This allows it to then be recovered, with the trained weights, for the model

testing and evaluation phase, without having to retrain the model.

If the model is being used for testing, rather than training, the learning capabilities

of the model are disabled. This is done by changing the learning rules between each

layer to a learning rule with no effect (called NoOp). Additionally, since the weights of

the model are affected by spikes, the voltage of each neuron is set to 0 for the duration

of the model testing, so that spikes do not occur.

Before the model training begins, the input datapoints’ feature scalars are mul-

tiplied by an intensity coefficient. The input data is then iterated through, and the

model is trained on each datapoint. Training occurs by propagating the input spike

data through the network, which then optimizes the weights of the network. The

model’s output spikes at each timestep are kept recorded in an array, known as the

spike record.

Supervised learning is done using the Teacher Forcing method (outlined in Section

2.4.4.) which is implemented by injecting an additional training signal. This signal

is constructed by dividing the n hidden spiking neurons in the network into n/m
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equally sized groups, where m is the number of unique target classes. During training,

a random neuron is selected from the group corresponding to the true label of the

datapoint that the network is currently being trained on. Spikes are then artificially

introduced at every time step in the spike record of this neuron. This forces the weights

of neuron to learn to recognise samples with this particular label.

Each output neuron can be seen as being responsible for assigning observations to

one particular certain target class. Target classes are not limited to being represented

by a single output neuron - multiple output neurons can classify the same target class.

After the input data for a sample is propagated through the SNN, the number of spikes

in the output neurons are recorded. The neuron which exhibits the highest number of

afferent spikes in the spike record is then used to classify the sample, according to the

neuron’s class assignment.

The training times for each training epoch are recorded. After each epoch is

complete, the test dataset is used to calculate the classification metrics. Training

is complete for all epochs, the final performance metrics are recorded for the overall

model. This process is repeated for all 4 data folds, and the final classification metrics

are calculated by averaging the ones from the individual data folds. These results are

all recorded in a text document.

The SNN model input shape is:

(10, [Number of Dimensions], [Sequence Length]).

4.5 Model Results

For each model, training the classifier, as well as inferring the test results, is conducted

on identical computing architecture. This is done to ensure that the training times of

the SNN and LSTM models can be compared meaningfully to each other. The cloud-

based computing architecture utilized for the experiment includes an Intel R© Xeon R©

E5-2630 v3 8-Core 2.4GHz CPU, and 16GB of RAM. No GPU accelerator hardware

is used. The cloud provider is Paperspace, and the specific Paperspace cloud server

type used is the ’C6 Server’.
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4.5.1 Baseline RNN Results

This section details the experimental results obtained from the baseline RNN classifiers

on the three EEG datasets.

Schizophrenia Baseline RNN Classifier

Figure 4.4 shows the confusion matrix of the Schizophrenia Baseline RNN classifier, av-

eraged over each data fold. Table 4.2 shows the evaluation metrics of the Schizophrenia

Baseline RNN classifier specific to each of the 4 data folds used for cross-validation.

True Label

Positive Negative Total

Predicted Label
Positive TP : 6.5 FP : 4 10.5

Negative FN : 2.5 TN : 4 6.5

Total 9 8 n = 17

Accuracy = 0.618 Precision = 0.664 Recall = 0.722 F1 = 0.669

Number of Mean Epoch Total Training

Epochs = 4 Time = 1.395 Time = 5.58

Figure 4.4: Schizophrenia Baseline RNN Classifier - Confusion Matrix
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Data Fold

Evaluation Metric Fold 1 Fold 2 Fold 3 Fold 4

True Positives (TP) 8 5 7 6

True Negatives (TN) 2 7 4 6

False Positives (FP) 6 1 4 2

False Negatives (FN) 1 4 2 3

Accuracy 0.588 0.706 0.647 0.706

Precision 0.571 0.833 0.636 0.75

Recall 0.888 0.556 0.778 0.667

F1 0.696 0.667 0.7 0.706

Number of Epochs 6 2 5 3

Mean Epoch Time 0.882 1.841 1.132 1.725

Total Training Time 5.292 3.682 5.66 5.175

Table 4.2: Schizophrenia Baseline RNN Classifier Performance

Alcoholism Baseline RNN Classifier

Figure 4.5 shows the confusion matrix of the Alcoholism Baseline RNN classifier,

averaged over each data fold. Table 4.3 shows the evaluation metrics of the Alcoholism

Baseline RNN classifier specific to each of the 4 data folds used for cross-validation.
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True Label

Positive Negative Total

Predicted Label
Positive TP : 122 FP : 87 209

Negative FN : 178 TN : 213 391

Total 300 300 n = 600

Accuracy = 0.558 Precision = 0.518 Recall = 0.26 F1 = 0.331

Number of Mean Epoch Total Training

Epochs = 1 Time = 4.244 Time = 4.244

Figure 4.5: Alcoholism Baseline RNN Classifier - Confusion Matrix

Data Fold

Evaluation Metric Fold 1

True Positives (TP) 122

True Negatives (TN) 213

False Positives (FP) 87

False Negatives (FN) 178

Accuracy 0.558

Precision 0.518

Recall 0.26

F1 0.331

Number of Epochs 1

Mean Epoch Time 4.244

Total Training Time 4.244

Table 4.3: Alcoholism Baseline RNN Classifier Performance
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Epilepsy Baseline RNN Classifier

Figure 4.6 shows the confusion matrix of the Epilepsy Baseline RNN classifier, averaged

over each data fold. Table 4.4 shows the evaluation metrics of the Epilepsy Baseline

RNN classifier specific to each of the 4 data folds used for cross-validation.

True Label

Positive Negative Total

Predicted Label
Positive TP : 15.25 FP : 1.5 16.75

Negative FN : 4.75 TN : 78.5 83.25

Total 20 80 n = 100

Accuracy = 0.938 Precision = 0.91 Recall = 0.763 F1 = 0.822

Number of Mean Epoch Total Training

Epochs = 9 Time = 0.468 Time = 4.212

Figure 4.6: Epilepsy Baseline RNN Classifier - Confusion Matrix
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Data Fold

Evaluation Metric Fold 1 Fold 2 Fold 3 Fold 4

True Positives (TP) 17 17 11 14

True Negatives (TN) 79 80 80 78

False Positives (FP) 1 0 0 2

False Negatives (FN) 3 3 9 6

Accuracy 0.96 0.97 0.91 0.92

Precision 0.944 1 1.0 0.875

Recall 0.85 0.85 0.55 0.7

F1 0.895 0.919 0.71 0.778

Number of Epochs 13 5 9 9

Mean Epoch Time 0.319 0.606 0.452 0.494

Total Training Time 4.147 3.03 4.068 4.446

Table 4.4: Epilepsy Baseline RNN Classifier Performance

4.5.2 State-of-the-Art RNN Results

This section details the experimental results obtained from the State-of-the-Art RNN

classifiers on the three EEG datasets.

Schizophrenia State-of-the-Art RNN Classifier

Figure 4.7 shows the confusion matrix of the Epilepsy State-of-the-Art RNN classifier,

averaged over each data fold. Table 4.5 shows the evaluation metrics of the Epilepsy

State-of-the-Art RNN classifier specific to each of the 4 data folds used for cross-

validation.
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True Label

Positive Negative Total

Predicted Label
Positive TP : 7.5 FP : 0.75 8.25

Negative FN : 0.5 TN : 8.25 8.75

Total 8 9 n = 17

Accuracy = 0.927 Precision = 0.917 Recall = 0.938 F1 = 0.924

Number of Mean Epoch Total Training

Epochs = 41.75 Time = 16.532 Time = 690.211

Figure 4.7: Schizophrenia State-of-the-Art RNN Classifier - Confusion Matrix

Data Fold

Evaluation Metric Fold 1 Fold 2 Fold 3 Fold 4

True Positives (TP) 8 8 7 7

True Negatives (TN) 8 9 9 7

False Positives (FP) 1 0 0 2

False Negatives (FN) 0 0 1 1

Accuracy 0.941 1 0.941 0.824

Precision 0.889 1 1 0.778

Recall 1 1 0.875 0.875

F1 0.941 1 0.933 0.824

Number of Epochs 42 28 55 42

Mean Epoch Time 17.743 16.26 16.026 16.099

Total Training Time 745.206 455.28 881.43 676.158

Table 4.5: Schizophrenia State-of-the-Art RNN Classifier Performance
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Alcoholism State-of-the-Art RNN Classifier

Figure 4.8 shows the confusion matrix of the Alcoholism State-of-the-Art RNN clas-

sifier, averaged over each data fold. Table 4.6 shows the evaluation metrics of the

Alcoholism State-of-the-Art RNN classifier specific to each of the 4 data folds used for

cross-validation.

True Label

Positive Negative Total

Predicted Label
Positive TP : 419 FP : 23 442

Negative FN : 181 TN : 577 758

Total 20 80 n = 1200

Accuracy = 0.83 Precision = 0.948 Recall = 0.698 F1 = 0.804

Number of Mean Epoch Total Training

Epochs = 133 Time = 21.266 Time = 2828.245

Figure 4.8: Alcoholism State-of-the-Art RNN Classifier - Confusion Matrix
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Data Fold

Evaluation Metric Fold 1

True Positives (TP) 419

True Negatives (TN) 577

False Positives (FP) 23

False Negatives (FN) 181

Accuracy 0.83

Precision 0.948

Recall 0.698

F1 0.804

Number of Epochs 133

Mean Epoch Time 21.266

Total Training Time 2828.245

Table 4.6: Alcoholism State-of-the-Art RNN Classifier Performance

Epilepsy State-of-the-Art RNN Classifier

Figure 4.9 shows the confusion matrix of the Epilepsy State-of-the-Art RNN classifier,

averaged over each data fold. Table 4.7 shows the evaluation metrics of the Epilepsy

State-of-the-Art RNN classifier specific to each of the 4 data folds used for cross-

validation.
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True Label

Positive Negative Total

Predicted Label
Positive TP : 77.75 FP : 0.5 78.25

Negative FN : 2.25 TN : 19.5 21.75

Total 80 20 n = 100

Accuracy = 0.973 Precision = 0.994 Recall = 0.972 F1 = 0.983

Number of Mean Epoch Total Training

Epochs = 76.25 Time = 23.316 Time = 1777.845

Figure 4.9: Epilepsy State-of-the-Art RNN Classifier - Confusion Matrix

Data Fold

Evaluation Metric Fold 1 Fold 2 Fold 3 Fold 4

True Positives (TP) 77 79 77 78

True Negatives (TN) 20 20 20 18

False Positives (FP) 0 0 0 2

False Negatives (FN) 3 1 3 2

Accuracy 0.97 0.99 0.97 0.96

Precision 1 1 1 0.975

Recall 0.963 0.988 0.963 0.975

F1 0.981 0.994 0.981 0.975

Number of Epochs 3 99 152 51

Mean Epoch Time 22.242 23.228 23.933 23.859

Total Training Time 66.726 2299.57 3637.781 1216.817

Table 4.7: Epilepsy State-of-the-Art RNN Classifier Performance
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4.5.3 SNN Results

Initial results for the SNN classifier models showed that for all three experimental

EEG datasets, the models achieved 100% classification accuracy after just 1 epoch

of training. Due to this, the SNN classifier test performance was not evaluated after

each training epoch, but rather after each individual input sample was presented to the

model for training. This was done to determine how many training input samples were

necessary for the test accuracy to reach 100%. The section details the experimental

results obtained from the State-of-the-Art RNN classifiers on the three EEG datasets.

Schizophrenia SNN Classifier

Figure 4.10 shows the confusion matrix of the Schizophrenia SNN classifier, averaged

over each data fold. Table 4.8 shows the evaluation metrics of the Schizophrenia SNN

classifier specific to each of the 4 data folds used for cross-validation.

True Label

Positive Negative Total

Predicted Label
Positive TP : 8 FP : 0 8

Negative FN : 0 TN : 9 9

Total 8 9 n = 17

Accuracy = 1 Precision = 1 Recall = 1 F1 = 1

Number of Mean Training Total Training

Training Samples = 3 Sample Time = 8.994 Time = 26.982

Figure 4.10: Schizophrenia SNN Classifier - Confusion Matrix
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Data Fold

Evaluation Metric Fold 1 Fold 2 Fold 3 Fold 4

True Positives (TP) 8 8 8 8

True Negatives (TN) 9 9 9 9

False Positives (FP) 0 0 0 0

False Negatives (FN) 0 0 0 0

Accuracy 1 1 1 1

Precision 1 1 1 1

Recall 1 1 1 1

F1 1 1 1 1

Number of Training Samples 3 3 3 3

Mean Training Sample Time 9.145 8.835 9.135 8.862

Total Training Time 27.435 26.505 27.405 26.586

Table 4.8: Schizophrenia SNN Classifier Performance

Alcoholism SNN Classifier

Figure 4.11 shows the confusion matrix of the Alcoholism SNN classifier, averaged

over each data fold. Table 4.9 shows the evaluation metrics of the Alcoholism SNN

classifier specific to single data fold used for validation.
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True Label

Positive Negative Total

Predicted Label
Positive TP : 300 FP : 0 300

Negative FN : 0 TN : 300 300

Total 300 300 n = 600

Accuracy = 1 Precision = 1 Recall = 1 F1 = 1

Number of Mean Training Total Training

Training Samples = 9 Sample Time = 0.303 Time = 1.818

Figure 4.11: Alcoholism SNN Classifier - Confusion Matrix

Data Fold

Evaluation Metric Fold 1

True Positives (TP) 300

True Negatives (TN) 300

False Positives (FP) 0

False Negatives (FN) 0

Accuracy 1

Precision 1

Recall 1

F1 1

Number of Training Samples 6

Mean Training Sample Time 0.303

Total Training Time 1.818

Table 4.9: Alcoholism SNN Classifier Performance

Epilepsy SNN Classifier

Figure 4.12 shows the confusion matrix of the Epilepsy SNN classifier, averaged over

each data fold. Table 4.10 shows the evaluation metrics of the Epilepsy SNN classifier
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specific to each of the 4 data folds used for cross-validation.

True Label

Positive Negative Total

Predicted Label
Positive TP : 80 FP : 0 80

Negative FN : 0 TN : 20 20

Total 80 20 n = 100

Accuracy = 1 Precision = 1 Recall = 1 F1 = 1

Number of Mean Training Total Training

Training Samples = 6.5 Sample Time = 11.227 Time = 72.976

Figure 4.12: Epilepsy SNN Classifier - Confusion Matrix

Data Fold

Evaluation Metric Fold 1 Fold 2 Fold 3 Fold 4

True Positives (TP) 80 80 80 80

True Negatives (TN) 20 20 20 20

False Positives (FP) 0 0 0 0

False Negatives (FN) 0 0 0 0

Accuracy 1 1 1 1

Precision 1 1 1 1

Recall 1 1 1 1

F1 1 1 1 1

Number of Training Samples 8 8 5 5

Mean Training Sample Time 29.479 5.009 5.13 5.289

Total Training Time 235.832 40.072 25.65 26.445

Table 4.10: Epilepsy SNN Classifier Performance

Figure 4.13 shows the relationship between number of training epochs and test set

accuracy for the RNN-based approaches, while Figure 4.14 shows it for the SNN-based
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classifier.
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(a) Schizophrenia Baseline RNN Classifier (b) Alcoholism Baseline RNN Classifier

(c) Seizure Baseline RNN Classifier (d) Schizophrenia State-of-the-Art RNN Classifier

(e) Alcoholism State-of-the-Art RNN Classifier (f) Seizure State-of-the-Art RNN Classifier

Figure 4.13: Classifiers’ Test Accuracies Compared to Number of Training Epochs

(RNN Approaches)
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(a) Epilepsy SNN Classifier (b) Alcoholism SNN Classifier

(a) Schizophrenia SNN Classifier

Figure 4.14: Classifiers’ Test Accuracies Compared to Number of Training Epochs

(SNN Approach)
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Chapter 5

Evaluation, Analysis and

Discussion

This chapter deals with the evaluation of the results of the research experiment, out-

lined in Chapter 4. The results are also analysed in the context of the existing aca-

demic literature, and their significance and contribution to the field are outlined and

discussed.

5.1 Comparison of Classifiers Results

Figure 5.1 presents a comparison of the Accuracy, Precision, Recall and F1 metrics for

each of the three experimental datasets, using the baseline RNN, state-of-the-art RNN,

and SNN classifiers. In the case of each dataset, the highest metrics are presented in

bold. For the Schizophrenia and Epilepsy datasets, the classifier test performance

metrics are validated using 4-fold cross-validation. Cross-validation was not employed

for the Alcoholism dataset, since the dataset features a predetermined training and

test set (Lichman, n.d.).

Figure 5.2 presents a comparison of the training time for each of the three exper-

imental datasets, using the baseline RNN, state-of-the-art RNN, and SNN classifiers.

In the case of each dataset, the lowest training times are presented in bold. For

the Schizophrenia and Epilepsy datasets, the classifier test performance metrics are
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validated using 4-fold cross-validation. Cross-validation was not employed for the

Alcoholism dataset, since the dataset features a predetermined training and test set

(Lichman, n.d.).

EEG Dataset

Model Metric Schizophrenia Alcoholism Epilepsy

Baseline

LSTM

Accuracy

Precision

Recall

F1

0.618

0.664

0.722

0.669

0.558

0.518

0.26

0.311

0.938

0.91

0.763

0.822

MLSTM-

FCN

Accuracy

Precision

Recall

F1

0.927

0.917

0.938

0.924

0.83

0.948

0.698

0.804

0.973

0.994

0.972

0.983

SNN Accuracy

Precision

Recall

F1

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Table 5.1: SNN and LSTM Classifiers Comparison
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EEG Dataset

Model Metric (Mean Over 4 Data

Folds)

Schizophrenia Alcoholism Epilepsy

Baseline

LSTM

Mean No. of Epochs

Mean Time per Epoch

Total Training Time

4

1.395s

5.58s

1

4.244s

4.244s

9

0.468s

4.212s

MLSTM-

FCN

Mean No. of Epochs

Mean Time per Epoch

Total Training Time

41.75

6.532s

690.211s

133

21.266s

2828.378s

76.25

23.16s

1777.845s

SNN Mean No. of Samples

Mean Time per Sample

Total Training Time

3

8.994s

26.982s

9

0.303s

2.727s

6.5

11.227s

72.976s

Table 5.2: SNN and LSTM Training Time Comparison (in seconds)

5.2 Hypothesis Evaluation

This section deals with the evaluation of the two hypothesis used to answer the research

question. All of the hypotheses are evaluated to a significance level (α) of 0.05.

5.2.1 Hypothesis 1 - Accuracy

• H0: Spiking Neural Network models do not have higher accuracy than Recurrent

Neural Network models when implemented for classification of non-stationary

time series data.

• H1: Spiking Neural Network models have higher accuracy than Recurrent Neu-

ral Network models when implemented for classification of non-stationary time

series data.
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For each of the three datasets, two One-Tailed Wilcoxon Signed Rank Test (WSR)

were used to evaluate the above hypothesis. The One-Tailed WSR is a non-parametric

test used to determine if the SNN’s mean accuracy over the 4 data folds is greater

than that of the baseline RNN and state-of-the-art RNN classifiers.

Schizophrenia EEG Dataset

Data Fold 1 2 3 4

Test Accuracies

X: SNN 1 1 1 1

Y: Baseline LSTM 0.588 0.706 0.647 0.706

One-Tailed Wilcoxon Signed Rank Test (X-Y)

Test Statistic (W) 10.000

p-value 0.033

Significance Level (α) 0.05

Table 5.3: Schizophrenia WSR Test: SNN - Baseline LSTM

As seen in Table 5.7, which compares the baseline LSTM and SNN classifier accuracies,

the p-value of the One-Tailed WSR Test is less than the Significance Level (α) of 0.05.

Therefore, the Null Hypothesis (H0) is rejected for the Schizophrenia EEG Dataset.

Therefore, it can be said that the SNN model has a higher accuracy than the baseline

RNN model when implemented for classification of the Schizophrenia EEG Dataset.
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Data Fold 1 2 3 4

Test Accuracies

X: SNN 1 1 1 1

Y: MLSTM-FCN 0.941 1 0.941 0.824

One-Tailed Wilcoxon Signed Rank Test (X-Y)

Test Statistic (W) 6.000

p-value 0.051

Significance Level (α) 0.05

Table 5.4: Schizophrenia WSR Test: SNN - State-of-the-art LSTM

As seen in Table 5.8, which compares the state-of-the-art RNN and SNN classifier

accuracies, the p-value of the One-Tailed WSR Test is greater than the Significance

Level (α) of 0.05. Therefore, the Null Hypothesis (H0) fails to be rejected for the

Schizophrenia EEG Dataset. It cannot be said that the SNN model has a higher

accuracy than the state-of-the-art RNN model when implemented for classification of

the Schizophrenia EEG Dataset.

Alcoholism EEG Dataset

No cross-validation was employed to validate the classifiers’ test performance on the

Alcoholism EEG Dataset. This is because the Alcoholism EEG Dataset has prede-

termined Training and Test datasets (Lichman, n.d.). In order to ensure that the

performance metrics of the SNN classifier can be compared to those of the state-of-

the-art metrics (Karim et al., 2018), it’s important that the test metrics are calculated

on the same test dataset. As a result, the WSR test was not used on this dataset.
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Epilepsy EEG Dataset

Data Fold 1 2 3 4

Test Accuracies

X: SNN 1 1 1 1

Y: Baseline LSTM 0.96 0.97 0.91 0.92

One-Tailed Wilcoxon Signed Rank Test (X-Y)

Test Statistic (W) 10.000

p-value 0.034

Significance Level (α) 0.05

Table 5.5: Epilepsy WSR Test: SNN - Baseline LSTM

As seen in Table 5.5, which compares the baseline LSTM and SNN classifier accuracies,

the p-value of the One-Tailed WSR Test is less than the Significance Level (α) of

0.05. Therefore, the Null Hypothesis (H0) is rejected for the Epilepsy EEG Dataset.

Therefore, it can be said that the SNN model has a higher accuracy than the baseline

RNN model when implemented for classification of the Epilepsy EEG Dataset.

Data Fold 1 2 3 4

Test Accuracies

X: SNN 1 1 1 1

Y: MLSTM-FCN 0.97 0.99 0.97 0.96

One-Tailed Wilcoxon Signed Rank Test (X-Y)

Test Statistic (W) 10.000

p-value 0.033

Significance Level (α) 0.05

Table 5.6: Epilepsy WSR Test: SNN - State-of-the-art LSTM

As seen in Table 5.6, which compares the state-of-the-art RNN and SNN classifier
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accuracies, the p-value of the One-Tailed WSR Test is less than the Significance Level

(α) of 0.05. Therefore, the Null Hypothesis (H0) is rejected for the Epilepsy EEG

Dataset. It cannot be said that the SNN model has a higher accuracy than the

state-of-the-art RNN model when implemented for classification of the Epilepsy EEG

Dataset.

5.2.2 Hypothesis 2 - Training Time

• H0: Spiking Neural Network models do not have a faster training time than

Recurrent Neural Network models when implemented for classification of time

series data.

• H1: Spiking Neural Network models have a faster training time than Recurrent

Neural Network models when implemented for classification of time series data.

For each of the three datasets, two One-Tailed Wilcoxon Signed Rank Test (WSR)

were used to evaluate the above hypothesis. The One-Tailed WSR is a non-parametric

test used to determine if the SNN’s mean training time over the 4 data folds is less

than that of the baseline RNN and state-of-the-art RNN classifiers.
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Schizophrenia EEG Dataset

Data Fold 1 2 3 4

Training Times (seconds)

X: SNN 27.435 26.505 27.405 26.586

Y: Baseline LSTM 5.292 3.682 5.66 5.175

One-Tailed Wilcoxon Signed Rank Test (Y-X)

Test Statistic (W) 10.000

p-value 0.966

Significance Level (α) 0.05

Table 5.7: Schizophrenia WSR Test: SNN - Baseline LSTM

As seen in Table 5.7, which compares the baseline LSTM and SNN classifier train-

ing times, the p-value of the One-Tailed WSR Test is greater than the Significance

Level (α) of 0.05. Therefore, the Null Hypothesis (H0) fails to be rejected for the

Schizophrenia EEG Dataset. Therefore, it can be said that the SNN model does not

have a shorter training time than the baseline RNN model when implemented for

classification of the Schizophrenia EEG Dataset.

Data Fold 1 2 3 4

Training Times (seconds)

X: SNN 27.435 26.505 27.405 26.586

Y: MLSTM-FCN 745.206 455.28 881.43 676.158

One-Tailed Wilcoxon Signed Rank Test (Y-X)

Test Statistic (W) 10.000

p-value 0.034

Significance Level (α) 0.05

Table 5.8: Schizophrenia WSR Test: SNN - State-of-the-art LSTM
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As seen in Table 5.8, which compares the state-of-the-art RNN and SNN classifier

accuracies, the p-value of the One-Tailed WSR Test is less than the Significance Level

(α) of 0.05. Therefore, the Null Hypothesis (H0) is rejected for the Schizophrenia EEG

Dataset. Therefore, it can be said that the SNN model does have a shorter training

time than the state-of-the-art RNN model when implemented for classification of the

Schizophrenia EEG Dataset.

Alcoholism EEG Dataset

No cross-validation was employed to validate the classifiers’ training time on the Alco-

holism EEG Dataset. This is because the Alcoholism EEG Dataset has predetermined

Training and Test datasets (Lichman, n.d.), and as a result, no WSR test was employed

as there was only 1 predetermined data fold used for training and testing.

Epilepsy EEG Dataset

Data Fold 1 2 3 4

Training Times (seconds)

X: SNN 235.832 40.072 25.65 26.445

Y: Baseline LSTM 4.147 3.03 4.068 4.446

One-Tailed Wilcoxon Signed Rank Test (Y-X)

Test Statistic (W) 0.000

p-value 0.966

Significance Level (α) 0.05

Table 5.9: Epilepsy WSR Test: SNN - Baseline LSTM

As seen in Table 5.9, which compares the baseline LSTM and SNN classifier accuracies,

the p-value of the One-Tailed WSR Test is greater than the Significance Level (α) of

0.05. Therefore, the Null Hypothesis (H0) fails to be rejected for the Epilepsy EEG

Dataset. Therefore, it can be said that the SNN model does not have a shorter training
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time than the baseline RNN model when implemented for classification of the Epilepsy

EEG Dataset.

Data Fold 1 2 3 4

Training Times (seconds)

X: SNN 235.832 40.072 25.65 26.445

Y: MLSTM-FCN 66.726 2299.57 3637.781 1216.817

One-Tailed Wilcoxon Signed Rank Test (Y-X)

Test Statistic (W) 1.000

p-value 0.072

Significance Level (α) 0.05

Table 5.10: Epilepsy WSR Test: SNN - State-of-the-art LSTM

As seen in Table 5.10, which compares the state-of-the-art RNN and SNN classifier

accuracies, the p-value of the One-Tailed WSR Test is greater than the Significance

Level (α) of 0.05. Therefore, the Null Hypothesis (H0) is not rejected for the Epilepsy

EEG Dataset. Therefore, it can be said that the SNN model does not have a shorter

training time than the state-of-the-art RNN model when implemented for classification

of the Epilepsy EEG Dataset.

5.3 Summary of Key Findings

This section outlines the key findings reached over the course of the research project.

For clarity, the results of all the research hypotheses and whether or not the null

hypothesis is rejected is also presented in Table 5.11.
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EEG Dataset

Research Hypotheses Comparison Schizophrenia Alcoholism Epilepsy

Hypothesis 1 - Accuracy

H0: Spiking Neural Network

models do not have higher

accuracy than Recurrent Neural

Network models when

implemented for classification of

non-stationary time series data.

H1: Spiking Neural Network

models have higher accuracy

than Recurrent Neural Network

models when implemented for

classification of non-stationary

time series data.

SNN vs.

Baseline

RNN

Reject

H0

Reject

H0

Reject

H0

SNN vs.

SOTA

RNN

Fail to

Reject H0

(borderline)

Reject

H0

Reject

H0

Hypothesis 1 - Accuracy

H0: Spiking Neural Network

models do not have a faster

training time than Recurrent

Neural Network models when

implemented for classification

of time series data.

H1: Spiking Neural Network

models have a faster training

time than Recurrent Neural

Network models when

implemented for classification

of time series data.

SNN vs.

Baseline

RNN

Fail to

Reject H0

Reject

H0

Fail to

Reject H0

SNN vs

SOTA

RNN

Reject

H0

Reject

H0

Fail to

Reject H0

Table 5.11: Hypotheses Tests Results
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• For the Epilepsy and Schizophrenia datasets, the SNN classifier outperforms the

baseline RNN classifier in terms of accuracy, to a statistical significance level of

0.05. For the Alcoholism dataset, the accuracy on the predetermined test set

reached using the SNN classifier is superior to that reached using the baseline

RNN classifier.

• For the Epilepsy dataset, the SNN classifier outperforms the state-of-the-art

RNN classifier in terms of accuracy, to a statistical significance level of 0.05.

Additionally, for the Alcoholism dataset, the accuracy on the predetermined

test set reached using the SNN classifier is superior to that reached using the

state-of-the-art RNN classifier.

• While the SNN classifier does outperform the state-of-the-art RNN classifier for

the Schizophrenia dataset in terms of accuracy, it does not do so to a statistically

significant degree, as the p-value from the WSR test is 0.051. However, this WSR

test result can be perceived as being just on the boundary of being considered

statistically significant.

• For each of the three EEG datasets, the SNN classifier requires only a handful

of input samples for the model test accuracy to reach the maximum. This is sig-

nificantly less input data than what is necessary for the RNN-based approaches.

• For the Alcoholism dataset, the SNN classifier achieved the shortest total training

time compared to both the baseline and state-of-the-art RNNs.

• For the Schizophrenia dataset, the SNN classifier achieved a shorter total training

time than the state-of-the-art RNN, but a longer total training time than the

baseline RNN, to a statistical significance level of 0.05

• For the Epilepsy dataset, the SNN classifier exhibited a longer total training

time than both the baseline and state-of-the-art RNN classifiers, to a statistical

significance level of 0.05
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5.4 Strengths and Limitations

The research conducted in this project has a number of strengths. Firstly, multi-

ple datasets were used to investigate the viability of SNN-based approaches to non-

stationary time series classification. The decision to use 3 datasets as opposed to

1 makes the results of the research project more academically useful, as a classifier

model that performs well on a number of datasets rather than just a single one is more

generalisable.

In addition to this, this project made use of an appropriate research methodol-

ogy for the problem at hand - the test metrics of the models were evaluated using

cross-validation to make the results more reliable. Also, the correct, non-parametric

statistical hypothesis test (WSR) was used.

One limitation of the research design is the fact that only one type of layer topol-

ogy was evaluated for the SNN classifier. This was an SNN with a single hidden layer.

While this decision is motivated based on existing literature (as is discussed in fur-

ther detail in Section 3.4.1), it would have been academically interesting also test an

approach using multiple hidden layers, and it is not outside the realm of possibility

that other SNN topologies or may have led to superior classification performance or

training time. In addition to adjusting the number of hidden layers, there are a multi-

tude of different approaches to SNN architecture which build on the standard spiking

layers. One of these is Convolutional Spiking layers (Matsugu, Mori, Ishii, & Mitarai,

2002), which were not employed in this research. The choice to not use these alterna-

tive architectures is based on the lack of academic consensus present in the academic

literature supporting their superiority in terms of classification performance. Had this

consensus existed, this researcher would have made use of them for the research task.

5.5 Considerations of Previous Research

The most significant element of the results achieved by this project’s SNN approach is

the perfect test set classification accuracy on all three experimental datasets. Consult-

ing the previous research, one can find that the current best result for the Alcoholism
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dataset achieved an accuracy of 91.33% (Karim et al., 2018), while the SNN classifier

used in this project achieves 100% accuracy. Therefore, when taking the context of

previous research into account, this project achieves best performance for the Alco-

holism dataset (Lichman, n.d.).

To this researcher’s knowledge, there is no previous research which classifies the

Schizophrenia dataset (Gorbachevskaya & Borisov, n.d.) used in this research. As

such, there is no existing best accuracy against which to compare it.

When taking previous research into consideration, the results of this project are

quite interesting. Classification of non-stationary time series is a difficult problem

in the field of AI, with EEG classification being one example of a sub-problem in

this domain. Existing EEG classification implementations in the literature make use

of either highly complex deep learning solutions (Karim et al., 2018), or very large

numbers of training epochs (Tsiouris et al., 2018), often in the hundreds. By contrast,

the SNN approach used in this research uses a non-deep layer topology of just 1 hidden

layer, and, as can be seen in Table 5.2, requires training on less than 10 input data

samples before the maximum accuracy is reached. This is a unique situation in the

context of the existing academic literature.

Another interesting realisation made when examining previous research is that the

Forced Teaching supervised learning paradigm (Legenstein et al., 2005) utilised in this

study is not very popular in the broader literature. Efforts were made to the best of

this researcher’s abilities to find additional studies that make use of this technique for

SNN supervised learning, but no results were found. One can hope that the results

achieved by the use of this paradigm in this research will inspire more academic interest

in Forced Teaching, as it is both a fast and accurate method of supervised learning.
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Conclusions

This chapter concludes the dissertation by providing an overall retrospective and mo-

tivation of the research conducted. The project’s contribution to the academic body of

knowledge is also examined, and recommendations are made for directions that future

work in this field can go.

6.1 Research Overview

The main purpose of this research was to investigate the validity of using SNNs over

RNNs for EEG time series classification. This was motivated by a number of fac-

tors, including certain limitations posed by RNN modelling of time series data. These

include (but are not limited to) LSTM layers’ necessity for expensive GPU accelera-

tion, computationally inefficient training, and the sensitivity of its performance to the

model topology. A more detailed explanation of LSTM’s limitations can be found in

section 2.3.2. On the other hand, existing literature on SNNs has shown promising

results for their potential to exceed the performance of LSTMs for the purpose of

time series modelling, primarily due to their fundamentally temporal nature, efficient

data encoding, and low training time. Additionally, their more stringent biological

accuracy means that they are able to leverage a number of the relative computational

advantages of the human brain, such as low-power operation, massive parallelism, and

event-based information processing.
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The research conducted in this dissertation consisted of 7 main objectives, which

are listed as follows:

1. Determine which Spiking Neural Network simulator package to use.

2. Determine the Spiking Neural Network topology and learning rule.

3. Determine the baseline and state-of-the-art recurrent neural network architec-

ture.

4. Develop the optimal SNN classification model for each dataset.

5. Replicate the baseline and state-of-the-art RNN classification models for each

dataset.

6. The optimal classification models will be trained using the SNN and RNN ap-

proaches on each of the three experimental EEG datasets.

7. The performance metrics collected by evaluating the optimal SNN and RNN

classifiers will be analysed and compared.

The final RNN and SNN topologies were determined by examining the existing

literature and replicating the topologies used in the existing implementations with the

best performance. For each SNN model, hyperparameter optimization is conducted

with the use of a grid search, where a classifier is constructed using each different com-

bination of hyperparameters. The hyperparameter set of the model with the highest

test accuracy is then used for the final model.
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All of the statistical programming used to conduct the experiment was implemented

using the Python programming language. The RNN classifiers were modelled using

the Keras deep learning framework, while the SNN classifiers were built using the

BindsNET SNN simulator, which is based on PyTorch.

6.2 Problem Definition

To what extent do neural network models, built using a Spiking Neural Network, have

superior accuracy and/or training time to models built using a Recurrent Neural Net-

work when implemented for classification of non-stationary time series datasets?

6.3 Contributions to Body of Knowledge

This research provides an answer to the research problem defined in Section 6.2.

Firstly, SNNs have superior accuracy to RNNs when implemented for classification

of non-stationary time series datasets to a statistical significance of 0.05. The rel-

evant hypotheses and the results of their evaluation can be seen in Table 5.11 - all

of the tests conducted for Hypothesis 1 reject H0 (except one test result which is a

borderline case). This contributes to the body of knowledge on AI by demonstrat-

ing experimentally that SNNs are more accurate classifiers than RNNs for EEG time

series.

The other aspect of the research problem studied in this project deals with training

time - to what extent do SNNs have superior training time to RNNs when implemented

for classification of non-stationary time series datasets? Again, consulting Table 5.11

which contains the results of the hypothesis tests, one can see that there is not enough

evidence to reject H0, as 3 out of 6 WSR tests for Hypothesis 2 reject H0, and the

other 3 fail to do so. However, this research still contributes to the body of knowledge

by showing that SNNs can be somewhat competitive in terms of shorter training time

when compared to RNNs.
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6.4 Future Work and Recommendations

Based on the results of this research, multiple different recommendations for future

academic work can be made.

The research design stage of this project was difficult due to the limitations pre-

sented by the lack of publicly available SNN implementations. While there are a

number of SNN simulators available, many of these are decades old and have not been

updated in recent years. Because of this, implementations of recent advances in the

field of SNNs, such as newly developed supervised learning rules, are few and far in be-

tween. An apt recommendation for future research in SNNs would be the development

of more extensive tools and software packages for simulating SNNs. One important

factor that has led to the rapid growth observed in the field of AI and ANNs in recent

years is the development of specialised frameworks such as Tensorflow, PyTorch and

Keras. Frameworks like these are vital as they allow researchers to quickly construct

and iterate high abstraction level implementations of ANNs, without having to spend

time and resources on developing more low-level functionality. Additionally, the use of

a small number of standard frameworks means that new knowledge and information

is exchanged between academics more quickly, as the widespread use of a handful of

tools makes it unnecessary to spend time learning to develop with a lot of different

frameworks. Since such widely-adopted frameworks do not exist as of yet in the field

of SNNs, their future research and development could serve to significantly expedite

academic progress in the field.

The results of this research are highly encouraging for the potential of SNNs for

EEG time series classification. In addition to this, the comparative nature of this

research helps build a case based on empirical evidence for the use of SNNs over RNNs

for time series classification. While 100% accuracy is a very rare result for a classifier in

the field of AI, it it remains unclear whether SNNs’ ability to classify EEG time series

extends to non-EEG time series, particularly in non-stationary environments. It is

possible that, since EEGs are essentially the recorded voltages of spikes in the human

brain, the SNN algorithm is particularly suitable for modelling EEGs, but not so much
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for other types of time series. While some studies on non-EEG time series classification

with SNNs exist (A. Zhang, Zhu, & Li, 2018), such as for sound classification (Wu,

Chua, Zhang, Li, & Tan, 2018), only one directly compares RNN and SNN performance

(Ghosh-Dastidar & Adeli, 2007), and this study includes a convolutional layer in

the SNN architecture, unlike the architecture used in this experiment. Additionally,

Ghosh-Dastidar and Adeli (2007) conducted their research in a time when RNN and

SNN classifier tools were less advanced. More research is necessary to determine if

SNNs are able to classify all types of time series with the same efficacy.

This research implemented the Forced Teaching supervised learning paradigm

(Legenstein et al., 2005) for SNNs. While this training approach proved to be suc-

cessful at modelling the datasets of the conducted experiment, more research needs

to be done on the application of this learning paradigm. Specifically, Batch learning

for Forced Teaching has not been developed as of the writing of this report - the only

option currently available for researchers who want to implement this paradigm is on-

line learning, where the weight updates to the SNN model are calculated and applied

for every single observation in the dataset.
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APPENDIX A.

Appendix A

Figure A.1: Final Keras Model Description for Schizophrenia State-of-the-Art RNN

Classifier.
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APPENDIX A.

Figure A.2: Final Keras Model Description for Alcoholism State-of-the-Art RNN Clas-

sifier.
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APPENDIX A.

Figure A.3: Final Keras Model Description for Epilepsy State-of-the-Art RNN Clas-

sifier
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