104 research outputs found

    Harmonic Distortion Reduction of Transformer-Less Grid-Connected Converters by Ellipsoidal-Based Robust Control

    Get PDF
    A photovoltaic generator connected to a large network and supplying a nonlinear load (source of harmonics) injects distorted current into the grid. This manuscript presents an invariant-ellipsoid set design of a robust controlled active power filter to inject current into the large grid with minimum total harmonic distortion (THD). The nonlinear load current is considered an external disturbance to minimize its effect on the injected grid current. Moreover, the large grid is modeled as a fixed voltage source in a series with a Thevenin impedance whose value changes within an interval. Using the invariant-ellipsoid technique, the problem is cast as a robust disturbance-rejection tracking control. The volume of the ellipsoid is minimized, which results in minimizing the effect of disturbance on system performance and keeping the trajectories as close as possible to the origin. The design is cast into a set of nonlinear matrix inequalities that are linearized by fixing a scalar. The resulting convex optimization is solved iteratively by linear matrix inequalities (LMIs). The simulation and experimental findings show that the proposed design is successful in reducing THD injected into the grid when grid impedance is uncertain and variable loads are applied (balanced and unbalanced cases)

    Robust H∞ Control of Takagi–Sugeno Systems with Actuator Saturation

    Get PDF
    Producción CientíficaThe robust static output feedback control for continuous-time Takagi–Sugeno systems subject to actuator saturation is solved here, including H∞ performance guarantees. Based on a polytopic model of the saturation, sufficient conditions are proposed for designing these controllers in terms of Linear Matrix Inequalities. With the aid of some special derivations, bilinear matrix inequalities are converted into a set of linear matrix inequalities which can be solved easily without requiring iterative algorithms or equality constraints, moreover, the output matrix of the considered system does not require to be full row rank. Finally, some examples are presented to show the validity of the proposed methodology

    Recent Progress in Some Aircraft Technologies

    Get PDF
    The book describes the recent progress in some engine technologies and active flow control and morphing technologies and in topics related to aeroacoustics and aircraft controllers. Both the researchers and students should find the material useful in their work

    Semi-active control of an integrated full-car suspension with seat suspension and driver body model using ER dampers

    Full text link
    In this paper, an integrated vehicle semi-active suspension control system that includes a full-car suspension model (7 Degree-Of-Freedom (DOF)), a seat suspension model (2 DOF) and a driver body model (4 DOF) is developed. A H∞ static output feedback controller which only uses measurable variables as feedback signals is designed to improve vehicle ride comfort performance in terms of driver head acceleration under constraints of actuator saturation, suspension deflection limitation and road holding capability. The controller design conditions, which are expressed as Linear Matrix Inequalities (LMIs) are derived by dealing with each control input separately under a common Lyapunov function, so that a feasible solution can be found for the integrated high order system that has five control inputs and ten control outputs; each control input may require different feedback signals and have different saturation limitations. Furthermore, a semiactive control strategy is applied to implement the proposed control system using electrorheological (ER) dampers. Numerical simulations are used to evaluate theimprovement of ride comfort performance in terms of driver head acceleration responses under typical road disturbances

    Variable Structure and Ultimate Boundedness control and stabilization of flexible robotic systems

    Full text link
    In this thesis we study the control of two link light weight elastic manipulator in the presence of uncertainty. The control of flexible robotic arm with uncertainty such as variable payload, joint angle frictional torque etc., is an interesting and important problem; Here we consider control of joint angles and stabilization of the flexible modes caused by the manuever of robotic arm by two methods. These are: (i) Variable Structure control and (ii) Nonlinear Ultimate Boundedness control. Nonlinear Ultimate Boundedness control is a continuous control wherein the joint angle tracking error is uniformly ultimately bounded in the closed-loop system; Analytical derivations of these two schemes are presented. A control logic is included which switches the stabilizer when the joint angle trajectory enters a specified neighborhood of the terminal state; Extensive simulations were carried out for several conditions of uncertainty and the results are presented. (Abstract shortened with permission of author.)

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    TS fuzzy approach for modeling, analysis and design of non-smooth dynamical systems

    Get PDF
    There has been growing interest in the past two decades in studying the physical model of dynamical systems that can be described by nonlinear, non-smooth differential equations, i.e. non-smooth dynamical systems. These systems exhibit more colourful and complex dynamics compared to their smooth counterparts; however, their qualitative analysis and design are not yet fully developed and still open to exploration. At the same time, Takagi-Sugeno (TS) fuzzy systems have been shown to have a great ability to represent a large class of nonlinear systems and approximate their inherent uncertainties. This thesis explores an area of TS fuzzy systems that have not been considered before; that is, modelling, stability analysis and design for non-smooth dynamical systems. TS fuzzy model structures capable of representing or approximating the essential dis- continuous dynamics of non-smooth systems are proposed in this thesis. It is shown that by incorporating discrete event systems, the proposed structure for TS fuzzy models, which we will call non-smooth TS fuzzy models, can accurately represent the smooth (or contin- uous) as well as non-smooth (or discontinuous) dynamics of different classes of electrical and mechanical non-smooth systems including (sliding and non-sliding) Filippov's systems and impacting systems. The different properties of the TS fuzzy modelling (or formalism) are discussed. It is highlighted that the TS fuzzy formalism, taking advantage of its simple structure, does not need a special platform for its implementation. Stability in its new notion of structural stability (stability of a periodic solution) is one of the most important issues in the qualitative analysis of non-smooth systems. An important part of this thesis is focused on addressing stability issues by extending non- smooth Lyapunov theory for verifying the stability of local orbits, which the non-smooth TS fuzzy models can contain. Stability conditions are proposed for Filippov-type and impacting systems and it is shown that by formulating the conditions as Linear Matrix inequalities (LMIs), the onset of non-smooth bifurcations or chaotic phenomena can be detected by solving a feasibility problem. A number of examples are given to validate the proposed approach. Stability robustness of non-smooth TS fuzzy systems in the presence of model uncertainties is discussed in terms of non-smoothness rather than traditional observer design. The LMI stabilization problem is employed as a building block for devising design strategies to suppress the unwanted chaotic behaviour in non-smooth TS fuzzy models. There have been a large number of control applications in which the overall closed-loop sys tem can be stabilized by switching between pre-designed sub-controllers. Inspired by this idea, the design part of this thesis concentrates on fuzzy-chaos control strategies for Filippov-type systems. These strategies approach the design problem by switching be- tween local state-feedback controllers such that the closed-loop TS fuzzy system of interest rapidly converges to the stable periodic solution of the system. All control strategies are also automated as a design problem recast on linear matrix inequality conditions to be solved by modern optimization techniques. Keywords: Takagi-Sugeno fuzzy systems, non-smooth Lyapunov theory, non-smooth dy- namical systems, piecewise-smooth dynamical systems, structural stability, discontinuity- induced bifurcation, chaos controllers, dc-dc converters, Filippov's system, impacting system, linear matrix inequalities.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Uniform finite time stabilisation of non-smooth and variable structure systems with resets

    Get PDF
    This thesis studies uniform finite time stabilisation of uncertain variable structure and non-smooth systems with resets. Control of unilaterally constrained systems is a challenging area that requires an understanding of the underlying mechanics that give rise to reset or jumps while synthesizing stabilizing controllers. Discontinuous systems with resets are studied in various disciplines. Resets in states are hard nonlinearities. This thesis bridges non-smooth Lyapunov analysis, the quasi-homogeneity of differential inclusions and uniform finite time stability for a class of impact mechanical systems. Robust control synthesis based on second order sliding mode is undertaken in the presence of both impacts with finite accumulation time and persisting disturbances. Unlike existing work described in the literature, the Lyapunov analysis does not depend on the jumps in the state while also establishing proofs of uniform finite time stability. Orbital stabilization of fully actuated mechanical systems is established in the case of persisting impacts with an a priori guarantee of finite time convergence between t he periodic impacts. The distinguishing features of second order sliding mode controllers are their simplicity and robustness. Increasing research interest in the area has been complemented by recent advances in Lyapullov based frameworks which highlight the finite time Convergence property. This thesis computes the upper bound on the finite settling time of a second order sliding mode controller. Different to the latest advances in the area, a key contribution of this thesis is the theoretical proof of the fact that finite settling time of a second order sliding mode controller tends to zero when gains tend to infinity. This insight of the limiting behaviour forms the basis for solving the converse problem of finding an explicit a priori tuning formula for the gain parameters of the controller when and arbitrary finite settling time is given. These results play a central role ill the analysis of impact mechanical systems. Another key contribution of the thesis is that it extends the above results on variable structure systems with and without resets to non-smooth systems arising from continuous finite time controllers while proving uniform finite time stability. Finally, two applications are presented. The first application applies the above theoretical developments to the problem of orbital stabilization of a fully actuated seven link biped robot which is a nonlinear system with periodic impacts. The tuning of the controller gains leads to finite time convergence of the tracking errors between impacts while being robust to disturbances. The second application reports the outcome of an experiment with a continuous finite time controller
    corecore