11 research outputs found

    Feature selection and parameter optimization with GA-LSSVM in electricity price forecasting

    Get PDF
    Forecasting price has now become essential task in the operation of electrical power system. Power producers and customers use short term price forecasts to manage and plan for bidding approaches, and hence increasing the utility’s profit and energy efficiency as well. The main challenge in forecasting electricity price is when dealing with non-stationary and high volatile price series. Some of the factors influencing this volatility are load behavior, weather, fuel price and transaction of import and export due to long term contract. This paper proposes the use of Least Square Support Vector Machine (LSSVM) with Genetic Algorithm (GA) optimization technique to predict daily electricity prices in Ontario. The selection of input data and LSSVM’s parameter held by GA are proven to improve accuracy as well as efficiency of prediction. A comparative study of proposed approach with other techniques and previous research was conducted in term of forecast accuracy, where the results indicate that (1) the LSSVM with GA outperforms other methods of LSSVM and Neural Network (NN), (2) the optimization algorithm of GA gives better accuracy than Particle Swarm Optimization (PSO) and cross validation. However, future study should emphasize on improving forecast accuracy during spike event since Ontario power market is reported as among the most volatile market worldwide

    Short term electricity price forecasting using neural network

    Get PDF
    This paper presents neural networks applied for short term electricity price forecasting in Ontario energy market.The accuracy in electricity price forecasting is very crucial for the power producer and consumer.With the accurate price forecasting, power producer can maximize their profit and manage short term operation and long term planning. Meanwhile, consumer can maximize their utilities efficiently. The objective of this research is to develop models for day ahead price forecasting using back-propagation neural network during summer.Six models were developed representing six types of inputs. The result shows that 24 models representing 24 hours ahead price forecasting with price and demand inputs gives better result compared to other five models due to unique model developed for each hour rather than a model for a day with mean absolute percentage error (MAPE) of 18.74%

    An efficient framework for short-term electricity price forecasting in deregulated power market

    Get PDF
    It is widely acknowledged that electricity price forecasting become an essential factor in operational activities, planning, and scheduling for the participant in the price-setting market, nowadays. Nevertheless, electricity price became a complex signal due to its non-stationary, non-linearity, and time-variant behavior. Consequently, a variety of artificial intelligence techniques are proposed to provide an efficient method for short-term electricity price forecasting. BSA as the recent augmentation of optimization technique, yield the potential of searching a closed-form solution in mathematical modeling with a higher probability, obviating the necessity to comprehend the correlations between variables. Concurrently, this study also developed a feature selection technique, to select the input variables subsets that have a substantial implication on forecasting of electricity price, based on a combination of mutual information (MI) and SVM. For the verification of simulation results, actual data sets from the Ontario energy market in the year 2020 covering various weather seasons are acquired. Finally, the obtained results demonstrate the feasibility of the proposed strategy through improved preciseness in comparison with the distinctive methods.©2021 Institute of Electrical and Electronics Engineers. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/This research has been supported by University of Vaasa under Profi4/WP2 project with the financial support provided by the Academy of Finland.fi=vertaisarvioitu|en=peerReviewed

    Using Bayesian deep learning to capture uncertainty for residential net load forecasting

    Get PDF
    Decarbonization of electricity systems drives significant and continued investments in distributed energy sources to support the cost-effective transition to low-carbon energy systems. However, the rapid integration of distributed photovoltaic (PV) generation presents great challenges in obtaining reliable and secure grid operations because of its limited visibility and intermittent nature. Under this reality, net load forecasting is facing unprecedented difficulty in answering the following question: how can we accurately predict the net load while capturing the massive uncertainties arising from distributed PV generation and load, especially in the context of high PV penetration? This paper proposes a novel probabilistic day-ahead net load forecasting method to capture both epistemic uncertainty and aleatoric uncertainty using Bayesian deep learning, which is a new field that combines Bayesian probability theory and deep learning. The proposed methodological framework employs clustering in subprofiles and considers residential rooftop PV outputs as input features to enhance the performance of aggregated net load forecasting. Numerical experiments have been carried out based on fine-grained smart meter data from the Australian grid with separately recorded measurements of rooftop PV generation and loads. The results demonstrate the superior performance of the proposed scheme compared with a series of state-of-theart methods and indicate the importance and effectiveness of subprofile clustering and high PV visibility

    A new framework for electricity price forecasting via multi-head self-attention and CNN-based techniques in the competitive electricity market

    Get PDF
    Due to recent technical improvements, the smart grid has become a feasible platform for electricity market participants to successfully regulate their bidding process based on demand-side management (DSM) perspectives. At this level, practical design, implementation, and assessment of numerous demand response mechanisms and robust short-term price forecasting development in day-ahead transactions are all critical. The accuracy and effectiveness of the day-ahead price forecasting process are crucial concerns in a deregulated market. In this market, the reason for low accuracy is the limitation of electricity generation compared to the electricity demand variations. Hence, this study proposes a suitable technique for forecasting electricity prices using a multi-head self-attention and Convolutional Neural networks (CNN) based approach. Further, this study develops a feature selection technique using mutual information (MI) and neural networks (NN) to choose suitable input variable subsets significantly affecting electricity price predictions simultaneously. The combination of MI and NN reduces the number of input features used in the model, thereby decreasing the computational complexity of the NN. The actual data sets from the Ontario electricity market in 2020 are acquired to verify the simulation results. Finally, the simulation results proved the efficiency of the proposed method by demonstrating increased accuracy by attaining the lowest average value for MAPE and RMSE with a value of 1.75% and 0.0085, respectively, and compared to results obtained by recent computational intelligence approaches. By attaining accurate electricity price results, the significance of this study can be summed up as aiding the electricity industry's operators in administering effective energy management, efficient resource allocation, and informed decision-making.© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Recent Development in Electricity Price Forecasting Based on Computational Intelligence Techniques in Deregulated Power Market

    Get PDF
    The development of artificial intelligence (AI) based techniques for electricity price forecasting (EPF) provides essential information to electricity market participants and managers because of its greater handling capability of complex input and output relationships. Therefore, this research investigates and analyzes the performance of different optimization methods in the training phase of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for the accuracy enhancement of EPF. In this work, a multi-objective optimization-based feature selection technique with the capability of eliminating non-linear and interacting features is implemented to create an efficient day-ahead price forecasting. In the beginning, the multi-objective binary backtracking search algorithm (MOBBSA)-based feature selection technique is used to examine various combinations of input variables to choose the suitable feature subsets, which minimizes, simultaneously, both the number of features and the estimation error. In the later phase, the selected features are transferred into the machine learning-based techniques to map the input variables to the output in order to forecast the electricity price. Furthermore, to increase the forecasting accuracy, a backtracking search algorithm (BSA) is applied as an efficient evolutionary search algorithm in the learning procedure of the ANFIS approach. The performance of the forecasting methods for the Queensland power market in the year 2018, which is well-known as the most competitive market in the world, is investigated and compared to show the superiority of the proposed methods over other selected methods.© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Hybrid artificial intelligence algorithms for short-term load and price forecasting in competitive electric markets

    Get PDF
    The liberalization and deregulation of electric markets forced the various participants to accommodate several challenges, including: a considerable accumulation of new generation capacity from renewable sources (fundamentally wind energy), the unpredictability associated with these new forms of generation and new consumption patterns, contributing to further electricity prices volatility (e.g. the Iberian market). Given the competitive framework in which market participants operate, the existence of efficient computational forecasting techniques is a distinctive factor. Based on these forecasts a suitable bidding strategy and an effective generation systems operation planning is achieved, together with an improved installed transmission capacity exploitation, results in maximized profits, all this contributing to a better energy resources utilization. This dissertation presents a new hybrid method for load and electricity prices forecasting, for one day ahead time horizon. The optimization scheme presented in this method, combines the efforts from different techniques, notably artificial neural networks, several optimization algorithms and wavelet transform. The method’s validation was made using different real case studies. The subsequent comparison (accuracy wise) with published results, in reference journals, validated the proposed hybrid method suitability.O processo de liberalização e desregulação dos mercados de energia elétrica, obrigou os diversos participantes a acomodar uma série de desafios, entre os quais: a acumulação considerável de nova capacidade de geração proveniente de origem renovável (fundamentalmente energia eólica), a imprevisibilidade associada a estas novas formas de geração e novos padrões de consumo. Resultando num aumento da volatilidade associada aos preços de energia elétrica (como é exemplo o mercado ibérico). Dado o quadro competitivo em que os agentes de mercado operam, a existência de técnicas computacionais de previsão eficientes, constituí um fator diferenciador. É com base nestas previsões que se definem estratégias de licitação e se efetua um planeamento da operação eficaz dos sistemas de geração que, em conjunto com um melhor aproveitamento da capacidade de transmissão instalada, permite maximizar os lucros, realizando ao mesmo tempo um melhor aproveitamento dos recursos energéticos. Esta dissertação apresenta um novo método híbrido para a previsão da carga e dos preços da energia elétrica, para um horizonte temporal a 24 horas. O método baseia-se num esquema de otimização que reúne os esforços de diferentes técnicas, nomeadamente redes neuronais artificiais, diversos algoritmos de otimização e da transformada de wavelet. A validação do método foi feita em diferentes casos de estudo reais. A posterior comparação com resultados já publicados em revistas de referência, revelou um excelente desempenho do método hibrido proposto

    Metodologia Híbrida de Previsão de Preços de Eletricidade e Potência Eólica

    Get PDF
    Desenvolvimento de uma nova metodologia de previsão de preços de electricidade e de potência eólica através da conjugação de diferentes sistemas e elementos já existentes e estabelecer uma comparação com outras anteriormente criadas de modo a verificar a sua fiabilidade e possível melhoria na qualidade de ambas as previsões, nomeadamente na diminuição dos respetivos erros

    Forecasting tools and probabilistic scheduling approach incorporatins renewables uncertainty for the insular power systems industry

    Get PDF
    Nowadays, the paradigm shift in the electricity sector and the advent of the smart grid, along with the growing impositions of a gradual reduction of greenhouse gas emissions, pose numerous challenges related with the sustainable management of power systems. The insular power systems industry is heavily dependent on imported energy, namely fossil fuels, and also on seasonal tourism behavior, which strongly influences the local economy. In comparison with the mainland power system, the behavior of insular power systems is highly influenced by the stochastic nature of the renewable energy sources available. The insular electricity grid is particularly sensitive to power quality parameters, mainly to frequency and voltage deviations, and a greater integration of endogenous renewables potential in the power system may affect the overall reliability and security of energy supply, so singular care should be placed in all forecasting and system operation procedures. The goals of this thesis are focused on the development of new decision support tools, for the reliable forecasting of market prices and wind power, for the optimal economic dispatch and unit commitment considering renewable generation, and for the smart control of energy storage systems. The new methodologies developed are tested in real case studies, demonstrating their computational proficiency comparatively to the current state-of-the-art

    Novel Computationally Intelligent Machine Learning Algorithms for Data Mining and Knowledge Discovery

    Get PDF
    This thesis addresses three major issues in data mining regarding feature subset selection in large dimensionality domains, plausible reconstruction of incomplete data in cross-sectional applications, and forecasting univariate time series. For the automated selection of an optimal subset of features in real time, we present an improved hybrid algorithm: SAGA. SAGA combines the ability to avoid being trapped in local minima of Simulated Annealing with the very high convergence rate of the crossover operator of Genetic Algorithms, the strong local search ability of greedy algorithms and the high computational efficiency of generalized regression neural networks (GRNN). For imputing missing values and forecasting univariate time series, we propose a homogeneous neural network ensemble. The proposed ensemble consists of a committee of Generalized Regression Neural Networks (GRNNs) trained on different subsets of features generated by SAGA and the predictions of base classifiers are combined by a fusion rule. This approach makes it possible to discover all important interrelations between the values of the target variable and the input features. The proposed ensemble scheme has two innovative features which make it stand out amongst ensemble learning algorithms: (1) the ensemble makeup is optimized automatically by SAGA; and (2) GRNN is used for both base classifiers and the top level combiner classifier. Because of GRNN, the proposed ensemble is a dynamic weighting scheme. This is in contrast to the existing ensemble approaches which belong to the simple voting and static weighting strategy. The basic idea of the dynamic weighting procedure is to give a higher reliability weight to those scenarios that are similar to the new ones. The simulation results demonstrate the validity of the proposed ensemble model
    corecore