19,730 research outputs found

    Optimal control of ankle joint moment: Toward unsupported standing in paraplegia

    Get PDF
    This paper considers part of the problem of how to provide unsupported standing for paraplegics by feedback control. In this work our overall objective is to stabilize the subject by stimulation only of his ankle joints while the other joints are braced, Here, we investigate the problem of ankle joint moment control. The ankle plantarflexion muscles are first identified with pseudorandom binary sequence (PRBS) signals, periodic sinusoidal signals, and twitches. The muscle is modeled in Hammerstein form as a static recruitment nonlinearity followed by a linear transfer function. A linear-quadratic-Gaussian (LQG)-optimal controller design procedure for ankle joint moment was proposed based on the polynomial equation formulation, The approach was verified by experiments in the special Wobbler apparatus with a neurologically intact subject, and these experimental results are reported. The controller structure is formulated in such a way that there are only two scalar design parameters, each of which has a clear physical interpretation. This facilitates fast controller synthesis and tuning in the laboratory environment. Experimental results show the effects of the controller tuning parameters: the control weighting and the observer response time, which determine closed-loop properties. Using these two parameters the tradeoff between disturbance rejection and measurement noise sensitivity can be straightforwardly balanced while maintaining a desired speed of tracking. The experimentally measured reference tracking, disturbance rejection, and noise sensitivity are good and agree with theoretical expectations

    Project OASIS: The Design of a Signal Detector for the Search for Extraterrestrial Intelligence

    Get PDF
    An 8 million channel spectrum analyzer (MCSA) was designed the meet to meet the needs of a SETI program. The MCSA puts out a very large data base at very high rates. The development of a device which follows the MCSA, is presented

    Changing ideas about others' intentions: updating prior expectations tunes activity in the human motor system

    Get PDF
    Predicting intentions from observing another agent’s behaviours is often thought to depend on motor resonance – i.e., the motor system’s response to a perceived movement by the activation of its stored motor counterpart, but observers might also rely on prior expectations, especially when actions take place in perceptually uncertain situations. Here we assessed motor resonance during an action prediction task using transcranial magnetic stimulation to probe corticospinal excitability (CSE) and report that experimentally-induced updates in observers’ prior expectations modulate CSE when predictions are made under situations of perceptual uncertainty. We show that prior expectations are updated on the basis of both biomechanical and probabilistic prior information and that the magnitude of the CSE modulation observed across participants is explained by the magnitude of change in their prior expectations. These findings provide the first evidence that when observers predict others’ intentions, motor resonance mechanisms adapt to changes in their prior expectations. We propose that this adaptive adjustment might reflect a regulatory control mechanism that shares some similarities with that observed during action selection. Such a mechanism could help arbitrate the competition between biomechanical and probabilistic prior information when appropriate for prediction

    System/observer/controller identification toolbox

    Get PDF
    System Identification is the process of constructing a mathematical model from input and output data for a system under testing, and characterizing the system uncertainties and measurement noises. The mathematical model structure can take various forms depending upon the intended use. The SYSTEM/OBSERVER/CONTROLLER IDENTIFICATION TOOLBOX (SOCIT) is a collection of functions, written in MATLAB language and expressed in M-files, that implements a variety of modern system identification techniques. For an open loop system, the central features of the SOCIT are functions for identification of a system model and its corresponding forward and backward observers directly from input and output data. The system and observers are represented by a discrete model. The identified model and observers may be used for controller design of linear systems as well as identification of modal parameters such as dampings, frequencies, and mode shapes. For a closed-loop system, an observer and its corresponding controller gain directly from input and output data

    Active vibration control techniques for flexible space structures

    Get PDF
    Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted

    Unsymmetric Lanczos model reduction and linear state function observer for flexible structures

    Get PDF
    This report summarizes part of the research work accomplished during the second year of a two-year grant. The research, entitled 'Application of Lanczos Vectors to Control Design of Flexible Structures' concerns various ways to use Lanczos vectors and Krylov vectors to obtain reduced-order mathematical models for use in the dynamic response analyses and in control design studies. This report presents a one-sided, unsymmetric block Lanczos algorithm for model reduction of structural dynamics systems with unsymmetric damping matrix, and a control design procedure based on the theory of linear state function observers to design low-order controllers for flexible structures

    Functional observers for motion control systems

    Get PDF
    This paper presents a novel functional observer for motion control systems to provide higher accuracy and less noise in comparison to existing observers. The observer uses the input current and position information along with the nominal parameters of the plant and can observe the velocity, acceleration and disturbance information of the system. The novelty of the observer is based on its functional structure that can intrinsically estimate and compensate the un-measured inputs (like disturbance acting on the system) using the measured input current. The experimental results of the proposed estimator verifies its success in estimating the velocity, acceleration and disturbance with better precision than other second order observers

    Alternative preview reconstruction

    Get PDF

    Alternative preview reconstruction

    Get PDF
    corecore