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Executive Summary

This report describes the research performed in the period between April

1989 and September 1990, under the NASA Johnson Space Center Grant

NAG 9-347 to Texas A&M University. Parts III and IV of the report de-

scribe the research results and findings of the two major tasks of the project.

Namely, the report details two proposed ,',)ntrol system design techniques

for active vibration control in flexible space structures. Control issues rele-

vant only to flexible-body dynamics are addressed, whereas no attempt has

been made in this study to integrate the flexible and rigid-body spacecraft

dynamics. Both of the proposed approaches revealed encouraging results,

however, further investigation of the interaction of the flexible and rigid-

body dynamics is warranted.
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Project Description



Chapter 1

Overview of the Project

In Part II of this report a brief summary of the structural model used in

this research is presented, along with a statement of the structural control

problem under investigation. Part III of the report presents the design of

an active control law for the rejection of persistent disturbances in large

space structures. The control system design approach is based on a de-

terministic model of the disturbances, with a Model-Based-Compensator

(MBC) structure, optimizing the magnitude of the disturbance that the

structure can tolerate without violating certain predetermined constraints.

In addition to closed-loop stability, the explicit treatment of state, con-

trol and control rate constraints, such as structural displacement, control

actuator effort, and compensator response time guarantees that the final

design will exhibit desired performance characteristics. The technique is

used for the vibration damping of a simple two bay truss structure which is

subjected to persistent disturbances, such as shuttle docking. Preliminary

results indicate that the proposed control system can reject considerable
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CHAPTER 1. OVERVIEW OF THE PROJECT 1-2

persistent disturbances by utilizing most of the available control, while lim-

iting the structural displacements to within desired tolerances. Further

work, however, for incorporating additional design criteria, such as com-

pensator robustness to be traded-off against performance specifications, is

warranted.

In Part IV of the report a dynamic compensator based on the H_-

optimization of the sensitivity transfer function matrix is used to actively

reject the persistent disturbances of a representative model of a flexible

space structure. A variational approach is used to formulate a general

state space solution to the multi-input, multi-output (MIMO) Hoe-optimal

control problem, without eliminating the feedforward terms. This allows

use of the H_-optimal synthesis algorithm on state-space models of struc-

tures which result from model order reduction. Disturbances encountered

in flexible space structures, such as shuttle docking, are the primary inter-

est of this study. Both the high-mode and the reduced-order models of a

cantilevered two-bay truss are developed and are used to demonstrate the

application of the Hoe-optimal approach to flexible space structures. A com-

puter algorithm which iteratively searches for an Hoo-optimal control law is

presented, with some adjustable parameters for matching additional design

specifications. This study shows that the proposed Hoo-optimal control

law has good disturbance rejection capabilities for a wide class of persis-

tent disturbances encountered in flexible space structures. Further studies,

however, on the trade-offs of compensator robustness and the achieved dis-

turbance rejection are warranted.



Part II

Flexible Structure Dynamics

and Structural Control



Chapter 2

Introduction

Future National Aeronautics and Space Administration (NASA) and De-

paxtment of Defense (DOD) space missions will require the availability and

use of active disturbance rejection controllers in order to fulfill the increas-

ingly sophisticated and demanding spacecraft performance requirements.

One such requirement is the accurate pointing and tracking of the pay-

load systems, solar concentrators, etc. Such subsystems, however, will be

subjected to vibrations because of persistent external disturbances and be-

cause of structural disturbances resulting from multi-body flexible/flexible

or rigid/flexible interactions.

If structural damage is to be prevented, the amplitude of structural

vibrations must be controlled to within some prespecified limits. Tradi-

tionally, passive damping has been the primary avenue by which structural

vibrations have been suppressed, with active damping given a secondary

role. Even though it is widely believed that a combined design, optimizing

the passive and active damping of a structure, will probably result in a
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CHAPTER 2. INTRODUCTION 2-2

superior design, it is common practice to assume some amount of passive

structural damping and proceed with the investigation of active damping

techniques.

As the freedom of the designer increases because of the use of active con-

trol techniques, in addition to the traditional problem of vibration damp-

ing issues such as disturbance rejection, pointing and tracking are some of

the problems that could be simultaneously addressed. In designing active

control laws, the designer makes use of mathematical representations of a

structure, usually derived from detailed finite element models. The accu-

racy of these models is extremely important and their limitations must be

well understood by the designer and the user of the resulting active con-

trollers. Accurate structural models may imply more effective controllers,

however, as the accuracy of these models increases, so does the computa-

tional burden required to design an active control law. It is common prac-

tice to represent the infinite dimensional structural models in terms of finite

dimensional approximations. Furthermore, selective retention of the most

important system modes results in further simplifications which approxi-

mately represent the actual structure response up to a certain frequency.

Therefore, satisfaction of certain stability and performance robustness cri-

teria is of utmost importance when designing active control laws for flexible

structures.

There is a vast literature dealing with the design of active control laws

for large space structures which addresses issues such as vibration sup-

pression, pointing and tracking. Atluri and Amos [1] present an excel-

lent overview of the state-of-the-art in large space structure dynamics and
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control as of 1988, while Craig [2] has a more recent literature survey on

structural system modeling, identification and analyis. The majority of the

active control techniques reported in the literature are based on the stochas-

tic representation of external disturbances and the resulting control laws

are products of the stochastic linear quadratic regulator problem. The next

chapter presents a brief description of the modeling approach used in the

mathematical representation of the structure under consideration, which is

representative of a wide class of structures under consideration for future

space missions. In addition, in the final paragraph of this chapter, the

objectives of the control problem addressed in this study are defined.



Chapter 3

Modeling of a Flexible

Structure and Control

Problem Definition

The dynamics of a structure are accurately represented by one or more

partial differential equations, which are usually discretized using the finite

element technique. This results in a finite dimensional representation of a

structure suitable for digital computer simulations. In obtaining this high

accuracy, however, finite element modeling results in very high order models

which are virtually useless for control system design. This is primarily

because of the extreme computational resources required and also because

of the increased numerical inaccuracies introduced when dealing with very

large scale matrix computations, such as solutions to the algebraic Riccati

equation.

The cantilevered two-bay truss shown in Figure 1 is used to illustrate
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CHAPTER 3. FLEXIBLE STRUCTURE MODELING 3-2

the proposed nonlinear optimization approach for control system design.

Such a truss could be considered part of a larger structure, e.g. the Space

Station Freedom, and used in analyzing the pointing performance, for ex-

ample, of a payload instrument. The position sensors on the truss are lo-

cated at points 1,2,3 and 4. The control forces required to damp the truss

vibrations are co-located with the sensors, and are denoted by ul(t), u2(t),

u3(t) and u,(t), respectively. An eight-mode (sixteenth order) model and a

two-mode (fourth order) reduced order model is considered, based on the

work presented in reference [3]. The truss material has an assumed weight

density of 0.1 _ and modulus of elasticity 10 r psi. The cross-sectional area

of the structural members and their lumped masses are given in reference

[3]. The maximum force that could be applied by any one of the force

actuators along the Y-axis is limited to q-100 lb I. The first eight modes of

the truss considered in this study have modal frequencies: 3.1416, 10.3857,

22.7040, 29.5437, 31.1894, 32.8702, 55.8220, and 58.7790 ;_,r_d respectively.

The governing equations of motion for the truss model can be written as:

mid(t) + c/-(t) + kr(t) = bu(t) + gd(t) (3.1)

where r(t),u(t) and d(t) denote the truss physical coordinates, the control

forces and a scalar external persistent disturbance, respectively. The mass

m, damping c, and stiffness k are (8 x 8)-dimensional matrices, whereas

the control input distribution matrix b and the disturbance distribution

matrix g are (8 x 4) and (8 x 1)-dimensional, respectively. A state space

representation of the structure is given as follows:

x(t) = k (t) + flu(t) + (3.2)
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where,

y(t) = (_(t)

 =[mlcmlk]Imlb]I 0 0

(_--[ -m-lg]0 , (_ = [0 bT], _(t)= [f'(t)lr(t) (3.3)

and where A, B,G, and (_ axe constant matrices with dimensions (16 x

16), (16 x 4), (16 x 1) and (4 x 16), respectively, and where y(t) is the

measured output vector. Numerical data for the above matrices axe given

in Table 3.1

Following extensive examination of the structural modes, it is concluded

that the two-bay truss system is most controllable and observable from the

first two modes [3]. Thus, the above eight-mode model can be reduced to

a lower order model to facilitate the numerical computations. This can bc

done by first defining the transformation operator T as follows:

r(t) = Tv/(t) (3.4)

where T defines a coordinate transformation from the modal coordinates

v/(t) to the physical coordinates r(t), given by

w2mT : kT (3.5)

Substitution of equation (3.4) into equations (3.2) leads to the following

representation:

_(t) : h_(_) + Bu(_)+ dd(_)

y(t) = (_(t)

(3.6)
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Figure 3.1: The AFWAL Two-Bay Truss Mounted on a Rigid Platform.
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where

The system of equations (3.6) can now be written in the standard singularly

perturbed form, as follows:

All.1 l[.r  ,][ol] [ol]- + u(0+ d(0,
e/c),(t) A2, A22 x/(t) -B2 G2

where (An, B1, G1, C1) are the system matrices corresponding to the first

two modes and e is a small perturbation number. By formally setting the

perturbation parameter e to zero, a two-mode reduced-order model can be

obtained as follows:

xr(t) = Arx_(t) + B_u(t) + Grd(t)

y(t) - Crx_(t) + Dru(t) +Erd(t)

where x,(t) is the reduced-order model state vector, and

= , = C2A_' B2

(3.9)

(3.10)

The reduced-order model state xr(t), the input u(t) and the measured out-

put y(t) are 4-dimensional vectors. The matrices A_, B_, C_, and Dr are

\
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(4 x 4)-dimensional, the vectors Gr and Er are 4-dimensional, and the dis-

turbance d(t) is assumed scalar. Notice that the input, the measured out-

put, and the disturbance vectors are preserved for both the eight-mode and

the two-mode reduced-order models. The numerical values of the reduced-

order model matrices are given in Table 3.2.

To enable a flexible space structure, such as the truss model presented in

this section, to perform a desired mission, the encountered structural vibra-

tions must be effectively controlled, among others. The main cause of such

structural vibrations is the ever present extraneous disturbances and the

inability of the various passive control mechanisms to minimize their effects

on the structure. Additionally, for most space structures such external dis-

turbances are usually neither precisely known nor resemble white Gaussian

noise. Rather, they belong to the class of finite energy signals. The con-

trol objective for this work is to reject the maximum possible magnitude of

the persistent disturbance d(t) and to damp the resulting vibrations within

the shortest possible time period, though time-optimal response is not an

explicit design specification of the proposed optimization. Among the per-

formance criteria satisfied by the resulting control law are the maximum

controller bandwidth, the maximum control effort used, and the maximum

deformation of the structure. Other than closed-loop stability, however,

the single most important requirement that the control law must satisfy

is the ability to perform the desired tasks using only the available control

effort and without exceeding the maximum deformation limits at certain

locations on the structure.
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TABLE 3.1 The System Matrices for the 8-Mode Structural

Model

A (16 × 16 matrix) =

1.0D+03 *

Columns 1 thru 8

-0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 -0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 -0.0002 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 -0.0003 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0003 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0003

0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010
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TABLE 3.1 (cont.)

Columns 9 thru 16

-3.4554 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 -3.1165 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 -0.0098 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 -0.1079 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 -0.5156 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 -1.0806 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.9729 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.8729

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3-8

B (16 × 4 matrix) =

-0.0418 0.0418-0.0018 0.0018

0.0260 2.0260 0.0098 0.0098

0.5135 0.5135 0.1748 0.1748
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TABLE 3.1 (cont.)

3-9

-0.1583 -0.1583 0.5078 0.5078

0.0977 -0.0977 0.1631 -0.1631

-0.2299 0.2299 -0.4576 0.4576

0.0957 0.0957 -0.1004 -0.1004

-0.4842 0.4842 0.2503 -0.2503

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

G (16 x 1 matrix ) -"

0.8351

0.0173

0.0591

-0.1251
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TABLE 3.1 (cont.)

-0.8216

-0.3385

-0.5284

-0.0773

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

3-10

C (4 x 16 matrix) --

Columns 1 thru 8

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0,0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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TABLE 3.1 (cont.)

3-11

Columns 9 thru 16

0.0541 -0.0337 -0.6645 0.2048 -0.1264 0.2974 -0.1239 0.6266

-0.0541 -0.0337 -0.6645 0.2048 0.1264 -0.2974 -0.1239 -0.6266

0.0023 -0.0127 -0.2261 -0.6571 -0.2111 0.5921 0.1299 -0.3238

-0.0023 -0.0127 -0.2261 -0.6571 0.2111 -0.5921 0.1299 0.3238

D (4 x 4 matrix) =

0.0.0.0.

0.0.0.0.

0.0.0.0.

0.0.0.0.

E (4 × 1 matrix) --

o

O.

O.

O.
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TABLE 3.2 The System Matrices of the 2-Mode Structural

Model

Ar (4 x 4 matrix) =

-0.0314 0.0000 -9.8697 0.0000

0.0000 -0.1039 0.0000 -107.8628

1.0000 0.0000 0.0000 0.0000

0.0000 1.0000 0.0000 0.0000

Br (4 × 4 matrix) --

-0.3412 -0.3412 -0.1161 -0.1161

0.1040 0.1040 -0.3337 -0.3337

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

Gr (4 x 1 matrix) =

-0.0393

0.0822

0.0000

0.0000
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TABLE 3.2 (cont.)

3-13

Cr -- (4 × 4 matrix) --

0.0000 0.0000 1.0000 -0.3117

0.0000 0.0000 1.0000 -0.3117

0.0000 0.0000 0.3402 1.0000

0.0000 0.0000 0.3402 1.0000

Dr (4 × 4matrix) --

1.0D-03 *

0.4480 -0.4230 -0.0263 0.0010

-0.4230 0.4480 0.0010 -0.0263

-0.0263 0.0010 0.4239 -0.3970

0.0010 -0.0263 -0.3970 0.4239

Er (4 x 1 matrix) =

1.0D-03 *

0.1331

0.0011

0.1097

-0.2509
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Chapter 4

Introduction

There is a vast literature dealing with the design of active control laws for

large space structures which addresses issues such as vibration suppression,

pointing and tracking. Atluri and Amos [2] present an excellent overview

of the state-of-the-art in large space structure dynamics and control as

of 1988, while Craig [4] has a more recent literature survey on structural

system modeling, identification and anaJyis. The majority of the active

control techniques reported in the literature axe based on the stochastic

representation of external disturbances and the resulting control laws are

products of the stochastic linear quadratic regulator problem. The purpose

of this study is to introduce an alternate compensator design approach

for rejection of persistent external disturbances, based on a deterministic

uncertainty model. An advantage of the proposed approach, called the Set-

Theoretic (ST) control system design method, is the ability to impose and

guarantee the satisfaction of explicit time-domain constraints on the system

states, control and control rates. Considering the serious consequences that

4-1
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could result from saturating actuators and the resulting pointing errors,

it is highly desirable to consider an approach that explicitly treats such

compensator design specifications.

Part III of this report is organized as follows. Chapter 5 presents an

overview of the ST control system design method, from the theoretical de-

velopment to the numerical algorithm. Chapter 6 presents the results of

the application of the active control system design technique to the flexible

structure presented in chapter 3. Finally, chapter 7 gives a brief summary

of the main results and accomplishments, along with some concluding re-

marks.



Chapter 5

The Set-Theoretic Design

Method

5.1 The Unknown-but-Bounded Disturbance

Model and Set-Theoretic Design

The foundation of the control system design method proposed for use

in rejecting persistent disturbances in flexible structures, is based on the

unknown-but-bounded (ubb) disturbance model [8]. This is an uncertainty

modeling technique which differs from both the stochastic (or Bayesian)

in that no statistics of the uncertainty are assumed, and the less familiar

completely unknown (or Fisher) approach in that there is some information

that is known about the identity of the uncertainty, namely its bounded-

ness. The main objective of the ST control strategy, which models distur-

bances as ubb processe_, is to keep the system states in a "Target Tube",

5-1
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a prespecified sequence of bounded sets, using control from the bounded

control sets at only the available control rate, in the presence of these ubb

input disturbances which take values that are elements of a bounded set.

Therefore, in this control scheme primary emphasis is placed upon satisfy-

ing the state, control and control rate constraints. In view of the linearity

of the assumed dynamic system, once these "hard" constraints are satisfied,

stability of the closed-loop system is guaranteed.

The ST approach has first appeared in the literature in the late 60's, as

a deterministic tool for state estimation [8]. In the seventies, the method

underwent some major theoretical developments, and it was not until the

early 80's that it was used as a controller design tool [10]. However, most of

the developments utilized static controller structures, with dynamic com-

pensation and frequency domain design specifications not considered. Ad-

ditionally, several different forms of ST control appeared in the literature,

utilizing different approximations to convex sets, such as ellipsoids, boxes,

etc.. The development in this paper uses the ellipsoidal approximation to

convex sets.

The main advantages of the Ellipsoidai ST control system design method

ar e:

(1) The state, control and control rate constraints that are placed upon

the dynamic system, because of safety or deteriorating performance

concerns, are treated explicitly, guaranteeing that the final design

satisfies these constraints;

(2) The ubb disturbance model is of great practical significance since

measuring the stochastics of a disturbance, especially for the case of
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large-scale dynamic systems such as space structures, may be a very

difficult task; and

(3) In addition to persistent system disturbances, such as shuttle dock-

ing, it is also possible to model uncertainties such as system param-

eter variations and unmodeled dynamics using the ubb uncertainty

model. Some issues related to robustness to parameter variations and

to unmodeled dynamics are currently under investigation.

Some of the disadvantages of the ST approach are:

(I) Limitation to only linear or linearized models of dynamic systems, a

problem common to most of the currently available systematic control

synthesis methods; and

(2) The conservative nature of the results, because of the "worst case" as-

sumption inherent in the ST algorithm, which in some instances may

be desirable for robustness purposes. Results can be made less con-

servative by extensive numerical simulation's, however, no systematic

analytical method exists, yet.

5.2 The Set-Theoretic Design Method

The following development requires some familiarity with set-theory and

the set-theoretic representation of ellipsoids. The unfamiliar reader is en-

couraged to consult the appendices of reference [8] for the relevant back-

ground material.
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5.2.1 Control Problem Statement

Let a linear, time-invaxiant dynamic system, such as the reduced-order

structural model of equations (3.9), be given in state-space form by the

following continuous time model:

±(t) = Ax(t) + Bu(t) + Gd(t) (5.1)

y(t) = Cx(t) + Du(t) + Ed(t) (5.2)

where [A, B] is a stabilizable and [C, A] is a detectable pair, x(f) is the

n-dimensional state vector, y(t) is the m-dimensional measured output vec-

tor, u(t) is the v-dimensional input control vector, and where the external

disturbance, d(t), is assumed scalar. The matrices A, B, C, D, and the

vectors G and E are of appropriate dimensions. The disturbance model

used throughout this study is the ubb, allowing the following representa-

tion:

Id(OI-<_fQ (5.3)

at all times t, where _ is the bound of the disturbance. In the frequency

domain, the above system has the following representation:

y(s) = Gp(s)u(s) + Ga(s)d(s) (5.4)

where

and

G,(s) = c(sI- A)-IB + D (5.5)

Gd(s) = C(_I- A)-_G + E (5.6)
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In addition, the following p-dimensional constrained output vector is

defined, as follows:

yc(t) = Fx(t) + Hu(t) + Ld(t) (5.7)

where the matrices F and H, and the vector L is of appropriate dimensions.

The significance of the constrained output vector will become clearer during

the development of the control synthesis technique, however, it suffices to

mention that the constrained output vector is not necessarily composed of

measured variables.

As only the measured output vector is available for feedback, a dynamic

compensator is required for use in the feedback loop. The dynamic com-

pensator structure used in this development is a Model Based Compensator

(MBC), with the following state-space representation [9]:

i(t) = Az(t) + Bu(t) + K,v(t) (5.8)

v(t) = --e(t) - Cz(t) - Du(t) (5.9)

e(t) = r(t)- y(t) (5.10)

u(t) = -K2z(t) (5.11)

where the n-dimensional vector z(t) is the compensator state, the m-dimensional

error vector e(t) is the compensator input and the control vector u(t) is the

compensator output. The matrices El and K: are called the filter and con-

trol gain matrices, respectively, and they are of appropriate dimensions. As

we are dealing only with regulation, the reference signal r(t) is zero. The

compensator transfer function matrix, from the error e(t) to the control

signal u(t), is given by the following expression:

u(s) = U(s)e(s) (5.12)
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where

K(s) --- K2(sI - A + BK2 + K1C - K1DK2)-IK1 (5.13)

Combining equations (5.1), (5.2), (5.7), and (5.8) through (5.11), the

following closed-loop state-space representation is obtained:

:_(t) = hc,X(t) + Gc,d(t) (5.14)

y(t) = CdX(t) + Edd(t) (5.15)

y_(t) = F_X(t) + L_,d(t) (5.16)

whereas the compensator output, that is the plant input vector, is expressed

as follows:

and where,

u(t) = KX(t) (5.17)

Act = K1C A-BK2-K1C '

(5.18)

[°]Get = , (5:19)
0

(5.20)

(5.2!)

The closed-loop state vector X(t) is (2n)-dimensional, and the matrices

Acl, Ca, and Fd, and the vectors Gd, Ed, and Ld are of appropriate

dimensions. The transfer function matrix of the closed-loop system can

now be written as follows: --"

y(s) = Gd(s)d(s) (5.22)
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where

Get(s) = C¢,(sI- Ac,)-lGct + E_, (5.23)

In terms of the open-loop transfer function matrices, G_t(s) can be ex-

pressed as:

Got(s) = [I + Gv(s)K(_)] -_ Ga(s) (5.24)

The forward loop transfer function matrix, Ga(s), offers no degrees of free-

dom to the designer, as it is completely determined by the open-loop system

dynamics. Therefore, if it is desired to keep the maximum amplification of

the closed-loop transfer function, G_l(s), as low as possible up to a certain

frequency, thus reducing the effect of the disturbance d(s) on the regu-

lated output y(s), it is necessary to design a compensator K(s) such that

the minimum singular value of the forward loop transfer function matrix,

Gv(s)g(s), is as large as possible in the desired frequency range. This is

a form of the sensitivity minimization problem, expressed in the frequency

domain, which in the following sections is formulated in the time domain.

As mentioned in earlier paragraphs, one of the main features of the

ST design method is the ability to guarantee satisfaction of certain "hard"

(time-domain) constraints on the various system variables. Therefore, it is

required that the closed-loop system described by equations (5.14) through

(5.16), satisfies the following constraints at all times:

(1) The constrained output vector yc(t) is required to take values that are

bounded at all times. This constraint can be quantitatively expressed

as follows:

lyci(t) - y_0il < V/_i; i = 1,2,...,p (5.25)
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at all times t, where .5'i = Y_i,,_,_; y_i (i = 1, 2, ...,p) are known el-

ements specifying the center, y_0, of the output vector yc(t). The

variables Ycima_ (i = 1,2,...,p) are the pre-specified bounds on the

amplitudes of the relevant output perturbations, with respect to the

center value Y_0, defining the p-dimensional vector Ycma_.

(2) The control vector u(t), is required to take values that are bounded at

all times. This constraint can be quantitatively expressed as follows:

luj(t)- u0j] _< X/r_; j = 1,2,...,r (5.26)

at all times t, where Tj 2 .= uj,,,,,_, Uoj (j = 1,2, ...,r) are known el-

ements specifying the center, u0, of the control vector u(t). The

variables Ujma_ (3" = 1,2,...,r) are the pre-specified bounds on the

amplitudes of the relevant control input perturbations, with respect

to the center value uo, defining the r-dimensional vector Ureas.

(3) The control rate vector, d(t), is also required to take bounded values,

as follows:

I_j(t) -_0jl "-< V/-_; J -- 1,2,...,r (5.27)

at all times t, where Rj .2 • " = r) known ele-= ujm,, _, Uoj (j 1,2, ..., are

ments specifying the center, _0, of the control rate vector u(t). The

variables _j,_ (j = 1,2,...,r) are the pre-specified bounds on the

amplitudes of the relevant control rate perturbations, with respect to

the center value rio, defining the r-dimensional vector flm_.

Satisfaction of a combination of certain time-domain constraints, such as

control and control rate constraints, can also give an estimate on the uppcr
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bound of certain important frequency-domain quantities, such as controller

bandwidth. The compensator bandwidth is not explicitly taken into ac-

count by the ST approach, however, appropriate choice of the control and

control rate constraints can limit this important frequency-domain quan-

tity, preventing undesirable compensators. A desired controller bandwidth

can be precisely obtained only through iterative design.

The control problem under consideration can be stated as follows:

Design a compensator K(s) for the dynamic system described by

equations (5.I) and (5.2), which at all times uses only the available control,

according to equation (5._6), at the bounded rate, given by equation (5.27).

It is also required that the constrained system output, defined by equation

(5.7), is kept within the desired bounds of equation (5._5), in the presence

of an ubb input disturbance, d(t), which is required to take values that are

bounded by v_.

Several optimization problems can be formulated using the above con-

trol problem statement. In most physical applications, however, the bounds

on the available control action and the rate at which the control effort is

available, as well as the desired bounds on certain critical system outputs

(or states) are a priori known, as part of the controller design specifications.

Therefore, a meaningful variable to optimize is the maximum tolerable dis-

turbance magnitude, Q. Even though there are certain q,ther aspects of a

controller that would have to be traded-off against the optimum value of

Q, such as the controller robustness to unmodeled dynamics and to sys-

tem parameter variations, this study does explicitly address these aspects

of control system design, because such an optimization problem becomes
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multiobjective in nature.

Assuming the special compensator structure expressed by equations

(5.8) through (5.11), the optimal persistent disturbance rejection problem

can be formulated as a nonlinear constrained optimization problem, with

the subject of the optimization being the bound Q of the input disturbance

amplitude [7]. The control problem, which is not limited to the controller

class represented by the MBC structure, can be reformulated as follows:

Find the filter and control gain matrices K1 and K2 that maximize

the disturbance bound x/_, subject to the inequality constraints expressed by

equations (5.25), (5.26), and (5.27), and the dynamic constraint expressed

by the closed-loop system equation (5.14).

5.2.2 The Set-Theoretic Synthesis Problem

One of the main features of the ST approach is the representation of dy-

namic system states by convex sets which, for mathematical simplification,

are further approximated by ellipsoids. In order to arrive at the govern-

ing equation for the time propagation of the state vector in terms of its

ellipsoidal set representation, the set of reachable states, f_x(t), must be

determined [8]. It can be shown that, for a dynamic system described

by equations (5.1) and (5.2) with the controller structure of equations

(5.8) through (5.11), or equivalently for the closed-loop dynamic system

described by equations (5.14) and (5.15), with the initial condition:

X(0) e f_x(0) = iX: (X - x0)Wfft-l(X -- X0) _< 1} (5.28)
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where X0 is the center of _x(t), and _" is a (2n x 2n)-dimensional posi-

tive definite matrix defining the ellipsoidal set fix(0) of the possible initial

states, there exists a (2n x 2n)-dimensional matrix F(t) which, if positive

semidefinite, describes the ellipsoids bounding the sets of reachable states

at all times. That is, the reachable states X(t) are contained, at time t,

within the ellipsoidal set given by

x(t) • fix(t) = {x: (x - x0) Tr-'(x - x0) _ 1} (5.29)

Furthermore, it can be shown that the matrix F(t) satisfies the following

dynamic equation [8]:

r(t) = Ajr(t) + r(t)A_ + _(t)r(t) +
G¢IQG_ T

_(t) ; r(0) = _, _(t) > 0
(5.30)

where _(t) is a free parameter introduced in the approximation of an ar-

bitrary convex set by a bounding ellipsoidal set. The positivity of the free

parameter fl(t) signifies that a non-empty convex set cannot be approxi-

mated by an ellipsoid of equal volume that contains it.

Furthermore, for a time-invariant dynamic system with constant 8, if

the closed-loop system matrix Acl is stable then equation (5.30) has a

steady-state solution Fs. At steady-state, equation (5.30) reduces to the

following well-known Lyapunov equation:

{Ac, + l_I}r, + r.{Ac, + I_I}T + GczQGcT = 0 (5.31)

In addition to the approximate representation of general convex sets by

ellipsoids, use of the steady-state solution of equation (5.30) is the sec-

ond approximation introduced in the ST control synthesis. This results in
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conservative estimates of the system state bounds, and therefore on conser-

vative estimates of the disturbance rejection capability of the closed-loop

system. However, evaluation of transient bounds will require more complex

solution algorithms and more importantly, a solution to equation (5.30)

can not be guaranteed. Equation (5.31) has now replaced the dynamic

constraint (5.14) of the nonlinear optimization problem.

In order to satisfy the control constraints imposed upon the closed-loop

system and expressed by equation (5.26), the following sufficient condition

can be proven [8]:

KjFK T < Tj; j = 1,2,...,r (5.32)

where Kj is the jth row vector of the gain matrix K defined by equation

(5.18).

In order to derive an equivalent inequality for the constrained output

and control rate vectors, the following (p+r)-dimensional augmented vector

Y_(t) =
yc(t) ]

is defined:

The constrained output now becomes as follows:

Y_(t) = I:IX(t) + _2d(t)

(5.33)

(5.34)

where

; 1_= (5.35)
KAcl KGj

It can also be shown that in order to guarantee satisfaction of the con-

strained output and control rate constraints, the following inequality is a
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sufficient condition:

1

p ,op r + H, rHr + 2{k, Op rf ,rHr} < i= 1,2,...,(p+r) (5.36)

where/)i is the ith element of the vector l_, I_Ii is the ith row vector of the

matrix I:I, and

(5.37)

Having substituted the time-domain constraints (5.25), (5.26) and (5.27)

with the sufficient conditions (5.32) and (5.36), and the dynamic constraint

(5.14) with the governing equation (5.31), the following nonlinear con-

strained optimization problem can be formulated:

Find the gain matrices K1 and K2 that maximize Q, subject to

the constraints (5.31), (5.32), and (5.36), as well as the free parameter

constraint/3 > 0 and the ellipsoidaI representation constraint Ds >__ O.

5.2.3 Solution of the Set-Theoretic Synthesis Prob-

lem

As stated above, the ST synthesis problem can be solved using nonlin-

ear constrained optimization techniques. However, this imposes certain

difficulties in finding realizable solutions that meet all of the problem con-

straints. Additionally, it has been the experience of the authors that non-

linear constrained optimization algorithms require excessive computational

effort. Therefore, the following observations are made which help transform

the ST synthesis problem to a nonlinear unconstrained optimization prob-

lem, allowing use of available software from the nonlinear programming
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literature.

As only a scalar ubb disturbance model has been used in developing the

ST formulation, the matrix representing the set of reachable states, F, can

be expressed in terms of the disturbance bound, Q, as follows:

F = QO (5.38)

where O is a (2n x 2n)-dimensional matrix. This is true because any matrix,

in this case F, can be expressed as the product of a scalar and another

matrix, here O. Substitution of equation (5.38) into equation (5.31), results

in the following simplified Lyapunov equation:

{Acl + #I}0 + O{Ad + #I} T + fl
- 0 (5.39)

Additionally, substitution of equation (5.38) into equations (5.32) and (5.36),

results in the following inequality constraints:

Q [KjOK T] <_ Tj; j = 1,2,...,r (5.40)

[ {Q _,_T + H,eHT + 2 E,P,T_I,e_I ' _<_,; i= 1,2,...,(p+r) (5.41)

The special form of equations (5.40) and (5.41) can now be used to eliminate

these inequality constraints as follows:

_,_y+H, O_T + _/_,_T H, OH T '

Q = min i= 1,2,..-,(p+r) (5.42)

(Ki_KT); j = 1,2, ..., r

In order to satisfy the fl parameter positivity constraint and in order to

guarantee that a solution to equation (5.39) exists, the zero value is assigned



CHAPTER 5. THE SET-THEORETIC DESIGN METHOD 5-15

to Q as follows:

Iffl < 0thenQ -- 0

If (Ac, + ½/3I) unstable then Q -- 0
(5.43)

5.3 Set-Theoretic Design as a Nonlinear Pro-

gramming Problem

In the previous paragraphs the ST synthesis problem has been transformed

to an unconstrained nonlinear optimization problem, by systematically re-

moving all of the inequality and dynamic constraints. A solution to this

optimization problem can be found via the ST synthesis algorithm as fol-

lows [7]:

(1) Generate a feasible initial point (K1, K2, _) for the algorithm, where

a feasible point is defined as a triplet of (K1, Ks,/_) for which the

resulting closed-loop matrix (Act + ½/_I) is stable and the parameter

fl is positive;

(2) For a given point (K1,K2,fl) solve equation (5.39) for 8;

(3) Calculate the objective function Q from equation (5.42) and (5.43);

and

(4) Search over the feasible points (K1,K2,fl) repeating steps (2) through

(4) until the optimum Q is obtained.

Existence of a Solution: A sufficient condition for the existence of a

solution to the ellipsoidal ST control synthesis problem with the MBC
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structure is the stabilizability of the pair [A, B] and the detectability of

the pair [C, A].

Proof: A more transparent form of the closed-loop system matrix, Acl,

given in equation (5.19) can be obtained by applying the following change

of variables [1]:

w(t) = x(t)- z(t) (5.44)

In view of equations (5.1) and (5.8), it follows that:

w(_) = (A - K,C)w(0 + (G - KIE)d(0 (5.45)

In addition, equation (5.1) can be rewritten as:

_(t) = (A- BK2)x(t)- BK2w(t) + Gd(t) (5.46)

The combination of equations (5.45) and (5.46), reveals the following form

for the closed-loop system matrix Act"

Aj = [ A- BK2

[ 0

Now, it is true that

det(XI- Ac_) =

(5.47)

The above determinant equality states that if the two sub-systems A - BK2

and A - K1C are stable (i.e. all of their eigenvalues have strictly negative

real parts), then the closed-loop system matrix Ac_ is also stable. However,

F ]

det ] XI - A + BK2 -BK_

[ 0 AI - A + K1C ]
= det(AI- A + BK_)det(XI- A + K1C) (5.48)
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it is well-known fact of linear system theory that for a stabilizable pair

[A, B], there is at least one matrix K2 for which (A - BK2) is stable.

Similarly, for a detectable pair [C, A], there is at least one matrix K1 for

which (A- K1C) is stable. This implies that there is at least one pair (K1,

K2) for which the system with closed-loop system matrix Act is stable. In

other words

Max {Re _(Ad)} _< 0 (5.49)

However,

{ }Max Re _(Ad + _I) < Max {Re _(Ad)} + _

Therefore, with a pair (K1, K2) that stabilizes Acz, a positive fl can always

be found for which the system (Ac_ + ½_I) is stable. Consequently, there

is at least one point (K1, K2, fl), for which the Lyapunov equation (5.39)

(and equation (5.31)) yields a unique solution O > 0 (and /', > 0).

This condition guarantees the existence of at least one positive value of Q,

as defined by equation (5.42). The maximum value of Q can therefore be

found by an appropriate optimization procedure.

There are numerous issues that relate to the implementation of the pre-

viously described algorithm. These include numerical issues in solving the

various equations and obtaining feasible starting points for the optimiza-

tion, especially for a high order system. Additionally, the possibility of

obtaining a local instead of a global minimum for the above nonlinear pro-

gramming problem exists. However, use of sophisticated optimization algo-

rithms, such as simulated annealing, has considerably reduced the number

of iterations required for proper convergence while lowering the possibility

of obtaining a local minimum for Q.
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The ST control system synthesis algorithm can be summarized by sim-

ply listing the guaranteed properties of the final linear design. For a given

system described in state space form by equations (5.1) and (5.2), a persis-

tent external disturbance modeled according to equation (5.3), and for a set

of predefined output, control and control rate constraints, the set-theoretic

synthesis step is guaranteed to satisfy the following design specifications:

(1) Stability of the closed-loop system;

(2) Satisfaction of the constrained output, control and control rate con-

straints that have initially been placed upon the dynamic system. In

addition, indirect satisfaction of compensator bandwidth constraints

through the appropriate choice of the control bound to control rate

bound ratio; and

(3) Ability to reject the maximum possible disturbance magnitude, re-

gardless of its spectral composition. However, bandwidth constraints

limit this capability to within a certain frequency range.

5.4 Set-Theoretic Analysis of Control Sys-

_ems

An additional unique feature of the ST approach is the ability to analyze

and evaluate the performance of a linear control system which is designed

using this or any other control synthesis algorithm based on a deterministic

disturbance model. The ST analysis, for the specific case of a MBC, can

be stated as follows:
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Given a dynamic system, as described by equations (5.14) through (5.16),

find the corresponding maximum ubb input disturbance amplitude that the

dynamic system can tolerate, and the corresponding possible constrained

output, control and control ra_e excursions.

The solution to this problem can be obtained by implementing the fol-

lowing algorithm:

(1) Form the matrices Act, Get, I=I, and ]_, and the vectors S and T;

(2) Solve equation (5.39) for 0;

(3) Calculate Q from equation (5.42); and

(4) Calculate the left-hand-sides of equation (5.40) and (5.41).

This problem is of practical significance, because its solution yields a

good reflection on the capability and performance of a given ST control sys-

tem, without resorting to numerical simulations. However, as mentioned in

earlier paragraphs, the estimates of the calculated bounds will be somewhat

conservative as a result of the approximations involved in solving the ST

problem.
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Computer Simulation Results

The cantilevered two-bay truss, the AFWAL structure, a model of which is

presented in section II is assumed to be mounted on a relatively rigid base,

which may be representing another structure [5]. Persistent disturbances

are assumed to be acting directly upon the two-bay truss structure. Such

disturbances may be representative of a shuttle docking or of other inter-

actions of the structure with the environment. The structure is allowed

to move only along the Y-axis and its physical displacement is measured

by four sensors. The structure is well represented by its first eight flex-

ible modes, which are assumed to be equally damped with 0.5% passive

damping.

The eight-mode model is reduced in order to obtain a lower-order model

for control system design. The first two modes of the structure, with fre-

quencies 3.14 and 10.39 _a___Adare retained [5], the reduced-order model is
8CC _

augmented with four integrators at the plant input (one for each input

channel), and the resulting four input, eight state, four output system is

6-1
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used for design purposes. The augmented plant model is given by:

Go(s) = G,(s)! (6.1)

Figure 6.1 depicts the block diagram of the feedback loop under consid-

eration. Since the model used to design the active control law will be

inaccurate at frequencies approximately above 10 ra_Adit is required that
3CC "_

the controller bandwidth is about 10 Tad.
dec

The control problem for the above structure is completely determined

if the design specifications are explicitly expressed, as follows: It is desired

to reject the maximum possible disturbance magnitude, while keeping the

maximum deformation of the points 1, 2, 3, and 4 to within 0.1 in. of the

resting position of the structure. This is to be accomplished using only the

available control power of a maximum 100 Ib], at the available control rate

of a maximum 1000 l___. The combination of the above control and control

rate limitations, impose a minimum compensator response time on the

order of 0.1 sec, which in turn implies a maximum compensator crossover

Tad The control and output constraints considered resultfrequency of 10 _-.

from the physical limitations of the actuators and the desire to limit the

structure deformation at both the tip and at the mid-point.

All of the simulations for the AFWAL structure were performed using

the eight mode model, even though control system design was performed

using the reduced-order two mode approximation. The open-loop response

of the structure to a persistent disturbances is shown in Figure 6.2. This

figure depicts the displacement of the truss tip (point 1 in Figure 1), when

an external pulse force of 50 Ib! is applied for 5 secs, starting at t = 1 sec.

The maximum structure displacement is about 0.4 in. and after the dis-
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r(s);O

÷

Compensator

K(s) G (s)
P

d(s)_

I

y(s)

Figure 6.1: Block Diagram of the Feedback Loop.
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turbance is removed, the vibrations damp out at a fairly slow rate. It is

desired to limit this structural displacement and to damp-out the resulting

oscillations as rapidly as possible, within the limitations imposed by the

compensator design specifications.

Application of the ST control design technique to the AFWAL struc-

ture resulted in an active control law that is expected to satisfy all of the

design requirements if a disturbance of a maximum 50 Ib I amplitude and

arbitrary shape is applied directly on the structure tip. Table 6.1 presents

a summary of the ST design and of the resulting ST analysis. The table

clearly shows that, in contrast to the transient simulations which follow, the

structure displacement, the control and the control rate at point 1 (Figure

3.1) are binding. This discrepancy can be primarily attributed to the two

approximations in the ST design method. These are:

(1) The approximation of a convex set by an ellipsoid which contains it

and,

(2) The use of the steady-state bounds in the nonlinear optimization,

instead of the transient bounds (steady-state solution of equation

(5.30)).

Both of these approximations contribute towards increasing the conserva-

tive nature of the design, however, they are both required in order to trans-

form the design problem into a relatively simpler nonlinear optimization

problem.

Figures 6.3 and 6.4 depict the transient response simulation of the struc-

ture to a 10 sec pulse of 50 Ib! magnitude. Figure 6.3 shows the displace-
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Figure 6.2: Open-Loop Response of the AFWAL Structure for a 5 second

50 lb! pulse.
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ment of the structure tip and Figure 6.4 the control effort applied to produce

this displacement. The maximum displacement of the structure tip is about

0.03 in. and the resulting vibrations seem to damp out at a fairly fast rate.

Table 6.1. Set-Theoretic Design Summary

Max Ampl. Q

Free Parameter

Variable Spec. Bound

0.1 in.

50 lbf

1.88

Calc. Bound

Position at 1 0.1 in.

Position at 2 0.1 in. 0.098 in.

Position at 3 0.1 in. 0.099 in.

Position at 4 0.1 in. 0.1 in.

Control effort at 1 100 Ib I 100 lb I

Control effort at 2 100 Ibj 100 Ib/

Control effort at 3 100 Ib! 5.35 Ibl

Control effort at 4 100 Ib] 43.1 Ib]

Control rate at 1 1000 _ 1000 _
SeC SeC

Control rate at 2 1000 _ 1000 _
SeC 8CC

Control rate at 3 1000 _ 90.71 _
DeC DeC

Control rate at 4 1000 _ 250.5 _
B_C DeC

Additionally, the control effort used to produce such response is less

than the 100 IbI required to saturate the actuators. It can be observed,

however, that the structure tip maximum displacement is far from reaching



CHAPTER 6. COMPUTER SIMULATION RESULTS 6-7

the bounds imposed upon the design, whereas the control and control rates

are the binding constraints. The latter can be inferred by careful exami-

nation of the control effort slope in Figure 6.4. Additionally, this can be

verified by the ST analysis presented in Table 4.1. Similarly the displace-

ment of the truss mid-point has a maximum displacement which is well

within the 0.1 in. bound required by the design.

In addition to the presented transient response simulations, Figure 6.5

depicts the magnitude plot of the forward loop transfer function matrix,

Ga(s)K(s), frequency response, for the two-mode structure. This figure

indicates that the cross-over frequency of the maximum singular value is

about 10 ,_.__Aimplying compensator response time on the order of 0.1 sec.
SeC '

This can also be verified by the transient response simulation of the struc-

ture tip control effort, shown in Figure 5. The structure mid-point actuator

responses are slower and require less control effort than the actuators at

the structure tip.
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Chapter 7

Summary and Conclusions

This study presented a solution to the problem of optimal persistent dis-

turbance rejection in flexible structures. In doing so a deterministic un-

certainty modeling approach is presented and the controller synthesis is

formulated as a nonlinear optimization problem. The main objective of the

control problem is to keep the displacement at the tip of a flexible struc-

ture within a certain range, for satisfaction of pointing requirements, while

rejecting the external persistent disturbances. In addition, this is accom-

plished by limiting the control effort to within the saturation limits of the

force actuators and without requiring excessively fast controller response

times. In other words, through the appropriate choice of the control and

control rate constraints, the compensator bandwidth is limited to within a

desired range. The controller structure used in this development lends itself

to the earlier development of the Linear Quadratic Gaussian/Loop Transfer

Recovery (LQG/LTR) method and it utilizes the so-called MBC structure.

The flexible structure used is a two-bay truss model, representative of a

7-1



CHAPTER 7. SUMMARY AND CONCLUSIONS 7-2

wide class of space structures. The structure is assumed to be mounted on

a relatively rigid platform and it is being subjected to a bounded determin-

istic disturbance of unknown shape, which is affecting the structure at its

tip (point 2 in Figure 3.1).

The ST design method is applied to a reduced order model of the struc-

ture. The results indicate that active control methods can be used, in com-

bination with passive damping, to ensure accurate pointing of subsystems,

such as payloads, which are mounted on larger structures. The proposed

design technique uses only the available control to maximize the distur-

bance magnitude that can be tolerated by the structure, while keeping the

tip and mid points of the structure within the desired ranges from their

equilibrium positions. The ST analysis and the transient response simula-

tions indicate that some of the obtained bound estimates are conservative.

However, these can be improved, through a combination of iterative design

and transient response simulations.

It is believed that the proposed approach offers an alternative to stochas-

tic design in addressing the problem of persistent disturbance rejection,

especially when the statistics of the disturbances are hard to obtain or

there is experimental evidence to suggest that the disturbances can not

be well-represented by a stochastic model. In addition, the ubb approach

makes explicit treatment of actuator saturation limits and system output

constraints, guaranteeing that the final design satisfies all of the imposed

compensator design specifications.
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Chapter 8

Introduction

The disturbance rejection capability of a controller is usually of utmost

concern when dealing with physical systems which are subjected to un-

certain external perturbations. This is especially true for flexible objects,

such as space structures, which must be controlled to perform a prespecified

mission. In addition to good structural design and appropriate choice of

structural materials, resulting in acceptable passive damping [5], insuring

satisfactory structural performance usually requires the use of an active

control law, i.e., a feedback controller. In fact, to obtain the best persistent

disturbance rejection capability, it is important to select an active control

law that could in some sense minimize the maximum amplification of the

disturbance-to-output transfer function matrix. In other words, it is de-

sired to find an active control law which will minimize the sensitivity of the

system to persistent disturbances.

The Hoo-norm has recently become one of the most popular perfor-

mance measures in optimal control theory. The Hoo-norm of a transfer

8-1
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function matrix G(s) denotes the peak of the maximum singular value of

G(jw) over all frequencies w. In familiar terms, for instance in single-input,

single-output (SISO) systems, the Hoo-norm of a transfer function g(s) is

equal to the distance from the origin to the farthest point on its Nyquist

plot. To appreciate the concept of the Hoo-norm in control theory, it can be

interpreted as the worst amplification that a bounded-energy input signal

could undergo as a result of passing through a system with transfer function

matrix G(s). Therefore, an Hoo-optimal control law is considered one of

the best available choices in dealing with the active rejection of persistent

disturbances.

The objective of the Hoo-optimal control problem is to find a control

law that minimizes the Hoo-norm of the transfer function matrix from the

disturbances to the controlled output, while stabilizing the closed-loop sys-

tem. One of the main reasons for developing the Hoo-optimal control the-

ory is to accommodate variations in the power spectra of the disturbances.

Unlike the H2-optimal (or Linear Quadratic Gaussian) control problem,

where fixed power spectra are usually assumed, the disturbances in the

Hoo-optimal problem are assumed to belong to the class of finite energy sig-

nals. This represents a more realistic treatment of real-world disturbances,

because in most cases external excitations are neither Gaussian nor white,

as it is assumed in the derivation of the Linear Quadratic Gaussian/Loop

Transfer Recovery (LQG/LTR)controllers.

The state space method for continuous time systems, proposed by Doyle

[2],[3], is for a standard Hoo-optimal problem described below. The con-

troller gain, a constant matrix, is obtained from a special form of the Ric-
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cati equation. For multivariable systems the state space formulation of the

H_o-optimal control problem is more convenient than alternate approaches,

especially because of the ease in numerical computations. However, the

controlled system model orthogonality assumptions, (elimination of the

feedforward terms in the state-space model), used in the formulations pre-

sented in references [2] and [3], are hard to satisfy in physical systems. This

is particularly true for system models obtained from model order reduction

techniques which always include a feedforward term. More recently, the

H_-optimal control theory has been applied to a SISO system with struc-

tured parameter uncertainties [1]. The main objective of the latter paper,

[1], was to design a controller that maximizes the closed-loop robustness

with respect to parameter variations. However, the system model used in

this study did not contain feedforward terms and it was not subjected to

persistent external disturbances which must be rejected by the Hoe-optimal

controller.

The primary objective of this study is to demonstrate the feasibility

of persistent disturbance rejection in flexible space structures via the H_-

optimal control theory. In doing so, a new formulation of the H_-optimal

control problem entirely in the time domain, which includes the state-space

model feedforward terms, is presented, facilitating the treatment of MIMO

systems. A low order approximation of a high order structural model is

used to design a Hoo-optimal compensator for the rejection of persistent

disturbances, such as shuttle docking, in a flexible structure. Robustness

to higher order unmodeled dynamics, an important issue in active struc-

tural control, is acknowledged, but investigated only via numerical simula-
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tions. Further systematic treatment of controller robustness to parameter

variations and unmodeled dynamics, is currently under investigation.

The "Standard Problem" considered for the H_o-optimal formulation

has the following state-space representation [4]:

x(t) = Ax(t)+ B2u(t)+ BlW(t)

y(t) = C2x(t) + D2,w(t)

z(t) = C_x(t) + D_u(t)

(8.1)

where x(t) • R", y(t) • R p, u(t) • R TM, w(t) • R _, and z(t) • R t de-

note the state, the measured output, the control, the disturbance, and the

controlled output vectors, respectively. A full state feedback control law

is assumed, u(t) = Kx(t) , where g is a constant control gain ma-

trix. The disturbance w(t) typically consists of reference inputs, external

plant disturbances, and sensor noise. The components of the controlled

output z(t) are the tracking (regulation) errors, the control efforts, etc.

The control objective is to find the Ho_-optimal control law u(t), from the

set of bounded energy signals, such that for the finite energy disturbance

w(t), the L2-norm of the controlled output z(t) is minimized. Notice that

since the controlled output z(t) consists of the tracking (regulation) errors

and the control efforts, minimization of the controlled output sensitivity to

worst case disturbances implies sensitivity minimization of its components

for the same class of signals. Thus, given the fixed controller structure, the

objective of the Hoo-optimal control problem is consistent with the physical

control system design problem of reducing the sensitivity of the closed-loop

system to disturbances, while keeping the closed-loop system stable.
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Part IV of this report is organized as follows: Chapter 9 presents a new

formulation to the H_o-optimal control problem, namely using calculus of

variations, thus simplifying the treatment of MIMO systems. This section

concludes with a proposed algorithm for solving the Hoo-control problem

and with the formulation of the relevant Hoo-optimal regulator and tracking

problems. Chapter 10 presents the results obtained from the application

of the developed Hoo-optimal control algorithm to the flexible structure

presented in chapter 3. Finally, chapter 11 summarizes the paper and

presents the main conclusions of this study.



Chapter 9

A Variational Formulation of

the Hoo-Optimal Control

Problem

9.1 The Hoo-Optimal Control Problem

In the following discussion, the standard Hoo-optimal control problem for-

mulated using the system of equations (8.1) is considered, where A, B1,

B2, C1, C2, D12, D21 are constant matrices of appropriate dimensions. The

goal of this method is to find a control law u(t), optimal in the Ho_-norm

sense, which minimizes the worst amplification of the plant disturbance-

to-controlled output transfer function matrix. The approach is to convert

the Hoo-optimal control problem into minimizing an objective functional,

subjected to the system dynamic constraints, under the worst poss!ble dis-

turbance conditions. The main results are summarized in two theorems

9-1
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and a corollary.

For a plant given in the form of equations (8.1), it is usually possi-

ble to rescale the controller u(t) and the measured output y(t) so that

DT2D12 - I, which constitutes one of the two assumptions imposed upon

the "Standard Problem" of the system of equations (8.1). However, in many

systems, especially in system models involving model-order reduction, it is

difficult to form the standard problem satisfying the orthogonality condi-

tion, DT2c1 = 0. This orthogonality assumption has been widely used in

the literature when applying the Hoo-optimal control theory. Therefore,

to facilitate application of the Hoo-optimal approach to physical problems,

this orthogonality assumption must be removed. For this reason, the follow-

ing theorem leading to a more general solution of the Hoo-optimal control

problem is developed.

Theorem 1: Consider a system in the standard form given by the system

of equations (8.1), and suppose that the pair (A, B2) is controllable, the

pair (C1, A) is observable, and a scaling is performed such that DT2D12 = I.

Then, the full-state Ho_-optimal control law u(t), minimizing IIz(t)]12 for the

worst finite energy disturbance w(t), is in the form:

u(t) = Kx(t), K =-(BTkl + DT2C1) (9.1)

where kl is the positive definite solution of the following Algebraic Riccati

Equation (ARE):

(A - B_DT_C1)Tk_ + k,(A- B_DT2C,) + k,(B,B r - B2BT)k_ +

cT(I- D_2DT2)(I- D12DT)CI (9.2)
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As stated before, application of the Hoo-optimal control synthesis re-

quired transformation of state-space models to the form given by the sys-

tem of equations (8.1). Even though relatively straightforward, it is desir-

able to avoid this transformation in design studies. The following corollary

presents the solutions of the H2-optimal and Hoo-optimal full-state feedback

control problems for the common state-space representation of linear-time-

invariant systems. Whereas in subsection C of this section, the state-space

model is transformed to the "Standard" form of equations (8.1), for the

regulator and tracking problems.

Corollary: Consider the following regulator problem:

±(t) = Ax(t) + Bu(t) + Lw(t)

y(t) = Cx(t) (9.3)

where x(t) E R _, y(t) e R p, u(t) E R _, w(t) E n r, are the plant state,

the plant output, the plant control, and the plant disturbance vectors,

respectively. Suppose that the controlled output z(t) , is given by:

z(t)= I Y(t) ]pu(t)
(9.4)

where p is the weighting on the control effort u(t), (A, B) is a controllable

pair and (C, A) is an observable pair. Then the following statements are

true:

(i) For the case that w(t) is a white Ganssian process, the H2-optimal

(LQG) control law is given by

u(t) = -( 1 )BTk2x (t) (9.5)
p-
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where k2 is the positive definite solution of the following ARE:

ATk2 + k2A - (1)k2BBTk2 + cTc = 0 (9.6)
P

(ii) For the case that the disturbance w(t) is any finite energy signal, the

Hoo-optimal control law is given by

= -(_)BTklx(t) (9.7)u(t)

where kl is the positive definite solution of the following ARE:

ATkl+k1A+kl(LLT-(-_)BBT)kl+CTC=o (9.8)

Proof: The proof of this Corollary is similar to the proof of the previous

Theorem and it is therefore omitted here.

9.2 Output Feedback and the Ho -Optimal

Observer Problem

In this section the Hoo-optimal observer for the standard problem given

by equations (8.1) is formulated, based on the properties of the optimal

Hoo-regulators developed in the previous section. The duality between the

optimal regulator problem (ORP) and the optimal observer problem (OOP)

can be summarized as follows:

(i) The matrix A of the ORP equals the matrix A T of the OOP,

(ii) The matrix C1 of the ORP equals the matrix B T of the OOP,
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(iii) The matrix B2 of the ORP equals the matrix C T of the OOP,

(iv) The matrix Dn of the ORP equals the matrix DT1 of the OOP,

Reference [6] is recommended for details and a proof of the duality prop-

erties. These properties enable solution of the Hoo-optimal observer prob-

lem by adaptation of the Hoo-optimal controller equations. Therefore, the

Hoo-optimal output feedback problem can easily be formulated. The main

results are summarized in the following lemma:

Theorem 2: Consider a system in the standard form of equations (8.1),

and suppose that the pairs (A, B1) and (A, B2) are controllable, the pairs

(C1,A) and (C2,A) are observable, and the scaling DT2D12 = I and

D21DT1 = I hes been performed. If the system states are estimated us-

ing the following observer:

_(t) = A_(t)+B2u(t)+H(C_(t)-y(t))+B,w_o_s_(t), W_o_st(t)= BTkl_(t)

(9.9)

Then, the optimal observer gain H is given by:

H = -(I- hook1)-1 (hooC T + B,DT_)

where hoo is the positive definite solution of the following ARE:

Aphoo + hooA T + hoo(cTc1- cTC2)hoo + B1pBrp =0

(9.10)

(9.11)

TCwhere, A)) ---- A - BID21 2, 41ha B,p -- B, (I - DTID2,). Now, consider-

ing the Hoe-optimal controller gain K of equation (9.1), the Ho_-optimal

dynamic compensator can be expressed as:

_(t) = (A + B2K + HC2 + S, BTk,)_(t) - Hy(t) (9.12)
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u(t) = K_(t) (9.13)

In terms of transfer function matrices, the dynamic compensator is ex-

pressed as:

u(s) = K(s)y(s) (9.14)

with

= ; A5 = A + B2K + HC_ + B1B_kl (9.15)
K 0

where the controller gain K and kl are computed from equations (9.1) and

(9.2), respectively, and the observer gain H is computed from equation

(9.10).

Proof : The proof is immediate from the duality properties.

As it is indicated in the following subsections, the input to the compen-

sator K(s) becomes the error signal e(s) instead of the output y(s) when

considering tracking problems.

9.3 The Regulator and Tracking Problems

In this section, the regulation and the tracking problems are formulated

in the standard form of equations (8.1), to facilitate controller synthesis

using the algorithm of the previous section. Consider a plant, denoted by

(A, B, G, C, D, E):

_(t) = Ax(t) + Bu(t) + Gw(t)

y(t) = Cx(t) +Du(t) + Ew(t) (9.16)
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where x(t) E Rn,y(t) E /T', u(t) E R m,w(t) E/F, are the state, the plant

output, the control, and the exogenous input vectors, respectively. Without

loss of generality, the constant matrix E is set to the identity matrix in the

following formulation. Note that to fit the standard problem of equations

(8.1), the plant transfer function matrix (from u(s)to y(s))must be strictly

proper. For many physical problems, the matrix D is usually a null matrix.

However, if D # 0, as it is the case with systems resulting from model order

reduction, the plant must be augmented to make it strictly proper. In the

sequel, a strictly proper plant is formed by augmenting it with integrators

as its input to bring it to the standard form. Additionally, even though the

tracking problem is not used in this study, if the disturbance spectrum is

known, the tracking formulation can be used to asymptotically reject the

disturbance.

9.3.1 The Regulator Problem

For a regulator problem, the exogenous input w(t) represents the distur-

bances (and/or the noise) d(t) introduced to the system. To match the

standard form of equations (8.1), first the plant is augmented at each in-

put channel with an integrator and the augmented system is represented

by (A,, B,, G,, Co,0, D,). The block diagram corresponding to the aug-

mented plant of the regulator problem is shown in Figure 9.1.

The filter W0 may be chosen as a strictly proper stable transfer func-

tion reflecting the frequency range over which the plant output is to be

controlled; let W0 be denoted by (A3, B3, C3) in the state-space form. pI

and pl I are constant weighting matrices on the control rate and control el-
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d(O,

u,(t)

Ws

_,(t)

,,(t)

y(O

Figure 9.1: Regulator Problem Set-up.
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forts, respectively. The controlled output z(t) and the disturbance (and/or

noise) d(t) axe defined as follows:

z(t)=[ pul(t)+plu(t)]W,y(t) ' w(t) = d(t) (9.17)

where, ul(t) and u(t) represent the integrator and the actual plant input,

respectively. The former is also the plant input control rate. By rearrange-

ment, the generalized plant can be written in the form of equations (8.1),

as follows:

=

y(t) =

•.(t) =

where

As-[ 0B

[ A,BaC, A30 lfc(t)+[(1/p)B']uls(t)+o

[C, 0]_(t) + D, w(t)

[ ] [el[p,I 0] 0 :_(t) + u,,(t),

0 C3 0

G,B3D,

(9.18)

0] [i] [0, B,= , G,_= , C,=[D C], D,=I,
A 0 G

(9.19)

and where _(t) is the new plant state vector augmented with the integrator

and filter states.

Since Ds is the identity matrix, the above state-space representation is

now in the standard form of equations (8.1). Thus the formulae developed in

previous sections can be applied. The reseeded control law uls(t)(= pul(t))

is obtained from the appropriate Riccati equations proposed in section

III.A and III.B; so will the optimal control law u(t). Note that when

the control input does not contribute to the plant output, i.e., D = 0 in
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equation (9.16), augmentation with integrators becomes redundant unless

other specific performance requirements (e.g., steady state errors, band-

width conditions, etc.) are imposed upon the designed compensator. In

the Hoo-optimal problem, if the states in equation (9.18) are not available

for feedback, the weighting factor Pl is usually set to zero. This is because

in the output feedback case, the optimal observer gain is formulated in a

similar manner.

9.3.2 The Tracking Problem

The tracking problem illustrated in Figure 9.2 is formulated in the state-

space form for the same system, given by equations (9.16), except that

the exogenous input w(t) now consists of disturbances (and/or noises) d(t)

The controlled output vector z(t) and theand the reference input r(t).

exogenous input w(t) are:

[ +  u(t)

L W_e(t)

w(t) = [ r(t)]d(t)

(9.20)

(9.21)

The tracking error e(t), (= r(t) - y(t)), is weighted by a design filter W,,

similar to that of the regulator problem formulated earlier. The augmented

plant in the standard form of equations (8.1) then becomes:

0 0

B A

-BaD -BaC

0

0 _(t) +

A3

1/pI

0

0

u,.(t) +

0 0

0 G

Ba -B3

w(0,
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y(t) = [-D-C 0]R(t)+[I-1]w(t), (9.22)

(9.23)

and

,(t) = [pj 0] 0 x(,) + ul,(,) ;,,(t) = x(,)
0 Ca 0

xa(t)

where _(t) is the augmented plant state vector, containing the integra-

tor, plant and filter states, :_(t) denotes the tracking error e(t) and where

(Aa, Ba, Ca) is the state space realization of W,. Now if we define wl (t) =

wl/2(t), the above state equations will be in the standard form of equations

(8.1), with the following properties: DT2DI_ = I, D21DT1 -- I, B1DT1 =

-G _ 0 and DT2c1 = plI. For this standard problem, the algorithm pro-

posed in the following section can be used. When the command input con-

sists of polynomials, exponentials and trigonometric functions, a suitable

servo-compensator So(s) may be added to guarantee perfect asymptotic

tracking. Let So(s) be denoted by (Ac,B_,Cc) in the state-space form.

The plant given by equations (9.16) augmented with a servo-compensator

So(s) takes the following form:

[ i [B] [0o]A 0 ,'_(*)+ +,_o(,) = u(t) w(_)
-B_C A_ -B_D B_ -B_E

-- Aaxc(t) + Bau(t) + G_w(t) , (9.24)

y(t) = [C 0]x(t)c +Du(t)+[0 E]w(t)
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-- Cox(t)c + Du(,) + Eow(t), (9.25)

where w(t) is the same as in equation (9.21). (Aa,B_, Ga, C_,D,E_) can

now be viewed as a new plant, such as the one given by equations (9.16),

accounting for the tracking requirements of the problem. The remaining

task now is to stabilize the augmented system and to minimize IITwz I[Hoo.

This can be accomplished by formulating the problem as in equations (9.20)

through (9.22). For stabilization, it is necessary that the poles of So(s) do

not cancel any transmission zeros of the plant.

9.4 A Computer Algorithm for the Ho_-Optimal

Control Problem

In view of the mathematical formulation presented in the previous sections,

an algorithm for determining the compensator gains of the Ho_-optimal

control law can now be developed. The objective of the algorithm is to de-

termine the control and observer gain matrices, such that the closed-loop

system remains stable and I[Wwz][Hoo _< v, where, u, the desired value of the

Hoo-norm is a design specification. It is possible to either minimize u or set

it at a sub-optimal value for satisfaction of additional design constraints,

such as controller bandwidth. To comply with the assumptions made in

the theoretical developments, it is assumed that the dosign objective is

I]-_Twz]lHoo < 1 or equivalently IITwzllHoo < 1, guarantying a unique solu-

tion to the Hoo-optimal control law, provided certain existence conditions

are met [2], [3]. This transformation can be accomplished by scaling w(t)

and/or z(t) such that the Hoo-norm of Twz is always less than or equal to
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u,(t)
' i

' S u(t) = P(s)
I

I I

L _ I _ &ugumented plant

: -.,(t)

----'-,(0

y(t)

Figure 9.2: Tracking Problem Set-up.
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1. This scaling of the disturbance and controlled output terms requires the

following transformation of the matrices involved in the open-loop system

dynamics of the standard form given by equations (1):

B1 ---* v-1/_B1,B2 _ vl/_B_, C1 "--*v-1/2C1, C2 _ vl/2C_ (9.26)

Let us now make the following definition:

][Wwz[[H_ _ 5 (9.27)

which at this point is an unknown variable to be minimized. Based on

the two fundamental results of the previous subsections, and the aforemen-

tioned scaling, an Hoo-optimal control law can be found by implementing

the following iterative algorithm:

Step 1: Select the (control) weights p, pl and an initial value for v. The

initial value of v is set at ][Wwzl[H2, though alternate choices are ac-

ceptable (see reference [4]).

Step 2" Apply the aforementioned scaling and solve the two Riccati equa-

tions given by equations (9.2) and (9.11) for the scaled system.

Step 3- Evaluate the gains kl and h¢¢ corresponding to the unscaled sys-

tem and calculate the IlWwzllHc¢, i.e. the value of 5.

Step 4" If kl ;> 0 and hoo >_ 0, then go to Step 5, else,

if 5 >_ v, then decrease p and/or pi and repeat Steps 2 through

4,

else,

set v = _ and repeat Steps 2 through 4.
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Step 5: If )_ma,(klhoo) < 1, then go to Step 6, else,

if _ >_ v, then decrease p and/or pl and repeat Steps 2 through

4,

else,

set u -- * and repeat Steps 2 through 4.

Step 6: If 5 < u, then set u = 5 and proceed to Step 7, else,

if p _< e and Pl _< e, e a small number, then set u = 5 and go to

Step 8,

else,

decrease p and/or Pi and repeat Steps 2 through 6.

Step 7: If v is less than the minimum value of v evaluated so far then

repeat Steps 2 through 7 with a smaller value of v, else, proceed to

Step 8.

Step 8: Form the /-/oo-optimal compensator, K(s), which minimizes the

Hoo-norm of the resulting closed-loop transfer function from w(t) to

z(t), while keeping the closed-loop system stable. Moreover, [[Twz [[Hoom,

It.

The above algorithm is organized such that the proposed approach is

versatile enough to accommodate design specifications other than the mini-

mization of the Hoo-norm of Twz. For instance, Step 7 suggests that an ad-

missible controller may be obtained during the search. As in the LQG/LTR
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design method, this controller may also be adjusted to meet certain addi-

tional performance specifications, such as bandwidth, while still keeping

[[Wwz[[H= lower than what is obtainable from the classical H2-optimal ap-

proach. It is clear that a controller obtained by stopping at Step 7 is not

necessarily the H_-optimai, minimizing IITwzHHc¢. However, for physical

problems, a trade off exists between the minimization of [[Twz HHoo and the

achievable performance.
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Computer Simulation Results

Based on the Ho_-optimal formulation given in the previous section, an

H_-optimal controller is designed for the reduced-order model given by the

system of equations (3.9). The desired system bandwidth is approximately

,ad and thus the filter Ws(s) is chosen as W,(s) = diag(1/(O.ls + 1)).10 7_-/_,

Following the regulator formulation and the computer algorithm pro-

posed in previous sections, and defining the controlled output as in equation

(9.17), a compensator K(s) is designed for the flexible space structure under

consideration. Following several design iterations, the parameters p, Pl, v

are set at 0.005, 0., and 0.05, respectively, and the compensator K(s) is

given by:

K(s)= [ ASK -HI0 ' As=A+B2K+HC2+B1BTkl (10.1)

where K is the controller gain and H is the observer gain. The numer-

ical values of K, H, and A5 are given in Table 10.1. The disturbance,

d(t), applied to the plant is a 50 Ib] pulse that contributes to the system

10-1
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a period of 10 seconds. The plant output y(t), which is subjected to the

described disturbance starting at t = 1 sec., is shown in Figure 10.1. Simu-

lations, using the reduced-order model, show that after the disappearance

of the disturbance, the controlled vertical displacement of the truss is within

4-0.01 inches in approximately 3 seconds, and thereafter it decays to zero.

The histories of the control forces, shown in Figure 10.2, indicate that the

maximum required force is less than 8 Ib I, far less than the control power

limit of 100 IbI.

Examination of the bode plots of the transfer function matrix from

the disturbance d(t) to the controlled output z(t), Tdz, reveals that the

maximum amplification of the Tdz has been suppressed to about -45 dB.

Hence, the proposed control law appears to have good disturbance rejection

properties. Of course, there is always a trade-off between the minimization

of the maximum closed-loop sensitivity and the required control energy.

Besides, there may be other performance specifications that must be ful-

filled in designing such a controller. For instance, in designing the above

controller, the loop-gain cross-over frequency is set at about 10 ,a_A. The

point to be emphasized here is that the approach proposed in this paper

is not only used in seeking the controller that minimizes the [[Tdz [[Hoo, but

it is also desired to have enough degrees of freedom to satisfy other design

specifications, as it is the case with other MIMO control system design

methodologies [7].

The dynamic compensator K(s) is designed using the reduced-order

system model given by equation (3.9). As higher order modes will always

affect the controller performance, it is desired to investigate the closed-loop
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Figure 10.1: Transient Response of the Two-Mode Model to 50lb] Pulse

Disturbance.
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Figure 10.2: History of the Control Forces for the Two-Mode Model.
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system response when the controller K(s) is used in combination with the

original eight-mode model given by equation (3.2). Figure 10.3 shows that

the truss displacement based on the eight-mode model decays following a

similar trajectory as in Figure 10.1, when subjected to the same distur-

bance d(t); the control histories for this simulation are shown in Figure

10.4. Because of the presence of the higher order modes, it is not surprising

that more chattering occurs in the control force and in the displacement

histories shown in the above figures. Nevertheless, the peak value of the

truss vertical displacement is about 0.27 inches, while the required maxi-

mum control force is approximately 13 lb 1. Examination of the Bode plots

of Tdz indicates that the Hcf-norm of the transfer function from d(t) to

z(t) is still lower than -40 dBs and therefore the closed-loop system still

exhibits good disturbance rejection properties.

One of the interesting and important problems that has been investi-

gated only, however, via numerical simulations, is the ability and extent of

the compensator K(s) to tolerate parameter variations of the flexible truss

structure. Simulation results show that the closed-loop system remains sta-

ble even if the mass of the truss is increased by up to 80%. However, only

1.8% or more reduction on the truss mass results in unacceptable system

performance. The transient responses for y(t) corresponding to +80% and

-1.8% mass matrix perturbations, using the same disturbance d(t) as be-

fore, are given in Figures 10.5 and 10.6, respectively. These results imply

that effective use of the proposed control law requires a conservative de-

sign for the flexible structure, which corresponds to the lightest anticipated

structural configuration. Keeping this in mind, one could design a controller
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using the proposed approach, which exhibits good stability robustness to

structural parameter variations.
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TABLE 10.1 Numerical Values for the Hcf-Optimal

Compensator

A5 (12 × 12 matrix) =

10-11

Columns 1 thru 8

-4.3074 -4.1347 -1.0838 -1.0892 55.3546 -0.8037 74.9634 40.9583

-4.1347 -4.3074 -1.0892 -1.0838 55.3544 -0.8037 74.9632 40.9573

-1.0838 -1.0892 -1.5355 -1.3727 19.0405 3.2464 27.0301 -124.1648

-1.0892 -1.0838 -1.3727 -1.5356 19.0400 3.2464 27.0296 -124.1675

-0.3623 -0.3245 -0.1676 -0.0625 -0.0119 -0.0126 -40.8025 65.8052

0.1080 0.1039 -0.3278 -0.3392 -0.0408 -0.0774 3.2575 -115.0120

-0.0040 0.0035 -0.0103 0.0108 1.0000 0.0000 -6.2144 13.1980

0.0048 -0.0042 0.0122 -0.0128 0.0000 1.0000 7.3464 -15.6022

0.0002 -0.0002 -0.0007 0.0007 -0.0001 0.0000 0.5978

-0.0007 0.0007 -0.0007 0.0007 0.0000 0.0000 0.5924

0.0001 -0.0001 0.0008 -0.0008 -0.0001 0.0000 0.5955

0.0002 -0.0002 0.0000 0.0000 0.0001 -0.0001 0.5807

0.5421

0.5540

0.4574

0.4900

Columns 9 thru 12

20.4618 37.6372 0.3982 0.0118

37.5851 20.5137 -0.1301 0.5403

0.9840 0.4543 21.5394 37.6880

0.4557 0.9821 37.6929 21.5352

0.0223 0.0327 -0.0327 -0.0044
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TABLE 10.1 (cont.)

-0.0468 -0.0685 0.0685 0.0091

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

-10.0001 -0.0001 0.0001 0.0000

0.0000 -10.0000 0.0000 0.0000

-0.0001 -0.0001 -9.9999 0.0000

0.0001 0.0002 -0.0002 -10.0000

10-12

H (12 x 4 matrix) =

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

-47.8556 -0.3994 -39.4312 90.1956

5.1996 0.0434 4.2842 -9.7998

-9.5980 -0.0801 -7.9084 18.0898

11.3464 0.0947 9.3490 -21.3850

-0.6209 -0.0052 -0.5116 1.1702

-0.6296 -0.0053 -0.5187 1.1866

0.3946 0.0033 0.3251 -0.7437

0.3709 0.0031 0.3056 -0.6990
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TABLE 10.1 (cont.)

10-13

K (4 × 12 matrix) --

Columns 1 thru 8

-4.3074-4.1347-1.0838 -1.0892 55.3546-0.8037 74.9634 40.9583

-4.1347-4.3074-1.0892 -1.0838 55.3544 -0.8037 74.9632 40.9573

-1.0838 -1.0892 -1.5355 -1.3727 19.0405 3.2464 27.0301 -124.1648

-1.0892 -1.0838 -1.3727 -1.5356 19.0400 3.2464 27.0296 -124.1675

Columns 9 thru 12

20.4618 37.6372 0.3982 0.0118

37.5851 20.5137 -0.1301 0.5403

0.9840 0.4543 21.5394 37.6880

0.4557 0.9821 37.6929 21.5352
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Summary and Conclusions

The problem of persistent disturbance rejection is an important aspect of

structural control problems. The amplitude of the structural vibrations

must be controlled to prevent structural damage and to insure the success-

ful completion of a desired mission. In space structures, structural vibra-

tions usually arise from commanded inputs and/or external disturbances.

Moreover, disturbances in large space structures are in general unknown,

though bounded. As an Hoo-optimal control law is designed to reject the

worst finite energy disturbances, implementation of this control law guar-

antees that the maximum amplification between the disturbances and the

controlled output is bounded by the design parameter v.

To facilitate the treatment of MIMO systems, such as flexible space

structures, the Hoo-optimal control problem is formulated without the or-

thogonality assumptions previously reported in the literature [4]. As demon-

strated in previous sections, the Hoo-optimal approach does not only seek

the minimization of [ITdzllnoo, but it can also serve as a useful tool for

11-1
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satisfaction of other design criteria, such as constraints on the controller

cross-over frequency. However, such design specifications can only be met

through iterative design. Additionally, the persistent disturbance rejection

problem in the presence of unmodeled dynamics and parameter uncertain-

ties can be treated as a multiple objective optimization problem. The

objectives to be optimized are the controller robustness and the controller

performance. In real world applications a trade-off exists between the two,

leading to compromises in control system design. Further studies are nec-

essary to investigate the feasibility of this approach.

It is also worth mentioning that since the structure of the optimal ob-

server used is similar to that of the Model Based Compensator (MBC) used

in the LQG/LTR method, matching of the singular values of the open-loop

transfer function matrix G(s)K(s) at low/high frequencies can be achieved

through techniques similar to those used in the LQG/LTR method. This

will allow more effective loop shaping when dealing with MIMO systems.

In summary, in addition to the robust disturbance rejection properties to

finite energy external inputs (e.g., disturbances), the Hoo-optimal approach

developed in this study may also serve as an useful tool in achieving certain

demanded compensator performance, which mostly remains to be explored.
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Appendix A

Proof of Theorem 1

Define the objective functional:

j = [[z(011_dt. (i.1)

Using DT2D12 = I and equations (8.1), the above functional can be rear-

ranged as:

J = _o°_ [xT(t)cTC, x(t) + xT(t)CTD,2u(t) + uW(t)DT2C,x(t ) + uT(t)u(t) ] dt

(A.2)

subjected to the dynamic constraint

±(t) = Ax(t)+ B2u(t)+ Blw(t) . (A.3)

The constraint can be lifted from the problem by augmenting equations

(A.2) and (A.3) via a Lagrange multiplier G(t) yielding the following form:

J = F(,,(_),u(_),G(t))dt

--_ /°°[1/2(xT(t)cTC,x(t) + xT(t)CTD,2u(t) + uT(t)DT2Clx(t ) +

uT(t)u(t)) + (xT(t)A T + uT(t)B T + wT(t)B T -- i¢(t))G(t)]dt(A.4)

A-1
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Employing the standard necessary condition for the functional J to be a

minimum, the following conditions are obtained:

G(t) = -cTcIx(t)-CTDI2u(t)--ATG(t) (A.5)

u(t) = -BTG(t) - DT_C_x(t) (A.6)

_(t) = Ax(t) + B=u(t) + BlW(t). (A.7)

Equations (A.5) through (A.7) can be combined, yielding

= (A - B2DT2C,)x(t)- B2BTG(t) + BlW(t) (A.8)

= -cT(I - D12DT)Clx(t) - (A T - CTD12BT)G(t)

= --cT(I -- 2D12DT2 + D12DT2)Clx(t) - (A T - CTD_2BT)G(t)

= --cT(I- D_2DT=)(I- D12DT2)C_x(t)-

(A T _ CTD,2BT)G(t) . (A.9)

Remark: When the exogenous input w(t) (e.g., the disturbance) is a white

Gaussian noise, then the optimal control problem becomes the standard

H2-optimal (LQG) problem with the control law given by:

u(t)=GH_x(t) (A.10)

where

GH_ =-(BTk + DT2c,) •

In equation (A.11), k is the solution of the following ARE:

(A.11)

ATk + kA,- kB_BTk + cTc, = 0, (A.12)
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where

A_ = A- B2DT2Cl (A.13)

C_ - (I- D12DT2)cl . (A.14)

If the exogenous input is unknown but is in a subset of the finite energy

signal space, then the worst exogenous input w(t) can be shown to be [6]

w(t) = BlrG(t) . (A.15)

Substituting equation (A.15) into equation (A.8), together with equation

(A.9), and using arguments widely common in the optimal control litera-

ture, it can be concluded that the H_o-optimal state feedback control law

is

u(t) = Kx(t), (A.16)

where

K = -(BTk, + DT2c_) (A.17)

In equation (A. 17), kl is the positive definite solution of the following ARE:

ATkl + k, At + kl(nlB T - B2BT)kI + cTct = 0, (A.18)

where A, and C, are given by equations (A.13) and (A.14). Further details

of this proof can be found in reference [6].
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