222 research outputs found

    Affine Data-Flow Graphs for the Synthesis of Hard Real-Time Applications

    Get PDF
    International audienceData-flow models ease the task of constructing feasible schedules of computations and communications of high-assurance embedded applications. One key and open issue is how to schedule data-flow graphs so as to minimize the buffering of data and reduce end-to-end latency. Most of the proposed techniques in that respect are based on either static or data-driven scheduling. This paper looks at the problem in a different way by considering priority-driven preemptive scheduling theory of periodic tasks to execute a data-flow program. Our approach to the problem can be detailed as follows. (1) We propose a model of computation in which the activation clocks of actors are related by affine functions. The affine relations describe the symbolic scheduling constraints of the data-flow graph. (2) Based on this framework, we present an algorithm that computes affine schedules in a way that minimizes buffering requirements and, in addition, guarantees the absence of overflow and underflow exceptions over communication channels. (3) Depending on the chosen scheduling policy (earliest-deadline first or rate-monotonic), we concretize the symbolic schedule by defining the period and the phase of each actor. This concretization guarantees schedulability and maximizes the processor utilization factor

    The Signal Synchronous Multiclock Approach to the Design of Distributed Embedded System

    Get PDF
    International audienceThis paper presents the design of distributed embedded systems using the synchronous multiclock model of the Signal language. It proposes a methodology that ensures a correct-by-construction functional implementation of these systems from high-level models. It shows the capability of the synchronous approach to apply formal techniques and tools that guarantee the reliability of the designed systems. Such a capability is necessary and highly worthy when dealing with safety-critical systems. The proposed methodology is demonstrated through a case study consisting of a simple avionic application, which aims to pragmatically help the reader to understand the manipulated formal concepts, and to apply them easily in order to solve system correctness issues encountered in practice. The application functionality is first modeled as well as its distribution on a generic hardware architecture. This relies on the endochrony and endo-isochrony properties of Signal specifications, defined previously. The considered architectures include asynchronous communication mechanisms, which are also modeled in Signal and proved to achieve message exchanges correctly. Furthermore, the synchronizability of the different parts in the resulting system is addressed after its deployment on a specific execution platform with multirate clocks. After all these steps, a distributed code can be automatically generated

    A Static Analyzer for Large Safety-Critical Software

    Get PDF
    We show that abstract interpretation-based static program analysis can be made efficient and precise enough to formally verify a class of properties for a family of large programs with few or no false alarms. This is achieved by refinement of a general purpose static analyzer and later adaptation to particular programs of the family by the end-user through parametrization. This is applied to the proof of soundness of data manipulation operations at the machine level for periodic synchronous safety critical embedded software. The main novelties are the design principle of static analyzers by refinement and adaptation through parametrization, the symbolic manipulation of expressions to improve the precision of abstract transfer functions, the octagon, ellipsoid, and decision tree abstract domains, all with sound handling of rounding errors in floating point computations, widening strategies (with thresholds, delayed) and the automatic determination of the parameters (parametrized packing)

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Behavioural Types: from Theory to Tools

    Get PDF
    This book presents research produced by members of COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems (BETTY), a European research network that was funded from October 2012 to October 2016. The technical theme of BETTY was the use of behavioural type systems in programming languages, to specify and verify properties of programs beyond the traditional use of type systems to describe data processing. A significant area within behavioural types is session types, which concerns the use of type-theoretic techniques to describe communication protocols so that static typechecking or dynamic monitoring can verify that protocols are implemented correctly. This is closely related to the topic of choreography, in which system design starts from a description of the overall communication flows. Another area is behavioural contracts, which describe the obligations of interacting agents in a way that enables blame to be attributed to the agent responsible for failed interaction. Type-theoretic techniques can also be used to analyse potential deadlocks due to cyclic dependencies between inter-process interactions. BETTY was organised into four Working Groups: (1) Foundations; (2) Security; (3) Programming Languages; (4) Tools and Applications. Working Groups 1–3 produced “state-of-the-art reports”, which originally intended to take snapshots of the field at the time the network started, but grew into substantial survey articles including much research carried out during the network [1–3]. The situation for Working Group 4 was different. When the network started, the community had produced relatively few implementations of programming languages or tools. One of the aims of the network was to encourage more implementation work, and this was a great success. The community as a whole has developed a greater interest in putting theoretical ideas into practice. The sixteen chapters in this book describe systems that were either completely developed, or substantially extended, during BETTY. The total of 41 co-authors represents a significant proportion of the active participants in the network (around 120 people who attended at least one meeting). The book is a report on the new state of the art created by BETTY in xv xvi Preface the area of Working Group 4, and the title “Behavioural Types: from Theory to Tools” summarises the trajectory of the community during the last four years. The book begins with two tutorials by Atzei et al. on contract-oriented design of distributed systems. Chapter 1 introduces the CO2 contract specifi- cation language and the Diogenes toolchain. Chapter 2 describes how timing constraints can be incorporated into the framework and checked with the CO2 middleware. Part of the CO2 middleware is a monitoring system, and the theme of monitoring continues in the next two chapters. In Chapter 3, Attard et al. present detectEr, a runtime monitoring tool for Erlang programs that allows correctness properties to be expressed in Hennessy-Milner logic. In Chapter 4, which is the first chapter about session types, Neykova and Yoshida describe a runtime verification framework for Python programs. Communication protocols are specified in the Scribble language, which is based on multiparty session types. The next three chapters deal with choreographic programming. In Chap- ter 5, Debois and Hildebrandt present a toolset for working with dynamic condition response (DCR) graphs, which are a graphical formalism for choreography. Chapter 6, by Lange et al., continues the graphical theme with ChorGram, a tool for synthesising global graphical choreographies from collections of communicating finite-state automata. Giallorenzo et al., in Chapter 7, consider runtime adaptation. They describe AIOCJ, a choreographic programming language in which runtime adaptation is supported with a guarantee that it doesn’t introduce deadlocks or races. Deadlock analysis is important in other settings too, and there are two more chapters about it. In Chapter 8, Padovani describes the Hypha tool, which uses a type-based approach to check deadlock-freedom and lock-freedom of systems modelled in a form of pi-calculus. In Chapter 9, Garcia and Laneve present a tool for analysing deadlocks in Java programs; this tool, called JaDA, is based on a behavioural type system. The next three chapters report on projects that have added session types to functional programming languages in order to support typechecking of communication-based code. In Chapter 10, Orchard and Yoshida describe an implementation of session types in Haskell, and survey several approaches to typechecking the linearity conditions required for safe session implemen- tation. In Chapter 11, Melgratti and Padovani describe an implementation of session types in OCaml. Their system uses runtime linearity checking. In Chapter 12, Lindley and Morris describe an extension of the web programming language Links with session types; their work contrasts with the previous two chapters in being less constrained by an existing language design. Continuing the theme of session types in programming languages, the next two chapters describe two approaches based on Java. Hu’s work, presented in Chapter 13, starts with the Scribble description of a multiparty session type and generates an API in the form of a collection of Java classes, each class containing the communication methods that are available in a particular state of the protocol. Dardha et al., in Chapter 14, also start with a Scribble specification. Their StMungo tool generates an API as a single class with an associated typestate specification to constrain sequences of method calls. Code that uses the API can be checked for correctness with the Mungo typechecker. Finally, there are two chapters about programming with the MPI libraries. Chapter 15, by Ng and Yoshida, uses an extension of Scribble, called Pabble, to describe protocols that parametric in the number of runtime roles. From a Pabble specification they generate C code that uses MPI for communication and is guaranteed correct by construction. Chapter 16, by Ng et al., describes the ParTypes framework for analysing existing C+MPI programs with respect to protocols defined in an extension of Scribble. We hope that the book will serve a useful purpose as a report on the activities of COST Action IC1201 and as a survey of programming languages and tools based on behavioural types

    Behavioural Types: from Theory to Tools

    Get PDF
    This book presents research produced by members of COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems (BETTY), a European research network that was funded from October 2012 to October 2016. The technical theme of BETTY was the use of behavioural type systems in programming languages, to specify and verify properties of programs beyond the traditional use of type systems to describe data processing. A significant area within behavioural types is session types, which concerns the use of type-theoretic techniques to describe communication protocols so that static typechecking or dynamic monitoring can verify that protocols are implemented correctly. This is closely related to the topic of choreography, in which system design starts from a description of the overall communication flows. Another area is behavioural contracts, which describe the obligations of interacting agents in a way that enables blame to be attributed to the agent responsible for failed interaction. Type-theoretic techniques can also be used to analyse potential deadlocks due to cyclic dependencies between inter-process interactions. BETTY was organised into four Working Groups: (1) Foundations; (2) Security; (3) Programming Languages; (4) Tools and Applications. Working Groups 1–3 produced “state-of-the-art reports”, which originally intended to take snapshots of the field at the time the network started, but grew into substantial survey articles including much research carried out during the network [1–3]. The situation for Working Group 4 was different. When the network started, the community had produced relatively few implementations of programming languages or tools. One of the aims of the network was to encourage more implementation work, and this was a great success. The community as a whole has developed a greater interest in putting theoretical ideas into practice. The sixteen chapters in this book describe systems that were either completely developed, or substantially extended, during BETTY. The total of 41 co-authors represents a significant proportion of the active participants in the network (around 120 people who attended at least one meeting). The book is a report on the new state of the art created by BETTY in xv xvi Preface the area of Working Group 4, and the title “Behavioural Types: from Theory to Tools” summarises the trajectory of the community during the last four years. The book begins with two tutorials by Atzei et al. on contract-oriented design of distributed systems. Chapter 1 introduces the CO2 contract specifi- cation language and the Diogenes toolchain. Chapter 2 describes how timing constraints can be incorporated into the framework and checked with the CO2 middleware. Part of the CO2 middleware is a monitoring system, and the theme of monitoring continues in the next two chapters. In Chapter 3, Attard et al. present detectEr, a runtime monitoring tool for Erlang programs that allows correctness properties to be expressed in Hennessy-Milner logic. In Chapter 4, which is the first chapter about session types, Neykova and Yoshida describe a runtime verification framework for Python programs. Communication protocols are specified in the Scribble language, which is based on multiparty session types. The next three chapters deal with choreographic programming. In Chap- ter 5, Debois and Hildebrandt present a toolset for working with dynamic condition response (DCR) graphs, which are a graphical formalism for choreography. Chapter 6, by Lange et al., continues the graphical theme with ChorGram, a tool for synthesising global graphical choreographies from collections of communicating finite-state automata. Giallorenzo et al., in Chapter 7, consider runtime adaptation. They describe AIOCJ, a choreographic programming language in which runtime adaptation is supported with a guarantee that it doesn’t introduce deadlocks or races. Deadlock analysis is important in other settings too, and there are two more chapters about it. In Chapter 8, Padovani describes the Hypha tool, which uses a type-based approach to check deadlock-freedom and lock-freedom of systems modelled in a form of pi-calculus. In Chapter 9, Garcia and Laneve present a tool for analysing deadlocks in Java programs; this tool, called JaDA, is based on a behavioural type system. The next three chapters report on projects that have added session types to functional programming languages in order to support typechecking of communication-based code. In Chapter 10, Orchard and Yoshida describe an implementation of session types in Haskell, and survey several approaches to typechecking the linearity conditions required for safe session implemen- tation. In Chapter 11, Melgratti and Padovani describe an implementation of session types in OCaml. Their system uses runtime linearity checking. In Chapter 12, Lindley and Morris describe an extension of the web programming language Links with session types; their work contrasts with the previous two chapters in being less constrained by an existing language design. Continuing the theme of session types in programming languages, the next two chapters describe two approaches based on Java. Hu’s work, presented in Chapter 13, starts with the Scribble description of a multiparty session type and generates an API in the form of a collection of Java classes, each class containing the communication methods that are available in a particular state of the protocol. Dardha et al., in Chapter 14, also start with a Scribble specification. Their StMungo tool generates an API as a single class with an associated typestate specification to constrain sequences of method calls. Code that uses the API can be checked for correctness with the Mungo typechecker. Finally, there are two chapters about programming with the MPI libraries. Chapter 15, by Ng and Yoshida, uses an extension of Scribble, called Pabble, to describe protocols that parametric in the number of runtime roles. From a Pabble specification they generate C code that uses MPI for communication and is guaranteed correct by construction. Chapter 16, by Ng et al., describes the ParTypes framework for analysing existing C+MPI programs with respect to protocols defined in an extension of Scribble. We hope that the book will serve a useful purpose as a report on the activities of COST Action IC1201 and as a survey of programming languages and tools based on behavioural types

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Beyond shared memory loop parallelism in the polyhedral model

    Get PDF
    2013 Spring.Includes bibliographical references.With the introduction of multi-core processors, motivated by power and energy concerns, parallel processing has become main-stream. Parallel programming is much more difficult due to its non-deterministic nature, and because of parallel programming bugs that arise from non-determinacy. One solution is automatic parallelization, where it is entirely up to the compiler to efficiently parallelize sequential programs. However, automatic parallelization is very difficult, and only a handful of successful techniques are available, even after decades of research. Automatic parallelization for distributed memory architectures is even more problematic in that it requires explicit handling of data partitioning and communication. Since data must be partitioned among multiple nodes that do not share memory, the original memory allocation of sequential programs cannot be directly used. One of the main contributions of this dissertation is the development of techniques for generating distributed memory parallel code with parametric tiling. Our approach builds on important contributions to the polyhedral model, a mathematical framework for reasoning about program transformations. We show that many affine control programs can be uniformized only with simple techniques. Being able to assume uniform dependences significantly simplifies distributed memory code generation, and also enables parametric tiling. Our approach implemented in the AlphaZ system, a system for prototyping analyses, transformations, and code generators in the polyhedral model. The key features of AlphaZ are memory re-allocation, and explicit representation of reductions. We evaluate our approach on a collection of polyhedral kernels from the PolyBench suite, and show that our approach scales as well as PLuTo, a state-of-the-art shared memory automatic parallelizer using the polyhedral model. Automatic parallelization is only one approach to dealing with the non-deterministic nature of parallel programming that leaves the difficulty entirely to the compiler. Another approach is to develop novel parallel programming languages. These languages, such as X10, aim to provide highly productive parallel programming environment by including parallelism into the language design. However, even in these languages, parallel bugs remain to be an important issue that hinders programmer productivity. Another contribution of this dissertation is to extend the array dataflow analysis to handle a subset of X10 programs. We apply the result of dataflow analysis to statically guarantee determinism. Providing static guarantees can significantly increase programmer productivity by catching questionable implementations at compile-time, or even while programming
    • …
    corecore