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Resumo 

Hoje em dia, a mudança de paradigma do setor elétrico e o desenvolvimento da rede elétrica 

inteligente, em paralelo com as crescentes exigências para uma redução gradual das emissões 

de gases com efeito de estufa, apresentam inúmeros desafios relacionados com a gestão 

sustentável dos sistemas de energia elétrica. 

A indústria de energia elétrica nos sistemas insulares é profundamente dependente da 

importação de energia primária, nomeadamente de combustíveis fósseis, e também do 

comportamento do turismo sazonal, o qual influencia significativamente a economia local. 

Comparativamente ao sistema elétrico continental, o comportamento dos sistemas elétricos 

insulares é profundamente influenciado pela natureza estocástica dos recursos energéticos 

renováveis disponíveis. 

A rede elétrica insular é particularmente sensível aos parâmetros de qualidade do sistema 

elétrico, principalmente aos desvios de frequência e tensão, e a integração massiva do 

potencial renovável endógeno no sistema elétrico poderá afetar a fiabilidade e segurança do 

fornecimento de energia, pelo que deve ser dada peculiar atenção aos procedimentos de 

previsão e operação do sistema. 

Os objetivos da presente Tese incidem na criação de novas ferramentas de apoio à decisão, 

para a previsão fiável dos preços de mercado e da potência eólica, para o despacho 

económico e afetação ótima de unidades considerando a geração renovável, e para o controlo 

inteligente de sistemas de armazenamento de energia. As novas metodologias desenvolvidas 

são testadas em casos de estudo reais, demonstrando a sua proficiência computacional 

comparativamente ao atual estado da arte. 
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Abstract 

Nowadays, the paradigm shift in the electricity sector and the advent of the smart grid, along 

with the growing impositions of a gradual reduction of greenhouse gas emissions, pose 

numerous challenges related with the sustainable management of power systems. 

The insular power systems industry is heavily dependent on imported energy, namely fossil 

fuels, and also on seasonal tourism behavior, which strongly influences the local economy.  

In comparison with the mainland power system, the behavior of insular power systems is 

highly influenced by the stochastic nature of the renewable energy sources available.  

The insular electricity grid is particularly sensitive to power quality parameters, mainly to 

frequency and voltage deviations, and a greater integration of endogenous renewables 

potential in the power system may affect the overall reliability and security of energy supply, 

so singular care should be placed in all forecasting and system operation procedures. 

The goals of this thesis are focused on the development of new decision support tools, for the 

reliable forecasting of market prices and wind power, for the optimal economic dispatch and 

unit commitment considering renewable generation, and for the smart control of energy 

storage systems. The new methodologies developed are tested in real case studies, 

demonstrating their computational proficiency comparatively to the current state-of-the-art. 
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Chapter 1 

Introduction 

This chapter describes the framework of the electricity industry sector and the new paradigm 

related to renewable energy sources and their integration in the electricity framework, in 

particular, wind power capacity. This chapter also describes the motivations that support the 

proposed work and gives an overview of the organization of the thesis and the notation used. 

1.1. Framework 

The conversion of energy and its use, since the days when humans first learned to exploit its 

potential for their own benefit, has been the utmost factor in the growth of the economy and 

society and their sustainable development. In this way, the energy sector plays an important 

role in the national economy, since it is the propellant of greater stimulus and dynamism in 

creating new business and employment opportunities. 

Historically, the electricity sector worldwide, before the 1980s, was characterized by a 

vertical structure of integrated companies (generation, transmission and distribution), which 

allowed the natural expansion and growth of the electricity infrastructure as a scale economy 

whose imperative ideology was to minimize production costs. Consequently it came to be 

regarded as a natural monopoly structure. Nonetheless, during the 1980s the idea of natural 

monopoly began to be questioned with the advent of new independent electricity producers, 

since the companies concerned with the transport and distribution of electricity were obliged 

to acquire the electricity produced by the new electricity producers [1]. Since the 1980s, the 

worldwide electricity sector has been subject to a constant process of restructuring, which 

allowed the creation of liberalized electricity markets and a competitive environment among 

different players, and consequently it allowed the necessary conditions for consumers to be 

able to participate in the electricity market, i.e., offering their proposed purchase of 

electricity to different suppliers [2]. 

The planning, management and exploitation of the electricity system are three important 

concepts for the electricity companies, which must operate in accordance with the global 

liberalization of the electricity sector, i.e., manage their operations with a concern to 

guarantee the rationality, sustainability and robustness of the complex energy mix that makes 

up the electricity system [3]. Thus, the mechanisms and tools that allow the proper 

participation in the electricity market should include a number of factors whose objectives 

are intrinsically related to profit maximization via optimizing the use of electricity system 

production, i.e., providing adequate support strategies for participation in liberalized 

electricity markets [4]. 
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This new paradigm has not been ignored in Portugal. The initiative of electricity market 

liberalization happened in the 1990s with Directive 1996/92/CE of the European Parliament 

and of the Council (published December 19, 1996), whereby the rules for the creation of an 

internal electricity market were established, and allowing liberalization of the electricity 

sector. The same liberalization also took into account improvement of the efficiency of the 

electricity system and increased economic competitiveness [5]. On June 26, 2003, Directive 

2003/54/CE of the European Parliament and of the Council was published, which triggered 

the liberalization of the electricity sector throughout the Iberian Peninsula, allowing the 

creation of the Iberian electricity market (MIBEL). Such restructuring of the electricity sector 

had a strong impact on the production and transmission of electricity [6]. 

In July 2007 MIBEL started its activity, with the expected competitive environment among 

players in the Iberian market mediated by the futures contracts market operator (OMEL) on 

the Spanish side, and by the daily and intraday market operator (OMIP) on the Portuguese 

side. However, it was only in April 2010, with Portuguese Resolution of the Council of 

Ministers no. 29/2010, that a harmonized MIBEL market was created in which some 

mechanisms have been defined, notably [7]:  

 Definition of dominant operators; 

 Harmonized mechanism of power guarantee; 

 Definition of an interruptibility mechanism which harmonized the service system. 

Resulting from the liberalization of the electricity sector with its competitive environment, 

there are currently two ways of transacting the supply of electricity: 

 The bilateral contracts market, which is responsible for the agreements made between 

buyers and sellers of electricity, relative to the price and the quantity of electricity to be 

traded, which will later be implemented by the independent system operator (ISO). 

 The spot market, where the purchases and sale of electricity are made, held by the market 

operator (MO). The MO determines the quantity of electricity to be produced and the 

market price of electricity, according to the offers of purchase and sale made by the 

market players. 

 After the technical feasibility resulting from the agreements between the ISO and MO 

operators, related to the technical program of electricity production, a complementary 

service is also required to ensure the safety, robustness, and quality of the electricity 

supply. 

Nowadays, the activity of electricity production with a liberalized and organized electricity 

market is associated with a wholesale market, where the producers’ agents present their 

production and ensure the placement of that production, and agents seek to purchase 

electricity for two main reasons: one, to satisfy the demand of end customers; and two, for 

their own consumption. The trading activity is associated with a retail market where the 

trading agents compete to ensure the provision of electricity for end customers.  
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Monitoring the proper operation of the electricity market in the current liberalized 

environment is necessary because it is required to follow some characteristics and behavior of 

others organized electricity markets, as well as the developments in other markets, whose 

transactions can influence the determination of electricity prices (e.g., fossil fuel trading, 

carbon dioxide emissions trading, and financial markets, among others) [7]. Therefore an 

organized electricity market is composed of the following architecture: 

 The wholesale electricity market, composed of the daily market (where electricity is 

purchased for the next day); the futures market (where electricity for long-term periods is 

purchased); and other mechanisms such as bilateral contracts or other specific legal 

mechanisms [8], [9]: 

o The daily market works through the intersection of offers (of buying and selling) by the 

various agents registered to operate in that market. Each offer indicates the day and 

time to which it relates with the price and amount of corresponding electricity. 

Furthermore, it follows its own operating rules; 

o The intraday market is where the electricity transacted in the daily market is 

corrected, in six sessions starting at 20h00 of the previous day (1st session), and ending 

at 16h00 of the current day (6th session). The electricity price is corrected with the 

corresponding electricity transaction; 

o The futures market which involves instruments of risk management for buying and 

selling electricity in the future (from one week to one year) between agents. These 

instruments are agreed under contracts, which can be divided into: 

 Future contract, which is a standardized contract to buy and sell electricity for a 

determined horizon time; where the players (producer and buyer) agree with each 

other to buy and sell electricity at a determined price; 

 Forward contract, which is similar to the future contract but differs on the final 

price of the electricity at the time of acquisition of the electricity; 

 Swap contract, which is a standardized contract where a positional variable price is 

exchanged for a fixed price, or vice versa, depending on the direction of exchange 

between the parties. This type of contract is applied to manage or take a financial 

risk, and it is not for the exchange of any subjacent product. 

o Bilateral contract, which can be divided into: 

 Forward contracting market, where future commitments for the production and 

purchase of electricity are established; 

 Daily contracting market, which is divided into daily contracting and intraday-

adjustment, and where the programs of production and selling electricity are 

established for the next day of negotiation; 

 Service market, where the adjustment between production and consumption of 

electricity is performed in real time; 

 Bilateral contract, where the parties contract for the production and purchase of 

electricity for all different horizon times. 
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 The retail electricity market, where any customer can freely choose their electricity 

supplier. It is also helpful to guarantee the competition between the different operators in 

a balanced way and to minimize the information asymmetries between consumers and 

other market agents. 

Since the ratification of the Kyoto Protocol in 1999, enhanced by the Climate Conference in 

Copenhagen in 2009, and the continuous conferences of parties (COP), the last one held in 

Lima, Peru, in December 2014, campaigners are trying to assess, warn, and encourage all 

nations to create a set of measures and targets to meet the emerging need for the continued 

mitigation of anthropogenic greenhouse gas emissions (GHE) around the world [10] to reduce 

rising seawater levels and mediate global warming.  

In Portugal, the challenge of anthropogenic GHE mitigation is addressed through a series of 

encouraging targets. These satisfy Directive 2001/77/CE of the European Parliament and of 

the Council of Ministers, published in September 2001, which defined the incentives and 

motivations for production of electricity by renewable energy sources in order to maintain the 

standards of equity and sustainability in the whole economy [11]. The targets for the 

mitigation of GHE include a substantial increase in the share of electricity production from 

renewable sources (higher incidence of wind energy) through the encouragement of the 

private sector and consequently reducing the production of electricity from fossil fuels [12]. 

The endogenous use of renewable energy has a substantial level of social acceptance, it 

actively contributes to a sustainable economy and reduces dependence on importation of 

foreign energy. Beyond the inherent ecological advantages, the implementation costs are 

decreasing [13]. In the renewable energy field, wind power stands out as the most promising, 

since it is considered a very evolved and mature technology worldwide, with a good 

relationship between the implementation cost and profitability throughout its lifetime. 

Therefore, many European governments, despite the epidemic of economic crises which have 

struck Europe in recent years, have taken great efforts to continue their incentive programs 

for installing more wind farms or enhancing existing ones, as well as other incentives, and 

reforming laws to sustain further plans to decarbonize the global electricity system [14]. 

Such measures to decarbonize the electricity industry are supported by the policy adopted in 

2007 by the European Council, i.e., the binding obligation on Member-States to increase by 

20% the share of renewable energy by 2020, commonly referred to as the “20-20-20 

program”. The policy imposes the following targets [15], [16]: 

 Reducing the anthropogenic emissions of GHE in 20% relative to 1990 emissions; 

 Increase the amount of renewable energy by 20% in the final energy consumption; 

 Reduce in 20% the total primary energy consumption by increasing the energy efficiency. 

At the end of 2013, and despite the economic crisis, more than 11,159 wind-power units were 

installed in the 28 Member States of the European Union (EU28), but with a decrease in 

installations of 8% compared with 2012.  
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This decrease had a negative impact on regulatory markets, the consequence of political 

uncertainties throughout Europe, which causes disturbances in legislative frameworks and 

future investments. Nevertheless, wind power capacity represents 32% of total power 

capacity installed in Europe, i.e., 5% more than in 2012. Furthermore, since 2000 more than 

28% of the total renewable power capacity is derived from wind power.  

Table 1.1 shows the total wind power capacity installed in EU28 (onshore capacity), where 

some countries such as Germany, Spain, United Kingdom, Italy, France, Denmark and Portugal 

stand out. Other countries show a noticeable increment of wind power capacity installed 

between 2012 and 2013. Figure 1.1 shows the total power capacity from 2008 to 2013 in MW 

and shared renewable power capacity in the EU28 (light green area), representing 72% at the 

end of 2013. The high contribution of wind power capacity over the years, which is briefly 

described in [17] is also shown in Figure 1.2.  

In the case of Portugal, and despite the deep economic crisis that has affected other areas in 

this country, the harnessing of endogenous renewable energies and the decarbonization of 

the electricity sector has not been set aside. The constant demands to face new challenges 

are faced with new strategies such as the Resolution of the EU Council of Ministers  

no. 20/2013, which reinforces the ambitious Portuguese strategy for 2020, for a sustainable 

and progressive decarbonization of the electricity sector, through the “National Action Plan 

for Energy Efficiency” (PNAEE) and the “National Action Plan for Renewable Energy” (PNAER). 

As shown in Figure 1.3, the integration and penetration of renewable energies into the 

electricity framework in Portugal from 2005 to July 2014 has deeply modified the dynamic 

behavior of the electricity generation mix [18], which requires appropriate studies to 

maximize the use of the available renewable potential. It also shows the relevance of 

renewable energy, which reached 4808MW at the end of July 2014. 

Table 1.1. Total wind power capacity installed in some countries in EU28 [17]. 

Country 
Total 

Capacity in 
2012 (MW) 

Capacity 
Installed in 
2012 (MW) 

Total 
Capacity in 
2013 (MW) 

Capacity 
Installed in 
2013 (MW) 

Increment 
(%) 

Variation 
(%) 

Denmark 4162 220 4772 657 12.78 14.66 

France 7623 814 8254 631 7.64 8.28 

Germany 30989 2297 33730 3238 8.13 8.85 

Greece 1749 117 1865 116 6.22 6.63 

Ireland 1749 121 2037 288 14.14 16.47 

Italy 8118 1239 8551 444 5.06 5.33 

Netherlands 2391 119 2693 303 11.21 12.63 

Poland 2496 880 3390 894 26.37 35.82 

Portugal 4529 155 4724 196 4.13 4.31 

Spain 22784 1110 22959 175 0.76 0.77 

UK 8649 2064 10531 1883 17.87 21.76 
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Figure 1.1. Power capacity in EU28 from 2008 till 2013 in MW and shared renewable power capacity [17]. 

 

Figure 1.2. Wind power capacity evolution in Europe between 2001 till 2013 in MW in onshore and 

offshore installation [17]. 

Meanwhile, from January 2005 to July 2014, renewable thermal generation (biomass, biogas, 

solid urban waste plants (SUW), and geothermal) increased from 447MW to 752MW, overall 

hydro power plants from 4816MW to 5535MW, and photovoltaic power plants (PV) from 3MW 

to 332MW. In the final results, the total renewable capacity represents 24% of total primary 

energy consumed in Portugal at the end of 2012, of which 21% was related to wind power, 

and also a substantial reduction of 4618ktoe of conventional equivalent thermal energy with 

equivalent GHE reduction [19]. Wind energy is a mature and viable technology economically, 

in comparison with other renewable endogenous energies. It contributes to a significant 

reduction of GHE and also encourages competition in today’s liberalized electricity markets 

due to its intermittency and volatility. In other words, the electricity frameworks face the 

need for greater flexibility and adaptability in terms of fluctuations and also demand 

variation because, in comparison with other renewables integration, wind energy is itself a 

non-dispatchable energy, in comparison with classical generation units (thermal or hydro 

power plants) [20]. 
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Figure 1.3. Overall renewable energy capacity installed in Portugal from January 2005 till July 2014 [19]. 

Therefore, it is necessary to differentiate the concepts of intermittency and volatility. 

Intermittency is an event that starts but abruptly culminates, whereas volatility is related to 

fluctuating variation around the trend line [21]. To represent these characteristics, Figure 1.4 

shows the profile of wind power during one week of January 2014 in Portugal, in which it is 

possible to observe the difference between intermittency and volatility along a hypothetical 

trend shape of the wind power profile [22]. 

Regarding the consumption of fossil fuels and their use in the Portuguese electricity sector, it 

should be noted that there are ambitious plans for a gradual decommissioning of the biggest 

thermal power plants (mostly coal) between 2017 and 2030. However, despite the importance 

of gas for the robustness and quality of service of the electricity sector, Portugal will be 

dependent on natural gas supplies from Algeria and Nigeria, which requires a future 

improvement of infrastructure for its storage. Notwithstanding, there are some interesting 

plans for the reinforcement/replacement of 10% of the power generated by these 

conventional plants by biomass and natural gas power plants. These measures are planned in 

order to guarantee the energy mix of electricity production, the robustness and quality of 

service, and also to help in attenuating as much as possible the marginal costs of electricity, 

and finally to maintain competitiveness with other electricity markets [9]. 

Moreover, there are some studies that show a reduction of competitiveness in the Portuguese 

electricity market in the coming years, mainly because of the increment of the marginal cost 

of electricity. However, it will be easier in the coming years to export surplus electricity due 

to the strengthening of electricity connections between Spain and France, which will allow an 

increased flow of electricity produced in the Iberian Peninsula [23]. It should also be noted 

that, in order to minimize the impact of decommissioning the conventional thermal power 

plants in Portugal in the coming years, the necessary conditions are being created to increase 

the harnessing of hydro energy, i.e., by the construction of hydro power plants, either by 

strengthening existing plants or the construction of new hydro reversible plants (which allow 

more energy storage by converting the electricity surplus into potential surplus energy).  
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In the final calculation, the previously stated contributions will allow a reduction of 

Portugal’s GHE to about 8Mton in the coming years, compared with the current emissions of 

14.4Mton, which is significant. Finally, it is also important to note that there are more details 

that could be analyzed from the Portuguese national electricity system (SEN) report for the 

period 2013-2030 [24], but which are outside the scope of this work. Figure 1.5 shows the 

actual mix of electricity production in Portugal. Note the importance of wind energy as a slice 

of overall electricity production and the weight of thermal units (including biomass, natural 

gas and SUW plants) [23]. 

The energy storage system (ESS) is one of the answers for the new paradigm shift in 

renewable grid integration and the advent of smart grids, which helps to increase the 

flexibility of the generation mix, mitigating the stochastic nature of the impact of renewable 

electricity production in the electricity framework. Hydro storage or pumped hydro is the 

oldest and cheapest solution for this purpose, but it needs a favorable chain and adequate 

physical conditions, among others.  

 

Figure 1.4. Wind power profile showing intermittency and volatility. 

 

Figure 1.5. Distribution of Portuguese electrical mix production in 2013 [23]. 
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Some pilot projects related to battery technologies are based on small-scale storage units, for 

self-consumption (in small industries), residential purposes or in locations highly dependent 

on fossil energy with high retail prices, such as islands, other isolated locations or those with 

less profitable hydro resources. Meanwhile, the same study concludes that, with adequate 

innovative policies and regulation, the final cost of the available technologies in ESS will be 

reduced in the following years making such options profitable. 

The work that has been developed in this thesis is intended to produce new contributions by 

formulating mathematical models to be inserted in computational applications for decision 

and management support.  

The aim is to combine the stochastic and volatility behavior of electricity market price 

forecasting, the volatility and intermittency of wind power behavior, the uncertainty related 

to wind power forecasting when wind power and conventional thermal electricity production 

are combined, applying also the possibility of small energy storage systems, usually found as 

pilots in island systems, which will be taken as examples for real application.  

From the analysis of the literature review carried out during the research work, there are 

several challenges that the power systems industry and the scientific community have been 

facing in last years, namely: 

 Reduction of fossil fuel dependency and mitigation of GHE; 

 Development of computational tools for decision support with higher accuracy and 

improved proficiency; 

 Harmonization between conventional and renewable power production, helping to increase 

the overall flexibility of the system; 

 Reduction of generation costs in a sustainable and reliable manner; 

 Development of algorithms for managing ESS based on batteries. 

In summary, it is important in the context of Industrial Engineering and Management to 

develop innovative computational tools for the sustainable management of power systems, 

with a special focus in this thesis on the insular power systems industry. The following 

research topics are addressed in the forthcoming chapters: 

 Electricity market prices and wind power forecasting, combining advances techniques such 

as mutual information (MI), wavelet transform (WT), evolutionary particle swarm 

optimization (EPSO) and adaptive neuro-fuzzy inference system (ANFIS), in real 

applications; 

 Solving the economic dispatch (ED) problem using heuristic and stochastic approaches, in 

order to incorporate wind power forecasting error, system reliability and net load 

uncertainty. A probabilistic point of view using different configurations of conventional 

generation will be applied to an insular electricity framework; 
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 Solving the unit commitment (UC) problem using a stochastic approach under high wind 

power penetration, with several case studies using different configurations of conventional 

generation and scalability; 

 Devising a strategic way to manage an ESS via battery configuration, combining 

conventional thermal generation and renewable generation in an insular electricity 

framework. 

The approach developed for forecasting electricity prices and wind power has a stochastic 

feature. Uncertainty is the utmost important factor to be considered in rational decision 

making, since the omission of its influence can radically stimulate the correct benefits 

associated with wind energy exploitation. Most of the decisions are based on forecast profiles 

which lead to increasing difficulty, since the usual lack of information in datasets collected to 

create a forecast profile may make the decision-making processes more difficult. 

Furthermore, the scalability problem of the electricity framework, associated with the 

increased uncertainty of wind power forecasting, the increasing integration of renewable 

potential with its stochastic nature in the electricity framework, the storage cost (new 

strategies, or conventional strategies – hydro resources), and even the strategies and 

decisions may lead to increased costs of electricity production by conventional thermal power 

plants, which can translate to a waste of resources, increased GHE, and the diversion of 

government decarbonizing objectives in the electricity system. 

Thus, treating the aforementioned topics in their different stages could provide major 

contributions to help the different players in the electricity system, enabling a rational and 

effective decision-making. It may ensure the correct co-existence of a robust and high quality 

energy production mix, contributing also to future lines of research to create efficient 

computational tools on the topic of sustainable management of power systems, given the 

advent of smart grids. 

1.2. Motivation 

An insular power systems industry is one where the entire electricity power grid 

infrastructure is physically located in an isolated geographical area surrounded by water. 

Typically, these have several limitations, including among others and [25]: 

 Limited range of natural resources;  

 Limited economies of scale;  

 Seasonal population; 

 Higher infrastructure costs;  

 Distance from the mainland prevents interconnection of electricity supply; 

 Different climatic conditions and microclimates from the mainland. 
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These limitations lead to negative outcomes such as dependency on overseas trade, economic 

weakness reducing the possibilities to play in conventional markets, the oversizing of 

infrastructures including the electricity industry, and vulnerability to climate change. 

Moreover, islands are heavily dependent on imported fossil fuels, and lack availability of fresh 

water and capacity for proper management of SUW, among other factors that directly affect 

the insular economy.  

Such island economies have as their main revenue the inflows generated by seasonal tourism, 

which also creates indirect challenges to be overcome, such as the seasonal increment of 

population, resources management, and cost per tourist during their stay, among others. 

Natural resources such as fresh water may be compromised, making it necessary to resort to 

desalination processes or import fresh water, which undermines the local economy even more 

and the energy requirements [26]. In this sense, the oversizing of infrastructure, including the 

electricity framework, is a reality which makes its exploitation more expensive. 

The mitigation of dependence on imported fossil fuels, especially for electricity production, is 

an important parameter for the economic sustainability of insular areas. Electricity 

production from fossil fuels is costly, especially due to transportation costs. Thus, the 

utilization of local and endogenous resources, mainly renewable energy systems, is of the 

utmost importance in many energy policies especially during the last decade, and the 

structures of electric power grids have started to change significantly with the recently 

increasing interest in renewable energy systems. 

Compared with mainland electricity industries, the insular electricity grid structures are more 

sensitive to power quality issues, such as frequency and voltage deviations, especially if the 

level of penetration of renewable energy resources is high. Insular electricity grids have lower 

inertia due to the lower number of generating units connected to the framework. This makes 

them more vulnerable to large range frequency and voltage deviations, rendering the system 

reliability and security constraints more fragile. Moreover, the policies that allow the 

penetration of renewable energy resources in the electricity industry are limited.  

In this sense, the insular power systems industry in general is considered as a good starting 

point for research and improvement and also for testing the impacts of new technologies and 

strategies for future technological advancements, ultimately including the advent of smart 

grids [25], [26].  

Electricity frameworks in insular systems, can be classified according to their daily peak 

power demand (in MW) and annual energy consumption (in GWh) [27]: 

 Very small islands: Less than 1MW per day and 2GWh per annum; 

 Small islands: Within a range of 1-5MW and 2-15GWh; 

 Medium islands: Within a range of 5-35MW and 15-100GWh; 

 Big islands: Greater than 35MW and 100GWh. 
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Usually, the insular power systems industry is composed of a few conventional thermal units, 

especially in the case of very small and small islands. As stated previously, the inertia of the 

total system is significantly lower and the current status of insular power systems can be 

considered unreliable due to possible outages and fuel shortages, having such a small number 

of generating options that may reduce reliability and economic sustainability. In other words, 

the technical and nontechnical losses in insular areas are proportionately higher compared 

with the mainland, inciting the increase of fuel utilization and increasing the unit cost of 

electricity. Moreover the overall efficiency in the operation of insular power systems is 

significantly lower, which adds further economic burdens on energy companies and end-user 

customers [28]. Despite there being some successful examples of liberalization of electricity 

markets in the world, there are still constraints to be overcome in islands due to several 

barriers, [25] such as : 

 In contrast with a continental electricity industry, an electrical unit in an island cannot 

have significant capacity due to system security reasons; 

 The island electricity framework needs more reserve capacity than a continental electricity 

framework due to isolation and consequently the incapacity of interconnections with other 

electricity frameworks; 

 Electricity production in islands is more costly (usually 2 to 5 times more) for the reasons 

given above, related to fuel provision and consumption; 

 The geographical and local factor limitations of islands do not allow investment in 

conventional power plants, due also to social and seasonal factors; 

 Renewable energy resources are the best candidates for the improvement of electricity 

production; however, the security issues of the electricity network and its stochastic 

nature limit their integration. 

The aforementioned concerns may affect the economical sustainability of insular areas. As a 

real example, the electricity energy prices for end-users in insular areas varied between 25 

and 34 cents per kWh, while the same cost was in the range of 10 to 14 cents per kWh in the 

mainland for the United States in 2005 [26]. The cost of electricity for residential and 

commercial end-users was approximately 31 cents per kWh in September 2010, 40 cents  

per kWh in December 2012, and 42 cents per kWh in the third quarter of 2013 in American 

Samoa [29]. It is clear that the price was significantly volatile in a short time period for 

Samoa, an insular area, largely due to the higher cost of fuel. Another reason for this cost 

difference is the increasing percentage of maintenance events, due to the aging of the 

electricity infrastructure [25].  

Another example of these issues is located in Sicily, Italy, where the Ministry of Industry gives 

support [30] to improve and renew the electricity system. However, this is not common to all 

the cases and is also an additional burden on the economy of the country. As stated before, 

most islands do not have any exploitable fossil fuel sources [25].  
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An example of this is the case of the Canary Islands, Spain, where 94% of the electricity 

generation depended on imported fuels in 2010 [31]. Similarly, the island of Cyprus uses 

exclusively heavy fuel oil and diesel for electricity generation [32]. However, at present, 

there are some interesting cases of opportunities and challenges for insular power systems 

industries, showing valuable results in islands around the world. Some of these cases involve a 

high level of integration of renewable and endogenous resources; they are listed in brief 

below according to [25]: 

 In 2010, PV farms generating 112MW were installed on the Canary Islands. Furthermore, 

the Canary Islands Energy Plan aims to have 30% of the electricity produced by RES, mainly 

solar (160MW) and wind (1025MW) [31];  

 Due to the commitment of Cyprus to comply with the EU 2020 obligations, the country 

developed a program (National Renewable Energy Action Plan of Cyprus) that, among other 

targets, aims to install 192MW of PV farms and 75MW of concentrated solar power (CSP) by 

2020 [32]; 

 In Rhodes, Greece, approximately 6% of the energy production comes from the 11.7 MW of 

installed wind power farms [33]. The biggest Greek island, Crete, has an installed wind 

capacity of 105MW, which accounts for 12.5% of the total capacity; however, the total 

licensed capacity exceeds 200MW; Furthermore, Crete is expected to have installed 140MW 

of solar energy by 2030 [34]; 

 In 1998 Samso Island was chosen by the Danish government as a pilot island to achieve 100% 

of electricity production from renewable resources, with more than 23MW of offshore and 

11MW of onshore wind capacity, sufficient to satisfy the demand. The Spanish island of El 

Hierro is also subject to an ambitious target of becoming a 100% renewable energy island 

and currently wind power penetration has reached 30% [35]; 

 In Pantelleria, Italy, studies have shown that it is possible to install a plant generating 

2.5MW of geothermal power. It may be possible to achieve a production of 20,000MWh per 

year, representing about 46% of the island’s consumption [36];  

 The government of the Azores has launched an ambitious plan to achieve 75% of renewable 

electricity production by 2018. Reflecting this ambition is the additional investment in 

geothermal plants in the major island (São Miguel) [37]; 

 Furthermore, other endogenous and renewable energy resources such as biomass, urban 

waste and wave or tidal energies are being studied in some pilot islands around the world. 

Hence, this thesis has the objective to respond to the impact of the inherent challenges of 

electricity supply to islands. In detail, it focuses on the lines of research designed to support 

the decisions and management of the electricity companies which are the owners of 

conventional electricity conversion systems, renewable energy systems, or a combination of 

both for electricity conversion. In addition, this thesis also aims to analyze the different 

methodologies currently used, with a critical appreciation, and also to introduce several new 

contributions that address the uncertainties in the sustainable management of existing 

resources, seeking to provide viable solutions for the electricity industry. 
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The power systems of islands are characterized by their isolated and remote geographical 

location, which makes their interconnection with other power systems unworkable and makes 

it a challenging task to maintain a properly robust and quality service. One of the main 

consequences of this situation is the high generation cost related to the type of fuel 

consumed and its transportation.  

However, in many cases these types of systems are located in places with important 

renewable and endogenous resources that could allow generation costs and GHE to be 

reduced. Yet, the stochastic nature of the behavior of such renewable energy sources is one 

of the most important technical barriers to be overcome.  

ESS has been applied to face and mitigate this problem, because it can improve the flexibility 

of the system and allow the penetration of renewable energies more easily. Nonetheless, 

several factors, such as capacity tariffs, the renewable potential and investment costs, can 

affect the economic viability of the integration of such a mix in the electricity framework by 

the electricity industry. 

The requirements of the electricity framework provide a line of research that uses not only 

the knowledge of the interface between scientific areas already established, but also the 

creation of self-knowledge with appropriate interfaces. New hybrid forecasting approaches 

can potentially reveal major levels of support decisions, allowing the electricity producer to 

proceed and manage its resources with higher levels of rationality, mitigating the problems 

associated with the inherent uncertainty of forecasting electricity market prices and wind 

power, or even other sources of uncertainty. 

Accurate forecasting of electricity market prices and wind power are of the utmost 

importance for the success and profits in energy policy, since the accuracy of these forecasts 

allows a better management of the associated risks in the electricity framework. The present 

work focuses on the problems of operational planning in the short-term horizon, considering 

the uncertainty associated with the variables required for this propose, which should be 

investigated in order to obtain a set of solutions stochastic in nature, combining the use of 

methodologies to forecast and optimize the operation of conventional thermal power units 

and/or wind farms. A stochastic approach usually requires major computing resources due to 

the substantial increment of variables involved, the restrictions and the several scenarios 

considered; however, it provides more beneficial outcomes. 

The growing integration of wind power capacity in the electricity industry has increasingly 

motivated the need to redefine the operational planning of the electricity sector in order to 

mitigate its natural variability and uncertainty. These factors increase the need for new 

computational tools and new strategies to integrate, manage and operate the daily electricity 

generation in an optimal way, without jeopardizing safety, robustness and reliability of the 

electricity framework. The randomness associated with wind power implies a considerable 

increase of reserves required to mitigate the fluctuations created by the wind potential.  
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The viability of renewable potential capacities is a current topic of great importance across 

the globe, and therefore the scientific literature on this subject is extensive. Due to the 

broad diffusion that has occurred in recent years, this thesis focuses on conventional thermal 

power units and wind farms in order to contribute with new computational tools for their 

proper management with a focus in the electricity industry located in islands, which have 

more difficulties with the reliable energy management.  

1.3. Thesis Structure 

This thesis is organized in seven chapters, briefly described hereafter. Chapter 2 presents a 

literature review concerning forecasting tools for electricity market prices and wind power, 

the methodologies used for optimal ED and UC, and also the ESS management methods. 

Chapter 3 presents the novel hybrid forecasting tool proposed to forecast electricity market 

prices and wind power in the short-term applied in real cases studies. Chapter 4 presents the 

new ED tool proposed for different scalabilities of conventional thermal power plants. 

Chapter 5 presents the new UC tool considering wind power uncertainty. Section 6 discusses 

the ESS problem and the new management tool. Chapters 4, 5 and 6 also take into account 

real cases studies located in islands to empirically proof the capabilities of the proposed tools 

Finally, Chapter 7 concludes the thesis. 

In more detail, Chapter 2 presents the general framework of the electricity market structure 

in the Iberian Peninsula and the state-of-the-art related to the innovative contributions made 

by the scientific community with new forecasting tools in the short-term horizon for 

electricity market prices. Also, it presents the state-of-the-art wind-power forecasting tools 

available in the short-term horizon. It presents the state-of-the-art techniques found in the 

scientific literature for the ED and UC problems related to the management of conventional 

thermal power plants combined with renewable power generation. Moreover, it presents the 

most recent contributions related to ESS tools reported in the scientific literature as applied 

in the electricity framework combining conventional and renewable power generation. 

Finally, this chapter presents a brief characterization of stochastic programming. 

Chapter 3 presents the new hybrid methodology/tool based on the successful combination of 

advanced techniques, namely on the combination of mutual information, wavelet transform, 

evolutionary particle swarm optimization and adaptive neuro-fuzzy inference system,  

to forecast the electricity market prices and wind power in the short-term (for 24h to 168h 

ahead). This chapter also presents the proposed hybrid evolutionary approach and the case 

studies analyzed for each topic (electricity market price forecasting or wind power 

forecasting) and the reported results, which were compared with other tools previously 

reported in the recent scientific literature. 

 



16 
 

Chapter 4 presents the new ED problem from a probabilistic point of view, i.e., the 

representation of wind power forecasting error and the power production at previous time-

steps as a discretized beta probability distribution function, incorporating also the generator 

reliability by means of the discretized joint probability distribution function and failure 

events. Afterwards, a convolution process is carried out taking into account the wind power 

forecasting error and the discretized probability distribution function of the energy not 

supplied. The new methodology will be tested with two case studies and the chapter will 

conclude with a report of the results obtained. 

Chapter 5 presents the new UC problem methodology used in this work with a case study 

considering an electricity framework combining renewable energy resources, mainly wind 

power. The proposed approach was based on a probabilistic point of view, being redesigned 

into a stochastic tool with accurate results. This chapter presents the mathematical 

formulation used, the case study analyzed and the reported results. 

Chapter 6 presents a new management methodology for ESS. The ESS considered is based on 

batteries in an electricity framework which integrates conventional and renewable electricity 

production. Furthermore, this chapter describes the main mathematical formulation used to 

support the proposed management methodology, the case study under analysis and the 

reported results. 

Finally, chapter 7 presents the main conclusions of this work related to forecasting, 

optimization and management methodologies in the short-term horizon, used to improve the 

combination of renewable energy resources, conventional power sources and the ESS system, 

used in real case studies from the electricity industry. Guidelines for future research and 

contributive works in these fields of research are provided. Moreover, this chapter reports the 

scientific contributions that resulted from this research work and that were published in 

journals, as book chapters or in conference proceedings. 

1.4. Notation 

The present thesis uses the notation commonly used in the scientific literature, harmonizing 

the common aspects in all sections whenever possible. However, whenever necessary, in each 

section a suitable notation may be used. The mathematical formulas will be identified with 

reference to the subsection in which they appear and not in a sequential manner throughout 

the thesis, restarting them whenever a new section or subsection is created. Moreover, 

figures and tables will be identified with reference to the section in which they are inserted 

and not in a sequential manner throughout the thesis. Mathematical formulas are identified 

by parentheses (x.x.x) and called “Equation (x.x.x)” and references are identified by square 

brackets [xx]. The acronyms used in this thesis are structured under synthesis of names and 

technical information coming from both the Portuguese or English languages, as accepted in 

the technical and scientific community.   
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Chapter 2 

State-of-the-Art 

This chapter starts by describing the organization of the electricity market and the evolution 

of the tools developed for forecasting electricity market prices and wind power in the  

short-term horizon. This chapter also provides an overview of the most recent published 

works related to the ED, UC and ESS management problems, aiming for sustainability. 

2.1. Electricity Market Prices and Forecasting Tools 

The restructuring of the electricity sector was motivated by the abolition of what was 

considered a natural monopoly, where the premise was the minimization of costs with 

vertical production integration. Nowadays, with the evolutionary course of the electricity 

market, the paradigm is based on organized competition between electricity market players 

and consumers (also market players), where the latter have the ability to choose their 

electricity supplier, creating the new premise for reduction of electricity prices.  

In this new paradigm the electricity can be traded in two main ways. The first is by bilateral 

contracts, which are freely established between electricity producers and consumers, under 

defined conditions such as duration of contract, quantity of electricity and its price.  

The second is the pool market, which is an organized electricity market, such as stock 

exchanges, i.e., where the necessary articulations between buying and selling are carried 

out, and also where the quantities of electricity and its respective market prices are 

determined [38]. This structure is briefly presented in Figure 2.1. The pool market has three 

different sessions where all market players can proceed with electricity transactions in the 

following ways: 

 The daily or spot market, where the electricity transactions occur one day before the time 

of the physical delivery of electricity, i.e., the offers should be sent before its opening, 

depending also on the subdivision of time horizon in which the market was created [39]. 

This procedure can be more easily explained by referring to Figure 2.2. 

 The intraday market or adjustment market, which is a complementary market to the spot 

market, where the quantities of adjustment electricity transacted in the spot/daily market 

are traded.  
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This market is divided into several sessions, as shown in Figure 2.3. In this figure,  

the market is subdivided into six sessions [8], [40]: 

o 1st Session establishes the electricity market price for the last 4 hours of trading on the 

negotiation day and for the next 24 hours ahead. 

o 2nd Session establishes the electricity market price for the 24 hours ahead of the day 

of negotiation. 

o 3rd Session establishes the electricity market prices for the next 20 hours ahead, 

between hour 5 and hour 24 of the next day of negotiation. 

o 4th Session establishes the electricity market prices for the next 17 hours ahead, 

between hour 8 and hour 24 of the next day of negotiation. 

o 5th Session establishes the electricity market prices for the next 13 hours ahead, 

between hour 12 and hour 24 of the next day of negotiation. 

o 6th Session establishes the electricity market prices for the next 9 hours ahead, 

between hour 16 and hour 24 of the next day of negotiation. 

It is important to note that, analogously to the daily/spot market, the intraday market runs at 

all times of day with its specific session. In a similar way to the daily/spot market, in the 

intraday market the authorized players can buy and sell electricity, stating the bidding 

session, the day and time, the price and the quantities of electricity to be traded. 

 

Figure 2.1. Brief characterization of electricity market. 

 

Figure 2.2. Daily electricity market procedure. 
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Figure 2.3. Activity sequence in electricity intraday market. 

 The balance market is where the quality and robustness of the electricity supply are 

guaranteed through permanent monitoring of the relation between production and 

demand. 

Moreover, in the MIBEL structure there are two entities responsible for the coordination of 

the different activities carried out in the electricity market [8]: 

 The market operator (MO), which is responsible for the economic system management of 

electricity market. It is also responsible to receive, accept or reject the bidding for 

electricity, determine the closing electricity prices sessions every day, and all the activities 

that guarantee the quality, balance, and sustainability of the electricity market with all 

the players involved. 

 The independent system operator (ISO), which is responsible for guaranteeing the quality 

condition of the transmission system, and also carries out the transit and electricity flow 

forecasting and solves the eventual bottleneck effects. More details regarding the ISO can 

be found in [41] where some aspects of the actual Portuguese electricity framework and 

electricity market are defined.  

Nevertheless, to ensure the benefits for all market players it is mandatory to have accurate 

decision support tools, which include: the mathematical formulation of problems, the 

objective function and all restrictions involved, and tools for optimizing processes, such as 

the forecasting of electricity market prices, wind power and demand. For instance, whereas 

an electricity producer is interested to launch its electricity bids to maximize its profits, a 

consumer is interested to find and satisfy their electricity needs while minimizing the final 

cost. In a deregulated electricity market, the most important signal for all market players 

corresponds to the price [42]. Several characteristics of electricity market prices series make 

them harder to forecast than demand series, such as non-stationary behavior, high volatility 

and frequency, seasonality and the calendar effect [43]. As stated above, an accurate tool for 

forecasting short-term electricity market prices is needed to assist producers in designing 

their offering strategies to the electricity market to achieve maximum profits [44], [45], on 

the one hand, and to assist consumers in protecting themselves against elevated prices and 

for planning purposes, on the other [46], [47]. 
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Furthermore, forecasting electricity market prices has grown to be one of the main research 

areas in power engineering [48], [49], [50], but the corresponding tools or techniques have 

not yet reached maturity [51]. Forecasting electricity market prices is indeed a crucial task 

for all market players [52] in their decision making, especially with the advent of smart grids 

[53]. In recent years, several forecasting methodologies have been described in the 

specialized literature. These can be divided into two groups: hard and soft computing 

methodologies [54]. In hard computing, some known methodologies can be found, such as 

auto regressive integrated moving average (ARIMA) [55], WT with ARIMA [56], and transfer 

function models [57]. This family of methodologies usually needs a large amount of physical 

data, requiring also the exact modelling of the system and resulting in high computational 

burden.  

The present work will demonstrate the techniques of so-called soft computing, which use an 

auto-learning process from historical sets to identify future patterns. Starting from 2006, 

these so-called hybrid techniques started to be published more intensively in the scientific 

community. Such techniques, combining fuzzy neural network (NN) [58] and hybrid intelligent 

system (HIS) [59] are applied to forecast in the short-term (from 24h to one week ahead) the 

electricity market prices of some liberalized electricity markets.  

In 2007 a technique was proposed based on NN with the Levenberg-Marquardt algorithm to 

forecast the electricity market prices in mainland Spain with historical data for the year 2002 

for all four seasons of year, and also to forecast the electricity market prices in the 

Californian market in 2000 for 168h-ahead, reporting a lower computation time in comparison 

with the ARIMA technique [60]. Also, in the same markets and with similar historical data 

related to electricity market prices, there are some published studies applying a similar days 

algorithm [61] and weighted nearest neighbors (WNN) [62], which reported interesting results 

in short-term forecasting. 

In 2008, a hybrid method was proposed corresponding to the combination of WT and cascaded 

NN (CNN) with evolutionary algorithms to forecast the electricity market prices in the 

Californian market with historical data of 2006, for 168h-ahead [63]. Also in 2008, a  

non-parametric technique of dimensional reduction was reported [64], integrating a locally 

linear embedding to forecast the electricity market prices in the New York Independent 

System Operator’s (NYISO) with historical data from 2005 and 2006. In [65], a technique 

based on NN was reported to forecast the electricity market prices in the Spanish market for 

24h-ahead, considering historical data of years 2002 and 2003. The adaptive wavelet NN 

(AWNN) technique has been reported to forecast electricity market prices in the Spanish and 

PJM markets (PJM is a regional transmission organization in the USA that coordinates the 

movement of wholesale electricity in all thirteen states between Pennsylvania and New 

Jersey), for 168h-ahead, considering historical data for years 2002 and 2004, respectively [66]. 

Still in 2008, another technique based on NN was proposed to forecast the electricity market 

prices in the PJM market for the next 168h, considering historical data of year 2002 [67]. 
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In 2009, a hybrid technique based on a modified relief algorithm, MI and CNN was proposed to 

forecast the electricity market prices for 168h-ahead on the PJM and Spanish markets 

considering historical data of years 2006 and 2002, respectively [68]. Moreover, in [69], the 

cascaded neuro-evolutionary algorithm (CNEA) technique was also proposed for the PJM and 

Spanish markets, while in [70] a hybrid technique based on modified relief and CNN algorithm 

with correlation analyses was proposed to forecast electricity market prices in the Spanish 

and Australian (ANEM) electricity markets. In [71], a technique based on a mixed model with 

iterative NN and MI was proposed to forecast electricity market prices in NYISO and the 

Spanish market. Still in 2009, a technique based on self-adaptive radial basis NN with fuzzy 

inference was proposed to forecast the next 24h of electricity market prices of the ANEM 

market, considering historical data of 2006 [72]. Further, in [73], a technique based on 

sensitive analysis and NN algorithm was proposed to forecast the next 24h of electricity 

market prices in the PJM market, considering historical data from 2006. 

In 2010, a hybrid technique based on NN with evolutionary algorithms was proposed to 

forecast the 168h-ahead electricity market prices of the PJM and Spanish markets, 

considering historical data of years 2006 and 2002, respectively, called the hybrid neuro-

evolutionary system (HNES) [74]. In the same field, [75] presented a combination of NN and 

WT to forecast in the short-term the electricity market prices in liberalized markets. In [76] a 

technique based on ARIMA and NN was proposed to forecast electricity market prices 168h-

ahead in the ANEM market, considering historical data of 2006. In [77], a technique based on 

recursive model combined with NN was proposed to forecast 24h-ahead electricity market 

prices in the PJM market, considering historical data of 2006. Still in 2010, a technique based 

on NN with an enhanced radial basis function network algorithm was proposed to forecast the 

electricity market prices for 24h and 168h-ahead of PJM market [78], and in the same field with 

relevant results, a hybrid model proposed in [79] and the modified relief technique in [80]. 

In 2011, a hybrid technique based on a combination of WT, particle swarm optimization (PSO) 

and fuzzy algorithm was proposed to forecast electricity market prices in the Spanish market 

for 168h-ahead, considering the historical data of 2002 [49]. In [81], EPSO and ANFIS were 

combined to forecast the 168h-ahead electricity market prices in the Spanish market. Also, in 

the same year a technique was published applying the pattern sequence-based forecasting 

algorithm [82] to forecast electricity market prices in the liberalized markets that are usually 

used in the scientific community to compare and testing their proposed techniques.  

In 2012, a technique called “extreme learning machine” was proposed to forecast the 

electricity market prices in the ANEM market for 168h-ahead, considering historical data of 

2006 and 2007 [83]. Besides, in [84], a technique that combined MI and composite NN 

algorithms in two stages was proposed to forecast the electricity market prices of the PJM 

and Spanish markets 168h-ahead with historical data of 2006 and 2002.  
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In [85], a technique that combined WT, inference system and NN algorithm was proposed to 

forecast electricity market prices in the Ontario market for 24h and 168h-ahead, considering 

historical data of year 2010. Still in 2012, a grey model based on PSO algorithm was proposed 

to forecast the electricity market prices in the Nord Pool, Californian and Ontario markets for 

24h-ahead, considering historical data of 2007, 2000-2003 and 2006, respectively [86]. In [87], 

PSO and ANFIS algorithms were combined to forecast 168h-ahead electricity market prices of 

the Spanish market, considering historical data of 2002. In 2013, a hybrid technique called 

panel co-integration and particle filter was proposed to forecast 168h-ahead electricity 

market prices of the PJM market, considering historical data from 2008 [88] Furthermore, 

there are some interesting methodologies/techniques reporting results in the aforementioned 

markets in different short-term horizons, such as WT combined with chaotic least squares 

support vector machine (CLSSVM) and exponential generalized autoregressive conditional 

heteroskedastic (EGARCH) model, designed as (WT+CLSSVM+EGARCH) [89], singular spectrum 

analysis (SSA) method [90], a combination technique based on wavelet transform fuzzy, 

firefly algorithm and fuzzy adaptive resonance mapping theory (ARTMAP) designed as 

(WT+FF+FA) structure [91], a recursive dynamic factor analysis combined with Kalman filter 

(RDFA+KF) structure tool [92], and a derived methodology integrating the kernel principal 

component analysis, combined with the local informative vector machine, derived from a 

local regression method (KPCA+IVM) [93] technique. 

2.2. Wind Power Forecasting Tools 

The integration of wind power in the electricity framework has seen faster growth in the 

EU28 in comparison with conventional electricity units such as thermal or hydro power plants 

in recent years. Wind power presents a volatile and intermittent behavior that requires 

accurate tools for its convenient use. In [94] it is reported that this source should be 

forecasted in the short-term to achieve the best results, due to the lower influence of the 

uncertainty associated with this resource influencing the final forecasting results. The wind 

power integration in conventional electricity systems is responsible for the introduction of 

more variability, volatility, and uncertainty into system operation, which complicates the 

proper management of all production sources [95], [96].  

Moreover, at present there is no consensus in the scientific community regarding the bounds 

of the time horizon to be adopted in wind power forecasting, due to the means of application 

and markets where it can be inserted or used. However, the following divisions are accepted 

within the scientific community: — very short-term horizon, which can be from a few minutes 

to a few hours, short-term horizon, which can be from a few hours to a few days, and the 

long-term horizon which can be from a few days to more than one week [97]. Hence, wind 

power forecasting tools represent a very important field of research for system operators, 

helping to reduce power fluctuations and to optimize the installed wind power resources, 

mitigating GHE [98].  
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Moreover, the short-term forecasting tools are really useful in supporting decisions in the 

spot, day and intraday markets, for wind power producers and for electricity ISO, helping to 

manage the balance between load and demand and the flexibility and robustness of the 

electricity system [99]. As referred to in [100], wind energy has more uncertainty and more 

volatility in comparison with other renewable sources, as shown in Figure 2.4.  

Several wind power forecasting tools have been developed and described in the technical 

literature in recent years; these can be divided into physical and statistical methodologies 

[101]. Physical methodologies need an extensive number of physical specifications, and their 

inputs are also physical variables, such as orography, pressure, and temperature, presenting 

advantages in long-term forecasting [102]. Statistical methodologies try to establish inherent 

relationships within the measured data, which can have advantages in short-term forecasting 

[103], [104].  

Figure 2.5 presents a general block diagram of physical models used in wind power 

forecasting. It is shown that the time numerical forecasting (TNF), i.e., the physical data, can 

be divided into specific models or power models, which use the physical data, and can also be 

combined with statistical forecasting tools [105]. In [106] it is stated that physical models use 

only physical considerations to reach the best estimations of wind speed in a specific site and 

eventually, in a second stage, a statistical model can be used to mitigate the remaining 

errors. In this way, the persistence model has proved be useful to establish a first 

approximation to forecast the behavior of wind power in the short-term, and also helps as a 

comparative reference for alternative tools [105].  

Generally, the statistical tools are based on auto regressive techniques, i.e., ARIMA [107] or 

new reference model (NRM) [108], which are also time-series models that can provide a 

valuable first approximation, and inclusively are all able to beat numerical weather 

prediction (NWP) models for very short-term horizons. Soft computing models have become 

very widespread and accepted in the scientific community in recent years, mainly due to the 

reduced computational burden required, by using an auto learning process from historical sets 

to identify future patterns. Such models include: NN techniques [109], [110], hybrid models 

combining some techniques such as NN with WT (NNWT) [111], adaptive WT with NN (AWNN) 

[112], neuro-fuzzy (NF) algorithms [113], [114], evolutionary algorithms [115], wavelet-neuro-

fuzzy (WNF) algorithm or a combination of WT, PSO and ANFIS (WPA) [116]. Table 2.1 

presents the most widespread forecasting tools in the short-term and their classification 

model [106].  

In the last few years the state-of-the-art in this field of knowledge has become extensive and 

varied. The literature review presented here will attempt to focus on the most interesting 

tools found and reported in the scientific community in recent years related to  

soft-computing techniques applied in short-term wind power forecasting. For instance, in 

[102] a tool was proposed to forecast wind power in the short-term based on the application 

of an evolutionary algorithm optimization for the automated specification of NN and nearest 

neighbor search. 
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Figure 2.4. Variability and foreseeability of renewable energy sources [100]. 

 

Figure 2.5. General block diagram for wind power forecasting from physical models. 

In the same work, the forecast results were compared with two other algorithms based on 

PSO and differential evolution. The proposed method used weather data combined with 

historical wind power data from several wind farms located in Germany. The system was also 

tested with data from 2004 to 2007 with a time-step of 1h. In [117] a forecasting tool is 

presented to forecast the wind power in two wind farms in Portugal for the subsequent 72h-

ahead, combining feed forward NN with entropy and correntropy theories in other to achieve 

a reduced forecast error distribution. The proposed tool was tested in online and offline 

frameworks for the years 2005 and 2006. In [107], a forecasting tool was proposed to forecast 

the wind speed for the next 24h and 48h-ahead using a fractional ARIMA model. The 

presented results were collected from four wind farms in North Dakota, USA. After the wind 

speed forecasting, the obtained results were combined with the mechanical characteristics of 

wind-driven data to determine the wind power output. Furthermore, the final results were 

compared with a persistence model. 

In [118] a forecasting tool was proposed for the very short-term horizon, combining an 

exponential sweetening method and data mining. The proposed tool combined the collected 

data with a supervisory control and data acquisition system (SCADA) with weather, physical 

and mechanical wind-driven data. In addition, the forecasting system was compared with 

other systems such as NN and support vector machine (SVM). The tool forecast, with different 

time-steps, results for more than 168h-ahead. In summary, the system is divided into three 

models, where model 1 forecasts wind-driven function coefficients, model 2 uses mechanical 

wind-driven data and wind speed to forecast the wind power output, and model 3 uses data 

mining parameters combined with previous models to forecast the wind power data. 
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Table 2.1. Most widespread wind power forecasting tools used around the world [106]. 

Forecasting Tools Model 

AWPPS (More-Care) Statistical, NF 

AWPT Statistical, NN 

Prediktor Physical 

Previento Physical 

RAL (More-Care) Statistical 

Sipreólico Statistical 

WPPT Statistical 

In [119] a forecasting tool was proposed using a differential evolutionary algorithm with a 

new crossover operator and selection mechanism to train the Ridgelet NN and WT for the next 

24h-ahead without exogenous variables. The case studies reported used historical wind power 

data from a wind farm located in Ireland in 2010, forecasting its wind speed, and the wind 

power in Spain with historical data from 2010. In [101] a wind power forecasting tool was 

proposed to forecast 24h and 48h-ahead, composed of feature selection components which 

perform irrelevance and redundancy filtering of historical data. This tool also used a 

forecasting engine based on cascaded NN structure with enhanced PSO. The system was 

tested at two wind farms located in Alberta, Canada, and Oklahoma, USA, respectively. 

In [111], a wind power forecasting tool was proposed based on WT and NN to forecast the 

next 3h-ahead up to 24h-ahead with a time-step of 15 minutes. The system used historical 

data of wind power provided by the SCADA system in Portugal between 2006 and 2007 without 

exogenous or weather variables. Similarly in [113] a forecasting tool was proposed based on 

ANFIS technique to forecast the next 3h-ahead up to 24h-ahead with a time-step of 15 

minutes. The system used the previous data from Portuguese wind farms connected to the 

SCADA system between 2006 and 2007 and also without exogenous variables. The proposed 

system was compared with ARIMA and NN forecasting tools. Finally, [120] reported a hybrid 

forecasting tool based on ANFIS and PSO, without exogenous or weather variables, to forecast 

the wind power behavior in Portugal with the aforementioned data. 

In [121] a new hybrid and evolutionary forecasting tool is presented, based on a combination 

of EPSO and ANFIS algorithms to forecast the next 24h-ahead, with a time-step of 15 minutes 

for wind power production in Portugal, without exogenous or weather variables. The proposed 

forecasting system was compared with other forecasting tools, such as ARIMA, NN, data 

mining, and others. In [122] a forecasting model was proposed based on multi-observation 

points divided into two stages, to forecast the speed and direction of wind (stage 1). Stage 2 

uses the data obtained from stage 1 to forecast the wind power output of the wind farm using 

dependent power curves. The study was performed with physical data from a wind farm on an 

Australian island. The proposed tool was also compared with a grey model and a persistence 

model. 
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In [95] a forecasting model is presented with a switching regime based on artificial 

intelligence to forecast wind power, specifically the extreme events associated with the 

uncertainty of NWP data. The NN algorithm used was based on resonance theory and 

probabilistic methods, and was tested at two different wind farms, namely, one in Denmark 

with historical data from 2000 to 2002, and one in Crete, Greece, with historical data from 

2006 to 2008. In [123] the problem regarding the large penetration of new wind farms in the 

electricity framework was tackled, reviewing the advantages, disadvantages, and the 

advances in wind power forecasting tools. In this work a NN algorithm was also proposed to 

forecast the active and reactive power in the electricity grid using the case study of a wind 

farm in Germany. The time-step of this approach is 1h to forecast from 24h to 48h-ahead. As 

stated in [9], the forecast results can help in wind farm management and also in controlling 

the power transmission system. 

In [124] a probabilistic model forecasting tool for wind power was proposed, which uses 

forecast points and uncertainty data from deterministic models. These results come from the 

quality of NWP data, daily wind power forecasting, and weather stability (speed and direction 

of wind). This forecasting approach also used a combination of a multiple NN with PSO 

algorithm. The historical data used comes from wind farms located in Denmark and Greece, 

as stated in [95]. Furthermore, this method forecasts the wind power for the next 60h-ahead. 

In [125] a wind power forecasting tool was proposed based on three models of WT and SVM to 

forecast, with a time-step of 1h to 3h-ahead, forecasting the wind power output of a wind 

farm located in Texas, USA. Model 1 is assembled accordingly with the wind-driven 

characteristics and WT principles. Model 2 combines the wind-driven characteristics with the 

substitution of Kernel radial basis function (RBF). Model 3 is a combination of the two 

previous models and the output is the wind power forecast. 

In [112] a wind speed and wind power forecasting tool was proposed for the next 30h-ahead 

using in the first stage a combination of WT and NN to forecast the wind speed, and in the 

second stage a feed-forward NN to create a non-linear mapping between the wind speed and 

wind power results. These results were obtained without weather variables and performed for 

a wind farm located in Denver, USA. Reference [126] presents an overview of the wind power 

forecasting tools published in recent years using probabilistic methodologies, and other 

proposed tools used for wind power forecasting involving probabilistic techniques are 

reported in [127] and [128], showing an increasing interest among the scientific community in 

this methodology. 

2.3. Economic Dispatch and Unit Commitment Tools 

The most important technical barriers in the electricity framework that have to be overcome 

are related to the variability and uncertainty of wind power and other renewables.  
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In this context, ESS has been widely suggested as a way to overcome the aforementioned 

problems, due to its potential to improve the flexibility of the system and allow the 

penetration of renewable energies to be maximized. Nonetheless, several factors such as 

capacity tariffs, wind potential, governmental and social policies, and investment costs, can 

affect the economic viability of the project [129]. The implementation of demand response 

(DR) programs is another way to increase system flexibility and the accommodation of 

renewable energy sources by manipulation of a system load curve. However, DR response 

programs have to deal with the uncertainty in human behavior also, when electricity prices 

change dynamically, which is reflected in the estimation of electricity price elasticity, which 

is frequently used to decide the optimal use of DR resources [130]. In this way, the 

incorporation of stochastic tools in power system management has been thoroughly analyzed 

in the literature. As a result, several tools have been presented in the scientific community, 

such as stochastic programming, chance constrained programming, stochastic dynamic 

programming, robust optimization, and probabilistic approaches. Note that stochastic 

programming approaches consist of carrying out the optimal management, taking into account 

some possible situations or scenarios randomly generated. Specifically, these scenarios can be 

represented from the stochastic behavior of load demand, wind power generation and failure 

events. For instance, in [131] it is stated that a robust and flexible DR program, capable of 

dealing with high renewable integration in the electricity framework, could save more than 

30% of generation costs, as well as helping to increase the system flexibility in facing sudden 

variations of wind power production. Nevertheless, the complete success of DR programs is 

strongly dependent on the awareness and knowledge of electricity users about the generation 

costs and the automation of household electric appliances. Notwithstanding, another valid 

option is to introduce the uncertainty of renewable power forecasting in ED problems. For 

several years now, representing wind power forecasting error by scenario generation has been 

widely adopted, as this is a flexible approach that enables a fast representation of the cross-

temporal characteristics of wind power time series, which influences the determination of 

spinning reserve [132]. In this context, in [133], a scheduling model based on scenario 

generation was proposed. In this tool, several scenarios of wind power production, load 

demand and forced unit outages are randomly generated considering the auto-correlated 

nature of each time series. The optimal scheduling is then determined using a mixed integer 

stochastic optimization algorithm where the main objective is the minimization of the 

expected cost generation. In this tool, temporary displacement of the rolling time window 

was also introduced in order to improve the quality of the solution obtained by incorporation 

of the possible changes of wind power generation, load demand, and system reliability.  

In [134], a scenario-generation method was employed to solve multi-objective dynamic 

economic emission dispatch problems where scenarios are generated using a roulette wheel 

mechanism using the probability distribution function (PDF) of the interest variables, while 

the optimization problem, including the nonlinear, non-smooth and non-differentiable 

characteristics, has been solved using an enhanced PSO algorithm.  
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In [135], a NWP technique was integrated into a stochastic unit scheduling model based on 

scenario generation in order to analyze the capabilities of NWP models from an operational 

point of view. The results show that the benefit obtained from updating the forecasts in 

intra-day operations is not significant. Scenario generation is a time-consuming method in 

which the analysis of a large amount of cases must be carried out, which requires intensive 

computational effort. To overcome this disadvantage, in [136] a tool that combines the 

advantages of stochastic and robust unit commitment methods is presented. This combination 

is carried out by incorporating weights that could be adjusted by the system operator, while 

scenarios are solved using Benders’ decomposition. However, evaluating a randomly 

generated determined amount of cases could be a source of error. To deal with this problem, 

in [137] the incorporation of reserve specifications was proposed. In other words, a stochastic 

optimization is carried out considering the same spinning reserve specifications for all 

scenarios considered. In consequence, an improved solution to the unit scheduling is achieved 

by compensation of all scenarios that have not been taken into account. 

In [138] and [139] some models were proposed introducing wind power generation into the ED 

problem as restriction in the optimization problem. Based on the probabilistic infeasibility 

and using the Lagrange multiplier method, the influence of wind power behavior and 

penetration level on total generation cost was analyzed. In [140] the effects of wind power 

generation on the ED problem and oxides of nitrogen (NOx) emissions were modelled using the 

incomplete gamma function. In [141] a scheduling problem is presented as a dynamic 

programming problem, while wind power behavior was represented as a first-order Markov 

process. Based on the fact that aggregation of wind power generation reduces its forecasting 

error, in [142] an ED model valid for a short interval (validity interval) was proposed; this 

approach allows the stochastic relations in the optimization problem to be avoided. In [143], 

a methodology using a combination of a 2m point estimated method and modified teaching-

learning algorithm was proposed for solving multi-objective probabilistic ED taking into 

account GHE. In [144], a tool was proposed that incorporates wind power uncertainty by 

means of several states related to each other through a Markov process. The unit scheduling 

problem is then stochastically formulated in terms of these states. 

Power system reliability and spinning reserve allocation are two other important topics from 

an operational point of view, due to serious difficulties in the management of the remaining 

generation capacity of the system when most of the units fail [145]. The incorporation of 

failure events has been analyzed in the literature. In [146] a tool was proposed that, as well 

as load forecasting error, it incorporates forced outages of generation units and transmission 

systems by means of a Monte Carlo simulation (MCS). This tool enables an estimation of the 

optimal reserve required in the solution of unit scheduling problems, taking into account a 

determined reliability level. In [147] a scheduling tool based on mixed-integer linear 

programming (MILP) was proposed to determine the optimal frequency-regulating reserve, 

while [148] presented another model based on mixed-integer programming (MIP) and MCS 

considering 𝑁 –  1 contingencies.  
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In [149] a short-run ED tool was proposed, in which the different states that take place during 

the contingency event are analyzed and represented as a linear programming problem. 

Meanwhile, in [150] a methodology was proposed in which scenarios are randomly generated 

by using a roulette wheel technique that uses the corresponding PDF of load demand and 

wind power generation. The stochastic optimization problem is solved by means of an 

improved multi-objective PSO algorithm. Another optimization theory widely used is chance 

constrained programming, in which the stochastic variables of the optimization problem are 

represented by using equivalent deterministic constraints. In this context, in [151] a tool was 

developed in which stochastic variables such as load demand, forced outage rates, energy 

prices, and wind power generation are modeled, while the optimization problem is solved by 

implementing a standard branch and bound algorithm. As in the development of forecasting 

tools, hybrid techniques that combine stochastic programming with other optimization 

techniques have recently been proposed and reported in the scientific community in this field 

of knowledge. For instance, in [152] introduced a combined sample average approximation 

algorithm that combines a stochastic programming approach and chance-constrained 

programming in order to ensure using the wind power production at each time-step. 

Furthermore, probabilistic approaches based on modeling stochastic variables as a Markov 

process have recently been introduced, as well.  

In [153] a general purpose ED tool was developed in which stochastic wind speed is 

represented as a Weibull PDF. Additionally, factors to represent the overestimation and 

underestimation of the available wind power generation are incorporated in the objective 

function of the ED problem. On the one hand, the factor related to the overestimation 

represents the purchasing of power generation from a determined source (spinning reserve) 

to supply the required capacity. On the other hand, the factor related to the underestimation 

represents the cost of consuming the excess power generated. Furthermore, the results 

obtained in [154] from the implementation of a hybrid methodology based on the combination 

of an auto regressive moving average (ARMA) model, artificial NN, and ANFIS suggest a 

Gaussian PDF. In [155] the analysis of a measured time series of one year was suggested using 

beta PDF, in order to model those PDFs similar to a Gaussian PDF, and those particular PDFs 

with a tail. To represent accurately those situations in which power production and 

consequently forecasting error are zero due to wind speed being too low or too high to 

produce electricity from the wind farm, in [156] a mixed PDF was proposed. Alternatively, 

[157] suggested employing the versatile PDF due to its analytical properties that facilitate the 

incorporation of wind power forecasting error in the ED problem. Other tools based on copula 

theory [158] and Lévy alpha-stable PDF [159] have also been suggested. 

2.4. Energy Storage System Tools Management 

The high penetration of renewable energy sources in the electricity framework can introduce 

problems for their optimal management, owing to the fact that these sources have a 

stochastic nature that introduces uncertainty into the scheduling process.  
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To deal with this problem, the incorporation of stochastic relations in the UC, the integration 

of ESS, and DR tools have been suggested in the literature. Battery energy storage systems 

(BESS) have received special attention for several years. From a global perspective, the 

potential for the installation of BESS in isolated power systems is estimated at 5300MWh. The 

greatest advantage of the incorporation of BESS is related to the reduction of levelized cost 

of energy (LCOE) by 6%, and increasing the penetration of renewable energies by 

approximately 50% to 70% where BESS are installed. In the case of regions with ample solar 

resources, BESS improves the correlation between solar radiation and load profile, and allows 

using the power generated during the day to supply peak demand, which usually occurs during 

the evening. However, the integration of BESS with wind energy could be affected negatively 

by the variability of this resource, as there could be long time periods without any wind 

generation. This lack of wind power requires an increment in the size of BESS, which 

increases the cost of the project [160]. 

Pumped hydro energy storage (PHES) has become a popular method for improving the 

flexibility of the power system. For instance [33] described the installation of PHES to be 

operated jointly with a wind farm, in order to supply energy demand in the Karpathos and 

Kasos islands of Greece. To manage PHES, the water required to be stored in the upper 

reservoir will be supplied by wind generation whenever it is available and by thermal 

generators during the night, when energy demand is low and a shortage of stored water 

occurs. In [161] it was suggested that this storage technology should be integrated into the 

power system of nearby Lesvos, where a detailed economic analysis has been carried out, 

concluding that, from the perspective of an investor, the optimum size is sensitive to the 

applicable energy and capacity tariffs, as well as wind potential and capital cost. Moreover, 

from the perspective of the power system, in those systems powered by liquid fossil fuels 

their consumption could be reduced and renewable power penetration could be increased, by 

integrating a small-capacity PHES. Thus, when the system is powered by liquid fossil fuels, a 

PHES with larger capacity is required since the power generation from renewable sources is 

increased. Nowadays, management and optimal control of an ESS is an important topic that 

has been widely analyzed in the technical literature, with several approaches proposed.  

In this context, in [162] a tool was developed for the scheduling of power systems with 

thermal generators and an ESS. In this approach, an ESS is used to reduce the peak load and 

total generation cost. The scheduling process is carried out in three steps: in the first step, 

the scheduling of thermal units is done by applying an enhanced priority list (EPL) method, in 

order to reduce the computational time; in the second and third steps, an algorithm is 

applied to incorporate ESS into the scheduling process. A BESS is modeled by using linear 

expressions for charging and discharging processes, while the power inverter has an ideal 

behavior. The charge of the BESS is done by using the excess of electricity from the 

committed generators. However, if this is not enough, more units could be committed, in 

order to charge the batteries up to a determined state-of-charge level. The discharge is done 

during the peak load, in order to avoid the necessity of using the most expensive generators. 
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In [163] an optimization tool was developed to design ESS to be integrated into microgrids. 

The developed method was based on the solution to the stochastic UC problem, using the 

scenario-generation/reduction method in order to consider the different sources of 

uncertainty in a horizon-schedule of 24h, with a time-step of 15 minutes. The optimization is 

formulated as a mixed-integer problem, and is solved by using an improved version of the 

Cuckoo optimization algorithm. This problem is subject to several constraints related to the 

energy balance of the electricity and thermal loads, the operation of the boiler, BESS, and 

the power grid. Several technologies for the ESS are considered, such as hydrogen, thermal 

and BESS. Three management strategies are analyzed: two of them to design and manage 

BESS, and another to manage the thermal energy storage. The effects of incorporating ESS 

into the microgrid were analyzed in several case studies, obtaining an important reduction in 

generation costs.  

In [164] a tool was proposed to design an ESS to be integrated into a microgrid. The 

methodology is based on determining the peak-shaving and excess of electricity according to 

the operating conditions, in order to determine the minimum energy to be supplied by the 

storage system, and to be charged into it. In addition, two mathematical models have been 

proposed: one to the insular system, and the other to the grid-connected systems. For the 

islanded microgrid, the UC problem incorporating renewable generation and ESS is solved, 

while for the grid-connected system, the economic benefits are considered to be the 

objective of the optimization process.  

In [165] a methodology is presented to control a compressed air energy storage system (CAES) 

in order to provide ancillary services. The proposed method was based on the solution of the 

security constrained UC problem. The effects of the integration of CAES on locational pricing, 

peak-load shaving, power flows on the transmission grid, wind curtailment, and GHE were 

analyzed.  

In [166] a method was proposed that incorporates PHES in the UC of thermal generators, 

taking into account environmental constraints. The methodology presented in this work 

consisted of two stages: in the first stage, the scheduling of PHES is determined, in order to 

modify the shape of the load profile, improving the operation of thermal units; in the second 

stage, the scheduling of thermal generators is determined, considering the changes 

introduced by the PHES in the first stage. Results obtained from the analysis of a case study 

revealed a reduction of 1.2% in the generation cost. 

In [167] a tool was proposed for the integration of wind power and PHES in the UC problem, 

using a binary PSO (BPSO), which is an algorithm with several adjustments in order to achieve 

a feasible solution. These adjustments were related to the minimum up/down time 

constraint, limits on power generation and ramp constraints, power balance, and PHES 

operation. The economic benefits of the implementation of PHES were observed in the 

reduction of peak load.  



32 
 

In [168] a model was developed based on a robust optimization approach whereby the random 

variables are set, taking into account the worst situation, instead of establishing assumptions 

based on the probability distributions. The model was formulated as a two-stage robust 

optimization problem, where wind power production was assumed to be within a determined 

interval that could be obtained by using quantiles. Moreover, the conservatism of the solution 

obtained was controlled by introducing an integer variable that represents the number of 

hours that units are allowed for sudden changes in the wind power production. The 

incorporation of PHES allows the reduction of generating costs, while the robust optimization 

guarantees a reliable solution owing to the consideration of the worst-case scenario.  

In [169] an optimization tool was proposed for the integration of wind power generation and 

PHES, in order to reduce variability, and improve its ability to be dispatched. This approach 

was based on the solution of the stochastic security constrained UC problem, through the 

scenario-generation approach, in order to incorporate several sources of uncertainty, such as 

error of forecasting load demand and wind generation, as well as system reliability. The 

optimization has been formulated as a mixed-integer programming problem, which was solved 

by using Benders’ decomposition technique.  

In [170] an optimization tool was developed integrating the ESS into the electricity market. 

The optimization model uses a two-stage stochastic UC formulation that aims to maximize the 

economic benefits; specifically, the integration of ESS was evaluated for providing primary 

reserve, energy arbitrage, and secondary reserve, considering different storage capacities. 

According to the results obtained from the analysis of a case study, the incorporation of an 

ESS reduces the participation of expensive generation units, such as those based on diesel and 

fuel-oil, in the power balance, and allows the supply of the secondary reserve in a cheap 

manner, using energy generated from those units with low operating costs, such as coal units. 

When an ESS is used for energy arbitrage, the operating efficiency of the system is improved, 

and the generation cost was reduced by approximately 0.5%, Moreover, when an ESS is used 

for energy arbitrage and secondary reserve, generation costs are reduced by approximately 

1.1%. In short, using ESS to provide different services improves the accommodation of 

renewable energies, reducing the participation of the most expensive generators in the power 

balance, and reducing the operating costs of the power system.  

In [171] a tool was introduced to find the optimal size and location of an ESS, improving the 

operation of distribution systems by reducing the risk related to the electricity price 

volatility, and the maximization of the economic profit. In this approach, the size of the ESS 

depends on the forecasting error of the load demand, and the power production of the 

distributed sources. This characteristic allows a reduction in the required capacity of the 

storage system, which consequently improves the economic performance of the project. 

Moreover, information about power exchange between the substation and the grid is used to 

optimize power purchasing, in order to maximize the benefits.  
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In [172] a tool is presented to design an ESS for the general purpose of mitigating the effects 

of variability and the uncertainty of renewable generation in the power system. The main 

advantage of the proposed model was the incorporation of regular deterministic and 

stochastic mixed-integer optimization formulations, which are frequently implemented in 

large-scale systems. A sensitivity analysis of the most important parameters of the storage 

system, such as the storage and power production efficiencies and costs, was carried out. The 

results obtained showed how the operating costs increase as the storage costs increase. 

Moreover, the generating costs decrease as efficiency increases. 

Recently, in [173] a detailed review of the state-of-the-art of ESS technologies nowadays 

available around the world was provided, reporting the most advanced work in this field of 

knowledge and its applications in some isolated locations, the advantages and disadvantages 

of each technology, and some case studies carried out as pilot projects. Moreover [174] 

contains an ESS roadmap which shows how some countries can benefit from using ESS 

technologies in their electricity grid and the expected advances up to 2030. 

2.5. Stochastic Programming  

Stochastic programming is accepted in the scientific community as the most suitable solution 

and the closest to a real-world case approach, which is able to describe by restriction 

variables a considerable number of random phenomena with a proper mathematical 

formulation and an efficient computational burden. A particular case where the stochasticity 

is present in all moments is in the organized and liberalized electricity markets, where 

uncertainty of varied order is a determining factor in players’ decision making, in which all 

phenomena, or at least a large set of these phenomena, should be considered [38]. In other 

words, for all problems involving data uncertainty it is necessary to apply stochastic 

programming, instead of deterministic programming where it is assumed that the nature of 

the data are known without uncertainty. To model a problem of stochastic programming, 

whose uncertainty is represented by a scenario tree, the future objectives of all the random 

variables used in the system to be solved should be known, or in an optional strategy it 

requires creating a systematically set of scenarios solution [136]. 

In stochastic programming formulation [40], each uncertainty set is a random variable, which 

will evolve over the time period and therefore it is considered as a stochastic process. The 

evolution of the load profile, wind power, or electricity market prices over a period time are 

excellent examples of stochastic processes. In stochastic programming the random sets are 

generally expressed by a finite set of objectives or scenarios. In this way, the random set 

scenarios 𝐶 can be expressed by the following series: 𝐶𝜔, 𝜔 = 1, 2, … , Ω, where 𝜔 is the 

scenario index of the total considered scenarios universe 𝛺. Moreover, 𝐶 also represents the 

set of possible objectives of random variable: 𝐶 = {𝐶1, 𝐶2, … , 𝐶Ω} .  
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From the previous notation of 𝐶 it is possible to describe a set of random variables, i.e., if 𝐶 

represents a wind power profile for a defined period of time ahead, 𝐶ω is a set with the same 

length of period time of coordinates, showing the possible objectives of wind power on the 

period time considered. Meanwhile, each objective 𝐶ω is related with a probability 𝜋𝜔, which 

can be formulated as [38]: 𝜋ω = 𝑃(𝜔|𝐶 = 𝐶𝜔), where ∑ 𝜋ω
Ω
𝜔=1 = 1. 

Stochastic programming deals with a probabilistic distribution of random variables that belong 

to the developed model. In this sense, stochastic programming is capable of finding matching 

solutions in all possible objectives, i.e., stochastic programming considers all the scenarios 

and their probabilities. However, the number of scenarios should be considered in a manner 

capable of yielding a satisfactory and timely solution.  

As stated in [175], stochastic programming can be classified according to the way uncertainty 

is expressed and how the mathematical problem is adapted in the optimization tool, which is 

briefly expressed in Figure 2.6.  

The most common approaches used in stochastic programming correspond with resource 

problems, normally having two stages: 

 First stage, where the decisions are carried out before the uncertain parameter objectives 

are achieved. Normally, this stage is known as here-and-now decisions and does not depend 

on the objectives of random parameters; 

 Second stage, where the decisions are carried out after the actual values of uncertain 

parameters objectives are found. This stage is also known as wait-and-see or resource 

decisions, which is dependent on each plausible value of random parameters. In other 

words, it is in this stage where the player can adapt the previous decisions for the actual 

outcomes of the random event. 

Normally, stochastic problems are formulated by a linear programming problem of large 

dimension with a structure that models the randomness of the problem [38]. Resources 

problems are stochastic programs where resources actions are carried out after the 

uncertainty related to the problem is found. Besides, these problems are classified according 

to the number of their stages, due to the fact that each stage represents the moment when 

the decision is carried out, i.e., if the decision process is repeated more than once the 

problem is considered as a multistage stochastic programming problem [40]. 

 

Figure 2.6. Stochastic programming problems classification.   
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Chapter 3 

Hybrid Forecasting Tool 

This section describes in detail the techniques used to create the proposed hybrid forecasting 

tool composed of the innovative combination of MI, WT, EPSO and ANFIS, advanced 

techniques applied in forecasting electricity market prices and wind power in the short-term. 

A comprehensive comparison with other methodologies previously published in the literature 

is also provided to demonstrate the enhanced forecasting accuracy and reduced 

computational burden, from testing on real case studies. In the hybrid evolutionary-adaptive 

(HEA) tool the MI is used to eliminate the randomness in the selection data series (electricity 

market prices or wind power) as inputs, increasing the robustness of the tool and helping to 

decrease the final forecasting error [176]. MI is a nonlinear feature selection technique that is 

more adequate for the aforementioned time series than a correlation analysis [101], [68]. For 

instance, the MI-based technique in [101] outperformed correlation analysis, which is a linear 

feature selection method, while electricity market prices or wind power are nonlinear 

mapping functions of their input variables. The WT is employed to decompose the sets of 

aforementioned data series into new constitutive sets with better behavior (smoothing 

effect). The forthcoming values of those constitutive sets are then forecasted with the ANFIS. 

EPSO brings on augmented ANFIS performance by tuning their membership functions to attain 

a lesser error. Compared with a classical PSO, the evolutionary concepts behind EPSO can 

make a real difference in terms of convergence properties. EPSO is self-adaptive, more robust 

and less sensitive to parameter initialization, compared with classical PSO. The evolutionary 

characteristics of EPSO and the adaptive characteristics of ANFIS complement each other 

perfectly. Finally, the inverse WT is used to reconstruct the signal, thus obtaining the final 

forecasting results. 

3.1. Mutual Information 

The MI technique is based on the concept of entropy. The concept of entropy shows that 

random processes may have a complexity of such order that the signal cannot be compressed 

or reduced. Moreover, entropy concepts are derived from statistical physics, and are used as a 

measure of the disorder state of a system. Entropy 𝐻(𝑋) is mathematically described as [69]: 

𝐻(𝑋) = −∫𝑃(𝑋) log2(𝑃(𝑋)) 𝑑𝑋                                                    (3.1.1) 

where 𝑋 is a random continuous variable with distribution probability 𝑃(𝑋). In the case where 

variable 𝑋 is a random discrete variable, i.e., (𝑋1, 𝑋2, … ,  𝑋𝑛), with distribution probabilities 

𝑃(𝑋𝑛) the entropy 𝐻(𝑋) is given by: 
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𝐻(𝑋) = −∑𝑃(𝑋𝑖) log2(𝑃(𝑋𝑖))

𝑁

𝑖=1

                                                     (3.1.2) 

Hence, in entropy study the following examples should be considered: 

 “A given event is equal to 0”, when this event does not occur; 

 “A given event is equal to 1 ”, when this event does occurs; 

 Consider the events: 𝑋1 = 0 ∧ 𝑋2 = 1, the individual entropy is equal to 0, i.e., 𝐻(𝑋𝑛) = 0, if: 

(𝑃(𝑋1) = 0 ∧ 𝑃(𝑋2) = 1)  ∨  (𝑃(𝑋1) = 1 ∧ 𝑃(𝑋2) = 0)                               (3.1.3) 

and the individual entropy is equal to 1, i.e., 𝐻(𝑋𝑛) = 1, if: 

𝑃(𝑋1) = 0.5 ∧  𝑃(𝑋2) = 0.5                                                          (3.1.4) 

By extending the concepts of entropy for the case of joint distributions of random variables, 

where the value of a random continuous variable 𝑋 is known, if the entropy of a random 

continuous variable 𝑌 is assumed to be known, then Equation (3.1.1) takes a new form [68]: 

𝐻(𝑋, 𝑌) =  −∬𝑃(𝑋𝑛, 𝑌𝑚) log2(𝑃(𝑋𝑛 , 𝑌𝑚))                                             (3.1.5) 

In the case where variables 𝑋 and 𝑌 are random discrete variables, the joint entropy 𝐻(𝑋, 𝑌) 

is given by: 

𝐻(𝑋, 𝑌) = −∑∑𝑃(𝑋𝑖 , 𝑌𝑗) log2 (𝑃(𝑋𝑖 , 𝑌𝑗))

𝑀

𝑗=1

𝑁

𝑖=1

                                           (3.1.6) 

However, it is not possible to compute Equation (3.1.6) directly, so a new concept is 

necessary, which measures the level of uncertainty of the random discrete variable 𝑌 after 

having observed the value of random discrete variable 𝑋 (or vice versa) called conditional 

entropy. The conditional entropy is defined as: 

𝐻(𝑌 𝑋⁄ ) = −∑∑𝑃(𝑋𝑖 , 𝑌𝑗) log2 (𝑃(𝑌𝑖 𝑋𝑗⁄ ))

𝑀

𝑗=1

𝑁

𝑖=1

                                         (3.1.7) 

The conditional entropy 𝐻(𝑌 𝑋⁄ ) quantifies the remaining uncertainty of 𝑌 when 𝑋 is known, 

(or vice versa, i.e., the conditional entropy 𝐻(𝑋 𝑌⁄ ) quantifies the remaining uncertainty of 𝑋 

when 𝑌 is known). Thus, the joint and conditional entropies are related by: 

𝐻(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌 𝑋⁄ ) = 𝐻(𝑌) + 𝐻(𝑋 𝑌⁄ )                                        (3.1.8) 

Entropy theory and MI are closely related. Besides, the MI measures the level of information 

within a set of information data. This is described in Figure 3.1. The discrete mathematical 

expression is defined as: 

𝑀𝐼(𝑋, 𝑌) =  ∑∑𝑃(𝑋𝑖 , 𝑌𝑗) log2 (
𝑃(𝑋𝑖 , 𝑌𝑗)

𝑃(𝑋𝑖)𝑃(𝑌𝑗)
)

𝑀

𝑗=1

𝑁

𝑖=1

                                      (3.1.9) 
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Figure 3.1. General mutual information representation. 

The MI technique can be described by the following points: 

 If 𝑀𝐼(𝑋, 𝑌) ≈ 1, then the sets are completed correlated (i.e., the information contained in 

each set is similar to each other). 

 If 𝑀𝐼(𝑋, 𝑌) ≈ 0, then the sets are not related (i.e., the information contained in each set is 

not similar to each other). 

 If 𝑀𝐼(𝑋, 𝑌) = 0, then the sets are completely independent (i.e., no information is contained 

between the sets). 

MI has a strong connection with the individual entropy described in Equation (3.1.2), with the 

conditional entropy described in Equation (3.1.7), as well as with Equation (3.1.8), so the MI 

in Equation(3.1.9) can be expressed as Equation (3.1.10) and Equation (3.1.11), i.e.: 

𝑀𝐼(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋 𝑌⁄ )                                                       (3.1.10) 

𝑀𝐼(𝑋, 𝑌) = 𝑀𝐼(𝑌, 𝑋)                                                               (3.1.11) 

To ensure the convergence of the HEA tool, the bounds of MI are very important to guarantee 

the best performance of the ANFIS. The MI helps to determine the best sets of candidates 

that will be inputs for training the ANFIS architecture [177]. These bounds differ between 

electricity prices forecasting results and wind power forecasting results, and were found 

through numerous attempts to find the best outcome for feeding the ANFIS architecture of 

the HEA tool. 

3.2. Wavelet Transform 

Nowadays, the application of the WT technique in forecasting tools is of utmost importance 

due to the need to overcome the limitations of non-stationary time series such as electricity 

market prices or wind power. It is a mathematical method applied in different engineering 

fields, which allows the analysis of time series in their natural state. In this way, the WT is 

normally used in pre-processing for understanding the non-stationary or time varying data 

[178], with sensibility to the irregularities of input data. WT is capable of showing the 

different aspects that constitute the data without losing the real signal content [179].  
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WT is able to reduce noise of the input data (smoothing effect) without visible degradation.  

It is important to note that time series data associated with random variables consist of 

ordered time observations and registered in the same period with the same time-step. Time 

series data is stationary when the mean and variance are constant and, frequently, it is 

considered hypothetically to impose stationary in a time series data for its analysis, i.e., the 

time series develop randomness over the time around a constant mean, reflecting a stable 

behavior [180]. The analytical processing which allows the time series representation in 

frequency domain and time is reached by continuous WT (CWT) and discrete WT (DWT). The 

𝐶𝑊𝑇𝑎𝑏 of associated signal 𝑝(𝑡𝑤𝑡) of a mother-wavelet function 𝜓𝑎𝑏 is given by [179]: 

𝐶𝑊𝑇𝑎𝑏 = ∫ 𝑝(𝑡𝑤𝑡)
+∞

−∞

𝜓𝑎𝑏(𝑡𝑤𝑡) 𝑑𝑡𝑤𝑡                                                          (3.2.1)  

where the scale parameter 𝑎 is responsible for controlling the propagation of WT and the 

translation parameter 𝑏 determines the window position as it moves by the data. The mother-

wavelet 𝜓𝑎𝑏(𝑡𝑤𝑡) is computed using function 𝑤(𝑡𝑤𝑡), i.e.: 

𝜓𝑎𝑏(𝑡𝑤𝑡) =
1

√𝑎𝑤𝑡
𝑤 (

𝑡𝑤𝑡 − 𝑏𝑤𝑡
𝑎𝑤𝑡

)                                                                (3.2.2) 

In this way, the CWT function will be, by substitution of Equation (3.2.2) in Equation (3.2.1), 

the following: 

𝐶𝑊𝑇𝑎𝑏 =
1

√𝑎
∫ 𝑝(𝑡𝑤𝑡)
+∞

−∞

𝑤 (
𝑡𝑤𝑡 − 𝑏𝑤𝑡

𝑎
)  𝑑𝑡𝑤𝑡                                               (3.2.3)  

Nevertheless, since the DWT is computed in temporal domain and multiplied by scaled and 

shifted WT function 𝜓𝑎𝑏(𝑡𝑤𝑡), this will give rise to a number of coefficient series of WT scaled 

in frequency and time [181], which in practice is not useful, since it requires a high number 

of scales and translations which consumes a large capacity in computational burden and time 

[179].To overcome the aforementioned problem, a DWT was created to give in an efficient 

way the description relative to CWT, and nowadays it is widely used to decompose the time 

series under study. The DWT is defined as:  

𝐷𝑊𝑇(𝑚𝑤𝑡 , 𝑛𝑤𝑡) = 2
−(𝑚𝑤𝑡 2) ⁄ ∑𝑝(𝑡𝑤𝑡)𝜑 (

𝑡𝑤𝑡 − 𝑛𝑤𝑡2
𝑚𝑤𝑡

2𝑚𝑤𝑡
)

𝐻

𝑡=0

                                   (3.2.4) 

where 𝐻 represents the length 𝑝(𝑡𝑤𝑡), and the parameters of scaling and translation are 

changed to integer variables 𝑎𝑤𝑡 = 2𝑚𝑤𝑡 and 𝑏𝑤𝑡 = 𝑛𝑤𝑡2
𝑚𝑤𝑡 respectively, with a time-step 𝑡𝑤𝑡. 

An efficient way to use the DWT is by multi-resolution analysis developed by Mallat, using a 

“father-wavelet” with a complementary “mother-wavelet”, where the “father-wavelet” 

determines the low frequency series components while “mother-wavelets” determine the 

high frequency series components. However, it is recommended to use orthogonal wavelet 

functions in order to simplify the orthogonal vector space and the associated coefficients of 

the wavelets [182].  
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Figure 3.2. Three-level decomposition model of WT. 

Furthermore, in this work and following the description cited in [52] and [116] the Daubechies 

of fourth order, or Db4, was used as mother-wavelet-function. The Db4 has asymmetrical and 

continuous proprieties, where a higher order level will create a higher level oscillation, which 

is desirable in forecasting [179] [182]. The coefficients of approximations 𝐴𝑛 and details 𝐷𝑛 

are expressed as: 

𝐴𝑛 =∑𝐷𝑊𝑇(𝑚𝑤𝑡 , 𝑛𝑤𝑡)𝜑𝑚𝑛(𝑡)

𝑛

                                                        (3.2.5) 

𝐷𝑛 =∑𝐷𝑊𝑇(𝑚𝑤𝑡 , 𝑛𝑤𝑡)𝜓𝑚𝑛(𝑡)

𝑛

                                                        (3.2.6) 

where 𝜑𝑚𝑛(𝑡𝑤𝑡) is the father-wavelet and 𝜓𝑚𝑛(𝑡𝑤𝑡) is the mother-wavelet, and 

𝐷𝑊𝑇(𝑚𝑤𝑡 , 𝑛𝑤𝑡) are the coefficients obtained from Equation (3.2.4) [180]. The Db4 is chosen 

as mother-wavelet function due to a better trade-off between smoothness and length [52]. 

Besides, the DWT algorithm used in this work was based on four filters divided into two 

groups: the decomposition in low-pass and high-pass filters and the reconstruction in low-pass 

and high-pass filters. The approximations and details of the original sets can be obtained via 

Mallat’s algorithm as referred to in [179] or in [116].  

Figure 3.2 shows a three-level decomposition model of WT. In general, the approximations 

are able to retain the general information of the original sets, i.e., the low-frequency 

representation and description of the high frequency component. The details are able to 

explain the difference between successive approximations. It is possible to conclude from 

Figure 3.2 that the original set was decomposed in two subseries (𝐴𝑛 and 𝐷𝑛) called subseries 

of approximation and detail, respectively. From this point, the subseries 𝐴𝑛 was decomposed 

again in a second level and repeated in a third level. The procedure will result in (𝐴1, 𝐴2,  𝐴3) 

approximation subseries and (𝐷1, 𝐷2,  𝐷3) details subseries. 

3.3. Evolutionary Particle Swarm Optimization 

The classical PSO is a research tool where each potential solution can be represented as a 

particle of a determined population. Theoretically, such particles (individuals) show a similar 

movement, as do animals that move in large groups.  

Original Data Sets

A1 D1

A2 D2

A3 D3
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The position changes in research space and normally the more successful individuals are 

imitated by the remaining group of individuals. Considering an optimizing problem where the 

solution space is D-dimensional, the swarm constituted by 𝑃 particles is initialized with a 

random initial position 𝑥. The position of each particle then converges to the allowable 

solutions domain of the optimization problem oriented after a continuous of convergence 

process to the optimal solution. Moreover, in the iteration process, the particle position is 

changed accordingly with its experience and information shared with its neighboring 

particles. Besides, the aforementioned position is changing by the velocity 𝑣, which 

represents the mechanism of the optimization process and reflects the information shared 

between particles. Furthermore, each particle is evaluated by a fitness process which gives a 

value, and consequently it measures the particle performance to obtain the most convenient 

solution to the problem [183]. 

EPSO is a meta-heuristic method where rules and optimization concepts are contained in the 

evolutionary strategies and self-adaptive properties [184]. In EPSO is usual to call by 

“generation” the data with alternative solutions and by “individuals” the particles data. Each 

particle is described by object parameters (the value of the variables describing the solution) 

and strategic parameters (the mutation coefficients of each variable, angle of correlation of 

mutation variables, or similar) [185]. In EPSO it should be noted that [186]: 

 Each particle is replicated, (with required number of times to find the best solution or until 

the maximum number of iterations is reached); 

 The weight parameter of the particles is transformed by an evolutionary process; 

 The object parameters of each particle are transformed into a new generated particle by 

strategic parameters, again by an evolutionary process; 

 The new mutated particles generate new particles; 

 For a group constituted by old particles and new particles, the best fit should lead to the 

generation of a new population of particles. The strongest particles will survive in the 

evolutionary process helping to provide the optimal result. 

Hence, the formulation of EPSO is composed of object parameters 𝑋 (position) and strategic 

parameters 𝑤 that correspond to the weights. The movement rule of EPSO is defined as [187]: 

𝑋𝑖𝑒
𝑛𝑒𝑤 = 𝑋𝑖𝑒 + 𝑉𝑖𝑒

𝑛𝑒𝑤                                                                    (3.3.1) 

𝑉𝑖𝑒
𝑛𝑒𝑤 = 𝑤𝑖0

∗ 𝑉𝑖𝑒 + 𝑤𝑖1
∗ (𝑏𝑖𝑒 − 𝑋𝑖𝑒) + 𝑤𝑖2

∗ (𝑏𝑔
∗ − 𝑋𝑖𝑒)                                          (3.3.2) 

Note that Equations (3.3.1) and (3.3.2) are similar to the classical PSO algorithm, that is, the 

movement rule keeps the inertia, memory and cooperation terms of Equation (3.3.1), which 

can be shown in Figure 3.3. The difference in EPSO is related to the weights 𝑤𝑖𝑒𝑘
∗ , which 

undergo mutation, given as: 

𝑤𝑖𝑘
∗ = 𝑤𝑖𝑒𝑘 + 𝜏𝑁(0, 1)                                                                  (3.3.3) 
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Figure 3.3. EPSO movement rule of a particle. 

where 𝑁(0, 1) is a randomly Gaussian variable with mean 0 and variance 1. Furthermore, the 

global best 𝑏𝑔
∗ is changed according to: 

𝑏𝑔
∗ = 𝑏𝑔 + 𝜏

′𝑁(0, 1)                                                                    (3.3.4) 

In Equations (3.3.1)–(3.3.4), the parameters {𝑋𝑖𝑒 ,  𝑉𝑖𝑒 , 𝑏𝑖𝑒 , 𝑘, 𝜏, 𝜏′} represent the position 𝑋𝑖𝑒, 

velocity 𝑉𝑖𝑒, best point 𝑏𝑖𝑒 found at generation 𝑘, the learning parameters 𝜏 and the mutated 

learning parameter 𝜏′. EPSO usually presents better convergence characteristics than PSO due 

to the fact that only the stronger particles survive in the evolutionary process [184]. 

Moreover, the inertial weight, beyond the acceleration constant, determines the previous 

velocity in the new velocity, acquiring a trade-off between a local search and global search in 

D-dimensional solution space. The inertial weight correction along iterations can reduce the 

number of iterations, increasing the convergence speed of the system to the optimal solution. 

In other words, it can reduce the computational burden of providing a timely solution. The 

inertial weight can be determined by the following expression [52]: 

𝑤𝐼𝑁 = 𝑤𝑚𝑥 −
𝑤𝑚𝑥 − 𝑤𝑚𝑛

𝑖𝑚𝑥
× 𝑖𝑒                                                           (3.3.5) 

where 𝑤𝑚𝑥 and 𝑤𝑚𝑛 are the maximum and minimum inertial weights found from successive 

simulations, 𝑖𝑒 is the actual iteration and 𝑖𝑚𝑥 is the maximum iteration. Moreover, 

comparatively to a classical PSO, the evolutionary concepts behind of EPSO can make a real 

difference in terms of convergence properties. EPSO is self-adaptive, more robust and less 

sensitive to parameter initialization, comparatively to classical PSO The EPSO algorithm used 

in this work is described as [188]: 

 Start the swarm with 𝑃 particles and for each particle 𝑝 the position 𝑋𝑖𝑒 and velocity 𝑉𝑖𝑒 

will randomly start; 

 Evaluate the fitness of each particle using the actual position 𝑋𝑖𝑒; 

 Evaluate the performance of each particle until the actual iteration, and evaluate the 

performance of each particle until the actual position 𝑏𝑔; 

 Update the velocity of each particle provided by Equation (3.3.2). 

 Update the position of each particle provided by Equation (3.3.1). 
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 Update the iteration number and compare it with the maximum 𝐼𝑡𝑚𝑥 chosen. If the optimal 

solution is found, stop the iteration and save the information; otherwise, update the 

weights and restart from the evaluation of fitness of each particle.  

3.4. Adaptive Neuro-Fuzzy Inference System 

ANFIS is a successful hybrid combination of NN and fuzzy algorithms. This is possible due to 

the low computational requirements of well-structured NN architectures, which can be useful 

to deal with a large quantity of data, combined with a high response given by fuzzy 

algorithms. Furthermore, the NN algorithm has the self-learning capability that is combined 

with the fuzzy algorithm to self-adjust its parameters [49]. The ANFIS system is often used in 

industrial applications for the following reasons [189]: 

 Easy of application of learning algorithms coming from a developed NN techniques; 

 Integrate and promote the implicit and explicit knowledge of fuzzy logic; 

 Knowledge extraction possibility in rules, from data sets supported by fuzzy logic. 

The ANFIS system uses a conversion machine to convert the input data into linguistic variables 

and vice versa, where the elements of fuzzy sets have membership levels that interpret the 

uncertainty level of whether some sets are related to the system or not. In this way, let 𝑋 a 

set and 𝑥 ∈ 𝑋, and let 𝜇𝐴(𝑥) be the membership level of 𝑥 of fuzzy set 𝐹𝑧, where 𝜇𝐴(●) is a 

membership function that 𝜇𝐴: 𝑋 → {0, 1}. The previous membership function indicates the 

uncertainty level of some element of 𝑥 belonging to set 𝐴. Moreover, a fuzzy set is defined by 

a membership function and domain of this function. In Figure 3.4 shows the membership 

functions most commonly used in ANFIS systems. In [190] it was proved that the triangular 

membership function presents a good computational efficiency, but it depends where it is 

applied. In this work, as proved in [52] and in [116], the triangular membership function in 

the ANFIS system was applied in forecasting electricity market prices and wind power.  

Figure 3.5 also presents an inference system architecture where the input data is converted 

into fuzzy language and afterwards the inference and rules process will be converted again 

into the original language data. The fuzzification process is where the numerical data is 

changed to fuzzy language variables, the inference mechanism defines the way the rules are 

combined, and the defuzzification process is where the fuzzy results variables are changed to 

numerical values. The mechanism most often used in this field is based on the Takagi-Sugeno 

system [191]. 

 

Figure 3.4. Most used ANFIS membership functions. 
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Figure 3.5. Inference system architecture. 

Some techniques that are generally applied in the defuzzification process are as follows [191]: 

 Maximum first technique, where the first maximum of membership function is determined; 

 Maximum average technique, where the average of all results of the membership function 

that achieved the maximum is determined; i.e.: 

𝑀𝑎𝑣𝑔 =∑
𝑥𝑖
𝑚

𝑚

𝑖=1

                                                                        (3.4.1) 

 Centroid technique, determined under the membership function area and in the 

defuzzification process, considered as the centroid axes, i.e.: 

𝑀𝑐𝑒𝑛 =

{
 
 

 
 

∑ 𝜇𝐴(𝑥) × 𝑥𝑥

∑ 𝜇𝐴(𝑥)𝑥

,                   𝑖𝑓 𝑥 𝑖𝑠 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒

∫ 𝜇𝐴(𝑥) × 𝑥 𝑑𝑥𝑥

∫ 𝜇𝐴(𝑥) 𝑑𝑥𝑥

,                 𝑖𝑓𝑥 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠

               (3.4.2) 

The general ANFIS architecture used in this work consists of fuzzification, rules, normalization 

data, defuzzification, and signal reconstruction by the respective layers, i.e., it is composed 

by five layers, thus also called multi-layer feed-forward network, described in general terms 

in Figure 3.6 [191]. Each layer 𝐿𝑛𝑖 is the output of the 𝑖𝑡ℎ node in layer 𝑛. Each layer also has 

a specific purpose, as described below [87]: 

 In Layer 1 all nodes 𝑖 are adaptive nodes with node function 𝐿1𝑖 given by: 

𝐿1𝑖 =  𝜇𝐴𝑖(𝑥), 𝑖 = 1, 2,                                                           (3.4.3) 

or 

𝐿1𝑖 =  𝜇𝐵𝑖−2(𝑦), 𝑖 = 3, 4,                                                         (3.4.4) 

where 𝑥 or 𝑦 is the input of the 𝑖𝑡ℎ  node and 𝐴𝑖 or 𝐵𝑖−2 are the linguistic labels associated 

with these nodes.  

 

Figure 3.6. General ANFIS architecture. 
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The memberships function in 𝐴 or 𝐵 are described in this work as a triangular membership 

function [52] where {𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖} are set parameters, due to being a continuous and 

piecewise differentiable function. It is generally described by: 

𝜇𝐴𝑖(𝑥) =
1

1 + |
𝑥 − 𝑟𝑖
𝑝𝑖

|
2𝑞𝑖
                                                                   (3.4.5) 

 In Layer 2 all output nodes represent the firing strength of the rule 𝑤𝑖, where each node is 

represented by 𝛱, i.e., the output signals are multiplied by the previous inputs signals. 

𝐿2𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥)𝜇𝐵𝑖(𝑦), 𝑖 = 1, 2                                             (3.4.6) 

 In Layer 3 every node 𝑁 calculates the ratio of firing rules strength 𝑖𝑡ℎ with the sum of all 

firing strength rules:  

𝐿3𝑖 = �̅�𝑖 =
𝑤𝑖

𝑤1 + 𝑤2
, 𝑖 = 1, 2                                                  (3.4.7) 

 In Layer 4 all nodes compute the contribution of the rule 𝑖𝑡ℎ to the global output, where 

{𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖} are parameters sets and �̅�𝑖 is the layer output: 

𝐿4𝑖 = �̅�𝑖𝑧𝑖 = �̅�𝑖(𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖), 𝑖 = 1, 2                                      (3.4.8) 

 Finally, Layer 5 corresponds to the output node of ANFIS tool where the summation Σ is 

made: 

𝐿5𝑖 =∑�̅�𝑖𝑧𝑖
𝑖

=
∑ 𝑤𝑖𝑧𝑖𝑖

∑ 𝑤𝑖𝑖

                                                             (3.4.9) 

Furthermore, as stated in [87] the ANFIS tool used in this work employs the least-squares and 

back-propagation gradient descent method. EPSO assists in the tuning of the membership 

function parameters. 

3.5. Proposed Forecasting Tool 

The HEA tool is a successful combination of MI, WT, EPSO and ANFIS advanced techniques 

applied to forecast electricity market prices and wind power in the short-term. The MI is used 

to eliminate randomness in the selection data series (electricity market prices or wind power) 

as inputs. The WT is employed to decompose the sets of aforementioned data series into new 

constitutive sets with better behavior. The forthcoming values of those constitutive sets are 

then forecasted with the ANFIS. The EPSO augments the performance of ANFIS by tuning their 

membership functions to attain a lesser error. The HEA tool is described in successive steps. 

Figure 3.7 provides the structure of the HEA tool in the form of a detailed flowchart. 

 Step 1. Initialize the HEA approach with an historical data matrix of wind power or 

electricity market prices, considering the previous days/weeks; 
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 Step 2. The matrix will be normalized in {0, 1} intervals, to find the set of historical data 

in the same scale, which will be later used by the MI in the candidate selections procedure. 

This step is important to avoid the loss of relevant information; 

 Step 3. Constitute data groups for the MI. The number of these groups is defined by 

combinatorial optimization in order to avoid compromising the computational burden. The 

formation of these groups must be performed in a balanced way, thus avoiding 

compromising ANFIS performance; 

 Step 4. Compute the entropy and conditional entropy of each group by using Equations 

(3.1.2) and (3.1.8), where 𝑃(𝑋𝑛) is given by binomial distribution function; 

 Step 5. Compute MI given by Equation (3.1.10) of each group; 

 Step 6. Compute the best group subset data. The best group found will be recombined in 

original data-sets. These selected data-sets will be inputs for the WT; 

 Step 7. Train the ANFIS with the previous constitutive data-sets. The optimization of the 

membership function parameters is achieved by EPSO. Table 3.1 shows the parameters 

considered for MI, ANFIS and EPSO. These parameters result from the expertise acquired in 

the simulations, taking also into account previous publications. The approach developed in 

this work uses 𝐴3, along with 𝐷3 and 𝐷1, as inputs for the ANFIS (Data-sets coming from WT 

tool). The inference rules of ANFIS are put into automatic mode to achieve the best 

performance. This is done due to the nature of the data, which requires a large number of 

inference rules to obtain the best results; 

 Step 8. Until the best results or convergence are not reached: 

o Step 8.1. Jump to Step 7 in case of electricity market prices forecasting. When the best 

results are found or convergence is reached, the inverse WT is applied and the output 

of the proposed HEA tool is attained, that is, the electricity prices are forecasted; 

o Step 8.2. Jump to Step 1 in case of wind power forecasting. When the best results are 

found or convergence is reached, the inverse WT is applied and the output of the 

proposed HEA tool is attained, that is, the wind power data are forecasted. This is 

repeated with new and refreshing sets of historical wind power data till the short-term 

time horizon selected is completed; 

 Step 9. Compute the forecasting errors with different criteria to validate the proposed HEA 

tool for each case study, i.e., for electricity market prices and wind power results. 
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Figure 3.7. Flowchart of proposed HEA tool. 
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Table 3.1. Parameters of MI, EPSO and ANFIS. 

Technique Parameters 

Type or Size 

Electricity 
Market Prices 

Wind power 

MI 
Best Lower Bound of Set 0.15 0.20 

Best Upper Bound of Set 0.65 0.86 

ANFIS 

Membership Function 2-7 

Necessary Iterations 3-50 2-25 

Membership Function Triangular Format 

EPSO 

Fitness Acceleration 2 

Sharing Acceleration 2 

Initial Inertia of Population 0.9 

Final Inertia of Population 0.4 

Population Size 24-168 96 

Maximum Generation 48-326 192 

Number of New Particles 24-168 12 

Generation for New Particle 2 

Necessary Iterations 48-326 192 

Min. Value of New Position 20 5 

Max. Value of New Position 70-120 2000 
 

3.6. Case Studies and Results 

The HEA tool was first used to forecast the electricity market prices for the next 24h/168h-

ahead for mainland Spain in 2002, which is difficult to forecast due to the changes in prices 

that occurred as a result of the strategies of the dominant player. The HEA methodology is 

also utilized to predict electricity market prices for the next 24h/168h-ahead for the PJM 

market in 2006. Like the Spanish market, no exogenous data such as load, oil prices or other 

exogenous sets are taken into account. Also, the same test days/weeks used in previously 

published studies have been used, to allow a clear and fair comparison with the results 

already obtained using other published methodologies. Otherwise a fair comparison would not 

be possible. Moreover, the HEA tool has been applied for forecasting the whole wind power in 

Portugal. The numerical results presented take into account the wind farms that have 

telemetry with the Portuguese transmission system operator (TSO), that is, Redes Energéticas 

Nacionais (REN). 

To compare the proposed tool with other methodologies/tools used for forecasting electricity 

market prices and wind power in the short-term horizon previously published in the 

specialized literature, we also used some commonly used criteria accepted by the scientific 

community to report the proficiency of the proposed approaches. These criteria are described 

in the following section. 
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3.6.1.   Forecasting Accuracy Evaluation 

The HEA tool has been compared with other published methodologies/tools applied in 

forecasting short-term electricity market prices and wind power. The most well-known 

criteria accepted and used in the specialized literature are: mean absolute percentage error 

(MAPE), error variance, normalized mean average error (NMAE), and normalized root mean 

square error (NRMSE). The MAPE criterion is given as: 

𝑀𝐴𝑃𝐸 =  
100

𝑁
∑

|�̂�ℎ − 𝑝ℎ|

�̅�

𝑁

ℎ=1

                                                                 (3.6.1) 

�̅� =
1

𝑁
∑𝑝ℎ

𝑁

ℎ=1

                                                                              (3.6.2) 

where �̂�ℎ is the data forecast (electricity market prices or wind power) at hour ℎ; 𝑝ℎ is the 

actual data (electricity market prices or wind power) at hour ℎ; �̅� is the average value for the 

forecasting horizon 𝑁.  

Moreover, in electricity prices forecasting the average of electricity market prices is used in 

Equation (3.6.1) to elude the instability caused when the electricity market prices are near to 

zero [55]. 

The uncertainty of the proposed tool is also evaluated using the error variance estimation. 

The smaller the value for this criterion, the more exact is the tool in its forecasting results 

[56]. In accordance with the MAPE criterion, the error variance criterion is given by: 

𝜎𝑒,𝑡
2 =

1

𝑁
∑(

|�̂�ℎ − 𝑝ℎ|

�̅�
− 𝑒𝑡)

2𝑁

ℎ=1

                                                            (3.6.3) 

𝑒𝑡 =
1

𝑁
∑

|�̂�ℎ − 𝑝ℎ|

�̅�

𝑁

ℎ=1

                                                                      (3.6.4) 

Moreover, for the wind power forecasting results, this study used the NMAE criterion, where 

𝑃𝑖𝑛𝑠 corresponds to the total wind power capacity installed. The NMAE is determined by: 

𝑁𝑀𝐴𝐸 =
100

𝑁
∑

|�̂�ℎ − 𝑝ℎ|

𝑃𝑖𝑛𝑠

𝑁

ℎ=1

                                                                 (3.6.5) 

Finally, the NRMSE criterion (applied only in wind power forecasting results) is determined by 

[101], [192], [193]: 

𝑁𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(

�̂�ℎ − 𝑝ℎ
𝑃𝑖𝑛𝑠

)
2𝑁

ℎ=1

× 100                                                          (3.6.6) 
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3.6.2.   Short-Term Electricity Market Prices Results 

3.6.2.1.  Spanish Market 

The HEA tool is used first to forecast the electricity market prices for the next 24h/168h for 

the mainland Spain electricity market. The historical data of electricity market prices are 

available in [8]. As mentioned in [56], this market is difficult to forecast due to the changes 

in prices that occur as a result of the strategies of the dominant player. The electricity 

market price sets used for the Spanish market date back to the year 2002, to allow a clear 

and fair comparison with the results already obtained using other published methodologies, 

i.e., the same four test weeks of the year 2002 were selected, each corresponding to a 

different season (winter, spring, summer, and fall). Moreover, for a clear and fair comparison 

with the results already obtained using other published methodologies, only historical data 

sets of electricity market prices were used, i.e., no exogenous sets, such as load, oil prices, 

or others are taken into account. Otherwise a fair comparison would not be possible. 

Moreover, demand data does not significantly improve the results of forecasts [180],  

The HEA tool forecasts the next 168h electricity market prices taking into account the 

previous 1008h, (i.e. six weeks or 42 days for each season), which in turn will be the input 

sets. Very large training sets are not used to avoid over-training during the learning process. 

The output of the HEA tool corresponds directly to a set with 168 values, equal to the 

forecasting horizon. For day-ahead (24h) forecasts, the previous six days are considered. The 

results with the HEA tool are initially provided in Figures 3.8–3.11 for the four test weeks of 

2002 in Spanish market. 

Table 3.2 shows the MAPE criterion comparative results between the HEA tool and 18 other 

methodologies. The enhancements between HEA and the other methodologies are 58.0%, 

55.1%, 53.1%, 48.5%, 48.1%, 44.4%, 43.7%, 40.0%, 38.1%, 37.1%, 36.3%, 27.2%, 21.4%, 19.9%, 

18.7%, 18.5%, 17.6% and 15.6%,respectively. The MAPE criterion using HEA has an average 

value of just 4.18%, the lowest of all, which is significant. Even if each week is analyzed per 

se, the results are always better. 

Although the proposed methodology is not specifically designed for price spike forecasting, 

which is the main goal of other studies such as [176], [194], it behaves quite well in their 

presence with excellent overall results. Table 3.3 shows the comparative results for the error 

variance criterion between the HEA tool and fourteen other methodologies. The 

enhancements between HEA and the other methodologies are 83.7%, 78.6%, 76.6%, 72.2%, 

68.8%, 59.5%, 58.3%, 58.3%, 57.1%, 54.5%, 44.4%, 28.6%, 28.6% and 28.6% respectively. The 

average value is only 0.0015, again the lowest of all, indicating reduced uncertainty in the 

forecasts, which is another important feature. Error variance results for the mixed model, 

fuzzy NN (FNN) [58], pattern sequence-based forecasting (PSF) [82] and Elman network or 

simple recurrent network (SRN) [195] are not available in the respective papers.  
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More recent data (year 2006) for the Spanish market has also been considered. Moreover, the 

best and worst forecasts generated by the PSF and HEA methodologies for year 2006 data 

have been compared. The best forecast for the PSF methodology occurred on June 23, 2006, 

in which the MAPE was 3.10%, while using the HEA tool the MAPE decreases to 2.31%. The 

worst forecast for PSF methodology occurred on May 8, 2006, in which the MAPE was 9.39%, 

while using the HEA tool (as illustrated in Figure 3.12) the MAPE decreases to 4.37%. Hence, 

the forecasting trends for the year 2006 are in agreement with those previously observed for 

the year 2002: enhancements range from 25.5% to 53.5%, which is significant. 

Figure 3.13 shows the daily error between the HEA tool results and the results previously 

reported for the NN, NNWT and WPA methodologies for the four seasons of the year. It can be 

seen that, for most days, the HEA tool presents better forecasting results, i.e., lower errors, 

compared with the other three methodologies. 

Furthermore, the HEA tool requires a low computational burden: the average computation 

time for a 168h forecast is less than 40 seconds using MATLAB platform on a standard PC with 

a 1.8GHz-based-processor and 1.5GB RAM. Not only is the training time less, but also the 

accuracy is higher and the uncertainty is lower with the HEA tool. This is the major added 

value this study provides. The proposed HEA tool presents, indeed, the best trade-off 

between computation time and average MAPE, which is crucial for real-life and real-time 

applications. 

 

Figure 3.8. Winter week 2002 results for the Spanish market. The gray and black lines represent the 

actual and forecasted prices, respectively, while the dark-blue line at the bottom represents the errors 

in absolute value.  
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Figure 3.9. Spring week 2002 results for the Spanish market. The gray and black lines represent the 

actual and forecasted prices, respectively, while the dark-blue line at the bottom represents the errors 

in absolute value. 

 

Figure 3.10. Summer week 2002 results for the Spanish market. The gray and black lines represent the 

actual and forecasted prices, respectively, while the dark-blue line at the bottom represents the errors 

in absolute value. 
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Figure 3.11. Fall week 2002 results for the Spanish market. The gray and black lines represent the actual 

and forecasted prices, respectively, while the dark-blue line at the bottom represents the errors in 

absolute value. 

 

Figure 3.12. May 8, 2006, results for the Spanish market. The gray and black lines represent the actual 

and forecasted prices, respectively, while the dark-blue line at the bottom represents the errors in 

absolute value. 
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Figure 3.13. Daily error comparative results between NN, NNWT, WPA and HEA methodologies, regarding 

the four seasons of year 2002 for the Spanish market: (a) winter; (b) spring; (c) summer; (d) fall. 

Table 3.2. MAPE criterion: Comparative results for Spanish market. 

Methodologies Winter Spring Summer Fall Average 

ARIMA [55], 2003 6.32 6.36 13.39 13.78 9.96 

Mixed Model [196], 2007 6.15 4.46 14.90 11.68 9.30 

NN [60], 2005 5.23 5.36 11.40 13.65 8.91 

Wavelet-ARIMA [56],2005 4.78 5.69 10.70 11.27 8.11 

WNN [62], 2007 5.15 4.34 10.89 11.83 8.05 

FNN [58], 2006 4.62 5.30 9.84 10.32 7.52 

PSF [82], 2011 5.98 4.51 9.11 10.07 7.42 

HIS [59], 2009 6.06 7.07 7.47 7.30 6.97 

AWNN [66], 2008 3.43 4.67 9.64 9.29 6.75 

NNWT [75], 2010 3.61 4.22 9.50 9.28 6.65 

SRN [195], 2013 4.11 4.37 9.09 8.66 6.56 

RBFN [54], 2011 4.27 4.58 6.76 7.35 5.74 

CNEA [69], 2009 4.88 4.65 5.79 5.96 5.32 

CNN [68], 2009 4.21 4.76 6.01 5.88 5.22 

HNES [74], 2010 4.28 4.39 6.53 5.37 5.14 

MI+CNN [84],2012 4.51 4.28 6.47 5.27 5.13 

WPA [52], 2011 3.37 3.91 6.50 6.51 5.07 

MI-MI+CNN [84], 2012 4.29 4.20 6.31 5.01 4.95 

HEA, 2013 3.04 3.33 5.38 4.97 4.18 
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Table 3.3. Weakly error variance criterion: Comparative results for Spanish market. 

Methodologies Winter Spring Summer Fall Average 

ARIMA [55], 2003 0.0034 0.0020 0.0158 0.0157 0.0092 

NN [60], 2005 0.0017 0.0018 0.0109 0.0136 0.0070 

Wavelet-ARIMA [56],2005 0.0019 0.0025 0.0108 0.0103 0.0064 

FNN [58], 2006 0.0018 0.0019 0.0092 0.0088 0.0054 

AWNN [66], 2008 0.0012 0.0031 0.0074 0.0075 0.0048 

NNWT [75], 2010 0.0009 0.0017 0.0074 0.0049 0.0037 

HIS [59], 2009 0.0034 0.0049 0.0029 0.0031 0.0036 

CNEA [69], 2009 0.0036 0.0027 0.0043 0.0039 0.0036 

CNN [68], 2009 0.0014 0.0033 0.0045 0.0048 0.0035 

RBFN [54], 2011 0.0015 0.0019 0.0047 0.0049 0.0033 

WPA [52], 2011 0.0008 0.0013 0.0056 0.0033 0.0027 

MI+CNN [84],2012 0.0014 0.0014 0.0033 0.0022 0.0021 

HNES [74], 2010 0.0013 0.0015 0.0033 0.0022 0.0021 

MI-MI+CNN [84], 2012 0.0014 0.0014 0.0032 0.0023 0.0021 

HEA, 2013 0.0008 0.0011 0.0026 0.0014 0.0015 
 

3.6.2.2.  PJM Market 

The HEA tool is also used to forecast the electricity market prices for the next 24h/168h for 

the PJM market. The historical data of electricity prices are available in [197]. As in the 

Spanish electricity market case study, no exogenous data such as load, oil prices, and other 

sets are taken into account. The results with the HEA tool for the PJM market are provided in 

Figures 3.14-3.20 for five days and two weeks of the year 2006.  

The same test days/weeks as in the previous studies have been considered to allow a clear 

and fair comparison with the results already obtained using other published methodologies. 

Otherwise a fair comparative study would not be possible. Tables 3.4 and 3.5 show the MAPE 

and error variance results, respectively, for the HEA methodology and five other 

methodologies. 

The MAPE enhancements between HEA and the other methodologies are 59.1%, 40.2%, 28.2%, 

25.9% and 25.7%, respectively. The error variance enhancements between HEA and the other 

methodologies are 75.5%, 64.7%, 45.5%, 42.9% and 25.0%, respectively. The HEA tool clearly 

outperforms, again, all other methodologies in every day/week analyzed.  

Moreover, the results of electricity market price forecasts for 168h are provided in about 40 

seconds, while 24h forecasts require even less computation time. Hence, this second case 

study further and unequivocally demonstrates and validates the proficiency of the proposed 

methodology. 
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Figure 3.14. January 20, 2006, results for the PJM market. The gray and black lines represent the actual 

and forecasted prices, respectively, while the dark-blue line at the bottom represents the errors in 

absolute value. 

 

Figure 3.15. February 10, 2006, results for the PJM market. The gray and black lines represent the 

actual and forecasted prices, respectively, while the dark-blue line at the bottom represents the errors 

in absolute value. 
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Figure 3.16. March 5, 2006, results for the PJM market. The gray and black lines represent the actual 

and forecasted prices, respectively, while the dark-blue line at the bottom represents the errors in 

absolute value. 

 

Figure 3.17. April 7, 2006, results for the PJM market. The gray and black lines represent the actual and 

forecasted prices, respectively, while the dark-blue line at the bottom represents the errors in absolute 

value. 
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Figure 3.18. May 13, 2006, results for the PJM market. The gray and black lines represent the actual and 

forecasted prices, respectively, while the dark-blue line at the bottom represents the errors in absolute 

value. 

 

Figure 3.19. February 1–7, 2006, results for the PJM market. The gray and black lines represent the 

actual and forecasted prices, respectively, while the dark-blue line at the bottom represents the errors 

in absolute value. 
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Figure 3.20. February 22–28, 2006, results for the PJM market: The gray and black lines represent the 

actual and forecasted prices, respectively, while the dark-blue line at the bottom represents the errors 

in absolute value. 

Table 3.4. MAPE criterion: Comparative results for PJM market. 

Days/Weeks 
SDNN [61], 

2007 
WT+FF+FA [91], 

2013 
HNES [74], 

2010 
Hybrid [79], 

2010 
CNEA [69], 

2009 
HEA, 
2013 

January 20 6.93 5.04 4.98 3.71 4.73 3.29 

February 10 7.96 5.43 4.10 2.85 4.50 2.80 

March 5 7.88 4.82 4.45 5.48 4.92 3.32 

April 7 9.02 6.24 4.67 4.17 4.22 3.55 

May 13 6.91 4.11 4.05 4.06 3.96 3.43 

February 1-7 7.66 6.07 4.62 5.27 4.02 3.11 

Feb. 22-28 8.88 6.12 4.66 5.01 4.13 3.08 

Average 7.89 5.40 4.50 4.36 4.35 3.23 
 

Table 3.5. Error variance criterion: comparative results for PJM market. 

Days/Weeks 
SDNN [61], 

2007 
CNEA [69], 

2009  
WT+FF+FA [91], 

2013 
Hybrid [79], 

2010 
HNES [74], 

2010 
HEA, 
2013 

January 20 0.0034 0.0031 0.0016 0.0010 0.0020 0.0010 

February 10 0.0050 0.0036 0.0021 0.0015 0.0012 0.0009 

March 5 0.0061 0.0042 0.0032 0.0033 0.0015 0.0011 

April 7 0.0038 0.0022 0.0019 0.0013 0.0018 0.0011 

May 13 0.0049 0.0027 0.0016 0.0015 0.0013 0.0012 

February 1-7 0.0066 0.0044 0.0023 0.0037 0.0016 0.0012 

Feb. 22-28 0.0047 0.0035 0.0024 0.0025 0.0017 0.0017 

Average 0.0049 0.0034 0.0022 0.0021 0.0016 0.0012 
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3.6.3.   Short-Term Wind Power Forecasting Results 

The HEA tool has also been applied for forecasting wind power in Portugal. The numerical 

results presented take into account the wind farms that have telemetry with the Portuguese 

TSO (REN) in 2006 and 2007; these are available in [23]. Our forecaster predicts the value of 

the wind power subseries for 3h-ahead taking into account the wind power data of the 

previous 12h with a time-step of 15 minutes. Numerical results with HEA tool are provided in 

Figures 3.21 - 3.24 for the four seasons of the year (winter, spring, summer and fall).  

The forecasting bias may be considered rather neutral, in the sense that when the errors start 

to go more to the positive side, the methodology immediately corrects itself and drives them 

to the negative side to compensate, and vice versa. This behavior is associated with the 

evolutionary characteristics of EPSO, on the one hand, and the adaptive characteristics of 

ANFIS, on the other. 

Table 3.6 provides a comparison between the HEA tool and eight other previously published 

methodologies, regarding the MAPE criterion. The MAPE criterion using the HEA tool has an 

average value of just 3.75%, the lowest one of all. The MAPE enhancements between HEA and 

the other methodologies are 80.3%, 80.3%, 63.7%, 48.3%, 46.2%, 43.5%, 37.4% and 24.7%, 

respectively, always above 24%, which is significant. 

Table 3.7 provides a comparison between the HEA tool and the eight other methodologies, 

regarding the error variance criterion. The average value is 0.0013, again the lowest of all, 

indicating less uncertainty in the forecasts. The error variance enhancements between HEA 

and the other methodologies are 94.4%, 94.4%, 83.8%, 74.5%, 72.3%, 69.8%, 59.4% and 38.1%, 

respectively, always above 38%, even more significant since it is related to the uncertainty in 

the forecasts, representing a major improvement.  

Table 3.8 shows the NMAE criterion results comparing the HEA tool and the eight other 

methodologies. The enhancements between the HEA tool and the other methodologies 

regarding the NMAE criterion are 83.1%, 83.0%, 69.0%, 55.1%, 53.3%, 51.1%, 46.5% and 36.3%, 

respectively, always above 35%, and again significant. 

Furthermore, Table 3.9 shows the NRMSE criterion results of the HEA tool for the four 

seasons. The NRMSE criterion using the HEA methodology has an average value of 2.66%. 

Statistically results demonstrative for the full year 2009 using the HEA tool are provided in 

Table 3.10 and Table 3.11 concerning the MAPE and NMAE criterions, respectively. The HEA 

tool clearly outperforms all other methodologies. 

Furthermore, the HEA tool presents a relatively low computational burden; the CPU time is 

less than 40 seconds per iteration, on average, working with MATLAB on a standard PC with 

1.8GHz-based processor and 1.5GB of RAM. Not only is the training time almost negligible, but 

also the accuracy is higher and the uncertainty is lower. 
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Figure 3.21. Measured and forecasted results (15 minutes intervals) for the Winter season. Gray and 

black lines represent actual and forecasted wind power, respectively, while dark-blue line represents 

errors in absolute value. 

 

Figure 3.22. Measured and forecasted results (15 minutes intervals) for the Spring season. Gray and 

black lines represent actual and forecasted wind power, respectively, while dark-blue line represents 

errors in absolute value. 
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Figure 3.23. Measured and forecasted results (15 minutes intervals) for the Summer season. Gray and 

black lines represent actual and forecasted wind power, respectively, while dark-blue line represents 

errors in absolute value. 

 

Figure 3.24. Measured and forecasted results (15 minutes intervals) for the Fall season. Gray and black 

lines represent actual and forecasted wind power, respectively, while dark-blue line represents errors in 

absolute value. 
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Table 3.6. MAPE outcomes for all methodologies. 

Methodologies Winter season Spring season Summer season Fall season Average 

Persistence [109] 13.89 32.40 13.43 16.49 19.05 

NRM [116] 13.87 32.38 13.43 16.43 19.03 

ARIMA [109] 10.93 12.05 11.04 7.35 10.34 

NN [109] 9.51 9.92 6.34 3.26 7.26 

NNWT [111] 9.23 9.55 5.97 3.14 6.97 

NF [113] 8.85 8.96 5.63 3.11 6.64 

WNF [198] 8.34 7.71 4.81 3.08 5.99 

WPA [116] 6.47 6.08 4.31 3.07 4.98 

HEA 5.74 3.49 3.13 2.62 3.75 
 

Table 3.7. Error variance outcomes for all methodologies. 

Methodologies Winter season Spring season Summer season Fall season Average 

Persistence [109] 0.0078 0.0592 0.0085 0.0179 0.0233 

NRM [116] 0.0074 0.0590 0.0079 0.0180 0.0231 

ARIMA [109] 0.0025 0.0164 0.0090 0.0039 0.0080 

NN [109] 0.0044 0.0106 0.0043 0.0010 0.0051 

NNWT [111] 0.0055 0.0083 0.0038 0.0012 0.0047 

NF [113] 0.0041 0.0086 0.0038 0.0008 0.0043 

WNF [198] 0.0046 0.0051 0.0021 0.0011 0.0032 

WPA [116] 0.0021 0.0035 0.0016 0.0011 0.0021 

HEA 0.0019 0.0015 0.0010 0.0008 0.0013 
 

Table 3.8. Comparative NMAE results. 

Methodologies Winter season Spring season Summer season Fall season Average 

Persistence [109] 7.64 12.15 4.98 10.88 8.91 

NRM [116] 7.62 12.14 4.98 10.84 8.90 

ARIMA [109] 6.01 4.52 4.09 4.85 4.87 

NN [109] 5.22 3.72 2.35 2.15 3.36 

NNWT [111] 5.07 3.58 2.21 2.07 3.23 

NF [113] 4.86 3.36 2.09 2.05 3.09 

WNF [198] 4.58 2.89 1.78 2.03 2.82 

WPA [116] 3.56 2.28 1.60 2.02 2.37 

HEA 2.73 1.48 0.74 1.10 1.51 
 

Table 3.9. NRMSE results. 

Methodology Winter season Spring season Summer season Fall season Average 

HEA 3.60 3.18 1.78 2.07 2.66 
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Table 3.10. Comparative MAPE outcomes for 2009. 

 
Persis. 
[109] 

NRM 
[116] 

ARIMA 
[109] 

NN 
[109] 

NNWT 
[111] 

NF 
[113] 

WNF 
[198] 

WPA 
[116] 

HEA 

January 17.44 16.83 16.03 13.62 12.22 10.69 8.16 6.71 6.14 

February 22.84 22.81 20.56 14.55 12.92 11.68 8.64 7.05 6.05 

March 19.70 18.99 13.01 12.04 11.05 8.76 7.51 6.19 5.61 

April 22.77 22.53 13.26 9.43 9.19 8.78 7.82 6.57 5.55 

May 17.20 16.78 11.98 9.86 8.85 8.29 6.87 5.94 4.52 

June 36.70 36.37 27.96 14.18 12.52 11.60 8.85 7.23 6.98 

July 21.20 20.86 15.98 13.53 12.28 11.16 8.42 7.06 7.02 

August 13.94 13.55 11.94 8.42 7.48 6.18 5.09 4.66 4.58 

September 24.51 24.20 16.65 10.60 10.28 9.95 8.28 7.33 5.55 

October 26.45 26.16 18.58 12.92 11.28 10.44 8.67 7.26 7.20 

November 17.16 16.88 14.47 12.72 12.15 11.36 8.65 6.99 5.10 

December 16.90 16.86 12.14 10.03 9.54 8.98 7.02 5.99 5.43 

Average 21.41 21.07 16.05 11.83 10.81 9.82 7.83 6.58 5.81 
 

Table 3.11. Comparative NMAE outcomes for 2009. 

 
Persis. 
[109] 

NRM 
[116] 

ARIMA 
[109] 

NN 
[109] 

NNWT 
[111] 

NF 
[113] 

WNF 
[198] 

WPA 
[116] 

HEA 

January 3.23 3.12 2.97 2.53 2.26 1.98 1.51 1.24 1.16 

February 8.34 8.37 7.51 5.31 4.71 4.27 3.16 2.58 2.24 

March 1.91 1.84 1.26 1.17 1.07 0.85 0.73 0.60 0.55 

April 4.07 4.02 2.37 1.69 1.64 1.57 1.40 1.17 0.99 

May 5.91 5.76 4.11 3.39 3.04 2.85 2.36 2.04 1.59 

June 7.86 7.79 5.99 3.04 2.68 2.48 1.89 1.55 0.72 

July 4.05 3.96 3.04 2.57 2.33 2.12 1.60 1.34 0.69 

August 4.73 4.60 4.05 2.86 2.54 2.10 1.73 1.58 1.55 

September 4.85 4.79 3.29 2.10 2.03 1.97 1.64 1.45 1.09 

October 5.36 5.31 3.77 2.62 2.29 2.12 1.76 1.47 1.35 

November 7.02 6.90 4.08 5.20 4.97 4.65 3.54 2.86 1.98 

December 5.54 5.53 3.98 3.29 3.13 2.95 2.30 1.97 1.81 

Average 5.24 5.17 3.87 2.98 2.72 2.49 1.97 1.65 1.31 
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Chapter 4 

Economic Dispatch Problem 

The optimal scheduling considering the uncertainty introduced by wind generation and failure 

events is a challenging task. Many of the methodologies presented in the literature are based 

on a limited number of scenarios, assuming the same probability of occurrence for all of 

them, which could be an important source of error. As a consequence, the obtained 

scheduling depends on the methodology used for the scenario generation (ARMA, Markov 

process, among others). Regarding the probabilistic approaches, many of them represent the 

effects of ramp constraints (limitation of power generation capacity) indirectly by means of 

penalty factors (cost of spinning reserve used to compensate the wind power forecasting 

error). For these reasons, the development of a new probabilistic model capable of 

considering all possible changes in wind power generation, as well as the effects of ramp 

constraints in the stochastic optimization problem, is required, avoiding the use of a MCS 

tool.  

In this thesis, the solution of the ED problem, considering the uncertainty of wind power 

generation, is set out below: 

 Unlike the probabilistic models presented in [153], [138], [139] and [140], in this work the 

wind power forecasting error is represented as a discretized beta PDF;  

 The power production at the previous time-step (𝑡 − 1) is represented as a discretized PDF 

and it is incorporated in the ramp constraints of the probabilistic ED problem; 

 The incorporation of generators reliability is made by means of discretized joint PDF of 

power production and failure events. The discretized PDF of energy not supplied (ENS) as a 

consequence of wind power forecasting error and generators reliability is incorporated by 

means of a convolution process. 

4.1. Probabilistic Economic Dispatch Problem and Proposed 

Approach 

The probabilistic ED problem consists of finding the optimal power generation of each unit 

committed, taking into account the uncertainty related to wind power forecasting error.  

The system under analysis is shown in Figure 4.1, where the aggregated wind power 

generation has been represented by only one wind farm. The power system is supposed to 

have a dump load, which is used to dissipate the energy surplus produced during those 

periods of low load. ENS is represented by a big unit capable of supplying any amount of 

power that cannot be supplied by thermal units. 
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Figure 4.1. Power system under study. 

The proposed approach consists of four main steps which are listed below: 

 Step 1: Discretization of the PDF of forecasted wind power generation; 

 Step 2: Simplification of PDF of initial power production; 

 Step 3: Incorporation of wind power forecasting error; 

 Step 4: Incorporation of generators reliability. 

In the first step, discretization of the PDF that represents the wind power forecasting error is 

carried out, assumed in this work as a beta PDF. In the second step, in order to make the 

optimization problem tractable, the PDF of power production at time instant 𝑡 − 1 is 

simplified, so that only some specific power production situations are taken into account. In 

the third step, the discretized PDF obtained in the first step is incorporated in the 

optimization problem considering the simplification carried out in second step. In the fourth 

step, generator reliability is incorporated by estimating the joint PDF of power production 

and failure events for each unit; while a convolution process is carried out between the PDF 

of ENS obtained in the third step from the incorporation of wind power forecasting error and 

the results obtained from the reliability analysis of each unit. 

4.1.1.   Discretization of the PDF of Forecasted Wind Power Generation 

To illustrate the methodology proposed to solve the probabilistic ED problem, the beta PDF 

has been adopted. Assuming that the corresponding parameters are known, the discretization 

of this PDF is carried out by applying the methodology proposed in [199]. Figure 4.2 shows the 

main characteristics of discretized beta PDF in interval {0, 1}, where the corresponding 

discretized PDF could be mathematically expressed in terms of discrete state 𝑟 according to 

Equation (4.1.1):  

𝑆 = {𝑠𝑟 , 𝑃𝑟{𝑠𝑟} , 𝑟 = 0, 1, 2, … , 𝑅}                                                (4.1.1) 

The value (𝑠𝑟) that corresponds to each discrete state 𝑟 is estimated by means of  

Equation (4.1.2) in the interval {0, 1}: 

𝑠𝑟 = {
max ({
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Figure 4.2. Characteristics of the discretized beta PDF. 

The corresponding probability value (𝑃𝑟{𝑠𝑟}) that corresponds to the discrete state 𝑟 is 

calculated by using Equation (4.1.3). 

𝑃𝑟{𝑠𝑟} =
(1 + 𝑟)𝛼𝑝𝑑𝑓−1(𝑅 + 1 − 𝑟)𝛽𝑝𝑑𝑓−1

∑ (1 + 𝑎𝑣0)
𝛼𝑝𝑑𝑓−1(𝑅 + 1 − 𝑎𝑣0)

𝛽𝑝𝑑𝑓−1𝑅
𝑎𝑣0=0

, 𝑟 = 0, 1, 2, … , 𝑅          (4.1.3) 

In order to allocate the discretized PDF obtained from Equations (4.1.1)-(4.1.3) in the range 

of interest of wind power generation {𝑊𝑚𝑖𝑛
𝑡 , 𝑊𝑚𝑎𝑥

𝑡 }, a new discrete state (𝑗) is introduced in 

terms of state 𝑟, which is related through the expression 𝑗 = 𝑟 + 1. The PDF of available wind 

power generation is estimated from discretized PDF in interval {0, 1}, using Equation (4.1.4): 

𝐴𝑊𝑃𝑡 = {𝑎𝑤𝑝𝑗
𝑡 = (𝑊𝑚𝑎𝑥

𝑡 −𝑊𝑚𝑖𝑛
𝑡 )𝑠𝑗−1 +𝑊𝑚𝑖𝑛

𝑡 , 𝑗 = 1,2, … , 𝐽}                    (4.1.4) 

The notation of discretized PDF of wind power generation is presented in Equation (4.1.5). 

Note that Equation (4.1.4) represents the available wind power generation which is obtained 

from the forecasting process, while Equation (4.1.5) represents the wind power produced, 

which is obtained from the solution of the ED problem. This formulation allows wind power 

curtailment to be considered from a probabilistic point of view. 

𝑊𝑡 = {𝑤𝑗
𝑡 , 𝑃𝑟{𝑤𝑗

𝑡}, 𝑗 = 1, 2, … , 𝐽}                                               (4.1.5) 

4.1.2.   Simplification of PDF of Initial Power Production 

The discretized PDF of power production at time 𝑡 − 1 is considered as the input data 

available to solve the probabilistic ED problem. The incorporation of all possible combinations 

of power generation between the different units of the system leads to an infinite number of 

cases that should be evaluated, which make the optimization problem intractable. If the 

discretized PDF of unit 𝑛 = 1 at time 𝑡 − 1 is divided in 𝐵 bins, the number of combinations 

that results from considering the power generation of this unit and the possible power 

production of other units of the system (𝑛 = 2,… , 𝑁) could lead to a large amount of cases to 

be evaluated. To deal with this problem, a simplification is introduced.  
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Considering a determined significance level (𝛾), the interval {𝛾, 1 − 𝛾} is swept with a 

determined step (sampling increment) 𝛥𝜃, obtaining 𝐼 values described in Equation (4.1.6). 

𝜃 = {𝜃𝑖𝑠  𝜖 [𝛾, 1 − 𝛾], 𝑖𝑠 = 1, 2,⋯ , 𝐼}                                                    (4.1.6) 

Using the values defined in Equation (4.1.6), the discretized PDF of power generation at time 

𝑡 − 1 and its corresponding CDF presented in Figure 4.3, some selected power production 

values (𝑃𝑛,𝑖𝑠
𝑡−1) can be selected by evaluating the inverse CDF of each element of set 𝜃. Note 

that when 𝜃𝑖𝑠 = 0.5, power production at 𝑡 − 1 is the mean value of power production, which 

corresponds to the result obtained from evaluation of the ED problem in the mean value of 

forecasted power generation. This methodology uses the concept of quantile to select and 

consider the power production values at time 𝑡 − 1. Another characteristic to take into 

account is when 𝜃𝑖𝑠 → 𝛾, low load conditions at 𝑡 − 1 are considered; on the contrary, when 

𝜃𝑖𝑠 → 1 − 𝛾, high conditions of load are considered. This allows extreme conditions, of low 

and high load, to be considered. 

From the application of the methodology previously described, a similar table to that shown 

in Figure 4.4 is obtained; where the power production at time 𝑡 − 1 according to the sampling 

point could be easily recognized. Something important to note is that the probabilities of 

occurrence of each column in Figure 4.4 do not add up to 1, due to all possible combinations 

not being considered. To solve this problem, the corresponding probability (𝑃𝑟{•}) is 

substituted by normalized probability (𝑁𝑃𝑟  {•}) of Equation (4.1.7), whose sum is equal to 1 

for any amount of sampling points 𝐼. 

𝑁𝑃𝑟{𝑃𝑛
𝑡−1 = 𝑃𝑛,𝑖𝑠

𝑡−1} =
∏ (𝑃𝑟{𝑃𝑛

𝑡−1 = 𝑃𝑛,𝑖𝑠
𝑡−1})𝑁

𝑛=1

∑ ∏ (𝑃𝑟{𝑃𝑛
𝑡−1 = 𝑃𝑛,𝑖𝑠

𝑡−1})𝑁
𝑛=1

𝐼
𝑖𝑠=1

                                        (4.1.7) 

4.1.3.   Incorporation of Wind Power Forecasting Error 

Once the discretized PDF of available wind power generation and power production at time 

𝑡 − 1 are obtained, wind power forecasting error is incorporated in the probabilistic ED 

problem by following the algorithm described next: 

 Step 1: Select the number of bins (𝐵) to be considered in the discrete PDF of all variables 

of interest (power production of thermal units, wind power generation, energy not supplied 

and energy surplus). The maximum value of power (𝑃𝑚𝑎𝑥) to be considered is chosen as 

well in this step, while the minimum value (𝑃𝑚𝑖𝑛) is assumed to be zero. The corresponding 

bin is identified by the index 𝑏 𝜖 {1, 𝐵};  

 Step 2: Using the parameters selected in Step 1, the increment of the discrete 

representation of power values (𝛥𝑃) is calculated by using Equation (4.1.8): 

𝛥𝑃 =
𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

𝐵 − 1
                                                                 (4.1.8) 
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Figure 4.3. PDF of 𝑃𝑛
𝑡−1 (left side) and CDF of 𝑃𝑛

𝑡−1 (right side). 

 

Figure 4.4. Selected cases of power production at time 𝑡 − 1. 

After this, the power value (𝑃𝑏) that corresponds to discrete state 𝑏 is obtained. This is 

implemented as a vector 𝑃𝑏 = 𝑃1,  𝑃2, … , 𝑃𝑏 , … , 𝑃𝐵, where 𝑃1 = 𝑃
𝑚𝑖𝑛 = 0 and 𝑃𝐵 = 𝑃𝑚𝑎𝑥.  

Then, any continuous power value obtained from the optimization process can be 

represented in a discrete manner, selecting the corresponding discrete state; 

 Step 3: Create a table of 𝐵 rows and 𝑀 columns (𝑇𝑏,𝑛). This table is the discrete PDF of 

power generation of thermal units. All elements in this table are initialized as zero; 

 Step 4: In this step, the first case of power generation at time 𝑡 − 1 (see Figure 4.4) is 

selected. This is carried out by setting the index 𝑖𝑠 equal to 1 (𝑖𝑠 ← 1); 

 Step 5: The first discrete state of available wind power generation is selected. This is 

carried out by setting 𝑗 equal to 1 (𝑗 ← 1); 

 Step 6: Solve the EC problem for the corresponding combination (𝑖𝑠, 𝑗). This is carried out 

by solving the optimization problem of Equations (4.1.9) - (4.1.14) [200]: 

𝑧𝑖𝑠,𝑗 = ∑(𝑎𝑛 + 𝑏𝑛(𝑃𝑛,𝑖𝑠
𝑡 ) + 𝑐𝑛(𝑃𝑛,𝑖𝑠

𝑡 )
2
)

𝑁

𝑛=1

+ 𝑉𝑂𝑊𝐸(𝐷𝐿𝑖𝑠
𝑡 ) + 𝑉𝑂𝐿𝐿(𝐸𝑁𝑆𝑖𝑠

𝑡 )                    (4.1.9) 

∑𝑃𝑛,𝑖𝑠
𝑡

𝑁

𝑛=1

+𝑤𝑗
𝑡 = 𝐷𝑡                                                               (4.1.10) 

𝑃𝑛,𝑖𝑠
𝑡 − 𝑃𝑛,𝑖𝑠

𝑡−1 ≤ 𝑈𝑅𝑛                                                              (4.1.11) 

𝑃𝑛,𝑖𝑠
𝑡−1 − 𝑃𝑛,𝑖𝑠

𝑡 ≤ 𝐷𝑅𝑛                                                               (4.1.12) 
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Figure 4.5. Allocation of power generation(𝑃𝑛,𝑖𝑠
𝑡 ) in the PDF of 𝑃𝑛

𝑡 . 

𝑃𝑛
𝑚𝑖𝑛 ≤ 𝑃𝑛

𝑡 ≤ 𝑃𝑛
𝑚𝑎𝑥                                                             (4.1.13) 

0 ≤ 𝑤𝑗
𝑡 ≤ 𝑎𝑤𝑝𝑗

𝑡                                                                  (4.1.14) 

 Step 7: From the solution of optimization problem in Step 6, variables 𝑤𝑗
𝑡 and 𝑃𝑛,𝑖𝑠

𝑘  are 

determined. Then, the corresponding probability values are calculated and allocated in the 

discrete PDF using the algorithm presented in Figure 4.5 (available at the top of the 

present page). In similar manner, discretized PDF of ENS and generation cost are built; 

 Step 8: If 𝑗 < 𝐽, set 𝑗 ← 𝑗 + 1 and go back to Step 6; else go to Step 9; 

 Step 9: If 𝑖 < 𝐼, set 𝑖𝑠 ← 𝑖𝑠 + 1 and go back to step 5; else end. 

4.1.4.   Incorporation of Generators Reliability 

For a determined unit 𝑛, the estimation of power production considering the failure events 

could be estimated by using the algorithm presented next. This algorithm was adapted from 

the methodology proposed in [201] to the estimation of joint PDF of power production and 

failure modes. 

 Step 1: Using the discrete representation of any power value (𝑃𝑏  𝜖 {𝑃
𝑚𝑖𝑛 , 𝑃𝑚𝑎𝑥}), find the 

bin (𝑏𝑛) that corresponds to the rated power of unit 𝑛 (𝑃𝑛
𝑚𝑎𝑥). It can be carried out by 

adapting the algorithm presented in Figure 4.5; 

 Step 2: Create the state ℎ, i.e.,  (ℎ = 0, 1, 2, … , 𝐻), using the state 𝑏 by means of expression 

ℎ + 1 = 𝑏 to represent a determined state of power production and failure events. The 

value of power production of state ℎ can be estimated as 𝑃ℎ = 𝑃𝑏−1. This change in states 

name is required to the estimation of join PDF of power production and failure events; 

 Step 3: In this step, the discrete PDF of failure events (𝐹ℎ
𝑛) of determined unit 𝑛 is 

represented by Equation (4.1.15): 

𝐹ℎ
𝑛 = {

𝐹𝑂𝑅𝑛 ,              ℎ = 1
1 − 𝐹𝑂𝑅𝑛 , ℎ = 𝑏𝑛

              0 ,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                 (4.1.15) 
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 Step 4: Once discrete PDF of power production (𝑃ℎ) and discrete PDF of failure events (𝐹ℎ
𝑛) 

have been estimated, the discrete join PDF of power production and failure events can be 

built. The event of power production and failure events are considered as two independent 

variables, so that the join PDF can be obtained by multiplication of the occurrence 

probability of each event (𝑃𝑟{𝑃𝑛
𝑡 = 𝑃ℎ  };  𝑃𝑟{𝐹ℎ

𝑛 = 𝑃ℎ  }). The joint PDF is represented by a 

table similar to the table presented in Figure 4.6; 

 Step 5: Create the discrete state 𝑙 of power production when generators reliability is 

considered, state 𝑙 = 0, 1, 2,… , 𝐿, where 𝐿 = (𝐻 + 1)2 = 𝐵2. The corresponding power value 

associated with the state 𝑙 (𝑃𝑙) is defined according to equation (4.1.16): 

𝑃𝑙 = 𝑙 (
𝛥𝑃

𝑏𝑛 − 1
)                                                                (4.1.16) 

 Step 6: In this step, the probability of state 𝑙 = 0, i.e., (𝑃𝑙=0) is estimated. This probability 

is calculated summing the elements (1, 1), the elements of row 1 from 2 until 𝐵, and the 

elements of column 1 from 2 until 𝐵 of the table presented in Figure 4.6; 

 Step 7: The estimation of probabilities that corresponds to states 𝑙 = 1, 2, … , 𝐿 is carried out 

by using the algorithm presented as follow: 

o Step 7.1: Create the table 𝐸(𝑙,𝑛) of 𝐵2 rows and 𝑀 columns. Initialize all its elements to 

zero; 

o Step 7.2: Set 𝑎𝑣1 ← 0; 

o Step 7.3: Set 𝑎𝑣2 ← 0; 

o Step 7.4: Calculate 𝑎𝑣3 = 𝑎𝑣1𝑎𝑣2; 

o Step 7.5: If 𝑎𝑣3 > 0, 𝐸(𝑎𝑣3,𝑛) ← 𝐸(𝑎𝑣3,𝑛) + 𝑃𝑟{𝑃𝑛
𝑡 = 𝑃ℎ} 𝑃𝑟{𝐹ℎ

𝑛 = 𝑃ℎ  }; else go to Step 7.6; 

o Step 7.6: If 𝑎𝑣2 < 𝐿, set 𝑎𝑣2 ← 𝑎𝑣2 + 1 and go to Step 7.4; else go to Step 7.7; 

o Step 7.7: If 𝑎𝑣1 < 𝐿, set 𝑎𝑣1 ← 𝑎𝑣1 + 1 and go to Step 7.3; else end. 

The discrete PDF of power production incorporating the forecasting error of wind power 

generation and generator reliability is represented by discrete states 𝑙, the power associated 

with corresponding state (𝑃𝑙) and the probabilities of table 𝐸𝑙,𝑛. Regarding the ENS, the 

discrete PDF of this variable could be estimated by using the methodology explained in  

Sub-Section 4.1.3, representing ENS as the generation unit. 

The component of ENS due to generator reliability could be estimated by using the recursive 

expression of Equation (4.1.17) [202]: 

𝐹𝑏
𝑒(𝑃𝑏) = (1 − 𝐹𝑂𝑅𝑛) 𝐹𝑏

𝑒(𝑃𝑏) + 𝐹𝑂𝑅𝑛 𝐹𝑏
𝑒  (𝑃𝑏 − 𝑃𝑛

𝑚𝑎𝑥)                                (4.1.17) 

where 𝐹𝑏
𝑒 is the CDF of ENS due to any failure event in the generation system. From this result 

the required PDF could easily be estimated. Both of them are shown in Figure 4.7. Finally, the 

discrete PDF of ENS taking into account wind power forecasting error and generator reliability 

is estimated as the convolution between the discrete PDF obtained from the procedure 

explained in Sub-Section 4.1.3 and that obtained from Equation (4.1.17) and Figure 4.7. 
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Figure 4.6. Illustration of the join PDF of failure events and power production. 

 

Figure 4.7. CDF of power generation loss (left side) and PDF of power loss (right side) due to failure 

events. 

4.2. Case Studies and Results 

The approach proposed in this thesis is illustrated by analyzing two case studies of 5 and 10 

units and wind power generation. In order to evaluate the performance of the proposed 

approach, the results obtained from the approach explained in Section 4.1 were compared 

with those obtained from the application of MCS methodology. In both cases, the number of 

trials considered in the MCS was 50,000. The test system based on MCS was built by 

considering three time instants. The first time instant corresponds to the actual conditions so 

that the initial power generation was considered as a real value.  

In the second and third time instants, the conditions of available wind power generation were 

randomly generated, while the power generation of each unit and wind farm was obtained 

from the solution of the corresponding optimization problem by a quadratic programming 

approach [200]. Using the results obtained from the second time instant, the PDF of initial 

power generation of each unit required by the proposed approach was then obtained. The 

results obtained from the third time instant were used to build the PDF of power generation 

of each unit, which is employed as a reference of comparison between the proposed 

methodology and the MCS methodology. The number of bins considered to build the required 

PDFs was 1500 (𝐵 =  1500), the significance level was 0.05 and the sampling increment used 

was 0.15, obtaining seven sampling points (𝐼 = 7).  
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The discretization of the PDF of available wind power generation was carried out by 

considering 𝜎 = 0.01 and 𝑅 = 3500. The results obtained from the analysis of each case study 

are presented next in Sub-sections 4.2.1 and 4.2.2. The proposed approach was implemented 

in MATLAB using a computer with i7-3630QM CPU at 2.40GHz, 8GB of memory and 64-bit 

operating system. 

4.2.1.   Analysis of 5-Unit Power System 

The power system under analysis corresponds to a typical diesel-powered system of an island. 

The main characteristics such as rated capacity and generation costs are presented in  

Table 4.1, the minimum output power of each unit was assumed to be 50% of corresponding 

rated power. This data was obtained from the analysis of information provided by the 

manufacturers. Available wind power generation was modeled as a beta PDF with parameters 

𝛼𝑝𝑑𝑓 = 1.4, 𝛽𝑝𝑑𝑓 = 3.1, 𝑊𝑚𝑖𝑛
𝑡 = 0kW, and 𝑊𝑚𝑎𝑥

𝑘 = 600kW. The maximum power value considered 

was 𝑃𝑚𝑎𝑥 = 1000kW. Finally, load demand was assumed to be 892kW at time 𝑡. 

Figure 4.8 shows the PDF of wind farm (𝑊𝑡) obtained from the solution of the optimization 

problem. It is observed how wind power generation is curtailed to about 424kW due to the 

minimum output power of thermal units. This is an important problem in the integration of 

renewable energy sources to a power grid and which could be probabilistically analyzed by 

means of the approach proposed in this work. Figure 4.9 shows the PDF of power production 

of unit 1. Due to this unit being one of the cheapest in the system, this unit responds to the 

fluctuations from wind power generation. It is possible to observe how the probability of high 

wind power generation leads this unit to reduce its output power at its minimum value, while 

the probability of power production at high values is influenced by the PDF of available wind 

power generation. Similar results were obtained for the other units and were not reported 

here. 

Through the analysis of Figures 4.8 - 4.10, it is possible to observe the excellent performance 

of the proposed approach compared with MCS. It could be quantified by means of a 

comparison between the expected values obtained from the application of each methodology; 

such a comparison is shown in Table 4.2. The proposed approach could be used to evaluate 

the GHE of each thermal unit. 

Table 4.1. Description of 5-Unit system. 

𝑛 𝑃𝑛
𝑚𝑎𝑥(kW) 𝑎𝑛 ($/h) 𝑏𝑛 ($/kWh) 𝑐𝑛 ($/kW2h) 

1 350 10.3904 0.1472992 0.00012224 

2 300 8.6332 0.1534112 0.00012224 

3 125 3.5908 0.1842768 0.00009168 

4 100 3.2852 0.1815264 0.00012224 

5 60 2.2156 0.2270608 -0.00030560 
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Figure 4.8. PDF of wind power generation (5-Unit system). 

 

Figure 4.9. PDF of power generation of unit 1. 

 

Figure 4.10. PDF of generation cost. 
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To illustrate this application, the CO2 emission of each unit has been modeled by using the 

quadratic expression of Equation (4.2.1). 

𝐺𝐻𝐸𝑛 = 𝑈𝑛 + 𝑋𝑛(𝑃𝑛,𝑖𝑠
𝑡 ) + 𝑉𝑛(𝑃𝑛,𝑖𝑠

𝑡 )
2
                                                (4.2.1) 

The corresponding parameters of Equation (4.2.1) were obtained by fitting the experimental 

measurements presented in [203] related to CO2 emissions to the Equation (4.2.1). The 

obtained results are presented in Table 4.3. Furthermore, Table 4.4 presents the expected 

value of CO2 emissions for each unit. It is possible to observe how the forecasting error of 

available wind power generation highly influenced the probability of emission of a 

determined amount of CO2. Figure 4.11 presents the PDF of CO2 emissions of unit 1, which 

was obtained by evaluating the PDF power production of Figure 4.9 in Equation (4.2.1). 

Table 4.2. Expected value comparison between MCS and proposed approach. 

Comparison MCS Proposed 

Wind farm (kW) 185.788939 184.988933 

Unit 1 (kW) 243.892262 244.178446 

Unit 2 (kW) 218.904510 219.191016 

Unit 3 (kW) 107.157612 107.361965 

Unit 4 (kW) 88.606244 88.752082 

Unit 5 (kW) 47.612342 47.486873 

Total cost ($) 159.023486 159.189200 

Time (s) 787.462000 149.976000 
 

Table 4.3. CO2 emission model. 

𝑛 𝑃𝑛
𝑚𝑎𝑥(kW) 𝑈𝑛 (kg/h) 𝑋𝑛 (kg/kWh) 𝑉𝑛 (kg/kW2h) 

1 350 28.062 0.5075 0.0004 

2 300 24.104 0.5626 0.0002 

3 125 16.244 0.4506 0.0010 

4 100 11.148 0.5544 0.0006 

5 60 9.163 0.6201 -0.0014 
 

Table 4.4. Expected value of CO2 emissions. 

𝑛 CO2 emissions (kg) 

1 176.313261 

2 157.271476 

3 76.610344 

4 65.232853 

5 35.148854 



75 
 

 

Figure 4.11. PDF of CO2 emissions of unit 1. 

4.2.2.   Analysis of 10-Unit Power System 

In this case study, the power system described in [162] has been adapted by adding the values 

of forced outage rates (FOR) presented in Table 4.5, estimated according to the 

corresponding role of the unit (base-unit, cycling-unit, and peak-unit). Available wind power 

generation was modeled with the parameters 𝛼𝑝𝑑𝑓 = 1.6, 𝛽𝑝𝑑𝑓 = 6.3, 𝑊𝑚𝑖𝑛
𝑘 = 150MW, and 

𝑊𝑚𝑎𝑥
𝑘 = 500MW. The maximum power value considered was 𝑃𝑚𝑎𝑥 = 1700MW. Finally, load 

demand was assumed to be 1600MW at time 𝑡. This system has been used to analyze the 

performance of the proposed approach when ramp constraints and failure events are 

considered. The results obtained are presented in Sub-Section 4.2.2.1 and 4.2.2.2. 

4.2.2.1.  Analysis of 10-Unit System Incorporating Generators Reliability 

The methodologies explained in Sub-Sections 4.1.3 and 4.1.4 were used in the analysis of the 

system taking into account the reliability of generation units. The corresponding comparison 

with the MCS approach in Figure 4.12 shows the PDF of power generation of unit 4. Note that 

this unit has a high probability of being committed at its maximum output power (130MW). 

Due to its generation cost and technical characteristics, this unit does not respond to the 

fluctuations of wind power or failure events of other units. Otherwise, there is a probability 

of 0.1 of being de-committed as a consequence of a failure event. According to these results, 

the proposed approach offer excellent performance. 

Figure 4.13 shows the PDF of power generation of unit 6. As can be observed, this unit 

responds to any failure event of other units by increasing its power production, which 

produces important differences between the PDF obtained from the proposed approach and 

the MCS approach. The approach proposed in this work does not take into account this 

increment in power generation as a consequence of any failure in other units. Figure 4.14 

shows the PDF of generation cost related to the fuel consumption (without considering the 

value of lost load (VOLL)). As in the previous case study, this cost is strongly influenced by the 

PDF of available wind power forecasting error.  
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Table 4.5. Description of 10-Unit system. 

𝑛 𝑃𝑛
𝑚𝑎𝑥 (MW) 𝐹𝑂𝑅𝑛 

1 455 0.05 

2 455 0.05 

3 130 0.10 

4 130 0.10 

5 162 0.10 

6 80 0.10 

7 85 0.10 

8 55 0.01 

9 55 0.01 

10 55 0.01 
 

 

Figure 4.12. PDF of power generator of unit 4. 

 

Figure 4.13. PDF of power generator of unit 6. 

0

0.2

P
ro

b
a
b
il
it

y

0 40 80
Power (MW)

20 60 100 120

Proposed

MCS

0.4

1

0.6

0.8

0

0.1

P
ro

b
a
b
il
it

y

0 20 40
Power (MW)

10 30 50 60

0.2

0.3

0.4

0.5

0.6

70 80

Proposed

MCS



77 
 

Table 4.6 shows the expected value of power production, ENS, and fuel consumption cost.  

It is possible to observe how the proposed approach can reasonably model those units used to 

provide base-load, which operate continuously at their maximum output power (units 1 - 4). 

However, the proposed approach has difficulties modeling the behavior of those units that 

increase their power production under any failure of other units (units 5 - 10) that are used as 

cycling and peak units. This reasoning justifies the important differences in estimation of ENS 

observed. Figure 4.15 presents the PDF of ENS, where important differences can be observed. 

The results obtained from the proposed approach suggest higher values of ENS due to 

increment in power production of those units that provide spinning reserve not being 

considered. 

 

Figure 4.14. PDF of generation cost related with fuel consumption. 

Table 4.6. Expected value comparison between MCS and proposed approach. 

Comparison MCS Proposed 

Unit 1 (MW) 432.286025 432.031354 

Unit 2 (MW) 432.248759 431.392345 

Unit 3 (MW) 117.740821 117.378252 

Unit 4 (MW) 117.866024 117.378252 

Unit 5 (MW) 125.958954 115.711446 

Unit 6 (MW) 39.962974 23.878370 

Unit 7 (MW) 31.075342 22.455013 

Unit 8 (MW) 22.839449 10.104748 

Unit 9 (MW) 20.058911 10.104736 

Unit 10 (MW) 15.733109 10.104736 

ENS (MWh) 24.049636 106.069599 

Fuel cost ($) 30736.441648 31313.845805 

Time (s) 1194.889000 228.262000 
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Figure 4.15. PDF of energy not supplied. 

4.2.2.2.  Analysis of 10-Unit System Without Incorporating Generators Reliability 

In this sub-section, the results obtained from the analysis of the ten unit system without 

considering the generator reliability are presented. Figure 4.16 shows the PDF of wind power 

generation, which is totally accepted by the system without any curtailment. Figure 4.17 

shows the PDF of power production of unit 6, where it is possible to observe how under these 

conditions (without considering unit reliability) the proposed approach can reasonably 

reproduce the PDF obtained from the MCS approach.  

Figure 4.18 shows the PDF of generation cost and the impact of forecasting error of wind 

power generation. The increment in generation cost is directly related to the decrement in 

wind power generation previously presented in Figure 4.16. Table 4.7 summarizes the 

comparison between the expected value of power production and generation cost. As can be 

observed, the proposed methodology presents excellent performance compared with the 

results obtained from the MCS approach. 

 

Figure 4.16. PDF of wind power generation. 
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Figure 4.17. PDF of power generation of unit 6. 

 

Figure 4.18. PDF of generation cost. 

 

Figure 4.19. Behavior of computational time. 
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In the proposed approach, the trade-off between the accuracy of results obtained and 

computational time is carried out by adjusting the parameters 𝐼 and 𝑅, which represents the 

total number of possible power production combinations at time 𝑡 − 1, and the amount of 

discretization levels of PDF of available wind power generation. These factors can be 

adjusted according to the computational resources available and the size of the system under 

analysis. Figure 4.19 presents the behavior of computational time as a function of the factor 

𝑅 for two different values of parameter 𝐼. According to these results, computational time has 

a linear behavior, which facilitates the selection of the factor 𝑅 taking into account the 

computational resources. 

Table 4.7. Expected value comparison between MCS and proposed approach incorporating 

generator reliability. 

Comparison MCS Proposed 

Wind power (MW) 220.910611 220.877230 

Unit 1 (MW) 454.769847 454.769847 

Unit 2 (MW) 454.075239 454.097234 

Unit 3 (MW) 130.420280 130.420280 

Unit 4 (MW) 130.420280 130.420280 

Unit 5 (MW) 128.632910 128.303661 

Unit 6 (MW) 26.490740 26.665282 

Unit 7 (MW) 24.949967 24.949967 

Unit 8 (MW) 10.206805 10.206805 

Unit 9 (MW) 10.206805 10.206805 

Unit 10 (MW) 10.206805 10.206805 

Total cost ($) 31087.151684 31087.762562 

Time (s) 1222.937000 235.965000 
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Chapter 5 

Unit Commitment Problem 

The optimal operation of power systems with high integration of renewable energy sources is 

challenging due to the random nature of some sources like wind energy and photovoltaic 

energy. Nowadays this problem is solved using the MCS approach, which allows the 

consideration of important statistical characteristics of wind and solar power production, 

such as the correlation between consecutive observations, the diurnal profile of the forecast 

power production, and the forecasting error.  

In this thesis, a new model of the unit scheduling of power systems with significant renewable 

power generation based on scenario generation/reduction method combined with the priority 

list (PL) method is proposed, which finds the PDF of a determined generator being committed 

or not. This approach allows the recognition of the role of each generation unit on the day-

ahead UC problem with a probabilistic point of view, which is important for acquiring a cost-

effective and reliable solution. The capabilities and performance of the proposed approach 

are illustrated through the analysis of a case study, where the spinning reserve requirements 

are probabilistically verified with success.  

The new approach proposed is based on the scenario generation and reduction approach. By 

solving the deterministic UC problem for each scenario, the PDF of committing a particular 

generator at a particular time is determined. In the next step, the definitive solution to the 

stochastic UC problem is carried out by selecting those generators with a probability of being 

committed higher than a predefined value. Finally, the solution obtained is probabilistically 

checked by evaluating the selected UC solution, using the scenarios previously generated. 

5.1. Scenario Generation Process 

Recently, several methods for scenario generation and reduction have been developed. In 

[204] a methodology that combines Latin hypercube sampling (LHS) with Cholesky 

decomposition (LHS-CD) is proposed. The joint PDF of wind power generation is modeled as a 

Gaussian one, assuming the forecast values to be the mean values, while standard deviation 

depends on the forecasting error. Undesired correlations are then reduced by means of the 

Cholesky decomposition method. In [205] a methodology was proposed that introduces 

forecasting error through empirical distributions, while assuming the PDF of wind power 

variability as a 𝑡 location-scale distribution.  
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Scenarios are generated by using an inverse transformation from the joint PDF, which is 

assumed to be a Gaussian-multivariate distribution. 

The methodology used in this work for scenario generation is able to consider the most 

important features that describe the temporal behavior of the wind power time series, such 

as the autocorrelation that exists between consecutive observations, the hourly profile of the 

expected wind power production, and its corresponding forecasting error. For the scenario 

generation, the first step consists of randomly generating a set of scenarios, taking into 

account the intrinsic autocorrelation of the hourly wind power production. In the second step, 

a subset of the scenarios previously generated is chosen according to the forecasting error.  

Finally, the scenarios to be used for the solution of the stochastic UC problem are selected by 

applying the k-means clustering algorithm to the set of scenarios obtained in the second step. 

To reproduce the original forecast wind power production, synthetically generated scenarios 

have to incorporate the correlated behavior of the wind power generation and its hourly 

profile. On the one hand, autocorrelation is introduced by generating a random series, 

assuming a first-order autoregressive Markov process according to Equation (5.1.1): 

𝑥𝑚
𝑡 = ∅𝑥𝑚

𝑡−1 + 𝜖                                                                      (5.1.1) 

where 𝑥𝑚
𝑡  is the time series which saves the autocorrelation nature of the original wind power 

profile, index 𝑚 refers to scenario generated (𝑚 = 1, 2, … ,𝑀) and index 𝑡 refers to the time 

(𝑡 = 1, 2, … , 𝐻), ∅ is the one-lag autocorrelation parameter, and 𝜖 is a Gaussian white noise 

with mean zero and standard deviation of √1 − ∅2. On the other hand, the hourly wind power 

profile is introduced by normalizing the forecast wind power production according to  

Equation (5.1.2): 

𝑦𝑡 =
𝑊𝑡 − 𝜇

𝜎
                                                                         (5.1.2) 

where 𝑦𝑡 is the normalized wind power profile, 𝑊𝑡 is the time series of the total wind power 

generation, while 𝜇 and 𝜎 are its mean and standard deviation, respectively. Thus, a 

normalized time series of wind power generation that simultaneously incorporates the 

autocorrelation of the predicted wind power generation and its hourly profile is obtained with 

the addition of time series previously obtained in Equations (5.1.1) and (5.1.2) [206]: 

𝑧𝑚
𝑡 = 𝑥𝑚

𝑡 + 𝑦𝑡                                                                          (5.1.3) 

where 𝑧𝑚
𝑡  is the normalized total wind power generation of scenario 𝑚 at time 𝑡. Finally, the 

total wind power generation (𝑊𝑚
𝑡 ) is obtained by applying the probability transformation 

described in Equation (5.1.4), Equation (5.1.5) and Figure 5.1: 

𝐴(𝑧𝑚
𝑡 ) = ℎ𝑚

𝑡 = 𝐴𝑤(𝑊𝑚
𝑡 )                                                                (5.1.4) 

𝑊𝑚
𝑡 = 𝐴𝑊

−1(𝐴(𝑧𝑚
𝑡 ))                                                                     (5.1.5) 
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Figure 5.1. Probability transformation. 

where 𝐴 is the continuous distribution function (CDF) of time series 𝑧𝑚
𝑡 , having mean 0 and 

standard deviation 1, and 𝐴𝑤 is the CDF of time series 𝑊𝑡. 𝐴 and 𝐴𝑤 are assumed to be 

Gaussian PDF. According to Figure 5.1, curve 𝐴 presented on the left side corresponds to the 

CDF of a normalized Gaussian PDF, which is the PDF of the time series obtained in Equation 

(5.1.3), while curve 𝐴𝑤 presented on the right side corresponds to the CDF of the original 

predicted wind power profile modeled as a Gaussian PDF with mean 𝜇 and standard deviation 

𝜎. ℎ𝑚
𝑡  is an intermediate time series that has uniform PDF within the interval {0, 1} [207]. 

Scenarios obtained from the implementation of the procedure described previously could lead 

to unrealistic situations, in which scenarios with extremely high or low values are obtained. 

To deal with this problem, an algorithm to select those scenarios with reliable values is 

introduced. Assuming a determined PDF for the hourly forecasting error, a determined value 

for the significance level (𝛼) is fixed and the corresponding confidence interval is calculated 

for each hour. A vector of 𝐻 binary elements (𝐹𝑚) is then created, as a storage vector if the 

corresponding scenario 𝑚 at time 𝑡 is within the corresponding confidence interval. In the 

case that 𝑊𝑚
𝑡  is inside, the confidence interval value of 1 is assigned and if it is outside a 

value of 0 is assigned. Once vector 𝐹𝑚 has been built for each scenario, an index (𝐼𝑚) that 

reflects the degree to which the scenario under analysis (𝑚) fulfills the hourly forecasting 

error is calculated. This index is defined according to Equation (5.1.6): 

𝐼𝑚 = (∑𝐹𝑚

𝐻

𝑡=1

) 𝐻⁄                                                                  (5.1.6) 

If 𝐼𝑚 is equal to 1 it means that during all hours each value of scenario 𝑚 is within the 

confidence level. On the other hand, a value of this index lower than 1 means that during 

some hours the scenario generated is outside the corresponding confidence interval. In the 

next step, by establishing a determined limit to this index (𝛽) all scenarios that correspond to 

the specified forecasting error are selected. As an example, if a value 𝛽 = 0.9 is chosen, 

those scenarios with 𝐼𝑚 higher than 𝛽 should be selected. Finally, the scenarios required to be 

used in the solution of the stochastic UC problem are found by applying the k-means clustering 

algorithm [208] on the set of scenarios previously selected by using the parameter 𝛽. 
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5.2. Problem Description 

In the following subsection the mathematical formulation of the UC problem integrating the 

uncertainty related to the net load is presented. Net load is defined as the difference 

between load demand and wind power generation. Solving the stochastic UC problem consists 

of finding out the optimal combination of generators that should be committed and their 

corresponding power production in order to minimize the generation costs over the scheduling 

horizon, considering the possible fluctuations of the different sources of uncertainty (wind 

power generation and load demand, among others). An important barrier to the successful 

solution of this optimization problem and the accommodation of wind power generation is the 

set of constraints that characterize the operation of the thermal generation units, such as 

generation limits, operating ramp rate constraints, startup and shutdown ramp rate 

constraints, reserve constraints and minimum up and down time constraints. 

5.2.1.   Objective Function 

UC is an optimization problem that consists of minimizing the expected operating cost.  

This cost could be divided into fuel-consumption cost and starting-up cost. Traditionally,  

fuel-consumption cost has been modeled by using a quadratic expression in terms of the 

corresponding power production, while starting-up cost has been modeled by using a 

piecewise expression that depends on the number of hours that a specific generator has been 

de-committed. The mathematical expression for generation cost is presented in  

Equation (5.2.1): 

𝑓 = ∑ 𝑃𝑟{𝑚} {∑∑𝑎𝑛𝑈𝑛,𝑚
𝑡 + 𝑏𝑛𝑃𝑛,𝑚

𝑡 𝑈𝑛,𝑚
𝑡 + 𝑐𝑛(𝑃𝑛,𝑚)

2
+ 𝑆𝑈𝐶𝑛

𝑡(1 − 𝑈𝑛,𝑚
𝑡−1)𝑈𝑛,𝑚

𝑡

𝑁

𝑛=1

𝑇

𝑡=1

}

𝑀

𝑚=1

         (5.2.1) 

where 𝑓 is the expected value of total operating cost, 𝑃𝑟{𝑚} is the probability of occurrence 

of a determined scenario (𝑚), and 𝑃𝑛,𝑚
𝑡  is the power production of generator 𝑛, at time 𝑡, in 

scenario 𝑚. 𝑈𝑛,𝑚
𝑡  is a binary variable to represent if generator 𝑛, at time 𝑡, and in scenario 𝑚 

is committed or de-committed, and 𝑆𝑈𝐶𝑛,𝑚
𝑡  is the starting-up cost of generator 𝑛, parameters 

𝑎𝑛, 𝑏𝑛, and 𝑐𝑛 correspond to the fuel-consumption of generator 𝑛. The ED problem is solved 

by means of a quadratic programming approach, an approximation of the starting-up cost is 

presented in Equation (5.2.2): 

𝑆𝑈𝐶𝑛
𝑡 = {

𝐻𝑆𝑈𝑛, 𝑂𝐹𝐹𝑛,𝑚
𝑡 ≤ 𝑀𝐷𝑇𝑛 + 𝐶𝑆𝑇𝑛

𝐶𝑆𝑈𝑛 , 𝑂𝐹𝐹𝑛,𝑚
𝑡 > 𝑀𝐷𝑇𝑛 + 𝐶𝑆𝑇𝑛

                                               (5.2.2) 

where 𝐻𝑆𝑈𝑛,𝑚
𝑡  is the hot startup cost, 𝐶𝑆𝑈𝑛,𝑚

𝑡  is the cold startup cost, and 𝐶𝑆𝑇𝑛,𝑚
𝑡  is the cold 

startup time of generator 𝑛. 𝑂𝐹𝐹𝑛,𝑚
𝑡  is an integer variable that saves the cumulative account 

of the number of hours that generator 𝑛 has been de-committed. In a similar manner, 𝑂𝑁𝑛,𝑚
𝑡  

saves the number of hours that generator 𝑛 has been committed. The definition of these 

variables is presented in Equation (5.2.3) and Equation (5.2.4): 
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𝑂𝑁𝑛,𝑚
𝑡 = {

𝑂𝑁𝑛,𝑚
𝑡−1 + 1, 𝑈𝑛,𝑚

𝑡 = 1

0,                           𝑈𝑛,𝑚
𝑡 = 0

                                                          (5.2.3) 

𝑂𝐹𝐹𝑛,𝑚
𝑡 = {

𝑂𝐹𝐹𝑛,𝑚
𝑡−1 + 1, 𝑈𝑛,𝑚

𝑡 = 0

0,                             𝑈𝑛,𝑚
𝑡 = 1

                                                        (5.2.4) 

5.2.2.   Generation Limit Constraints 

If the generator 𝑛 is committed, its power production should be limited by its minimum 

(𝑃𝑛
𝑚𝑖𝑛) and maximum (𝑃𝑛

𝑚𝑎𝑥) production. This is mathematically expressed in Equation (5.2.5): 

𝑃𝑛
𝑚𝑖𝑛 ≤ 𝑃𝑛,𝑚

𝑡 ≤ 𝑃𝑛
𝑚𝑎𝑥 , 𝑈𝑛,𝑚

𝑡 = 1                                                      (5.2.5) 

5.2.3.   Operating Ramp rate Constraints 

Many of the technologies used nowadays have important limitations on sudden change of 

power production. These limitations are expressed through the set of constrains of  

Equation (5.2.6) and Equation (5.2.7): 

𝑃𝑛,𝑚
𝑡 − 𝑃𝑛,𝑚

𝑡−1 ≤ 𝑈𝑅𝑛, 𝑈𝑛,𝑚
𝑡 = 1;  𝑈𝑛,𝑚

𝑡−1 = 1                                           (5.2.6) 

𝑃𝑛,𝑚
𝑡−1 − 𝑃𝑛,𝑚

𝑡 ≤ 𝐷𝑅𝑛, 𝑈𝑛,𝑚
𝑡 = 1;  𝑈𝑛,𝑚

𝑡−1 = 1                                           (5.2.7) 

where 𝑈𝑅𝑛 and 𝐷𝑅𝑛 are the ramp up and ramp down rates of generator 𝑛. 

5.2.4.   Startup and Shutdown Ramp Rate Constraints 

The effects of the ramping limitations during the starting process are considered by the 

inclusion of Equation (5.2.8) and Equation (5.2.9) in the optimization problem: 

𝑃𝑛,𝑚
𝑡 ≤ 𝑆𝑈𝑅𝑛 + 𝑃𝑛

𝑚𝑖𝑛 , 𝑈𝑛,𝑚
𝑡 = 1;  𝑈𝑛,𝑚

𝑡−1 = 0                                        (5.2.8) 

𝑃𝑛,𝑚
𝑡 ≤ 𝑆𝐷𝑅𝑛 + 𝑃𝑛

𝑚𝑖𝑛 , 𝑈𝑛,𝑚
𝑡 = 1;  𝑈𝑛,𝑚

𝑡+1 = 0                                        (5.2.9) 

where 𝑆𝑈𝑅𝑛 and 𝑆𝐷𝑅𝑛 are the startup and shutdown ramp rates. 

5.2.5.   Reserve Requirements Constraint 

Reserve is a specification that allows a system operator to face unexpected situations and 

failure events; this specification is incorporated through the variable 𝑆𝑅 in the constraint of 

Equation (5.2.10): 

∑𝑃𝑛
𝑡,𝑚𝑎𝑥𝑈𝑛,𝑚

𝑡 −

𝑁

𝑛=1

∑𝑃𝑛,𝑚
𝑡 𝑈𝑛,𝑚

𝑡 ≥ (𝑆𝑅)𝐿𝑡 , 𝑈𝑛,𝑚
𝑡 = 1 

𝑁

𝑛=1

                             (5.2.10) 

where 𝐿𝑡 is the value of load demand at time 𝑡, and 𝑃𝑛
𝑡,𝑚𝑎𝑥 is maximum power that could be 

generated taking into account the effects of the ramp constraints. 
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5.2.6.   Power Balance 

This constraint guarantees the balance between total power production and its consumption. 

This idea is mathematically expressed in Equation (5.2.11): 

∑𝑃𝑛,𝑚
𝑡

𝑁

𝑛=1

𝑈𝑛,𝑚
𝑡 +𝑊𝑚

𝑡 = 𝐿𝑡 , 𝑈𝑛,𝑚
𝑡 = 1                                               (5.2.11) 

Note that the wind power generation is assumed to be completely integrated. 

5.2.7.   Minimum Up/Down Time Constraint 

Another important limitation of the generators used for electricity generation is that they 

have to be online for at least a determined number of hours. Generation units, however, have 

to be offline for at least another determined number of hours. These required times are 

known as minimum up time (𝑀𝑈𝑇𝑛) and minimum down time (𝑀𝐷𝑇𝑛) of generator 𝑛. These 

constraints are presented in Equation (5.2.12) and Equation (5.2.13): 

𝑂𝑁𝑛,𝑚
𝑡 ≥ 𝑀𝑈𝑇𝑛                                                                   (5.2.12) 

𝑂𝐹𝐹𝑛,𝑚
𝑡 ≥ 𝑀𝐷𝑇𝑛                                                                   (5.2.13) 

5.3. Priority List Method to the Unit Scheduling 

Among the methodologies developed to solve the UC problem, MILP has been generally 

accepted due to the fact that, in a determined number of steps, it is able to find solutions 

that are guaranteed to converge to the global-optimal solution [209]. However, recent studies 

have found that, under high integration of renewable resources, and consequently low values 

of net load, the MILP method has difficulty finding a feasible solution in a reasonable 

computational time [210]. 

PL is a methodology for solving the UC problem which is able to give a near-optimal solution 

in a reduced computational time. This method has undergone important developments. In 

[211] a stochastic PL method was introduced. In this approach, generators are committed 

according to a determined PDF that depends on the characteristics of the system under 

analysis. In [212] the PL method has been adapted to the management of power systems with 

ESS. In [213] the PL method was adapted to the management of power systems with ESS. In 

[214] the combination of an improved PL and an augmented Hopfield Lagrange (AHL) neural 

network was proposed. In [214] improved pre-prepared power demand (IPPD) was combined 

with the Muller method. In [215] a combination of improved Lagrangian relaxation (ILR) and 

ALH embedded in the PL method was proposed. 
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The PL method is composed of several processes that jointly arrive at a feasible and cost-

effective solution to the UC problem. The processes involved are primary unit scheduling, 

minimum up/down time repair, spinning reserve repair, shutdown repair, unit substitution, 

and shutdown excess of power generation. All these processes are detailed in the next sub-

sections. 

5.3.1.   Primary Unit Scheduling 

The order in which each generator is committed depends on its average production cost (𝐺𝑛) 

which is defined according to Equation (5.3.1) and Equation (5.3.2) [213]: 

𝐺𝑛 =
𝑎𝑛 + 𝑏𝑛𝑞𝑛 + 𝑐𝑛(𝑞𝑛)

2

𝑞𝑛
                                                           (5.3.1) 

𝑞𝑛 =
𝑃𝑛
 𝑚𝑎𝑥

2
(1 +

𝑃𝑛
 𝑚𝑖𝑛

𝑃𝑛
 𝑚𝑎𝑥

)                                                             (5.3.2) 

where 𝑞𝑛 is the average power production of generator 𝑛. The procedure for developing a 

primary approximation to the solution is as follow: 

 Step 1: Create the matrix of primary unit scheduling (𝑃𝑈𝑆𝑛,𝑚
𝑡 ). Set 𝑃𝑈𝑆𝑛,𝑚

𝑡 = 0 for 

𝑛 = 1, 2, … , 𝑁 and 𝑡 = 1, 2, … , 𝐻; 

 Step 2: Using the values obtained from Equation (5.3.1) and Equation (5.3.2), build the 

priority list. 

 Step 3: Set 𝑡 ← 1; 

 Step 4: Select the first generator of the priority list built in Step 2, i.e., set 𝑛 ← 1. 

 Step 5: Set 𝑃𝑈𝑆𝑛,𝑚
𝑡  ← 1; 

 Step 6: If the committed capacity is not enough to fulfill the reserve requirements and  

𝑛 ≤ 𝑁, set 𝑛 ←  𝑛 +  1 and go back to Step 5, else if 𝑡 ≤  𝐻 set 𝑡 ←  𝑡 +  1 and go to Step 4; 

else stop. 

5.3.2.   Minimum Up/Down Time Repairing 

The solution obtained from primary unit scheduling should fulfill minimum up/down time 

constraints. To solve this problem an additional process is applied. An example of the repair 

process is shown in Figure 5.2 where the first approximation resulting from primary 

scheduling (mathematically modeled by the matrix 𝑃𝑈𝑆𝑛,𝑚
𝑡 ) is repaired by committing 

generator 𝑛 to two additional hours to fulfill the condition 𝑀𝑈𝑇𝑛 = 3. 

  

Figure 5.2. Repairing process of minimum up time 

constraint. 

Figure 5.3. Repairing process of minimum down 

time constraint. 
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Figure 5.3 shows the repairing process for the situation in which minimum down time 

constraint is violated, and the repair algorithm commits generator 𝑛 during three hours in 

order to fulfill the condition 𝑀𝐷𝑇𝑛 = 4. The algorithm to the minimum up/down time 

constraint presented in [213] has been used in this work; this algorithm consists of the next 

steps: 

 Step 1: Using the results of primary unit scheduling, calculate 𝑂𝑁𝑛,𝑚
𝑡  and 𝑂𝐹𝐹𝑛,𝑚

𝑡  matrices 

according to Equation (5.2.3) and Equation (5.2.4). Then, create the matrix scheduling for 

each scenario 𝑈𝑛,𝑚
𝑡  and set it to 𝑈𝑛,𝑚

𝑡 = 0. 

 Step 2: Set 𝑡 ← 1; 

 Step 3: Set 𝑛 ← 1; 

 Step 4: If (𝑃𝑈𝑆𝑛,𝑚
𝑡 = 0) and (𝑃𝑈𝑆𝑛,𝑚

𝑡−1 = 1) and (𝑂𝑁𝑛,𝑚
𝑡−1 < 𝑀𝑈𝑇𝑛), set 𝑈𝑛,𝑚

𝑡 ← 1; 

 Step 5: If (𝑃𝑈𝑆𝑛,𝑚
𝑡 = 0) and (𝑃𝑈𝑆𝑛,𝑚

𝑡−1 = 1) and (𝑡 + 𝑀𝐷𝑇𝑛 − 1 ≤ 𝐻) and (𝑂𝐹𝐹𝑛,𝑚
𝑡+𝑀𝐷𝑇𝑛−1 < 𝑀𝐷𝑇𝑛), 

set 𝑈𝑛,𝑚
𝑡 ← 1; 

 Step 6: If (𝑃𝑈𝑆𝑛,𝑚
𝑡 = 0) and (𝑃𝑈𝑆𝑛,𝑚

𝑡−1 = 1) and (𝑡 + 𝑀𝐷𝑇𝑛 − 1 > 𝐻) and ( ∑ 𝑃𝑈𝑆𝑛,𝑚
𝑗

> 0𝐻
𝑗=𝑡 ), 

set 𝑈𝑛,𝑚
𝑡 ← 1; 

 Step 7: Calculate the elements of the matrices 𝑂𝑁𝑛,𝑚
𝑡  and 𝑂𝐹𝐹𝑛,𝑚

𝑡  that correspond to 

generator n using Equation (5.2.3) and Equation (5.2.4); 

 Step 8: If 𝑛 <  𝑁, set 𝑛 ← 𝑛 +  1 and go back to Step 4; 

 Step 9: If 𝑡 <  𝐻, set 𝑡 ← 𝑡 +  1 and go back to Step 3, else stop. 

5.3.3.   Spinning Reserve Repairing 

The total generation capacity of the system could be considerably reduced by the 

incorporation of operating ramp rate constraints and startup and shutdown ramp rate 

constraints; as a consequence, these limitations reduce the spinning reserve estimated 

previously in the primary unit scheduling process. To deal with this problem, using the results 

obtained from the primary unit scheduling and minimum up/down time repairing processes, 

more generation capacity is committed following the next algorithm: 

 Step 1: For each time instant (𝑡 =  1, 2, . . . , 𝐻) the reserve requirements are checked by 

using Equation (5.2.9); 

 Step 2: Then, those hours at which spinning reserve requirements are insufficient are 

determined. These hours (in combination with the priority list) are used to determine those 

points (𝑛, 𝑡 in 𝑈𝑛,𝑚
𝑡 ) at which generation capacity should be added. All these points are 

saved in a list of two columns; the first column saves the generators, while the second 

column saves the time intervals; 

 Step 3: If the list created in Step 2 is not empty, go to Step 4, in other case stop; 

 Step 4: Then, the list developed in Step 2 is sorted according to its second column in 

ascending order; 
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 Step 5: In this step, the first point of the sorted list developed in Step 4 is selected; the 

status of the generator 𝑛 at hour 𝑡 corresponding to this point is changed from 0 to 1; 

 Step 6: Apply minimum up/down time repairing in order to avoid the violation of these 

constraints; 

 Step 7: Go to Step 1. 

5.3.4.   Shutdown Repairing Process 

In order to fulfill the shutdown ramp rate constraint, it is likely that additional hours are 

required so that generator n may have enough time to be effectively de-committed. In order 

to overcome this situation, those generators in problems are committed during more time in 

order to get the adequate level of generation. This is done following the next algorithm: 

 Step 1: For each generator (𝑛 =  1, 2, . . ., 𝑁) and time interval (𝑡 =  1, 2, . . ., 𝐻), the 

shutdown ramp rate constraint is checked by application of Equation (5.2.8); 

 Step 2: Then, a list of all those points at which this constraint is violated is created. All 

those hours at which the operation of the corresponding generators should be extended are 

saved in a list of two columns; the first column saves the generators, while the second 

column saves the time intervals; 

 Step 3: If the list created in Step 2 is not empty, go to Step 4, in other case stop; 

 Step 4: Then, the list created in Step 2 is sorted according to its second column in 

ascending order; 

 Step 5: In this step, the first point of the sorted list developed in Step 4 is selected; the 

status of the generator 𝑛 at hour 𝑡 corresponding to this point is changed from 0 to 1; 

 Step 6: Apply minimum up/down time repairing in order to avoid the violation of these 

constraints; 

 Step 7: Go to Step 1. 

5.3.5.   Unit Substitution Process 

After the minimum up/down time repair process has been carried out, some generators are 

committed during more hours than required. This situation is illustrated in Figure 5.2, where 

generator 𝑛 is required during only one hour; however, due to the minimum up-time 

constraint it is committed during three hours. In order to achieve cost-effective scheduling, 

this generator with 𝑀𝑈𝑇𝑛 = 3 is substituted by another one with a lower 𝑀𝑈𝑇𝑛. 

To recognize the generators under this situation, i.e., generators to be substituted, a matrix 

(𝐶𝐻𝑛,𝑚
𝑡 ) that store the changes in the primary scheduling due to minimum up/down time 

repair is created. This matrix is obtained by the subtraction of the matrices 𝑈𝑛,𝑚
𝑡  and 𝑃𝑈𝑆𝑛,𝑚

𝑡 . 

The matrix 𝐷𝑛,𝑚
𝑡  is created to save the generators and the times at which they are going to be 

substituted. The elements of this matrix are binary so that 𝐷𝑛,𝑚
𝑡 = 1 means that generator 𝑛 

should be substituted at hour 𝑡, while the contrary situation is represented by using 𝐷𝑛,𝑚
𝑡 = 0. 
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Figure 5.4. Selection of generators in unit substitution process. 

Figure 5.4 extends the example previously described in Figure 5.2. In Figure 5.4, the row of 

generator 𝑛 of the matrices 𝑃𝑈𝑆𝑛,𝑚
𝑡 , 𝑈𝑛,𝑚

𝑡 , 𝐶𝐻𝑛,𝑚
𝑡 , 𝑂𝑁𝑛,𝑚

𝑡 , and 𝐷𝑛,𝑚
𝑡  between 𝑡 =  1 and 𝑡 =  7 

are shown. From the analysis of this figure, the reader can note that in 𝑡 =  3, the matrix 

element 𝐶𝐻𝑛,𝑚
3 = 0; this means that during the initial moment any change in the scheduling 

can be found. Otherwise, 𝑂𝑁𝑛,𝑚
3 = 1 and 𝑂𝑁𝑛,𝑚

6 = 0, which means that effectively generator 𝑛 

is committed only during its 𝑀𝑈𝑇𝑛, and ∑ 𝐶𝐻𝑛,𝑚
𝑡 = 2 > 06

𝑡 , which means that there is a change 

in the scheduling due to minimum up/down time repair. As was stated before, 𝐷𝑛,𝑚
𝑡  indicates 

the generators and times to be used in the unit substitution process so that, for the example, 

the elements of 𝐷𝑛,𝑚
𝑡  become 1 between 𝑡 =  3 and 𝑡 =  5. From the analysis of this situation, 

an algorithm to recognize the generators that could be substituted and their corresponding 

times is presented as follows: 

 Step 1: Estimate the matrix 𝐶𝐻𝑛,𝑚
𝑡  as the subtraction between 𝑈𝑛,𝑚

𝑡  and 𝑃𝑈𝑆𝑛,𝑚
𝑡 ; 

 Step 2: Create and initialize the matrix 𝐷𝑛,𝑚
𝑡  by assigning 𝐷𝑛,𝑚

𝑡 = 0 for 𝑛 =  1, 2, . . . , 𝑁 and 

𝑡 =  1, 2, . . . , 𝐻; 

 Step 3: Set 𝑛 ← 1; 

 Step 4: Set 𝑡 ← 1; 

 Step 5: If (𝐶𝐻𝑛,𝑚
𝑡 = 0) and (𝑂𝑁𝑛,𝑚

𝑡 = 1) and (𝑡 +  𝑀𝑈𝑇𝑛  <  𝐻) and (𝑂𝑁𝑛,𝑚
𝑡+𝑀𝑈𝑇𝑛 = 0) and 

(𝑀𝑈𝑇𝑛  >  1) and (∑ 𝐶𝐻𝑛,𝑚
𝑡𝑡+𝑀𝑈𝑇𝑛−1

𝑡 > 0), the elements of 𝐷𝑛,𝑚
𝑡  from 𝑡 to 𝑡 +  𝑀𝑈𝑇𝑛 − 1 

become 1. Else if (𝐶𝐻𝑛,𝑚
𝑡 = 0) and (𝑂𝑁𝑛,𝑚

𝑡 = 1) and (𝑡 +  𝑀𝑈𝑇𝑛 − 1 = 𝐻) and 

(𝑂𝑁𝑛,𝑚
𝑡+𝑀𝑈𝑇𝑛−1 = 𝑀𝑈𝑇𝑛) and (𝑀𝑈𝑇𝑛 > 1) and (∑ 𝐶𝐻𝑛,𝑚

𝑡𝑡+𝑀𝑈𝑇𝑛−1
𝑡 > 0), the elements of 𝐷𝑛,𝑚

𝑡  

from 𝑡 to 𝑡 +  𝑀𝑈𝑇𝑛 − 1 become 1; else go to Step 6; 

 Step 6: If 𝑡 <  𝐻, set 𝑡 ← 𝑡 +  1 and go to Step 5; else go to Step 7; 

 Step 7: If 𝑛 <  𝑁, set 𝑛 ← 𝑛 +  1 and go to Step 4, else stop. 

Once the matrix 𝐷𝑛,𝑚
𝑡  has been created, the generators to be substituted can be easily 

recognized. Considering each of these generators one by one, all processes described in the 

previous sections are then repeated. If the substitution of a determined generator leads to an 

increment in the generation cost, the unit substitution process is stopped. 

5.3.6.   Shutdown Excess of Generation 

Minimum up/down time repair and spinning reserve repair could lead to an excess of spinning 

reserve in some hours, which increases the generation costs.  

PUS
t
n,m

U
t
n,m

MUT = 3

n

0 0 1 01 1 0

1 1 0 01 1 0

0 0 1 00 0 0

1 1 1 02 3 0

1 1 1 01 1 0

1 2 3 74 5 6

t

CH
t
n,m

ON
t
n,m

t
D n



91 
 

In order to achieve cost-effective unit scheduling, shutdown of excess of generation is carried 

out following the next algorithm: 

 Step 1: Using Equation (5.2.9), the excess of spinning reserve is checked over the entire 

horizon scheduling and a list is created by saving the corresponding hours. This list is 

assumed to have 𝑅 elements; 

 Step 2: Set 𝑟 ← 1; 

 Step 3: The point 𝑟 of the list created in Step 1 is chosen. To this hour the most expensive 

generator is selected. Then, if 𝑂𝑁𝑛,𝑚
𝑡  is higher than the corresponding 𝑀𝑈𝑇𝑛, the status of 

this generator is changed from 1 to 0; 

 Step 4: Using the scheduling obtained in the Step 3, minimum up/down time repairing is 

carried out in order to get a feasible solution; 

 Step 5: Using the scheduling obtained in the Step 4, startup/shutdown ramp rate 

constraints and spinning reserve requirements are checked by using Equation (5.2.8) and 

Equation (5.2.9), respectively. If both of these constraints are not violated, the element 

𝑈𝑛,𝑚
𝑡  becomes 0, in other case it becomes 1; 

 Step 6: If (𝑟 <  𝑅), set 𝑟 ← 𝑟 +  1 and go back to Step 3, else stop. 

5.4. Proposed Approach 

The proposed approach consists of building the PDF of the situation at which a determined 

generator (𝑛) be committed or not at a determined time (𝑡). Those generators and hours 

(𝑛, 𝑡 in 𝑈𝑛,𝑚
𝑡 ) with a high probability of being committed are then selected. However, the 

scheduling obtained from this procedure could be unfeasible due to the violation of minimum 

up/down time constraints, so that this solution is repaired by means of the corresponding 

process. The methodology proposed in this paper to the solution of the stochastic UC problem 

is implemented by following the next algorithm: 

 Step 1: In this step 𝑀 scenarios of wind power production and load demand are built 

following the methodology presented in Section 5.1; 

 Step 2: Solve UC problem for each scenario (𝑚) using the mathematical formulation 

presented in Section 5.2 and the PL method described in Section 5.3; 

 Step 3: Estimate histogram of frequency of unit scheduling (𝐻𝐹𝑛,𝑚
𝑡 ) and its corresponding 

PDF (𝑃𝐷𝐹𝑛
𝑡) using Equation (5.4.1) and Equation (5.4.2). The matrices 𝐻𝐹𝑛,𝑚

𝑡  and 𝑃𝐷𝐹𝑛
𝑡 have 

the same dimensions of matrix 𝑈𝑛,𝑚
𝑡 ; 

𝐻𝐹𝑛
𝑡 = ∑ 𝑈𝑛,𝑚

𝑡 , 𝑡 = 1, 2, … , 𝐻

𝑀

𝑚=1

                                                      (5.4.1) 

𝑃𝐷𝐹𝑛
𝑡 =

𝐻𝐹𝑛
𝑡

𝑀
                                                                        (5.4.2) 
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 Step 4: Create the probabilistic primary scheduling, which is a matrix (𝑃𝑃𝑈𝑆𝑛
𝑡) with 𝑁 rows 

and 𝐻 columns. Set all elements of this matrix to zero (𝑃𝑃𝑈𝑆𝑛
𝑡 = 0, 𝑛 = 1, 2, … , 𝑁 and 

𝑡 = 1, 2, . . . , 𝐻). Then, according to a determined significance level (𝛼), those generators 

and hours so that 𝑃𝐷𝐹𝑛
𝑡 > 𝛼 are chosen and their status is changed from 0 to 1. 

 Step 5: Solution obtained in Step 4 (𝑃𝑃𝑈𝑆𝑛
𝑡) could be infeasible due to the violation of 

minimum up/down time constraint. For this reason minimum up/down time repairing is 

carried out, obtaining the solution to the stochastic UC problem 𝑈𝑛
𝑡 . (Note that variable 

𝑈𝑛,𝑚
𝑡  represents the deterministic solution of UC problem for the scenario 𝑚, while 𝑈𝑛

𝑡  

represents the scheduling suggested to solve stochastic UC problem taking into account all 

scenarios previously generated). 

5.5. Case Study and Results 

The proposed approach to the solution of the UC problem, incorporating the uncertainty 

related to wind power generation, is illustrated by analyzing the power system whose 

characteristics are presented in Table 5.1 and Table 5.2, while Table 5.3 presents hourly load 

and wind power forecasting, as described in [204], [209], and [212]. In our illustrative case 

study, spinning reserve requirements of 10% (𝑆𝑅 =  0.1) have been considered in order to 

guarantee the power system’s reliability against any failure event. Results from the scenario 

generation and reduction process described in Section 5.1 are shown in Figure 5.5. Initially, 

2000 scenarios were randomly generated. Thus, considering a forecasting error of 20%,  

𝛼 =  0.05 and 𝛽 =  0.05, 250 scenarios were used in the optimization process (𝑀 =  250) 

obtained from the application of the k-means clustering algorithm. Table 5.4 shows the 

probability of obtaining a spinning reserve higher than 10% for the entire horizon scheduling. 

It could be noted that except for 𝑡 =  12 (which was discussed before), the probability of 

fulfilling this constraint is higher than 95%. Table 5.5 presents PDF of unit scheduling (𝑃𝐷𝐹𝑛
𝑡) 

for the case under analysis, while Table 5.6 presents the average power production of each 

generator along the horizon of scheduling. In Table 5.5, the probability that corresponds to 

the selected scheduling is in bold, which are those generators and hours with probabilities 

higher than 𝛼 = 0.05. Note how those generators that are in base and cycling condition are 

committed in all the scenarios and consequently the probability of them being committed is 

equal to 1. Moreover, peak units have a probability lower than 1 according to the 

requirements for supplied sudden changes in wind power generation. 

These results could be understood as those decision variables that correspond to stages 1 and 

2 in the stochastic programming framework, i.e., the generators with probabilities equal to 1 

could be understood as those generators to be committed before the uncertainty is realized, 

while those generators with probabilities lower than 1 could be understood as those 

generators for which the decision to commit is taken in stage 2 (fast start generators). From 

these results, it is possible to observe how the proposed approach offers a probabilistic 

perspective of the role of each generation unit in the solution of the stochastic UC problem.  
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Table 5.1. Description of the power system under analysis (part 1). 

𝑛 𝑃𝑛
𝑚𝑖𝑛 (MW) 𝑃𝑛

𝑚𝑎𝑥 (MW) 𝑎𝑖 ($/h) 𝑏𝑖 ($/MWh) 𝑐𝑖 ($/MW2h) 𝐷𝑅 (MW/h) 𝑈𝑅 (MW/h) 

1 150 455 1000 16.19 0.00048 130 130 

2 150 455 970 17.26 0.00031 130 130 

3 25 162 450 19.70 0.00398 90 90 

4 20 130 680 16.50 0.00211 60 60 

5 20 130 700 16.60 0.00200 60 60 

6 20 80 370 22.26 0.00712 40 40 

7 20 80 370 22.26 0.00712 40 40 

8 25 85 480 27.74 0.00079 40 40 

9 25 85 480 27.74 0.00079 40 40 

10 10 55 660 25.92 0.00413 40 40 
 

Table 5.2. Description of the power system under analysis (part 2). 

𝑛 𝑃0 (MW) 𝐼𝑆 (h) 𝑀𝑈𝑇𝑛 (h) 𝑀𝐷𝑇𝑛 (h) 𝐶𝑆𝐶 ($) 𝐻𝑆𝐶 ($) 𝐶𝑆𝑇 (h) 

1 455 8 8 8 9000 4500 5 

2 163 8 8 8 10000 5000 5 

3 0 -6 6 6 1800 900 4 

4 0 -5 5 5 1120 560 4 

5 0 -3 5 5 1100 550 4 

6 0 -3 3 3 340 170 2 

7 0 -3 3 3 340 170 2 

8 0 -3 3 3 520 260 2 

9 0 -3 3 3 520 260 2 

10 0 -1 1 1 60 30 0 
 

Table 5.3. Load demand and wind power forecasting. 

Time (h) Wind (MW) Load (MW) Time (h) Wind (MW) Load (MW) 

1 93 700 13 60 1400 

2 107 750 14 115 1300 

3 100 850 15 68 1200 

4 100 950 16 70 1050 

5 117 1000 17 117 1000 

6 103 1100 18 135 1100 

7 108 1150 19 110 1200 

8 80 1200 20 121 1400 

9 60 1300 21 123 1300 

10 57 1400 22 110 1100 

11 78 1450 23 88 900 

12 72 1500 24 47 800 
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Figure 5.5. Results from de scenario generation and reduction process. 

 

 

Figure 5.6. CDF of supply reserve requirements for 𝑡 = 1 and 𝑡 = 17. 

 

 

Figure 5.7. CDF of supply reserve requirements for 𝑡 = 12 and 𝑡 = 20. 
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Moreover, the expected value of generation cost is $525,220.604. This value is higher than 

that obtained by evaluation of the scheduling suggested in [204], i.e. $516,115.05. It is 

important to take into account that the mathematical formulation used here to check and 

measure the reserve requirements is different from that used in [204]; the formulation used 

in [204] is expressed in terms of 𝑃𝑛
𝑚𝑎𝑥, while the expression used in this work was carried  

out in terms of maximum power generation considering the ramp rate constraints (see 

Equation(5.2.9)), which requires more generation capacity and consequently higher 

generation costs. 

Figure 5.6 presents the CDF for fulfilling the spinning reserve requirements for 𝑡 = 1 and 

𝑡 = 17, which correspond to the situation of low load. For these hours, the specified spinning 

reserve requirements are guaranteed. On the other hand, Figure 5.7 shows the CDF for 𝑡 = 12 

and 𝑡 = 20, each of which corresponds to the hours of high energy demand. For 𝑡 = 12, all the 

generation capacity of the system has been committed, but the required reserve 

requirements cannot be totally guaranteed due to the effects of ramp rate constraints. This 

result shows the negative effects of the ramp rate constraints on the accommodation of wind 

power generation. However, for 𝑡 =  20 the committed specified reserve level can be 

guaranteed.  

The proposed approach was implemented in MATLAB programming language. The computer 

used has an i7-3630QM CPU at 2.40GHz with 8GB of memory and 64-bit operating system. The 

computational time required to solve this illustrative example was 1403 seconds. 

 

Table 5.4. Probability of supply the required reserve. 

Time (h) 𝑃𝑟  {𝑆𝑅 ≥ 0.1} Time (h) 𝑃𝑟  {𝑆𝑅 ≥ 0.1} 

1 1.000 13 0.974 

2 1.000 14 1.000 

3 0.954 15 0.954 

4 1.000 16 1.000 

5 1.000 17 1.000 

6 1.000 18 0.986 

7 1.000 19 0.956 

8 1.000 20 1.000 

9 0.960 21 1.000 

10 0.956 22 1.000 

11 0.960 23 1.000 

12 0.876 24 1.000 
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Table 5.5. PDF of unit scheduling. 

𝑛 
Time (h) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3 0 0.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.30 0 

4 0 0 0 0.08 0.08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0 0 

5 0 0 0 0 0 0.56 0.68 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.24 0 0 

6 0 0 0 0 0 0 0 0.15 1.00 1.00 1.00 1.00 1.00 0.20 0.01 0 0 0 0.94 0.98 0.98 0.04 0 0 

7 0 0 0 0 0 0 0 0 0.92 1.00 1.00 1.00 1.00 0 0 0 0 0 0 0.01 0.01 0.01 0 0 

8 0 0 0 0 0 0 0 0 0.01 1.00 1.00 1.00 0.89 0 0 0 0 0 0.01 0.99 0.05 0 0 0 

9 0 0 0 0 0 0 0 0 0 0.88 0.67 1.00 0.02 0 0 0 0 0 0 0.95 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0.01 0 0.91 0 0 0 0 0 0 0 0.10 0 0 0 0 
 

Table 5.6. Average power production results (MW). 

𝑛 
Time (h) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 449.8 453.2 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 

2 157.2 165.6 269.3 291.1 275.3 308.6 303.2 360.1 447.7 455.0 455.0 455.0 455.0 417.5 391.7 262.1 154.9 225.3 329.5 450.1 407.7 351.3 331.7 297.5 

3 0 25.0 25.3 25.0 25.0 25.0 25.0 25.0 32.1 106.2 135.7 161.4 114.8 32.0 25.0 25.0 25.0 25.0 25.4 63.6 25.0 25.0 25.0 0 

4 0 0 0 80.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 125.8 128.5 130.0 130.0 130.0 130.0 80.0 0 0 

5 0 0 0 0 0 80.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 111.5 119.6 130.0 130.0 130.0 130.0 80.0 0 0 

6 0 0 0 0 0 0 0 20.0 20.0 21.1 20.4 40.7 20.2 20.0 0 0 0 0 20.0 20.0 20.0 0 0 0 

7 0 0 0 0 0 0 0 0 25.0 25.0 25.0 25.0 25.0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 10.0 10.0 11.0 10.0 0 0 0 0 0 0 10.0 10.0 0 0 0 

9 0 0 0 0 0 0 0 0 0 10.0 10.0 10.0 0 0 0 0 0 0 0 10.0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 10.0 0 0 0 0 0 0 0 10.0 0 0 0 0 
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Chapter 6 

Control Strategy with Energy Storage System 

Nowadays, the optimal management and control of ESS is an important topic that has been 

widely analyzed in the technical literature. From a global perspective, the potential for the 

installation of ESS based on batteries in isolated power systems is estimated at 5300MWh in 

the next few years [160]. In this thesis, a new control strategy to be used in the weekly 

scheduling of insular power systems with ESS is presented. The methodology described here 

incorporates the effects of the most relevant components such as thermal generators, wind 

power generation, power converter, charge controller and an ESS based on batteries, namely 

Vanadium Redox batteries (VRB). The joint effect of these elements in the scheduling process 

of insular power systems has not been considered properly, so the development of new 

control strategies incorporating this feature is of the utmost importance. The proposed 

methodology consists of two major steps. In the first step the UC problem is solved without 

taking into account ESS; from this procedure the total energy available to charge ESS is 

estimated, while in the second step, using the estimated energy available obtained in the 

first step, the ESS is incorporated into the UC problem. 

6.1. Power System under Analysis 

The structure of the insular power system with the ESS to be analyzed is presented in  

Figure 6.1. The system consists of several thermal generators that could be steam turbines, 

combined-cycle gas turbines, diesel engines, or open-cycle gas turbines. These units could be 

powered by different types of fuel oils (heavy fuel oil (HFO) and light fuel oil (LFO)). Another 

important component of this type of system is renewable energy sources, which in this case 

study is considered to be obtained from the wind.  

The ESS is composed of the power converter, the charge controller, and the storage system 

itself, which, as stated before, is assumed to be a VRB system. A VRB allows the storage of 

the excess of electricity generated by thermal and renewable units. A charge controller 

guarantees the correct use of the VRB, to prevent its overcharging or undercharging, and the 

power converter carried out the DC-to-AC conversion, and vice versa. Furthermore, under a 

high penetration of renewable sources it is possible to produce an excess of electricity that 

could not be stored in a VRB. In order to preserve system stability, this excess of energy has 

to be consumed by the dump load. In the next subsections, each element of the insular power 

system is described in detail. 
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Figure 6.1. Architecture CDF of the power system under analysis. 

6.1.1.   Thermal and Renewable Generation Units 

In the framework of the UC problem, thermal generation units are modeled through their 

estimated fuel consumption, starting-up cost, power generation limits, startup and shutdown 

ramp rates, operating ramp rates, and minimum up/down time constraints. Typically, fuel 

consumption is modeled by using the quadratic expression of Equation (6.1.1): 

𝑓𝑛
𝑡 = 𝑎𝑛 + 𝑏𝑛𝑃𝑛

𝑡 + 𝑐𝑛(𝑃𝑛
𝑡)2                                                             (6.1.1) 

where 𝑎𝑛, 𝑏𝑛 and 𝑐𝑛 are parameters related to the fuel consumption of the unit 𝑛, 𝑓𝑛
𝑡 is the 

fuel consumption of unit 𝑛, and 𝑃𝑛
𝑡 is the power generation of unit 𝑛 at time 𝑡  

(𝑛 =  1, 2, … , 𝑁) and (𝑡 =  1, 2, … , 𝐻). The cost related to the start-up of a determined 

generator could be modeled by using the simplified expression of Equation (6.1.2): 

𝑆𝑈𝐶𝑛
𝑡 = {

𝐻𝑆𝑈𝑛;  𝑇𝑜𝑓𝑓,𝑛
𝑡 ≤ 𝑀𝐷𝑇𝑛 + 𝐶𝑆𝑇𝑛

𝐶𝑆𝑈𝑛;  𝑇𝑜𝑓𝑓,𝑛
𝑡 > 𝑀𝐷𝑇𝑛 + 𝐶𝑆𝑇𝑛

                                                    (6.1.2) 

where 𝑆𝑈𝐶𝑛
𝑡
 is the starting-up cost, 𝐻𝑆𝑈𝑛

𝑡
 is the hot startup cost, and 𝐶𝑆𝑈𝑛

𝑡
 is the cold startup 

cost of unit 𝑛 at time 𝑡. Variables 𝑇𝑜𝑛,𝑛
𝑡

 and 𝑇𝑜𝑓𝑓,𝑛
𝑡

 are calculated by Equation (6.1.3) and 

Equation (6.1.4): 

𝑇𝑜𝑛,𝑛
𝑡 = {

𝑇𝑜𝑛,𝑛
𝑡 + 1, 𝑈𝑛

𝑡 = 1

0,                       𝑈𝑛
𝑡 = 0

                                                        (6.1.3) 

𝑇𝑜𝑓𝑓,𝑛
𝑡 = {

𝑇𝑜𝑓𝑓,𝑛
𝑡 + 1, 𝑈𝑛

𝑡 = 0

0,                         𝑈𝑛
𝑡 = 1

                                                      (6.1.4) 

where 𝑇𝑜𝑛,𝑛
𝑡  is the cumulative number of hours until the present instant 𝑡 that unit 𝑛 has been 

online, and 𝑇𝑜𝑓𝑓,𝑛
𝑡  is the cumulative number of hours until the present instant 𝑡 that unit 𝑛 has 

been offline. 𝑀𝑈𝑇𝑛 and 𝑀𝐷𝑇𝑛 are minimum up and down time of unit 𝑛, respectively. 𝑈𝑛
𝑡  is 

the status of unit 𝑛 at time 𝑡, where 0 represents de-committing, while 1 represents the 

committing of the respective unit. In each time-step, power production of a determined unit 

is constrained by the maximum and minimum capacity of the unit and its corresponding ramp 

constraint. This is mathematically expressed through Equations (6.1.5) - (6.1.7). 
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𝑃𝑛
𝑚𝑖𝑛 ≤ 𝑃𝑛

𝑡 ≤ 𝑃𝑛
𝑚𝑎𝑥 , 𝑈𝑛

𝑡 = 1                                                  (6.1.5) 

𝑃𝑛
𝑡 − 𝑃𝑛

𝑡−1 ≤ 𝑈𝑅𝑛, 𝑈𝑛
𝑡 = 1;  𝑈𝑛

𝑡−1 = 1                                        (6.1.6) 

𝑃𝑛
𝑡−1 − 𝑃𝑛

𝑡 ≤ 𝐷𝑅𝑛, 𝑈𝑛
𝑡 = 1;  𝑈𝑛

𝑡−1 = 1                                        (6.1.7) 

where 𝑃𝑛
𝑚𝑖𝑛, and 𝑃𝑛

𝑚𝑎𝑥 are the minimum and maximum power production of unit 𝑛, 

respectively. Meanwhile, 𝑈𝑅𝑛 and 𝐷𝑅𝑛 are ramp up and down of unit 𝑛, respectively. The 

ramp constraints during starting up and shutting down of a determined unit are represented 

by using the constraints of Equation (6.1.8) and Equation (6.1.9): 

𝑃𝑛
𝑡 ≤ 𝑆𝑈𝑅𝑛 + 𝑃𝑛

𝑚𝑖𝑛 , 𝑈𝑛
𝑡 = 1; 𝑈𝑖

𝑡−1 = 0                                         (6.1.8) 

𝑃𝑛
𝑡 ≤ 𝑆𝐷𝑅𝑛 + 𝑃𝑛

𝑚𝑖𝑛 , 𝑈𝑛
𝑡 = 1 𝑈𝑛

𝑡+1 = 0                                          (6.1.9) 

where 𝑆𝑈𝑅𝑛 and 𝑆𝐷𝑅𝑛 are startup ramp and shutdown ramp of unit 𝑛, respectively. Typically, 

thermal units have to be online or offline during a determined time length; this restriction is 

incorporated by using Equation (6.1.10) and Equation (6.1.11): 

𝑇𝑜𝑛,𝑛
𝑡 ≥ 𝑀𝑈𝑇𝑛                                                                    (6.1.10) 

𝑇𝑜𝑓𝑓,𝑛
𝑡 ≥ 𝑀𝐷𝑇𝑛 .                                                                  (6.1.11) 

Wind power generation is modelled as in in Equation (6.1.12), where the maximum capacity is 

defined by the available wind power obtained from the forecasting process: 

0 ≤ 𝑊𝑡 ≤ 𝑊𝑚𝑎𝑥
𝑡                                                                  (6.1.12) 

where 𝑊𝑡 is the wind power production determined from the optimization process and 𝑊𝑚
𝑡  is 

the forecasted wind power production. 

6.1.2.   Power Converter 

The connection between the ESS and the power grid of the insular system is carried out using 

electronic power converters. The technology of this connection device can be divided into 

three different categories: standard, multilevel, and multiport topologies. The standard 

topology is divided into single-stage and double-stage. Single-stage is the simplest topology, 

which consists of a bidirectional DC/AC converter, while double-stage consists of a DC/DC 

stage and a DC/AC stage. The DC/DC stage adjusts the DC voltage to a reasonable level, so 

that the DC/AC stage can be connected directly to the distribution system. Multilevel 

topology allows the required AC voltage to be obtained from several levels of DC voltages.  

On the other hand, multiport topology is provided with a single-stage with multiple ports, 

which can interface the ESS with the grid in a reduced number of stages, improving the 

efficiency with a reduced cost and a simple control strategy [216]. 
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In a general sense, the efficiency of the DC/AC conversion process depends on the load to be 

supplied, DC voltage, and temperature [217]. The model used in this work estimates the 

efficiency of the power converter by means of Equation (6.1.13) [218]: 

𝜂𝑣 =
𝑃𝑣

𝑚0𝑃𝑣
𝑟𝑎𝑡𝑒𝑑 + (1 + 𝑚1)𝑃𝑣

                                                             (6.1.13) 

where 𝜂𝑣 is the efficiency of the power converter, 𝑃𝑣
𝑟𝑎𝑡𝑒𝑑 is the rated power of the inverter 𝑃𝑣 

is the power through the inverter, and 𝑚0 and 𝑚1 are parameters to be determined by using 

experimental information; the values assumed here are 𝑚0 =  0.0119 and 𝑚1  =  0.0155. 

6.1.3.   Vanadium Redox Battery and Charge Controller Model 

In VRB storage technology, energy and power are independent of each other, giving more 

flexibility to improve power system operation. The rated power is determined by the capacity 

of the VRB stack, while the total energy to be stored is determined by the amount of 

electrolyte. Hence, state-of-charge (SOC) can be determined with precision by means of the 

amount of electrolyte remaining. Another important feature is its fast response due to the 

speed of the chemical reaction [219], [220]. VRB is important to improve the operation of an 

isolated system as well as grid-connected systems with high penetration of renewable energy 

sources [221]. In this work, the SOC of VRB is estimated by Equation (6.1.14): 

𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶𝑡−1 +
𝑃𝑏𝑡
𝑡 ∆𝑡

𝐸𝑚𝑎𝑥
𝜂𝑏𝐹𝑐                                                          (6.1.14) 

where 𝑆𝑂𝐶𝑡 is the state-of-charge of VRB at time 𝑡, 𝑃𝑏𝑡
𝑡  is the power to charge or discharge 

VRB, positive for charge and negative during discharge, 𝐸𝑚𝑎𝑥 is the maximum energy to be 

stored on VRB, ∆𝑡 is the time-step of the simulation, 𝜂𝑏 is the efficiency of VRB, and 𝐹𝑐 is the 

control factor; this factor represents the actions carried out by the charge controller during 

the charge process. Mathematical definition of factor 𝐹𝑐 is presented in Equation (6.1.15): 

𝐹𝑐 =

{
 
 
 

 
 
 

𝑚𝑎𝑥

(

 
 
 
 

1 − 𝑒[
 
 
 
 

(

 
 𝑚2

𝑃𝑏𝑡
𝑡

𝑃𝑚𝑎𝑥
+𝑚3

)

 
 
(𝑆𝑂𝐶𝑡−𝑆𝑂𝐶𝑚𝑎𝑥)

]
 
 
 
 

, 0

)

 
 
 
 

, 𝑃𝑏𝑡
𝑡 > 0 

1,                                                                                   𝑃𝑏𝑡
𝑡 < 0 

                  (6.1.15) 

where 𝑃𝑚𝑎𝑥 is the rated power of VRB stack, 𝑚2 and 𝑚3 are parameters to define how the 

charge controller manages the charge process. In this work, considering some experience 

from lead acid batteries, these parameters were fixed to 𝑚2  =  20.73 and 𝑚3 =  0.55 [222]. 

𝑆𝑂𝐶𝑚𝑖𝑛 and 𝑆𝑂𝐶𝑚𝑎𝑥 are the minimum and maximum SOC allowed to be reached by the VRB. 

Typically, according to the suggestions of the manufacturers in this study 𝑆𝑂𝐶𝑚𝑎𝑥 = 0.9.  

In order to illustrate the operation of the charge controller, the charging process of a VRB of 

7kW/40kWh was simulated. 𝑆𝑂𝐶𝑚𝑖𝑛 and 𝑆𝑂𝐶𝑚𝑎𝑥 are assumed to be 0.2 and 0.9, respectively, 

while the charge and discharge efficiencies (𝜂𝑏) were assumed to be 0.8. 
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Figure 6.2. SOC and charging power simulation. 

The charge process was simulated considering different initial SOC between 0.2 and 0.8.  

The results from the simulations are presented in Figure 6.2. The proposed model described in 

Equation (6.1.14) and Equation (6.1.15) was used to estimate the power required from the grid 

to charge the VRB, considering the effects of the charge controller. It is possible to observe how 

the charge controller gradually reduces the power absorbed from the grid as the VRB reaches its 

maximum SOC. This explains the role of the term 𝐹𝑐 introduced in Equation (6.1.15). 

6.2. Unit Commitment Problem Incorporating Energy Storage 

System 

The proposed methodology consists of two main steps: in the first step, the excess of power 

generation and the curtailed wind power are estimated from the solution of the UC problem, 

without taking the ESS into account; then, in the second step, the management of the ESS is 

carried out considering the excess of energy generated and the curtailed wind power 

obtained from the first step. In the following subsections, the proposed methodology used to 

solve the UC problem is described in detail. 

6.2.1.   Proposed Methodology 

The methodology proposed in this work aims to store the excess of power generated and the 

curtailed wind power during low load periods, in order to be discharged during high energy 

demand periods. The proposed methodology can be applied by implementing the algorithm 

presented as follows: 

 Step 1: Solve the UC problem by PL method; from the solution determine the excess of 

thermal power generation (𝐸𝑇𝐺𝑡) for each time instant 𝑡; 
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 Step 2: Determine the available charging power of ESS, (𝐶𝑃𝑡), applying Equation (6.2.1): 

𝐶𝑃𝑡 = 𝐸𝑇𝐺𝑡 + (𝑊𝑚𝑎𝑥
𝑡 −𝑊𝑡)                                                          (6.2.1) 

 Step 3: Create the binary vector of battery state according to the available charging power 

(𝐵𝑆𝑊𝐶
𝑡 ). In this vector, 1 means charging and 0 means discharging. If there is power to 

charge, ESS (𝐶𝑃𝑡 >  0); 𝐵𝑆𝑊𝐶
𝑡  =  1, in other case 𝐵𝑆𝑊𝐶

𝑡  =  0. In other words, if there is 

power available, ESS should be charged, on the contrary case ESS should be discharged to 

minimize the fuel consumption. Figure 6.3 illustrates how to build this vector under 

different operating conditions; 

 Step 4: Create the vector of binary state according to the shape of the load profile 

(𝐵𝑆𝑠ℎ𝑎𝑝𝑒
𝑡 ). As it is shown in Figure 6.4, the state of ESS is determined taking into account 

the geometry of the profile. Let 𝐷𝑎𝑣𝑔 be the average value of the hourly load; if  

𝐷𝑡  <  𝐷𝑎𝑣𝑔, load should be increased, on the contrary, load should be reduced. This 

strategy makes uniform the shape of the load profile, while reducing the commitment of 

thermal units; 

 Step 5: Once vectors 𝐵𝑆𝑊𝐶
𝑡  and 𝐵𝑆𝑠ℎ𝑎𝑝𝑒

𝑡  have been built, the reference power of ESS (𝑅𝑃𝑡) 

is created. This vector is the power set point of ESS for a determined time instant 𝑡. For 

any value of 𝑡; if 𝐵𝑆𝑠ℎ𝑎𝑝𝑒
𝑡  =  0 and 𝐵𝑆𝑊𝐶

𝑡  =  0, 𝑅𝑃𝑡   =  𝑊𝑚𝑎𝑥
𝑡 − 𝐷𝑡, else 𝑅𝑃𝑡  =  𝐶𝑃𝑡. In this 

step is guaranteed that ESS is discharged only in those periods that the load profile 

becomes flattened. After this, the signal of reference to the ESS is completed. Positive 

elements of 𝑅𝑃𝑡 correspond to charge periods; while, negative elements correspond to 

discharge periods. The signal 𝑅𝑃𝑡 obtained is illustrated in Figure 6.5; 

 Step 6: Using 𝑅𝑃𝑡, the periods of charge and discharge are defined. In the case presented 

in Figure 6.5, charge period corresponds to the hours between 𝑡𝑖 and 𝑡0, while discharge 

period corresponds to the hours between 𝑡0 and 𝑡𝑓. Considering the initial SOC (𝑆𝑂𝐶𝑡  =  0); 

if the next period corresponds to charging, SOC at the end of this period is estimated by 

using the ESS model of Section 6.1. 

 

Figure 6.3. Charge and discharge periods according to the wind power curtailed. 
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Figure 6.4. Charge and discharge periods according to the load profile. 

 

Figure 6.5. Reference power of ESS. 

On the contrary, if the next period corresponds to discharge, the energy stored in ESS to be 

discharged (𝐸0) is estimated by using Equation (6.2.2): 

𝐸0 = (𝑆𝑂𝐶𝑡 − 𝑆𝑂𝐶𝑚𝑖𝑛)𝐸𝑚𝑎𝑥                                                        (6.2.2) 

and the discharge power (𝑃𝑑) is determined from Equation (6.2.3): 

𝐸𝑜
𝜂𝑏
= ∑ |𝑚𝑎𝑥 (𝑊𝑡 − 𝐷𝑡 − 𝑃𝑑)|∆𝑡

𝑡 = 𝑡𝑓

𝑡 = 𝑡0

                                                 (6.2.3) 

where variable 𝑃𝑑 is limited between 0 and a determined value (𝑃𝑑,𝑚𝑎𝑥
0 ). In this step, the 

variable 𝑃𝑑,𝑚𝑎𝑥
0  is assumed to be equal to 𝑃𝑚𝑎𝑥 i.e., (0 ≤  𝑃𝑑 ≤ 𝑃𝑑,𝑚𝑎𝑥

0 ); 

 Step 7: Using the value of 𝑃𝑑 obtained in Step 6 the behavior of ESS is estimated by 

evaluating the VRB model of Section 6.1. The power exchanged between ESS and the power 

system obtained from VRB model, Figure 6.2, is represented by the variable 𝑃𝐸𝑆𝑆
𝑡 . The 

power absorbed or supplied by VRB considering the effects of charge controller are saved in 

the variable 𝑃𝐸𝑆𝑆
𝑡  through the hourly cycle; 
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 Step 8: When ESS is incorporated to the UC problem, it is assumed to be the unit with 

highest priority in the system. The power to be supplied by thermal units and wind 

generator (𝐺𝑡) is assigned according to the Equation (6.2.4): 

𝐺𝑡 = 𝐷𝑡 + 𝑃𝐸𝑆𝑆
𝑡                                                                    (6.2.4) 

 Step 9: Now, the UC problem is solved considering the time series (𝐺𝑡) instead of 𝐷𝑡. The 

excess of thermal generation (𝐸𝑇𝐺𝑡) is checked. If there is some excess of electricity, the 

maximum power to be discharged, previously estimated in Step 6 (𝑃𝑑,𝑚𝑎𝑥
0 ), is limited to a 

new value (𝑃𝑑,𝑚𝑎𝑥
𝑓

) and calculated according to Equation (6.2.5): 

𝑃𝑑,𝑚𝑎𝑥
𝑓

= |𝑃𝑑,𝑚𝑎𝑥
0 | − 𝑚𝑎𝑥(𝐸𝑇𝐺𝑡)                                                  (6.2.5) 

This reduction in the maximum discharging power allows reducing the excess of electricity. 

After this process, go to Step 6 assigning the value of 𝑃𝑑,𝑚𝑎𝑥
0  with the value of 𝑃𝑑,𝑚𝑎𝑥

𝑓
 

previously calculated in Equation (6.2.5), i.e., make the assignment 𝑃𝑑,𝑚𝑎𝑥
0  ←  𝑃𝑑,𝑚𝑎𝑥

𝑓
.  

On the contrary, if the excess of power generation is equal to zero and 𝑃𝑑 is different of 

zero, the scheduling process is finished. However, if excess of electricity is higher than 

zero and 𝑃𝑑 →  0, this energy surplus will be absorbed by the dump load 𝐷𝐿𝑡. 

6.2.2.   Solving the Unit Commitment Problem by Priority List Method 

The UC is an optimization problem that consists of minimizing the total generation cost, 

which is expressed by means of the variable (𝑧𝑏) in Equation (6.2.6): 

𝑧𝑏 =∑∑𝑓𝑛
𝑡 + 𝑆𝑈𝐶𝑛

𝑡(1 − 𝑈𝑛
𝑡)𝑈𝑛

𝑡

𝑁

𝑛=1

𝐻

𝑡=1

                                                   (6.2.6) 

This optimization problem is constrained to the general characteristics of thermal units that 

have been described in Equations (6.1.2)-(6.1.12) in Section 6.1. Other important constraints 

are related to the spinning reserve and power balance, which are presented in Equation 

(6.2.7) and Equation (6.2.8): 

∑𝑃𝑛
𝑡,𝑚𝑎𝑥𝑈𝑛

𝑡

𝑁

𝑛=1

−∑𝑃𝑛
𝑡𝑈𝑛

𝑡

𝑁

𝑛=1

≥ 𝑆𝑅(𝐷𝑡) +𝑊𝐹𝐸(𝑊𝑡) + 𝐵𝐹𝐸(𝑃𝐸𝑆𝑆
𝑡 )                      (6.2.7) 

∑𝑃𝑛
𝑡𝑈𝑛

𝑡 +𝑊𝑡 + 𝑃𝑏𝑡
𝑡 = 𝐷𝑡 + 𝐷𝐿𝑡

𝑁

𝑛=1

                                                 (6.2.8) 

where 𝑃𝑛
𝑡,𝑚𝑎𝑥 is the maximum power production of unit 𝑛 at time 𝑡, considering the ramp rate 

constraints. 𝑆𝑅 is the spinning reserve, 𝑊𝐹𝐸 is the increment in spinning reserve due to wind 

power forecasting error, and 𝐵𝐹𝐸 is the increment in spinning reserve due to the uncertainty 

in the power to be discharged from ESS.  
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As stated before, the PL method offers a near-optimal solution to the UC problem in a 

reduced computational time. In particular, in cases with a high integration of renewable 

energy sources, where the load to be supplied by thermal generators is low, the PL method 

can provide a reasonable solution, in contrast with other methodologies that have great 

difficulty in finding a feasible solution [210]. However, the PL method consists of several 

steps that allow obtaining a cost-effective and feasible solution to the UC problem. These 

steps are primary unit scheduling, minimum up/down time repair, spinning reserve repair, 

shutdown repair, unit substitution, and the shutdown of the power surplus. Descriptions of 

these steps as presented as follows. 

6.2.2.1.  Primary Unit Scheduling 

In the PL method, all units are committed according to their average production cost (𝐺𝑛), 

which is defined by Equation (5.3.1) and Equation (5.3.2). Meanwhile, an initial 

approximation to the UC problem is obtained by following the next algorithm: 

 Step 1: Built the matrix to save the primary unit scheduling (𝑃𝑈𝑆𝑛
𝑡). This matrix has 𝑁 +  1 

rows and 𝑇 columns; an additional row is added in order to consider the production of the 

wind generation. The values of all the elements in this matrix that correspond to thermal 

units are assumed to be zero; 

 Step 2: Establish the order at which the units will be committed. This is carried out using 

(𝐺𝑛) index presented in Equation (5.3.1); 

 Step 3: Set 𝑡 ←  1; 

 Step 4: According to the PL method of Step 2, the first unit of the list is chosen by set  

𝑛 ←  1; 

 Step 5: Set 𝑃𝑈𝑆𝑛
𝑡  ←  1; 

 Step 6: Check the maximum capacity committed in Step 4 without considering the ramp 

constraints. If the spinning reserve constraint is not fulfilled and 𝑛 ≤  𝑁, set 𝑛 ←  𝑛 +  1 

and go to Step 5; else if 𝑡 ≤  𝑇 set 𝑡 ←  𝑡 +  1, go to Step 4; otherwise, stop. 

6.2.2.2.  Minimum Up/Down Time Repairing 

As described in the previous sections, the initial approximation obtained from the primary 

unit scheduling procedure described before does not satisfy the minimum up/down time 

constraints. For this reason, a repair process has to be introduced. The procedure used in this 

work follows the details explained in Sub-Section 5.3.2, which consider the repair minimum 

up/down time constraint developed in [213]. 

6.2.2.3.  Spinning Reserve Repairing 

The scheduling obtained from the primary unit scheduling and the repair of minimum 

up/down time constraint could not fulfill the spinning reserve requirements.  
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To overcome this problem, more generation is added by the following algorithm:  

 Step 1: For 𝑡 =  1, 2, … , 𝐻, verify the spinning reserve requirements using Equation (6.2.7); 

 Step 2: Create a list with those hours where spinning reserve requirements are not 

fulfilled. The number of elements of this list is represented by the variable 𝐵ℎ; 

 Step 3: If (𝐵ℎ  >  0); create a table with 𝐵ℎ rows and two columns. This table will save the 

units and hours that units should be committed in order to fulfill the spinning reserve 

requirements. In other case; stop; 

 Step 4: The list created in Step 2 is saved in the second column of table created in Step 3; 

 Step 5: For each element of the list created in Step 2, identify the potential units to be 

committed according to the PL method. These units are saved in the first column of the 

table created in Step 3; 

 Step 6: The first two elements (the first element of column one and column two) of the 

table previously filled are selected. Then, the condition of the corresponding unit is 

changed from offline to online; 

 Step 7: As consequence of previous step, i.e., the condition of corresponding unit has 

changed, the repairing of minimum up/down time constraint is carried out in order to 

fulfill these constraints; 

 Step 8: Go to Step 1. 

6.2.2.4.  Shutdown Repairing  

At this stage, it is likely that some units could not be shut down because of the violation of 

the respective condition. To solve this problem, it is necessary to give more time for 

operation to these units so that units fulfill the offline requirements. The repair process used 

in this section is explained as follows: 

 Step 1: For 𝑡 =  1, 2, … , 𝐻, verify the violation of shutdown ramp constraint using  

Equation (6.1.9); 

 Step 2: Create a list with those units at which shutdown ramp constraint is violated and the 

corresponding hours that should be additionally committed in order to fulfill this 

constraint. This list is saved in a table whose first column represents the units and second 

column represents the additional hours that they should be committed; 

 Step 3: If the list is not empty, the first two elements (first element of column one and 

two) of the table previously filled are selected. Then, the condition of the corresponding 

unit is changed from offline to online. In other case, stop; 

 Step 4: As the condition of this unit has changed, the repairing of minimum up/down time 

constraint is carried out in order to fulfill these constraints; 

 Step 5: Go to Step 1. 
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6.2.2.5.  Unit Substitution  

As described in previous sections, during peak hours some units are committed during more 

hours than is required in order to fulfill the minimum up-time constraint. In order to solve 

this problem, the algorithm described in Sub-Section 5.3.5 is integrally carried out in this 

procedure to improve the results of the PL process.  

6.2.2.6.  Shutdown Excess of Committed Capacity 

The repair of minimum up-/down-time constraints produces an excess of spinning reserve 

which increases the total operation cost. In this procedure, this excess of committed capacity 

is found and shut down to reduce operating costs. This is carried out by applying the 

algorithm described next: 

 Step 1: For 𝑡 =  1, 2, … , 𝐻, verify the excess of spinning reserve using Equation (6.2.7); 

 Step 2: Create a list with those hours with excess of spinning reserve. The number of 

elements of this list is represented by the variable 𝐽ℎ; 

 Step 3: Set 𝑗ℎ  ←  1; 

 Step 4: Considering the element 𝑗ℎ in the list created in Step 2, the most expensive unit is 

recognized and chosen as candidate to be de-committed. If 𝑇𝑜𝑛,𝑛
𝑡  is higher than 𝑀𝑈𝑇𝑛, the 

unit 𝑛 is de-committed; 

 Step 5: As consequence of the Step 4, the unit scheduling is changed, so that the minimum 

up/down time constraint is repaired; 

 Step 6: Considering the scheduling obtained from Step 5, start/shutdown ramp constraints 

and spinning reserve are verified through Equation (6.1.9) and Equation (6.2.8), 

respectively. If at least one constraint is violated, the condition of the corresponding 

element is changed from 0 to 1; 

 Step 7: If (𝑗ℎ  <  𝐽ℎ), set 𝑗ℎ  ←  𝑗ℎ  +  1 and go to Step 4; else, stop. 

6.3. Case Study and Results 

The strategy proposed for the management of an ESS is illustrated by analyzing an insular 

power system of five diesel units, whose characteristics are presented in Table 6.1. These 

characteristics were obtained by using information provided by the manufacturers, although 

other costs, such as starting-up costs, have not been considered. Moreover, start-up and shut-

down ramp rates and operating ramp rates have not been taken into account. Thus, it is 

assumed that these generators can deal with sudden changes in the load to be supplied.  

For all generators, minimum up/down times were assumed to be equal to 1h. The time 

horizon of the scheduling process is 168h 𝐻 = 168h corresponding to one week. 
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Table 6.1. Characteristic of thermal units. 

𝑛 𝑃𝑛
𝑚𝑖𝑛 (kW) 𝑃𝑛

𝑚𝑎𝑥 (kW) 𝑎𝑛 (L/h) 𝑏𝑛 (L/h) 𝑐𝑛 (L/kW2h) 

1 3150.00 6300 101.95 0.0868 0.000001 

2 528.00 1056 45.20 0.1699 0.000040 

3 482.50 965 13.10 0.2555 -0.000009 

4 600.00 1200 38.80 0.1995 0.000030 

5 640.00 1280 53.10 0.1981 0.000020 
 

 

The wind power forecast is presented in Figure 6.6, while a forecasting error of 15% was 

assumed. The spinning reserve requirements were assumed to be 10% (𝑆𝑅 =  0.1). The ESS is 

composed of a power inverter of 2000kW, and a VRB of 2000kW/8000kWh. The charge 

controller is settled to maintain SOC between 15% and 90% (𝑆𝑂𝐶𝑚𝑖𝑛  =  0.15 and  

𝑆𝑂𝐶𝑚𝑎𝑥  =  0.9), and the efficiency of VRB was assumed to be equal to 80% during charge and 

discharge processes (𝜂𝑏  =  0.8). The initial SOC of the VRB was assumed 15%. The increment 

in the spinning reserve, as a result of the wind power forecasting error (𝑊𝐹𝐸) and 

uncertainty in the power obtained from ESS (𝐵𝐹𝐸) was assumed to be equal to the 

forecasting error. Figure 6.7 shows the power interchange (𝑃𝐸𝑆𝑆
𝑡 ) between the ESS and the 

insular power system, while Figure 6.8 shows the SOC of the VRB. On the one hand, it is 

possible to observe how the power available from the curtailed wind power is used to charge 

the VRB, and how the charge controller limits the SOC to 90% by reducing the charge power, 

specifically between 𝑡 =  147h and 𝑡 =  165h. On the other hand, it is possible to see how 

the proposed methodology controls the discharging process by adjusting the discharging 

power to a fixed value. Something relevant happens between 𝑡 =  77h and 𝑡 =  143h, where 

the VRB is discharged. However, the power interchanged with the system is almost zero 

(𝑃𝐸𝑆𝑆
𝑡  →  0), and this loss of power is a result of the low efficiency of the power inverter at 

this load. Figure 6.9 shows the load to be supplied by the thermal units and the wind 

generator when the ESS is incorporated. It is possible to see how the controlled discharge of 

the VRB by means of a uniform discharging power reduces the energy demand, particularly 

during the second and third days of the schedule under study. 

Tables 6.2 and Table 6.3 show the power production of the thermal units and the wind 

generators during day 2. In these tables it is possible to see how the incorporation of the ESS 

reduces the power to be supplied by the thermal units, while it improves the accommodation 

of wind power generation. Those generators removed from the scheduling owing to the 

operation of the ESS are presented in bold. Over the scheduling horizon, fuel consumption 

without incorporating the ESS is 115,755.80 liters, while the incorporation of the ESS reduces 

this value to 113,784.30 liters, which represents a fuel saving of 1971.50 liters, about 2%. 

Moreover, curtailed wind power without incorporating the ESS is 99,620.70kWh, while after 

integration of the ESS, wind power curtailment is reduced to 79,340.90kWh. This represents 

an improvement in the wind power use of about 20%, which is significant.  
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The proposed approach was implemented in MATLAB programming language, using a standard 

PC with an i7-3630QM CPU at 2.40GHz, 8GB of memory and 64-bit operating system. The 

computational time required to carry out this scheduling was only about four minutes. 

  

Figure 6.6. Hourly aggregated wind power 

generations. 
Figure 6.7. Power from/to ESS under study. 

 

 

Figure 6.8. State of charge behavior of ESS under study. 

 

Figure 6.9. Load to be supplied by thermal and wind units.     
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Table 6.2. Unit scheduling of day 2 without incorporating ESS (MW). 

𝑛 
Time (h) 

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

1 3.15 3.24 3.15 3.15 3.15 3.15 3.15 3.15 3.28 5.39 5.21 5.85 5.45 6.30 6.08 5.84 6.22 5.43 5.55 5.50 5.20 4.78 5.30 5.26 

2 0 0 0 0 0 0 0 0 0 0.53 0.53 0.53 0.53 0.60 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0 

3 0 0 0 0 0 0 0 0 0 0 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0 0 0.48 0.48 0 0.48 0 

4 0 0 0 0 0 0 0 0 0 0 0 0.60 0 0.60 0.60 0.60 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

𝑊𝑡 3.02 2.38 2.16 2.00 2.04 2.18 2.75 3.40 4.15 2.29 2.58 1.43 2.58 1.14 1.14 1.00 1.00 2.29 2.15 1.72 2.86 3.72 1.86 1.86 
2.00 

 

Table 6.3. Unit scheduling of day 2 incorporating ESS (MW). 

𝑛 
Time (h) 

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

1 3.15 3.24 3.15 3.15 3.15 3.15 3.15 3.15 3.15 5.03 5.33 6.09 5.52 6.00 5.72 6.08 5.85 5.06 5.19 5. 62 5.31 4.42 5.42 5.26 

2 0 0 0 0 0 0 0 0 0 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0 

3 0 0 0 0 0 0 0 0 0 0 0 0.48 0 0.48 0.48 0.48 0.48 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0.60 0.60 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

𝑊𝑡 3.23 2.38 2.57 3.04 3.57 3.20 3.18 3.54 3.91 2.29 2.58 1.43 2.58 1.14 1.14 1.00 1.00 2.29 2.15 1.72 2.86 3.72 1.86 1.86 
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Chapter 7 

Conclusions 

7.1. Main Conclusions 

This section shows the main conclusions arising from this thesis, which are fourfold:  

 A new hybrid evolutionary-adaptive methodology, called HEA, was proposed in this work 

for forecasting electricity market prices in the short-term. The HEA methodology results 

from the innovative joint characteristics of WT (bringing a filtering effect), EPSO (bringing 

evolutionary optimization) and ANFIS (bringing an adaptive architecture), considering also 

MI in the selection of the best input data. For a fair and clear comparison, identical test 

days/weeks used to test other methods were considered, but without exogenous variables. 

The application of the proposed HEA methodology was demonstrated to be accurate and 

effective, helping to reduce the uncertainty associated with market prices. The results for 

the Spanish and PJM markets showed the superiority of the HEA methodology, regarding 

both average MAPE and error variance criterions. Even if each day/week is analyzed per se 

the results are always better. The low computational burden was also confirmed, providing 

168h electricity market prices forecast results in less than 40 seconds. Hence, it can be 

concluded that the proposed methodology is proficient, taking into account results 

previously reported in the literature, with the best trade-off between computation time 

and average MAPE. Furthermore, HEA methodology has been applied to forecast the 

behavior of wind power, tested for a short-term horizon (3h-ahead with 15-minute 

intervals) in the Portuguese system. For a fair and clear comparative study, identical test 

cases used by other methodologies were considered, also without exogenous variables. The 

application of the proposed HEA methodology was demonstrated to be accurate and 

effective, helping to reduce the uncertainty associated with wind power. The average 

MAPE value was only 3.75% for an average error variance of 0.0013 and a NRMSE of 2.66%. 

In addition, the low computational burden is evidenced in reality, providing wind power 

forecast results in less than 40 seconds per iteration. Hence, the proposed HEA 

methodology presents the best trade-off between computational time and accuracy, which 

is crucial for real-life and real-time applications. 

 A novel methodology for solving an ED problem incorporating the uncertainty of wind 

power generation and generator reliability was presented. In this approach, the forecasting 

error of wind power generation is modeled as discretized beta PDF, which allows extreme 

conditions to be considered with their corresponding probabilities. Another important 

characteristic of the proposed methodology is that the power production of each unit at 
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the previous time instant is incorporated by means of simplified sampling of the discretized 

PDF of power generation at this time-step, which allows efficient treatment of the 

problem. Finally, failure events of each unit are incorporated through the calculation of 

joint PDF of power production and failure event, while ENS is probabilistically described 

through the convolution between the PDF of ENS related to wind power forecasting error 

and unit failure. The proposed methodology was illustrated through the analysis of two 

power systems of 5 and 10 units located in islands, and the results were compared with 

those obtained from MCS methodology. From this comparison it is possible to conclude that 

the proposed methodology can reasonably describe the PDF of wind power generation, 

thermal power generation, ENS, and generation cost when generator reliability is not taken 

into account.  

 A novel methodology for solving the UC problem to be applied in those systems with a high 

integration of renewable energy sources was presented. The proposed methodology 

consists of the generation of some representative scenarios, which are selected considering 

the auto-correlated nature of wind power production, its hourly profile and its forecasting 

error. The probability of occurrence of each scenario is then estimated by solving the 

deterministic UC problem for each scenario previously generated. Finally, according to a 

determined probability level (𝛼), those hours with a probability of occurrence equal to or 

higher than 𝛼 are selected and the minimum up/down time repair is applied in order to 

obtain a feasible solution. The capabilities and performance of the proposed methodology 

were illustrated through the analysis of a case study applied in an insular power system, 

where the spinning reserve requirements were probabilistically verified. 

 Finally, a new control strategy to be used in the weekly scheduling of insular power 

systems with ESS was presented. The methodology proposed incorporated the effects of 

the most relevant elements such as thermal generators, wind power generation, power 

converter, charge controller and VRB. The proposed methodology consisted of two major 

steps: in the first step, the UC problem is solved without taking into account the ESS, and 

from this procedure the total energy available to charge the ESS is estimated; in the 

second step, using the estimated energy available obtained in the first step, the ESS is 

incorporated into the UC problem. The effectiveness of the proposed methodology was 

illustrated by means of the scheduling of a 5-unit system located in an insular system 

during one week. In comparison with the case without an ESS, fuel savings of 2% (i.e., from 

115,755.8 liters to 113,784.3 liters) could be reached from the integration of the ESS only 

in a single day of results, while the accommodation of wind power generation could be 

improved by 20% (from 79,340.9kWh to 99,960.7kWh), which was significant, for a CPU 

time of only four minutes. 
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7.2. Guidelines for Future Contributions 

Some worthwhile perspectives exist for future development and research, namely: 

 The study of new innovative techniques and their combination to forecast the electricity 

market prices and wind power forecasting with robustness and less average error, providing 

accurate results in the electrical industry, i.e., all electricity market players. 

 The study of new integrating strategies combining more renewable integration, i.e., a 

combination of solar and wind power, or solar and hydro, wind and hydro, or the 

combination of them all, proposing new market strategies, and also the same strategy will 

enable greater storage capacity (combination of hydro and batteries storage) applied in 

larger systems. 

 The study of new methodologies applying the forecasting of residual demand curves 

considering a dominant market player, risk control and stochastic programming problems in 

the short-term, showing the benefits reached with its application in comparison with 

already available methodologies. 

 The application of new management strategies in the electricity industry that are able to 

reduce uncertainty, increase profits and increase the robustness and flexibility of the 

electrical framework. 

7.3. Research Contributions Resulting from this Work 
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