4,888 research outputs found

    Low-parametric Induced Current-Magnetic Resonance Electrical Impedance Tomography for quantitative conductivity estimation of brain tissues using a priori information: a simulation study

    Get PDF
    Accurate estimation of the human head conductivity is important for the diagnosis and therapy of brain diseases. Induced Current - Magnetic Resonance Electrical Impedance Tomography (IC-MREIT) is a recently developed non-invasive technique for conductivity estimation. This paper presents a formulation where a low number of material parameters need to be estimated, starting from MR eddy-current field maps. We use a parameterized frequency dependent 4-Cole-Cole material model, an efficient independent impedance method for eddy-current calculations and a priori information through the use of voxel models. The proposed procedure circumvents the ill-posedness of traditional IC-MREIT and computational efficiency is obtained by using an efficient forward eddy-current solver

    Assessing the Viability of Complex Electrical Impedance Tomography (EIT) with a Spatially Distributed Sensor Array for Imaging of River Bed Morphology: a Proof of Concept (Study)

    Get PDF
    This report was produced as part of a NERC funded ‘Connect A’ project to establish a new collaborative partnership between the University of Worcester (UW) and Q-par Angus Ltd. The project aim was to assess the potential of using complex Electrical Impedance Tomography (EIT) to image river bed morphology. An assessment of the viability of sensors inserted vertically into the channel margins to provide real-time or near real-time monitoring of bed morphology is reported. Funding has enabled UW to carry out a literature review of the use of EIT and existing methods used for river bed surveys, and outline the requirements of potential end-users. Q-par Angus has led technical developments and assessed the viability of EIT for this purpose. EIT is one of a suite of tomographic imaging techniques and has already been used as an imaging tool for medical analysis, industrial processing and geophysical site survey work. The method uses electrodes placed on the margins or boundary of the entity being imaged, and a current is applied to some and measured on the remaining ones. Tomographic reconstruction uses algorithms to estimate the distribution of conductivity within the object and produce an image of this distribution from impedance measurements. The advantages of the use of EIT lie with the inherent simplicity, low cost and portability of the hardware, the high speed of data acquisition for real-time or near real-time monitoring, robust sensors, and the object being monitored is done so in a non-invasive manner. The need for sophisticated image reconstruction algorithms, and providing images with adequate spatial resolution are key challenges. A literature review of the use of EIT suggests that to date, despite its many other applications, to the best of our knowledge only one study has utilised EIT for river survey work (Sambuelli et al 2002). The Sambuelli (2002) study supported the notion that EIT may provide an innovative way of describing river bed morphology in a cost effective way. However this study used an invasive sensor array, and therefore the potential for using EIT in a non-invasive way in a river environment is still to be tested. A review of existing methods to monitor river bed morphology indicates that a plethora of techniques have been applied by a range of disciplines including fluvial geomorphology, ecology and engineering. However, none provide non-invasive, low costs assessments in real-time or near real-time. Therefore, EIT has the potential to meet the requirements of end users that no existing technique can accomplish. Work led by Q-par Angus Ltd. has assessed the technical requirements of the proposed approach, including probe design and deployment, sensor array parameters, data acquisition, image reconstruction and test procedure. Consequently, the success of this collaboration, literature review, identification of the proposed approach and potential applications of this technique have encouraged the authors to seek further funding to test, develop and market this approach through the development of a new environmental sensor

    Guidelines for the recording and evaluation of pharmaco-EEG data in man: the International Pharmaco-EEG Society (IPEG)

    Get PDF
    The International Pharmaco-EEG Society (IPEG) presents updated guidelines summarising the requirements for the recording and computerised evaluation of pharmaco-EEG data in man. Since the publication of the first pharmaco-EEG guidelines in 1982, technical and data processing methods have advanced steadily, thus enhancing data quality and expanding the palette of tools available to investigate the action of drugs on the central nervous system (CNS), determine the pharmacokinetic and pharmacodynamic properties of novel therapeutics and evaluate the CNS penetration or toxicity of compounds. However, a review of the literature reveals inconsistent operating procedures from one study to another. While this fact does not invalidate results per se, the lack of standardisation constitutes a regrettable shortcoming, especially in the context of drug development programmes. Moreover, this shortcoming hampers reliable comparisons between outcomes of studies from different laboratories and hence also prevents pooling of data which is a requirement for sufficiently powering the validation of novel analytical algorithms and EEG-based biomarkers. The present updated guidelines reflect the consensus of a global panel of EEG experts and are intended to assist investigators using pharmaco-EEG in clinical research, by providing clear and concise recommendations and thereby enabling standardisation of methodology and facilitating comparability of data across laboratories

    Absolute electrical impedance tomography (aEIT) guided ventilation therapy in critical care patients: simulations and future trends

    Get PDF
    Thoracic electrical impedance tomography (EIT) is a noninvasive, radiation-free monitoring technique whose aim is to reconstruct a cross-sectional image of the internal spatial distribution of conductivity from electrical measurements made by injecting small alternating currents via an electrode array placed on the surface of the thorax. The purpose of this paper is to discuss the fundamentals of EIT and demonstrate the principles of mechanical ventilation, lung recruitment, and EIT imaging on a comprehensive physiological model, which combines a model of respiratory mechanics, a model of the human lung absolute resistivity as a function of air content, and a 2-D finite-element mesh of the thorax to simulate EIT image reconstruction during mechanical ventilation. The overall model gives a good understanding of respiratory physiology and EIT monitoring techniques in mechanically ventilated patients. The model proposed here was able to reproduce consistent images of ventilation distribution in simulated acutely injured and collapsed lung conditions. A new advisory system architecture integrating a previously developed data-driven physiological model for continuous and noninvasive predictions of blood gas parameters with the regional lung function data/information generated from absolute EIT (aEIT) is proposed for monitoring and ventilator therapy management of critical care patients

    A Versatile and Reproducible Multi-Frequency Electrical Impedance Tomography System

    Get PDF
    A highly versatile Electrical Impedance Tomography (EIT) system, nicknamed the ScouseTom, has been developed. The system allows control over current amplitude, frequency, number of electrodes, injection protocol and data processing. Current is injected using a Keithley 6221 current source, and voltages are recorded with a 24-bit EEG system with minimum bandwidth of 3.2 kHz. Custom PCBs interface with a PC to control the measurement process, electrode addressing and triggering of external stimuli. The performance of the system was characterised using resistor phantoms to represent human scalp recordings, with an SNR of 77.5 dB, stable across a four hour recording and 20 Hz to 20 kHz. In studies of both haeomorrhage using scalp electrodes, and evoked activity using epicortical electrode mats in rats, it was possible to reconstruct images matching established literature at known areas of onset. Data collected using scalp electrode in humans matched known tissue impedance spectra and was stable over frequency. The experimental procedure is software controlled and is readily adaptable to new paradigms. Where possible, commercial or open-source components were used, to minimise the complexity in reproduction. The hardware designs and software for the system have been released under an open source licence, encouraging contributions and allowing for rapid replication

    Techniques for imaging small impedance changes in the human head due to neuronal depolarisation

    Get PDF
    A new imaging modality is being developed, which may be capable of imaging small impedance changes in the human head due to neuronal depolarization. One way to do this would be by imaging the impedance changes associated with ion channels opening in neuronal membranes in the brain during activity. The results of previous modelling and experimental studies indicated that impedance changes between 0.6%and 1.7% locally in brain grey matter when recorded at DC. This reduces by a further of 10% if measured at the surface of the head, due to distance and the effect of the resistive skull. In principle, this could be measured using Electrical Impedance Tomography (ElT) but it is close to its threshold of detectability. With the inherent limitation in the use of electrodes, this work proposed two new schemes. The first is a magnetic measurement scheme based on recording the magnetic field with Superconducting Quantum Interference Devices (SQUIDs), used in Magnetoencephalography (MEG) as a result of a non-invasive injection of current into the head. This scheme assumes that the skull does not attenuate the magnetic field. The second scheme takes into consideration that the human skull is irregular in shape, with less and varying conductivity as compared to other head tissues. Therefore, a key issue is to know through which electrodes current can be injected in order to obtain high percentage changes in surface potential when there is local conductivity change in the head. This model will enable the prediction of the current density distribution at specific regions in the brain with respect to the varying skull and local conductivities. In the magnetic study, the head was modelled as concentric spheres, and realistic head shapes to mimic the scalp, skull, Cerebrospinal Auid (CSF) and brain using the Finite Element Method (FEM). An impedance change of 1 % in a 2cm-radius spherical volume depicting the physiological change in the brain was modelled as the region of depolarisation. The magnetic field, 1 cm away from the scalp, was estimated on injecting a constant current of 100 µA into the head from diametrically opposed electrodes. However, in the second scheme, only the realistic FEM of the head was used, which included a specific region of interest; the primary visual cortex (V1). The simulated physiological change was the variation in conductivity of V1 when neurons were assumed to be firing during a visual evoked response. A near DC current of 100 µA was driven through possible pairs of 31 electrodes using ElT techniques. For a fixed skull conductivity, the resulting surface potentials were calculated when the whole head remained unperturbed, or when the conductivity of V1 changed by 0.6%, 1 %, and 1.6%. The results of the magnetic measurement predicted that standing magnetic field was about 10pT and the field changed by about 3fT (0.03%) on depolarization. For the second scheme, the greatest mean current density through V1 was 0.020 ± 0.005 µAmm-2, and occurred with injection through two electrodes positioned near the occipital cortex. The corresponding maximum change in potential from baseline was 0.02%. Saline tank experiments confirmed the accuracy of the estimated standing potentials. As the noise density in a typical MEG system in the frequency band is about 7fT/√Hz, it places the change at the limit of detectability due to low signal to noise ratio. This is therefore similar to electrical recording, as in conventional ElT systems, but there may be advantages to MEG in that the magnetic field direcdy traverses the skull and instrumentation errors from the electrode-skin interface will be obviated. This has enabled the estimation of electrode positions most likely to permit recording of changes in human experiments and suggests that the changes, although tiny, may just be discernible from noise

    A portable EIT system for emergency medical care

    Get PDF
    Electrical Impedance Tomography (EIT) is a medical imaging technique in which images of tissue conductivity within a body can be inferred from surface electrode measurements. The main goal of this study is to develop a portable EIT system incorporating an optimized electrode layout to detect intracranial haematomas for use in emergency care. A growing haematoma can cause severe and even permanent damage to the delicate tissue of the brain, morbidity, and eventual death of the patient. No capability is at present available for the diagnosis of haematomas pre-hospitalisation or by first-responders. The lack of this crucial information can lead to bad decisions on patient management, and in particular, where to send the patient. Blood has a high electrical conductivity contrast relative to other cranial tissue and can be detected and monitored using electrical impedance methods. EIT is a non-invasive, low-cost monitoring alternative to other imaging modalities, and has the potential to detect bleeding and to localize the approximate bleeding site. A device of this nature would reduce treatment delays, save on costs and waste, and most significantly, positively impact patient outcomes. The first step was a numerical simulation study on FE models. The full array and the hemi-array electrode layouts were modelled and the anomalies were simulated in different positions with different sizes. The results were obtained using TSVD and WMNM reconstruction methods by COMSOL linked with MATLAB. The simulated anomalies were detected for all the positions using both layouts; however those from the full array were in general superior to the hemi-array. In order to perform realistic experiments, a prototype EIT system was constructed in the laboratory. The constructed EIT has 16 channels and operates in the frequency range of 10 kHz to 100 kHz with a temporal resolution of 100 frames per second and high level of accuracy of 93.5 %. The minimum number of 8 electrodes was chosen in this study for emergency care. Minimizing the number of electrodes speeds up the electrode setup process and avoids the need to move the patient s head in emergency care. In the second part of this study, phantom experiments were performed to find an optimised electrode layout for emergency care. The full array and the hemi-array were investigated using phantom experiments. As expected, the full array layout had the best performance in general; however, the performance of the hemi-array layout was very poor. Thus a novel optimised electrode layout (semi-array) for emergency care was proposed and evaluated in phantom experiments. For the hemi-array and the semi-array layouts, measurement sensitivity depends strongly on the anomaly location since the electrodes are not placed all over the head. The HA layout performed very badly, with the best radial localization error of 0.8100 mm, compared to the SA layout with the worst error of 0.2486 mm. Some reconstructed anomalies located far from the electrodes in the posterior region were almost invisible or erroneous for the hemi-array layout; however, it is enhanced by using the semi-array layout. Finally, in vitro experiments were conducted on ovine models. In most of the experiments carried out by other researchers, since the location of the simulated anomalies was not known and the simulated blood was normally injected into the body or the head, localization of the anomalies was not considered and the quantity of the injected blood was investigated solely. In our new method of experiment, the position of the anomalies was known a priori and thus could be compared accurately to the EIT results. The full array and the semi-array layouts were compared in terms of detection, localisation and size estimation of haematomas. As expected, the full array layout was found to be more robust than the semi-array layout with the best mean value of the localization error of 0.0564 mm and the worst QI error of around 30%. Using a minimum number of electrodes in an optimised layout is always desirable in clinical applications. The semi-array 8-electrode layout prevents unnecessary movements and the electrode connections to the head would be very quick in emergency care. Although the semi-array 8-electrode layout reduced the sensitivity of the measurements, the findings from the experiments indicated its potential to detect and monitor haematomas and probably extend its application for emergency applications where the required accuracy is not critical

    Investigation of potential artefactual changes in measurements of impedance changes during evoked activity: implications to electrical impedance tomography of brain function.

    Get PDF
    Electrical impedance tomography (EIT) could provide images of fast neural activity in the adult human brain with a resolution of 1 ms and 1 mm by imaging impedance changes which occur as ion channels open during neuronal depolarization. The largest changes occur at dc and decrease rapidly over 100 Hz. Evoked potentials occur in this bandwidth and may cause artefactual apparent impedance changes if altered by the impedance measuring current. These were characterized during the compound action potential in the walking leg nerves of Cancer pagurus, placed on Ag/AgCl hook electrodes, to identify how to avoid artefactual changes during brain EIT. Artefact-free impedance changes (δZ) decreased with frequency from -0.045 ± 0.01% at 225 Hz to -0.02 ± 0.01% at 1025 Hz (mean ± 1 SD, n = 24 in 12 nerves) which matched changes predicted by a finite element model. Artefactual δZ reached c.300% and 50% of the genuine membrane impedance change at 225 Hz and 600 Hz respectively but decreased with frequency of the applied current and was negligible above 1 kHz. The proportional amplitude (δZ (%)) of the artefact did not vary significantly with the amplitude of injected current of 5-20 µA pp. but decreased significantly from -0.09 ± 0.024 to -0.03 ± 0.023% with phase of 0 to 45°. For fast neural EIT of evoked activity in the brain, artefacts may arise with applied current of >10 µA. Independence of δZ with respect to phase but not the amplitude of applied current controls for them; they can be minimized by randomizing the phase of the applied measuring current and excluded by recording at >1 kHz
    • …
    corecore