10 research outputs found

    Frequency Recognition in SSVEP-based BCI using Multiset Canonical Correlation Analysis

    Full text link
    Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). Despite its efficiency, a potential problem is that using pre-constructed sine-cosine waves as the required reference signals in the CCA method often does not result in the optimal recognition accuracy due to their lack of features from the real EEG data. To address this problem, this study proposes a novel method based on multiset canonical correlation analysis (MsetCCA) to optimize the reference signals used in the CCA method for SSVEP frequency recognition. The MsetCCA method learns multiple linear transforms that implement joint spatial filtering to maximize the overall correlation among canonical variates, and hence extracts SSVEP common features from multiple sets of EEG data recorded at the same stimulus frequency. The optimized reference signals are formed by combination of the common features and completely based on training data. Experimental study with EEG data from ten healthy subjects demonstrates that the MsetCCA method improves the recognition accuracy of SSVEP frequency in comparison with the CCA method and other two competing methods (multiway CCA (MwayCCA) and phase constrained CCA (PCCA)), especially for a small number of channels and a short time window length. The superiority indicates that the proposed MsetCCA method is a new promising candidate for frequency recognition in SSVEP-based BCIs

    Review of real brain-controlled wheelchairs

    Get PDF
    This paper presents a review of the state of the art regarding wheelchairs driven by a brain-computer interface (BCI). Using a brain-controlled wheelchair (BCW), disabled users could handle a wheelchair through their brain activity, granting autonomy to move through an experimental environment. A classification is established, based on the characteristics of the BCW, such as the type of electroencephalographic (EEG) signal used, the navigation system employed by the wheelchair, the task for the participants, or the metrics used to evaluate the performance. Furthermore, these factors are compared according to the type of signal used, in order to clarify the differences among them. Finally, the trend of current research in this field is discussed, as well as the challenges that should be solved in the future

    Towards Real-World BCI: CCSPNet, A Compact Subject-Independent Motor Imagery Framework

    Full text link
    A conventional subject-dependent (SD) brain-computer interface (BCI) requires a complete data-gathering, training, and calibration phase for each user before it can be used. In recent years, a number of subject-independent (SI) BCIs have been developed. However, there are many problems preventing them from being used in real-world BCI applications. A weaker performance compared to the subject-dependent (SD) approach, and a relatively large model requiring high computational power are the most important ones. Therefore, a potential real-world BCI would greatly benefit from a compact low-power subject-independent BCI framework, ready to be used immediately after the user puts it on. To move towards this goal, we propose a novel subject-independent BCI framework named CCSPNet (Convolutional Common Spatial Pattern Network) trained on the motor imagery (MI) paradigm of a large-scale electroencephalography (EEG) signals database consisting of 21600 trials for 54 subjects performing two-class hand-movement MI tasks. The proposed framework applies a wavelet kernel convolutional neural network (WKCNN) and a temporal convolutional neural network (TCNN) in order to represent and extract the diverse spectral features of EEG signals. The outputs of the convolutional layers go through a common spatial pattern (CSP) algorithm for spatial feature extraction. The number of CSP features is reduced by a dense neural network, and the final class label is determined by a linear discriminative analysis (LDA) classifier. The CCSPNet framework evaluation results show that it is possible to have a low-power compact BCI that achieves both SD and SI performance comparable to complex and computationally expensive.Comment: 15 pages, 6 figures, 6 tables, 1 algorith

    A Decoding Scheme for Incomplete Motor Imagery EEG With Deep Belief Network

    Get PDF
    High accuracy decoding of electroencephalogram (EEG) signal is still a major challenge that can hardly be solved in the design of an effective motor imagery-based brain-computer interface (BCI), especially when the signal contains various extreme artifacts and outliers arose from data loss. The conventional process to avoid such cases is to directly reject the entire severely contaminated EEG segments, which leads to a drawback that the BCI has no decoding results during that certain period. In this study, a novel decoding scheme based on the combination of Lomb-Scargle periodogram (LSP) and deep belief network (DBN) was proposed to recognize the incomplete motor imagery EEG. Particularly, instead of discarding the entire segment, two forms of data removal were adopted to eliminate the EEG portions with extreme artifacts and data loss. The LSP was utilized to steadily extract the power spectral density (PSD) features from the incomplete EEG constructed by the remaining portions. A DBN structure based on the restricted Boltzmann machine (RBM) was exploited and optimized to perform the classification task. Various comparative experiments were conducted and evaluated on simulated signal and real incomplete motor imagery EEG, including the comparison of three PSD extraction methods (fast Fourier transform, Welch and LSP) and two classifiers (DBN and support vector machine, SVM). The results demonstrate that the LSP can estimate relative robust PSD features and the proposed scheme can significantly improve the decoding performance for the incomplete motor imagery EEG. This scheme can provide an alternative decoding solution for the motor imagery EEG contaminated by extreme artifacts and data loss. It can be beneficial to promote the stability, smoothness and maintain consecutive outputs without interruption for a BCI system that is suitable for the online and long-term application

    Diseño de una silla de ruedas autónoma para el desplazamiento en escalera en edificaciones

    Get PDF
    En el mundo existen 1000 millones de personas con algún tipo de discapacidad. En América Latina, existe una marcada desigualdad de las personas con discapacidad, que se evidencia en grandes brechas socioeconómicas que colocan a este grupo de la población en una condición de vulnerabilidad social. De acuerdo a los resultados de la Encuesta Nacional Especializada sobre Discapacidad (ENEDIS), se calcula que en el país 1 millón 575 mil 402 personas presentan alguna discapacidad y representan el 5,2% de la población total del Perú. Esta investigación, se enmarca en el diseño de una silla de ruedas autónoma, que permita a las personas con discapacidad subir y bajar escaleras, tomando en cuenta que una parte importante de edificaciones no cuentan con ascensor, asimismo, este diseño ha tomado en cuenta las dimensiones del paso y contrapaso de las escaleras, establecida en la norma de construcción. Posteriormente, se realizó los cálculos electromecánicos de los diversos componentes y del sistema de control ARDUINO, el cual a través de un Joystick se puede realizar el control. Como resultados tenemos que la potencia requerida es de 0,5 HP el cual se abastece de un acumulador de energía permitiéndole una autonomía de 24,7 km, lo que equivale a 19,8 horas. El control de la silla de ruedas se realizó a través de una tarjeta de control que gobierna el sistema. El costo de la silla de ruedas utilizando los materiales que hay en la región es de S/. 3 313,80

    Evaluation of Switch and Continuous Navigation Paradigms to Command a Brain-Controlled Wheelchair

    Get PDF
    A brain-computer interface (BCI) is a technology allowing patients with severe motor dysfunctions to use their electroencephalographic signals to create a communication channel to control devices. The objective of this paper is to study the feasibility of continuous and switch control modes for a brain-controlled wheelchair (BCW) using sensorimotor rhythms (SMR) modulated through a right-hand motor imagery task. Previous studies, which used a continuous navigation control with SMR, have reported the difficulty of maintaining the motor imagery task for a long time, especially for the forward command. The switch control has been presented as a proposal that may help to solve this issue since this task is only used temporary for either disabling or enabling the movement. Regarding the methodology, 10 of 15 able-bodied users, who had overcome the criterion of 30% error rate in the calibration phase, controlled the BCW using both paradigms. The navigation tasks consisted of a straight path divided in five sections: in three of them the users had to move forward, and in the other two the users had to maintain their position. To assess user performance in the device management, a usability approach was adopted, measuring the factors of effectiveness, efficiency, and satisfaction. Then, variables related to the time employed and commands selected by the user or parameters related to the confusion matrix were applied. In addition, the scores in NASA-TLX and two ad hoc questionnaires were considered to discuss the user experience controlling the wheelchair. Despite the results showed that the best system for a specific user relies on his/her abilities and preferences, the switch control mode obtained better accuracy (0.59 ± 0.17 for continuous and 0.72 ± 0.05 for switch). Furthermore, the switch paradigm can be recommended for the advance sections as with it users could complete the advance sections in less time (42.2 ± 28.7 s for continuous and 15.47 ± 3.43 s for switch), while the continuous mode seems to be better at keeping the wheelchair stopped (42.45 ± 16.01 s for continuous and 24.35 ± 10.94 s for switch)

    Body swarm interface (BOSI) : controlling robotic swarms using human bio-signals

    Get PDF
    Traditionally robots are controlled using devices like joysticks, keyboards, mice and other similar human computer interface (HCI) devices. Although this approach is effective and practical for some cases, it is restrictive only to healthy individuals without disabilities, and it also requires the user to master the device before its usage. It becomes complicated and non-intuitive when multiple robots need to be controlled simultaneously with these traditional devices, as in the case of Human Swarm Interfaces (HSI). This work presents a novel concept of using human bio-signals to control swarms of robots. With this concept there are two major advantages: Firstly, it gives amputees and people with certain disabilities the ability to control robotic swarms, which has previously not been possible. Secondly, it also gives the user a more intuitive interface to control swarms of robots by using gestures, thoughts, and eye movement. We measure different bio-signals from the human body including Electroencephalography (EEG), Electromyography (EMG), Electrooculography (EOG), using off the shelf products. After minimal signal processing, we then decode the intended control action using machine learning techniques like Hidden Markov Models (HMM) and K-Nearest Neighbors (K-NN). We employ formation controllers based on distance and displacement to control the shape and motion of the robotic swarm. Comparison for ground truth for thoughts and gesture classifications are done, and the resulting pipelines are evaluated with both simulations and hardware experiments with swarms of ground robots and aerial vehicles

    Study of non-invasive cognitive tasks and feature extraction techniques for brain-computer interface (BCI) applications

    Get PDF
    A brain-computer interface (BCI) provides an important alternative for disabled people that enables the non-muscular communication pathway among individual thoughts and different assistive appliances. A BCI technology essentially consists of data acquisition, pre-processing, feature extraction, classification and device command. Indeed, despite the valuable and promising achievements already obtained in every component of BCI, the BCI field is still a relatively young research field and there is still much to do in order to make BCI become a mature technology. To mitigate the impediments concerning BCI, the study of cognitive task together with the EEG feature and classification framework have been investigated. There are four distinct experiments have been conducted to determine the optimum solution to those specific issues. In the first experiment, three cognitive tasks namely quick math solving, relaxed and playing games have been investigated. The features have been extracted using power spectral density (PSD), logenergy entropy, and spectral centroid and the extracted feature has been classified through the support vector machine (SVM), K-nearest neighbor (K-NN), and linear discriminant analysis (LDA). In this experiment, the best classification accuracy for single channel and five channel datasets were 86% and 91.66% respectively that have been obtained by the PSD-SVM approach. The wink based facial expressions namely left wink, right wink and no wink have been studied through fast Fourier transform (FFT) and sample range feature and then the extracted features have been classified using SVM, K-NN, and LDA. The best accuracy (98.6%) has been achieved by the sample range-SVM based approach. The eye blinking based facial expression has been investigated following the same methodology as the study of wink based facial expression. Moreover, the peak detection approach has also been employed to compute the number of blinks. The optimum accuracy of 99% has been achieved using the peak detection approach. Additionally, twoclass motor imagery hand movement has been classified using SVM, K-NN, and LDA where the feature has been extracted through PSD, spectral centroid and continuous wavelet transform (CWT). The optimum 74.7% accuracy has been achieved by the PSDSVM approach. Finally, two device command prototypes have been designed to translate the classifier output. One prototype can translate four types of cognitive tasks in terms of 5 watts four different colored bulbs, whereas, another prototype may able to control DC motor utilizing cognitive tasks. This study has delineated the implementation of every BCI component to facilitate the application of brainwave assisted assistive appliances. Finally, this thesis comes to the end by drawing the future direction regarding the current issues of BCI technology and these directions may significantly enhance usability for the implementation of commercial applications not only for the disabled but also for a significant number of healthy users

    Brain-computer interfaces with machine learning : a symbiotic approach

    Get PDF
    corecore