1,025 research outputs found

    Terminal sliding mode control strategy design for second-order nonlinear system

    Full text link
    This study mainly focuses on the terminal sliding mode control (TSMC) strategy design, including an adaptive terminal sliding mode control (ATSMC) and an exact-estimator-based terminal sliding mode control (ETSMC) for second-order nonlinear dynamical systems. In the ATSMC system, an adaptive bound estimation for the lump uncertainty is proposed to ensure the system stability. On the other hand, an exact estimator is designed for exact estimating system uncertainties to solve the trouble of chattering phenomena caused by a sign function in ATSMC law in despite of the utilization of a fixed value or an adaptive tuning algorithm for the lumped uncertainty bound. The effectiveness of the proposed control schemes can be verified in numerical simulations.<br /

    Theoretical analysis and experimental validation of a simplified fractional order controller for a magnetic levitation system

    Get PDF
    Fractional order (FO) controllers are among the emerging solutions for increasing closed-loop performance and robustness. However, they have been applied mostly to stable processes. When applied to unstable systems, the tuning technique uses the well-known frequency-domain procedures or complex genetic algorithms. This brief proposes a special type of an FO controller, as well as a novel tuning procedure, which is simple and does not involve any optimization routines. The controller parameters may be determined directly using overshoot requirements and the study of the stability of FO systems. The tuning procedure is given for the general case of a class of unstable systems with pole multiplicity. The advantage of the proposed FO controller consists in the simplicity of the tuning approach. The case study considered in this brief consists in a magnetic levitation system. The experimental results provided show that the designed controller can indeed stabilize the magnetic levitation system, as well as provide robustness to modeling uncertainties and supplementary loading conditions. For comparison purposes, a simple PID controller is also designed to point out the advantages of using the proposed FO controller

    Design and Control of EMS Magnetic Levitation Train using Fuzzy MRAS and PID Controllers

    Get PDF
    In this paper, a Magnetic Levitation (MAGLEV) train is designed with a first degree of freedom electromagnetbased totally system that permits to levitate vertically up and down. Fuzzy logic, PID and MRAS controllers are used to improve the Magnetic Levitation train passenger comfort and road handling. A Matlab Simulink model is used to compare the performance of the three controllers using step input signals. The stability of the Magnetic Levitation train is analyzed using root locus technique. Controller output response for different time period and change of air gap with different time period is analyzed for the three controllers. Finally the comparative simulation and experimental results demonstrate the effectiveness of the presented fuzzy logic controller

    IMPLEMENTATION OF CONTROL ALGORITHMS IN BALL MAGNETIC LEVITATION SYSTEM TO IMPROVE SYSTEM PARAMETERS

    Get PDF
    Magnetic Levitation System (Maglev) is an approach which is currently widely applied in different areas like semiconductor, transportation, power generation, household appliances and etc. Since Magnetic Levitation System is a highly non-linear system, constructing a successful controller which has robust performance becomes a big challenge. The most conventional method of building Maglev is PID controller. However findings of controller’s parameters which ar

    Synthesis of Hybrid Fuzzy Logic Law for Stable Control of Magnetic Levitation System

    Get PDF
    In this paper, we present a method to design a hybrid fuzzy logic controller (FLC) for a magnetic levitation system (MLS) based on the linear feedforward control method combined with FLC. MLS has many applications in industry, transportation, but the system is strongly nonlinear and unstable at equilibrium. The fast response linear control law ensures that the ball is kept at the desired point, but does not remain stable at that point in the presence of noise or deviation from the desired position. The controller that combines linear feedforward control and FLC is designed to ensure ball stability and increase the system's fast-response when deviating from equilibrium and improve control quality. Simulation results in the presence of noise show that the proposed control law has a fast and stable effect on external noise. The advantages of the proposed controller are shown through the comparison results with conventional PID and FLC control laws

    Sliding Mode Control with Gain-Scheduled for Magnetic Levitation System

    Get PDF
    This paper presents a study of controlling magnetic levitation object using conventional sliding mode control (CSMC) and sliding mode control (SMC) with gain-scheduled. SMC with gain-scheduled aims to improve the robustness of the control system from disturbance. The CSMC simulation results show that output can follow the set point if there is no interference, but if the disturbance happens then there is overshoot and undershoot of 0.034 mm and 0.07 mm for disturbance 10 ∗ sin

    Sliding Mode Control with Gain-Scheduled for Magnetic Levitation System

    Get PDF
    This paper presents a study of controlling magnetic levitation object using conventional sliding mode control (CSMC) and sliding mode control (SMC) with gain-scheduled. SMC with gain-scheduled aims to improve the robustness of the control system from disturbance. The CSMC simulation results show that output can follow the set point if there is no interference, but if the disturbance happens then there is overshoot and undershoot of 0.034 mm and 0.07 mm for disturbance 10 ∗ sin () and 20 ∗ sin (). Then SMC with gain-scheduled shows excellent performance because the output can follow the reference even if it got disturbance of 10 ∗ sin () and 20 ∗ sin ()

    Integral sliding mode control with integral switching gain for magnetic levitation apparatus

    Get PDF
    Author name used in this publication: Norbert C. CheungRefereed conference paper2008-2009 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe
    corecore