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Summary 

To synthesize the control forces of an active suspension system for cargo vehicles rather 
accurate information about the road surface is required. This information can be gathered 
either by look-ahead sensors or dynamic preview. This last method is considered in this 
report. 

The measurements of the dynamics of the suspension system can be used to derive 
which road surface caused these dynamics. This dynamic preview reconstruction of the 
road is utilized at the front wheels of the tractor. The available information about the road 
surface between the front and the rear wheels can then be used to derive a feedforward 
control €orce at the rear wheels of the tractor. Ik past studies this way of controlling 
vehicles is called active suspension with preview. 

Straightforward observers, such as a Kalman filter or Luenberger observer are not ca- 
pable to reconstruct the road and suspension state without drift or bias. A modificated 
version of the Luenberger observer, i.e. augmented with a high-pass integrator, makes it 
possible to reconstruct without drift. Still, a bias (phase lag) due to the extra dynamic 
properties of the high-pass integrator occurs in the reconstruction of the road and suspen- 
sion state. 

Other methods to obtain the preview information (road surface) from simple measure- 
ments are investigated. 

An observer based on smoothing can reconstruct the road and state without drift. The 
algorithm is based on the minimization of the integral of an error index. Continuously 
forward filtering and backward smoothing of the measured quantities makes it possible to 
obtain accurate and smooth reconstructed signals. The method is tested with a simple two- 
DOF simulation and observer model. The influence of the measurement noise is limited 
to slowly oscilating reconstructed values. The noise itself can hardly be recognized in 
the smooth reconstructed values. Parameter errors in the damping coefficient have the 
most inñuence on the performance of the observer. The method as quite accurate but very 
expensive in practice, because of the considerable memory consumption and required CPU- 
time. Nevertheless, with some computational adjustments, like advanced interpolation 
techniques, it might be possible to implement this method in real systems succesfully. 

The system under consideration can be classified in the group of systems with unknown 
inputs. To observe these systems the use of unknown input observers is also considered in 
this survey. These observers first reconstruct a reduced-order unknown-input-free system 
and afterwards the original state and road can be derived from this. The unknown-input- 



fiee systems are defined by useful transformations of state quantities to a form without 
unknown inputs. A disadvantage of the method is the requirement of the derivatives of the 
measurements. The linear modelling makes it possible to write these derivatives in explicit 
formulas. Two unknown input observers are investigated, i.e. a straightforward Unknown 
Unput Observer (UIO) and a Ci'oosed-Loop State and Input Observer (CSIO). The cloosed 
loop observer differs from the straightforward d o w n  input observer in the fact that the 
estimated state is fed back in the reconstruction of the reduced order unknown-input-free 
system. 

The performance of the U I 0  is tested with the simple two-DOF model. Again, drift 
does not occur. The reconstructed road gives rather a noisy sight, caused by the noisy 
measurements. Parameter errors in the chassis mass have the most influence on the per- 
formance of the UIO. The quality of the reconstructed values for incidental roads is less 
than for continuously varying roads. 

Finally the performance of the CSIO is tested with a controlled four-DOF model. The 
control strategy is obtained from earlier studies on this subject. To use the CSIO in the 
four-DOF controlled model the addition of a straightforward LQE observer is required. 
The performance of the controlled system with the use of preview information from the 
CSIQ/LQE observer is satisfactory. The influence of measurement noise is more or less the 
same as with the use of an UIO. 

The unknown input observers are promising but require further investigation to the 
rubustness and the possibilities to implement them in more extended vehicle models or 
even in real vehicles. 

vi 



Chapter 1 

Introduction 

This report offers an extension of the Ph.D. thesis of Huisman (1994): “A Controller and Ob- 
server for Active Suspensions with Preview ”. Among other things he designed a Luenberger 
observer with a high pass integrator to reconstruct the state and unknown road input that 
are needed to control an active vehicle suspension of cargo vehicles. An overview of other 
observers-specifically based on smoothing and unknown input observing-will be investi- 
gated in this report. Section 1.1 presents some feedback to Huisman’s work. In Section 1.2 
the objectives of this research are given. The outline of this report is described in Section 
1.3 . 

1.1 Review and Preview 
Synthesis of control forces for active or semi-active suspensions is a difficult problem be- 
cause these control forces have to satisfy several confücting objectives. Moreover, the main 
problem of designing a control law, that can manage many different sample functions in- 
stead of having an average optimality, is the lack of sufficient information about the road 
input. In fact there is a need for knowledge of the road surface while driving along that 
road. In that case information of the road can be utilized by the controller to prepare the 
xtive or semi-active system for the oncoming input. Under these conditions the required 
control force can be synthesized in a much more efficient and effective way. 

Suspension systems using information about future disturbance are referred to as 
(semi-) active vehicle suspensions with preview. The idea of preview was first proposed by 
Bender, 1968 but has received an increasing interest in the last few years with the advent of 
sonar and laser sensors that have the potential to make this control scheme implementable. 

There are two different ways of previewing: 

oncoming road 

dynamic preview: 

look-ahead preview: The road information is gathered from look-ahead sensors at the 
front of the vehicle. In this way the front and rear suspensions are prepared for the 

input. 

The road irregularities at the front wheels are reconstructed from 

1 



Introduction 2 

measurements of the dynamics of the front suspension system. Such measurements 
can be chosen as the suspension deflection and the chassis acceleration. Assuming 
that the reconstructed road surface at the rear suspension is the same as at the front 
suspension, the rear suspension can be prepared for the oncoming road input. 

The main problem of using sonar or elektro-magnetic look-ahead sensoring is that every 
single irregularity will be detected. So, also a heap of leaves or mounds of snow will be 
detected as serious &stacks. Other things wm’t be deiected at all9 Eke a road pit flled 
with water. Another drawback of this method is that compensation for the vehicle body 
motions is required because the sensors are measuring the relative motions of the body 
and the ground. Furthermore, differences between of the scanned and tracked road profiles 
during turning may result when long preview distances are used, that are required by the 
theory. This way of previewing is discussed by Foag and Griibel [7] , Ha6 and Youn [li] 
and many others. 

The second method of previewing also has some important drawbacks. This indirect 
way of previewing only holds for straight tracking of the rear and front wheels. When the 
track of the rear wheels is different from that of the front wheels (turning, ‘twin-mounted’ 
rear wheels, reversing, moving obstacles) there is no garantee for a good performance. 
Dynamic previewing has been of interest by many people: Frühauf et al. [8], Abdel Hady 
[i], Louam et al. [18] , Ha6 and Youn [12], Sharp et al. [26]. Youn [32] makes a comparison 
between the two preview methods. 

Huisman [14] describes the development of an active suspension at the rear wheels of 
the tractor of a tractor-semitrailer combination. The suspension control uses knowledge 
of the road surface between the front and the rear wheels which has to be reconstructed 
from measurements at the front suspension system. As mentioned above this way of using 
measurements for control purpose is called dynamic previewing. The resulting controller 
scheme has both a feedback and a feedforward part. 

1.2 Research Objectives 
The main objective of this report is to improve the reconstruction of the state and the 
unknown road input at the front suspension. Huisman derived a reconstruction method, 
based on a Luenberger observer [19]. For the determination of a suitable setting of the 
observer Kulman fikter theory [15] is used. This observer has proved to give satisfactory 
results for stochastic road surfaces. But most attention is paid to deterministic road 
surfaces. That’s why a Luenberger observer is used here, since this observer is especially 
appropriate for deterministic structures. 

One of the measurements is the chassis acceleration. When the chassis displacements 
is to be derived from this measurement, double integration of the chassis acceleration is 
required. Unfortunately, for deterministic road surfaces and measurement noise, this causes 
‘drift’ in the reconstructed state. Huisman uses a ‘High-Pass Integrator’ instead of a pure 
double integrator to meet this disadvantage. The result is seen as ‘measurement’ of the 
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chassis displacement. As shown in the thesis, this bounds the drift in the reconstructed 
state. 

The derived reconstructor in [14] is based on the jilter theory because only information 
at time t is of interest. In this report it is suggested that a reconstructor, based on 
smoother theory, might bring up more improvements.' Smoothing in principle is based on 
the idea that an estimate of state variables at a certain time is composed of information 
(measurements, state information) over a whole time interval. In the case considered here 
one could choose the preview interval Et, t -I- tp]  for this. 

Another way to reconstruct the state and unknown road input is the use of so called 
Unknown Input Observers. In general, these observers define pseudo-state equations in 
wich the unknown road input is removed. This state will be reconstructed and from this, 
estimate of the whole state and unknown input can be derived. 

1.3 Outline 
To observe the state and preview information (road surface) suitable models for the dy- 
namic suspension system and the road are required. In Chapter 2 these models are pre- 
sented along with the roads (deterministic and stochastic) that are used to simulate and 
to evaluate the performance of the observers. 

Smoothers derived from the minimization of the integral of a squared error criterium 
are essentially based on current time filtering with backwards smoothing from the current 
time up to the initial time. In Chapter 3 such a smoother is derived and investigated for its 
performance. Such kind of smoothing is known to be very memory-consuming, especially 
when it is used in continuous-time structures. Nevertheless, it should give better results 
because at every time r within the interval [t, t + tp ] ,  the state is reconstructed backwards 
again. When boundary conditions can be put on the forward and backward reconstruction, 
the drift can be limited, or even expelled. 

The reconstruction problem, as it is stated here, can be seen as the reconstruction of 
the state of a system with unknown input. It is necessary to reconstruct this unknown 
input. Many people have been investigating this problem. Chapter 4 discusses two of those 
Unknown Input Observers. 

The combination of the observer and the controller in a more extended model gives the 
answer to the final performance of the observer in this application. In Chapter 5 such a 
combination is made with one of the unknown input observers of Chapter 4. Unlike in [14] 
the performance of the observer is emphasized instead of the performance of the observer 
based control. 

After all these theoretical, and numerical/experimental (simulations) overviews conclu- 
sions and recommendations with respect to the goal of this report is described in 1.2 , are 
given in Chapter 6.  

1An observer based on the smoother theory is not more profitable in words of expended CPU-time and 
memory requirements. 



Chapter 2 

Models of suspension system and 
road surfaces 

One cannot derive an analytical controller or observer strategy without using models of 
the complete system (vehicle dynamics and unknown roadinput). In Section 2.1 models 
for the dynamic system are dicussed and in Section 2.2 the subject will be models for road 
surfaces. 

2.1 Models of the vehicle dynamics 
Like in Huisman’s thesis the starting-point will be two-dimensional vehicle models. The 
benefits of the active suspension are supposed to be gained especially in the longitudinal 
and vertical directions. When, after all models of the full vehicle dynamics are used 
problems may arise especially in the roll and jaw movements of the vehicle. These have 
to be modelled properly, because even worse dynamics could arise. If, for example, the 
vehicle is turning the tractor-weight will gravitate towards one side of the complete vehicle 
suspension. This will cause a certain suspension deflection, but this is not because of a 
road irregularity. However, the reconstructor might still observe a road irregularity. 

For now it’s only neccesary to investigate simple models. In this research two models 
are used for testing the reconstruction of the state and the road. To give a little insight in 
the modelling of the vehicle dynamics the complete six-DOF model of Huisman is presented 
in figure 2.1 . 

This model is, a strong simplification of the reality even with the nonlinearities that are 
introduced. The model suggests that the cabin, the chassis and the engine are one rigid 
2-D body. This also holds for the semitrailer. The axles are represented by point masses. 
The nonlinear model differs only from the linear in the caracteristics of the tire, the air 
spring at the rear wheels of the tractor and the dampers. 

An enlargement of the models used here would be the extension to a 3-D model. In 
that case also the heave-pitch and heave-roll and even the heave-jaw movements have to 
be in consideration. A brief study of some of these dynamics can be found in [30]. An 

4 



Models of suspension system and road surfaces 5 

Figure 2.1: Complete 2-D six-DOF model of cargo vehicle 

overview of vehicle dynamics can be found in [9]. 

Models to evaluate the observer 
The task of the observer is to reconstruct the road and the state of the system from simple 
measurements. The road irregularities are reconstructed from the measurements at the 
front suspension system. The results are used to control the rear wheels (preview). In 
the 2-D description of the complete vehicle it is suíñcient at this moment to choose a 
quarter-vehicle model to test the observer. Figure 2.2 presents this model. 

A quarter of the whole mass of the vehicle is modelled as a point mass. This is also 
done for the axle. A more realistic observer model would be a 2-D four-DOF vehicle model. 
Figure 2.3 presents this model. It can be seen that the weight of the semitrailer is modelled 
by a point mass. This four-DOF model differs not much from the linear six-DOF model. 

This four-DOF model will be used as controller, observer and simulation model in 
Chapter 5 to evaluate the combination of an observer and the controller with preview 
proposed in [14]. 

2.2 Road surface models 
The input excitation of the vehicle is assumed to be the apparent vertical roadway motion, 
caused by the vehicle's forward speed along a road having an irregular proñle. The road 
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Figure 2.2: 1-D two-DOF model of quarter tractor 

profile types can be devided in: 

e deterministic road surfaces: the height at every position along the road is known 
and therefore can be described by analytical functions. 

o stochastic road surfaces: the height at every position along the road is not known 
and will be described by stochastic quantities. 

Another classification could be incident al versus continuously varying road inputs. This 
classification will strongly be correlated to the performances of several observers as will be 
shown in the following chapters. 

Deterministic road surfaces 
Examples of approximately determistic road surfaces are incident al road surface irreg- 
ularities like traffic humps, bricks, railway crossings, pot-holes and kerbstones. In the 
simulations these irregularities are modelled by functions like a step, rounded pulse, sinu- 
soidal and hole/bump symmetric pulses. The step and rounded pulse are described in [14] . 
The hole/bump pulses can be described by two point-symmetric bell-shaped functions. An 
overview of these functions can be found in figure 2.4 . Deterministic roads are of special 
interest in this investigation since they are the most difficult to handle in a straightforward 
controller or observer based on a performance criterium. And because these deterministic 
road incidents cannot be coped with by a simple LQG scheme that generates controllers 
for overall performances. 

Stochastic road surfaces 
As mentioned above stochastic roads can be described by stochastic quantities. Such 
quantities are often formulated in terms of the probability density function and the power 
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n 
+ I  cl ck \ V * 

Figure 2.3: 2-D four-DOF model of cargo vehicle 

spectral density ([25] and [4]) . The probability density functions treat the stochastic 
road irregularities as a stationary Gaussian random process with zero mean. This can be 
characterized by a single sided power spectral density of the form 

ava2/7r 
a2v2 + w2 

@(u) = 

where cr2 is the variance of road irregularities, a is a coefficient depending on the shape of 
road irregularities and v the vehicle forward speed. In fact this is a roughness representation 
of the road and from this the excitation in the observer model can be obtained in the time 
domain by using a shape filter of the form 

where ( ( t )  is a zero-mean white noise process with 

E[((t)((t - T)] = 2UW02S(T) (2-3) 

in which E[-] denotes the expected value of [.l. In figure 2.5 examples of (2.1) and the 
solution of (2.2) are presented in plots. 

The observer models which take the road input as an extra state variable will mostly 
use the model (2.2) for the road. Afterwards this road can be explicitly derived from the 
reconstructed state of the suspension. 

We now have enough tools to do simulations and test the performances of the observers 
to be discussed in the following chapters. 
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Chapter 3 

Continuous Smoothing 

In this Chapter the general theory of continuous smoothing is used in a useful way for 
the application in consideration, i.e. the smoothing will only take place within time sets 
[t, t + tp].  This is useful because after every preview interval the reconstructed information 
must be available to the controller. The outline is as follows. At first, in Section 3.1 a 
derivation of the smoother is presented. In Section 3.2 the performance of the smoother 
with respect to the two-DOF model is presented by means of numerical simulations. Con- 
clusions are drawn in Section 3.3. 

3.1 Observer Design 
The theory presented in this chapter can also be found in [28] in which the method is 
derived for a linear time invariant system without unknown inputs. The design of the 
continuous fixed interval smoother presented here is in fact the result of the minimization 
of the integral of a quadratic error index over the time interval [t, t + tp] .  The error between 
'reality' and 'model' is an additive error to a linear time invariant system. Consider the 
following linear time-invariant system which could describe the 'reality' of the structure of 
figure 2.1 

in which 
.(.) = s(7) + &(r)  ; 5( t )  = xt ( 3 4  

(3.2) s(7) = A+) + B U ( 7 )  + Ef(7)  + b ( 7 ) .  
Moreover, consider the output equations 

G E R" is the state, u E R" is the known input, 9' E fzp is the unknown input, y E Rk 
the model output vector, t1 E R" unmodelled nonlinearities etc., 62 E R" modelling errors 
and disturbances and 5 denotes the measurement noise and errors. If u and measurements 
m of the output y are supposed to be known over the interval r E [t,t + t,] and zt is 

9 



Con tin uous Smooth i ng 10 

also known then the following quadratic error index can be minimized in order to find an 
optimal estimate of state ~ ( 7 ) .  

With X E WI& the optimal estimate $(TI  which minimizes (4.4) is 

in which X ( T )  and X ( T )  are the solutions of the linear differential equations: 

A,X(T) + & U ( 7 )  + kf,.m(T) - PCr(m(7) - DU(7)) X (T )  = 

i(~) = -A;X(~) + C,.CX(,) + Cr(m(7) - E ) U ( T ) )  

with boundary conditions X ( t )  = xt - PX(t) and A(t  + i,) = O,. The description of the 
occuring matrices can be found in Appendix A. 

For the implementation of this smoother the observer model is designed as follows. 
Corresponding to the model of figure 2.2 the state x can be defined as x = [qc qc qe QUIT.  
The model in figure 2.2 is passive, which implies that u=O. The design of a realizable 
smoother (4.5),(4.6) requires the matrices E and F to have rank=p. The unknown input 
vector r is a one-dimensional vector-the unknown road input q,.. If the two outputs 

y = [ qc i ] are used as estimates for the measurements of the suspension deflection 

and chassis acceleration, then the road input qr will not be a part of the ouput model 
(4.3). Mathematically this means that F is a zero matrix E RkXp, rank(F) = O # p .  
Hence, the availability of these two measurements is not sufficient to result in a realizable 
smoother. An extra measurement, the axle acceleration, results in a realizable smoother, 
since then the road qr is a part in the description of the output vector y. This implies 
that rank(F) = p .  The output vector will be redefined as y = [qc - qa tjC q,. - qo GulT 
in which qc - qa denotes the suspension deflection, qc is the chassis acceleration, qr - qa 
is the tire deflection and au is the axle acceleration. The third output q,. - qa cannot 
be corresponded to a measured quantity, but is derived by reformulating the other three 
measurements. 

In the model under consideration the axle acceleration can be formulated by 
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The chassis acceleration is formulated as 

bs . k S  
a c  = --((Ic - G a )  - -(qc - qa) 

mc m, 

If the output vector y models the measurement vector m, i.e. 

1 F m l l  
m =  1 z;;ed:z; J = ~~~1 

[ susp. d e f l .  
I chass. acc. I m2 ' 

then 

(3-9) 

(3.10) 

(3.11) 

O 
The matrix F can now be formulated as F = [ I], with rank(F) = p = 1. 

The last elements of the smoother are the wzghting matrices W1,WZ and V. a/Vi and 
W2 can be chosen quite arbitrarily. In numerical simulations (see Section 4.2) this can be 
done in a trial and error sense. The weight matrix V denotes the confidence one can put 
in the output model and measurements. If it is assumed that the measurement m satisfies 

m = y + v  (3.12) 

and v is assumed to be a white noise process then v, and V,, are defined as 

(3.13) 
(3.14) 

High values of V,, denote high variances in the measurements. Therefor these measure- 
ments deserve less confidence. The opposit also counts for low values of Vmm. A justified 
choice of V will be V = Vi:, which mathematically expresses the words above. 

In the next section all aspects of this section will be used to implement the smoother 
in the passive model of figure 2.2. 

3.2 Numerical Simulations 
In this section a survey of several sample functions for the road input (deterministic and 
stochastic) to be reconstructed by the continuous smoother is presented. Moreover, the 
effect of parameter errors will also be presented by varying the system parameters respec- 
tively for a sinusoidal road input. 

The implementation of the smoother algoritm is rather simple. Within a time span 
[O, t j ]  the smoothing takes place in blocks of r E [t, t + t,]. These block have to smoothed 
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after every time sample dt when a new measurement rn has become available. The initial 
boundary condition X ( t  + d t )  = z ( t  + d t )  - PA(t + d t )  of a new block [t + dt , t  + tp + dt]  
is derived from the corresponding estimate 2(t + di) and A ( t  + di) of the previous block. 
The boundary condition of the backwards integration of the A-equation is always a zero 
vector. These aspects are illustrated in figure 3.1. 

t 

z=t+dt j r=t+t,+dt 

Figure 3.1: Processing of boundary conditions in the smoother algorithm 

It is assumed that the vehicle speed is 90 km/h, which implies that the preview time 
tp is 0.13 seconds. Furthermore, the measurements are corrupted by a significant, but 
realistic noise level. The rounded pulse in figure 3.2 can be reconstructed by the continuous 
smoother with no drift within the time span of 3 seconds. Note the influence of the 
measurement noise by the slowly oscilating quantities after the pulse has taken place. The 
tuning of the weighting matrices has been done with this sample function. 

Figure 3.3 shows the reconstruction of a stochastic sample function for the road input 
along with the corresponding suspension state. The same weighting is used as in the 
rounded pulse function. As can be seen, also this sample function seems no problem to be 
reconstructed by the smoother. 

Figure 3.4 shows the reconstruction of the step sample function as road input along 
with the suspension state. The weigthing is not adjusted, which results in a less smooth 
reconstruction of this sample function. Although this sample function looks simple, it 
is rather difficult for this and other observers to reconstruct the step sample function. 
Probably this is caused by the limited persistency of excitation in the step which is in fact 
concentrated in just one point. With some further tuning of the smoother also this sample 
function can be reconstructed with better results. 

Numerical simulations show that if longer preview times are used (lower vehicel speed) 
the quality of the reconstructed signals is better. This is not very surprising, because the 

a 
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quantity no error ma m, 
Qc 100 134 29 

b, kt k, 
30 115 68 

4 C  i u u  63 111 I a 
Qa 100 80 I 5 2  I 5 2  

smoothing takes place over a larger time interval. This means that the state at every time 
instant is reconstructed from much more measured information. 

Finally, in figure 3.5 a sinusoidal road input is reconstructed with the actual value of 
the suspension damping b, and a reconstruction with an error in this parameter up to 
150% of its actual value. Note the phase lag in the reconstructed road with this parameter 
variation. 

This sample function is also used to test the performance of the smoother when pa- 
rameter errors in the other model parameters are introduced. The results are presented in 
table 3.1 as RMS-values scaled with the RMS-values corresponding to the actual parame- 
ters. The values of the parameters in the observer model are changed one after the other 
to 150% of their value in the simulation model. The error in b, seems to give the highest 
performance reduction. 

6% 13 
91 54 - 

4a 
road 

I 

100 106 23 19 103 35 
100 52 52 30 37 43 
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Figure 3.2: Reconstruction ofthe road input and the suspension state for  a rounded pulse 
sample function. - actual values; - - - reconstructed values 
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Figure 3.3: Reconstruction of the road input and the suspension state for a stochastic 
sample function. - actual values; - - reconstructed values 
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3.3 Conclusions 
In this chapter a continuous time smoother is derived to reconstruct the suspension state 
and unknown road input from measurements of the suspension deflection, the chassis accel- 
eration and axle acceleration. The reconstruction is based on the simple two-DOF model 
of figure 2.2. From this chapter the following conclusions can be drawn: 

e Tie use ~f m extra m-easmement, i.e. the mie acceleration makes it possible to 
design a realizable smoother, which minimizes an error index. 

o Appropriate choice of intensity matrices for the measurement noise together with a 
trial and error choice of the weighting matrices for the process noises in the error 
index results in a satisfying performance 

o The method is very memory consuming and requires a lot of CPU-time. This is a 
big disadvantage in real time applications. 

e The overall performance of this smoother observer is satisfying and gives a good basis 
for the observer based controlling for which it is intended. 

o Further investigation has to be done in the performance of this smoother in a con- 
trolled vehicle model. For this application some adjustments are required, because 
at every time instant the road and state information at the front has to be available 
at the rear side. This means that forwards and backwards smoothing should be done 
in nearly no time. Because this is not possible, adjustments have to be made like the 
use of interpolation techniques. 



Chapter 4 

Unknown Input Observers 

The observer problem, as already stated in Chapter 1, is trying to reconstruct the state 
of a system with an unknown input (road surface). Also this unknown input has to be 
reconstructed. In literature many people have dealt with this problem. In section 4.1 a 
small introduction to this kind of observers is given. In section 4.2 a reduced order observer 
for the inknown-input-free system is derived following the conventional Luenberger observer 
design. Simulations show the performance of this observer. In section 4.3 a closed loop 
version of a state and unknown input observer is derived. Finally, in section 4.4 conclusions 
are drawn. 

4.1 Introduction 
The appearances of unknown inputs in dynamic systems are very divers. In practice there 
are many situations with plant disturbances, or inaccessible inputs. Also actuator failures 
can be modelled as unknown inputs to the system. If one looks at the problem in a very 
broad sense, these items can be seen as the whole collection of unmodelled dynamics of 
a plant. These unmodelled dynamics are defined as unknown inputs in the description of 
the system. 

The unknown input in the system discussed here is the road input. In this chapter 
the application of unknown input observers is investigated. The work of Hou and Muller 
[13], to be discussed in Section 4.2, is just one of the many publications on this subject 
in literature (see also: [3], [6], [16], [17], [22], [29] and [31]). Hou and Mdler designed a 
straightforward reduced-order observer for linear systems with unknown inputs which is 
in fact a modification of the full-order Luenberger observer. Also the conditions for the 
existence of the observer are presented. 

In [13] no assumptions are made about the measurement noise or process noise. Also 
these noises can be seen as unknown inputs. Park and Stein [23] designed a cloosed-loop 
state and unknown input observer. The feedback of the reconstructed state in this cloosed- 
loop observer might be useful to cope with the process and measurement noise. With this 
method also a few unknown or time varying parameters in the system can be identified, 

19 



Unknown Input Observers 20 

which can be very useful in the considered case (e.g. varying cargo loads , varying tire 
stiffness and so on). Model based observing can then be extended to a more adaptive 
manner to obtain maximal performance even with time varying system parameters. The 
derivation of the identification method of this observer can be found in [23]. 

4.2 Observing the state and road with an UI0 
Consider the linear time-invariant system 

Z = A x + B u + E r  
y = c x  

where x E R” is the suspension state u E RP is the known input, r E RP is the unknown 
road input and y E R”, m > q is the output of the systems. This output y models the 
available measurements m,. These measurements are the suspension deflection and the 
chassis acceleration. Contrary to the preceding chapter the definition of the state vector 
x here is: x = [ac - qa, Qc,  qc, &IT. This definition makes it possible to relate the 
measurement ~f the suspension deflection directly to the first state. The measurement of 
the suspension deflection is af3icted with noise. To reconstruct the suspension deflection 
no state integration is required, because we have direct knowledgement of this quantity by 
the measurement. If qc and qa are inserted in the state as seperate values then only the 
difference qc- qa can be compared with the measurement of the suspension deflection. The 
values of qc and qo itself cannot be compared with a measured quantity. Because of this, 
drift etc. mostly occurs in straightforward observing, since then the measurement noise is 
integrated too. 

Note that the measurement and process noise are not considered here, which makes the 
method less general (see [SI in which these assumptions do are made). Nevertheless, when 
the filter gain is chosen appropriate in the following this won’t reduce the performance of 
the observer when in simulations process and measurement noise are introduced. 

For the following the reader is referred to Appendix B. The state x is transformed by 
a transformation matrix T to the pseudo-state 2. 

x = Tii = T [ ] 
with 21 E IP-Q and 2 2  E R. Matrix T E B”’” is defined such that 21 is not influenced 
by the unknown road input r.  This transformation implies a reduced order system for it1 
(Appendix B) : 

This system is called the unknown-input-free system. If the estimate of 21 is defìned as 
$1 zz w then a reduced order observer for the unknown-input-free system can be designed 
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following Luenberger observer design as 

The theory of reduced order observers is extensively described in O’Reilly [24]. From this 
observer the h a l  estimation of 5 can be derived as 

(4.4) 

with 2 + x as t -+ 00. The estimate 7; of the unknown input T can be determined by the 
following expression 

.f: = Ulm, + G3w + Gdm, + GSU 
The existence conditions for observer (4.3)-(4.5) can be found in Appendix B. 

The design of the observer under consideration requires the choice of the Luenberger 

observer gain L and a proper choice of U-’ = [ 2 ] (see Appendix B). The design of 

L can be done by pole-placement or the use of Kalman filter theory. In the latter case 
assumptions must be made about the process and measurement noise in system (4.3) to 
obtain an optimal filter gain. Here pole-placement is used, since then it is quite easy to 
derive a gain L and rather good results are obtained as will be shown in the numerical 
simulations further on in this section. 

A disadvantage of this method is that derivatives of the measurements have to be 
available to reconstruct the unknown input T. Since these derivatives are not available they 
have to be determined by numerical algorithms. When this is done in a straightforward 
manner, measurement noise will significantly deteriorate the derivatives. Low-pass filters 
on both the measurements and the ‘reconstructed’ derivatives can compensate this. On 
the other hand an extra measurement, i.e. the axle acceleration, makes it possible to write 
the time derivatives of the measurements in an explicit formula. 

(4.5) 

Consider the following three system outputs 

Y1 = qc - q4 

Y3 = q4 = -(qc Jc, - q4) + --(ic b, - i4) -+ -,(*T kt - q4) 
m a  m a  m a  

From the second and third relation it is seen that 

k S  m, 
b, b, 
kS k, b, b, 

b, m, m C  

Y1 = --y1 - -y2 

Y2 = -y1+(- --)y2+ -Y3 mc b, 
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quantity 
i a  

22 

no error ma m, b, kt k, 
100 338 46 70 338 338 

If m, and the measurement mi, of the axle acceleration are available then rh, can be 
determined as 

- 

(iC 

road 

Note that the xle a celer 
as a measurement value. 

100 25 21 51 26 33 
100 58 26 42 69 58 

(4.91 

,tion is not a component of the output v-ctor y, but only defined 

Numerical simulations 
For several sample road inputs simulations have been done. The results are given as the 
road input, the stroke (suspension deflection), the chassis velocity and the axle velocity. 
In all simulations the measurement is corrupted with a significant noise level. In figure 
4.1 the rounded pulse is used as sample function for the road input. As can be seen the 
reconstruction is fairly good and within 5 seconds simulation time drift or bias does not 
occur. The stochastic road seems no problem for this method neither, as can be seen in 
figure 4.2. The step function in figure 4.3 gives more problems. For this function, with 
its low persistency of excitation after the step, it’s difficult for the UI0 to reconstruct 
this road input. With other pole placements it is possible to reconstruct this road sample 
function better, but then again drift in the road and chassis displacement does occur after 
some time. In figure 4.4 an other representative deterministic road input-the bump/hole 
sample function-is reconstructed. Finally, the parameter error sensitivity of this U I 0  is 
tested. The parameters in the observer model are changed to 150% of the corresponding 
value in the simulation model. The road input is a sinusoidal sample function. The results 
are given in table 4.1. In figure 4.5 the result of the pararmeter error in na, is given in a 
plot since this parameter had the most influence on the error in the reconstructed values. 
The application of this observer in a real system can result in a worse performance when 
the chassis mass varies. Varying cargo loads is an example of a varying chassis mass. 

I I I I I I I J 
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Figure 4.1: Reconstruction of the road input and the suspension state for  a rounded puke 
sample function. - actual values; - - - reconstructed values 
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4.3 Observing the state and road with a CSIO 
As mentioned earlier in this chapter the Cloosed-Loop, State and Input Observer as it can 
be found in [23] is considered in this section. Appendix B gives a short description of the 
CSIO. The model of a system that can be observed by this CSIO is represented by the 
following equations 

In which x E R" is th 

5 

Y1 

Y 2  

state, u E R" i 

= A z $ E u  
= cx 
= Du (4.10) 

the complete et of known and unknown inputs, 
y1 E RIE1 is the output vector of state quantities and y2 E RIE2 is the output vector of input 
quantities. In this description one can see that the general description of the output y, 
i.e. y = Cx + Du is devided in two outputs y1 and y2. This seperation is to be explained 
further on. 

Just like in the U I 0  design a reduced order pseudo-state w is defined. (Appendix B) 
A reduced-order unknown-inpt-free system is then defined as 

w = Äw + B1y1+ B2y2 (4.11) 

For this system straightforward observer design methods as Kalman filter theory, Luen- 
berger design or pole-placement can be used to reconstruct psuedo state w from measure- 
ments m1 and m2 of the outputs y1 and y2 respectively. A reduced-order observer for w is 
described as 

& = Ä2O + Blml+ B2mz + K&;(rnl- C2) (4.12) 

Hence, an estimate of state x and the input vector u can be derived, i.e. 

The observer (4.12),(4.13) has a cloosed loop character. This can best be shown by 
the block diagram in figure 4.6. In this block diagram the bold lines represent the cloosed 
loop part of the observer. Substitution of the estimate 2 in the differential equation of the 
psuedo state estimate W easily shows that the cloosed loop dynamics can be manipulated 
by the eigenvalues of the matrix Ä - KV,;CK,. Pole placement methods, Kalman filter 
theory or Luenberger observer design can be used to determine an appropriate K and 
hence a suitable setting of the eigenvalues. Note that the structure of the CSIO observer 
(4.12)-(4.14) differs not so much with the U I 0  observer (4.3)-(4.5). The main distinction 
is the cloosed loop correction on the estimated state 2. 

There are two disadvantages of the method. The first one is that no assumptions have 
been made about the measurement noise. The second one is that a linear combination of the 
state x and the input u is not considered in the system output y;. Following the authors 
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System CSIO-Observer 

Figure 4.6: Block diagram ofthe system combined with the Cloosed Loop Observer 

this case is not considered due to the fact that higher derivatives of the measurements 
would be neccesary, which makes the method far less suitable in practice. Also the first 
derivative of y1 is a disadvantage, but in the foregoing section explicit formulas for $1 have 
been derived to meet in this disadvantage. 

Finally, the method will be tested in the next chapter. In this chapter the four-DOF 
model of Chapter 2 will be considered. The controller technique of Huisman will be used 
to evaluate the combination of this observer and preview controller. 

4.4 Conclusions 
In this chapter two Unknown Input Observers have been derived. From this chapter the 
following conclusions can be drawn. 

o An unknown input observer is in fact a method wich seperates the state equations 
with unknown inputs from those without unknown inputs. The resulting reduced- 
order unknown-input-free system can be reconstructed with straightforward observer 
techniques. Afterwards, the estimate of the original state and unkown input can be 
derived from the reconstruction of the unknown-input-free system. 

o The advantage of this method is that no assumptions on the shape of road input 
have to be made. 

o Generally known methods like pole placement, Kalman filter theory and even con- 
ventional Luenberger observer techniques can be used to design the observers. 

o Furhter investigation should be made to take measurement noise into account. 

o The use of linear models makes it possible to derive explicit formulas for the deriva- 
tives of the two measurements (suspension deflection and chassis acceleration), which 
are needed in both methods to reconstruct the (unknown) input. 
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o Simulations show that the UI0 performs in a stable manner, without bias and without 
drift within the considered time ranges. Nevertheless, it is rather difficult for this 
observer to find a good setting of observer gains, especially when incidental roads are 
used. This is probably the result of the low persistency of excitation in these kinds 
of road inputs. The excitation of an incidental road input is concentrated in just the 
small time range of the incident. 



Chapter 5 

Observing in a controller structure 

In this chapter the cloosed loop observer of Chapter 5 is tested with an extended vehicle 
model. This four-DOF vehicle model is controlled with Huisman’s preview controller. 
The performance of the CSIO in this strucure is emphasized more than the controller 
performance. Section 5.1 describes the CSIO design for the controlled system. In Section 
5.2 numerical simulations show the performance of the controlled vehicle with reconstructed 
information in comparison with perfect knowledge of the required idormation. Finally, in 
Section 5.3 conclusions are drawn. 

5.1 CSIO in four-DOF controlled model 

n 
Mc . . . . . . .  ,q$p :::.@;i: I 

. . . . . . .  . . . . . .  

k, 

V 
4 

m a r m  f q,, “11 1‘ gaf 
. . . . . . .  . . . . . . .  

Figure 5.1: Four-DOF controlled model with its parameters and states 
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Because it is out of the scope of this research to investigate all the considered observers in a 
controlled structure one of them, the CSIO is chosen quite arbitrarily. This method is quite 
straightforward and easy to interprete. Moreover, the implementation is not complicated 
and not memory consuming, which makes it feasible for use in real time observing. 

The four-DOF controlled vehicle model in figure 5.1 will be used as observer, controller 
and simulation model. The performance of the observer will be tested with the use of two 
road input sample functions. 

mr ine equations of motioïì of the uiode! in fgiire 5.1 are 

in wich 

ff = 
fr = 

71 = 

7 2  = 

73 = 

7 4  = 

W ( q c  + up - qaf) + W ( Q c  + a+ - Q a t )  

ksr(qc - b~ - qar) - fa 
- (U + b - c)(b - c)M, - J 

M J  + M,(b - c ) ~  + J 
~ ( b  - c)MC - J 

M J  + Mc(b - c ) ~  + J 
(a  + b - c)Mc + UM 

M J  + Mc(b - c ) ~  + J 
-cMC - bM 

M J  + Mc(b - c ) ~  + J 
In these equations qc is the displacement of the centre point of mass M and b is the distance 
between this point and the reax axle. The other quantities are defined in fi ure 5.1. 

The state is defined by x = [qcf -  af, Q c f ,   af, hi, QW - Qar, qW, qat,  Qar] . The applied 
controller strategy, which synthesizes the value of fa can be found in [14]. 

To fit the CSIO into the four-DOF model a few adjustments have to be made. The 
linear model on which the CSIO design is based is as follows 

B 

j; = A x + B u  
y1 = cx 
y2 = DU 

in which 
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and A, B, C, D matrices of appropriate order. It can easily be seen by equations (5.1) and 
(5.2) that the controller input f a  will be present in the front and rear chassis acceleration 
measurements &f = Qc + a@ and qm = qc - b@. The output vector y ,  which models the 
available measurements should then be written as y = Cs + Du. This is not the case 
for reasons given in the foregoing chapter. To overcome this problem the reconstruction 
is devided into two parts. The first part is the use of the CSIO strategy for a passively 
suspended four-DOF vehicle model '. This part is merely concentrated on the reconstruc- 
tiou at the ficzt suspension. I'he second p x t  is the use or" a stsaight-îorward filter based 
reconstructor at the actively suspended rear side of the tractor. The idea behind this is 
that the unknown road input has to be reconstructed from the passive front suspension. 
This can best be done by the CSIO. At the rear side it is assumed that the road input is 
known from the reconstruction at the front. This implies that at the rear side we have a 
controlled system without any unknown inputs. Such a system can easily be observed by 
straightforward methods like Linear Quadratic Estimation, Luenberger Observer Design, 
Kalman Filter Theory, etc. To observe the rear side LQE is used here. 

The definition of the output y2 suggests that the tire deflection at the front and the 
rear wheels, i.e. Qrf - Qaf and Qrr - Qar are available as measured quantities. In practice, 
this is impossible. However, if the axle acceleration at the front and at the rear wheels are 
measured too, it is possible to reconstruct the measured values of the tire deflections, i.e. 

+-' 

The derivative of the front suspension deflection i C j  - gaf  can be reconstructed in an 
analogous manner as was done in Section 4.2. For the design of the LQE the following 
linear system is assumed 

with process noise and measurement noise covariances E[w] = E[v]  = O ,  E[wwT] = Q ,  
E[vvT] = R, E[wvT] = O. A Linear Quadratic Gaussian optimal estimate of x can then be 
found by the stationary Kalman filter 

2 = A2 + BL + L(z - CL2 - DLuL) (5.9) 

via the filter gain matrix L. In this design the input and output quantities are chosen 
respectively as 

lIn the passive case the actuator force fa is not a pait of the input vector and so the definition gl = Cz 
can be used. 



Observing in a controller structure 32 

and A, B,, C,, D, matrices of appropriate order. 

the next section the strategy will be tested with a few sample functions. 
This completes the design of the observer for the controlled four-DOF vehicle model In 

5.2 Numerical Simulations 
In this sectiou the perf=rrr,mce cf the CSIO/LQE observer in a controlled four-DOF model 
is briefly tested by simulations. The results of the controlled vehicle are compared with 
a passive vehicle model for two realistic sample functions, i.e. the rounded pulse and 
the sinusoidal. These two sample functions are chosen to investigate the performance for 
incidental road inputs and continuously varying road inputs. 

The measurements ml and m2 of the corresponding outputs y1 and y2 are corrupted 
with noise. In both simulations the preview time t ,  is 0.13 seconds (90 km/h is a maximum 
cargo vehicle speed in realistic situations) 

The computation of hl, needed to reconstruct the unknown road input, can not be 
made completely explicit, in this four-DOF modeL2 Therefore, a combination of explicit 
formulas and numerical filter algorithms is made to derive the derivatives. 

The observer gain K in equation ($.Ill) is derived by the use of Kdmm Pilter theory for 
the system (4.9). The gain is optimized with trial and error adjustments in the Kalman 
filter design procedure. The rounded pulse is used for these adjustments. 

In figure 5.2 the rounded pulse is reconstructed. It can be seen that the unknown input 
observer is not able to reconstruct the road very accurately. This is merely caused by the 
fact that the CSIO observer model is a passive four-DOF model, contrary to the acitve 
four-DOF simulation model. Nevertheless the reconstruction of the road occurs without 
drift and moreover, the main information (the top of the pulse) can be coped with by the 
CSIO. 

The influence of the reconstructed road and suspension state on the control performance 
can be seen in figure 5.3. In this figure the four control objectives discussed by Huisman are 
shown in comparison with the corresponding passive quantities. The control objectives-or 
performance quantities-are simulated for perfect knowledge of the suspension state and 
road input together with reconstructed knowledge of the road and state. It is conspicuous 
that the control objectives do far less oscilate when the reconstructed values are used 
instead of the perfect values. This is one of the reasons that reconstructed information 
does not necessarily have to be perfect. The perfromance of a controlled system, which 
uses reconstructed information in practice, must always be tested in combination with the 
present observer. 

The CSIO is also tested for a continuously varying road input, i.e. a sinusoidal road 
input. The recontruction of the road can be seen in figure 5.4. This road is far better 
reconstructabale than the rounded pulse. It is quite remarkable that continuously varying 
(high persistency of excitation) inputs can be better recontructed than incidental inputs 

2The derivatives im - 45r and fa are not a part of the equations (5.1)-(5.4). This implies that they 
can never be written explicitely, which is required in all components of y1, except for qcf - paj. 
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(persistency of excitation concentrated in a small time span). Probably, numerical fluctua- 
tions will be absorbed by the continuously varying quantities then. The control objectives 
for the sinusoidal input can be found in figure 5.5. Contrary to the previous sample func- 
tion the simulated performance quantities for reconstructed information does not differ 
significantly from the corresponding quantities for perfect information. This is due to the 
fact that the road and the state can be reconstructed rather accurately. 

Further investigation to the CSIO in a controlled structure, such as the influence of 
parameter errors, is not made in this limited report. Nevertheless, the rr;ethod of unkaowc 
input observing is promising and deserves further investigation. 
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5.3 Conclusions 
This chapter described the implementation of a CSIO-observer in the four-DOF controlled 
model. Some adjustments had to be made to make the observer suitable for this application. 
The use of a conventional LQE-observer is one of these adjustments. Numerical examples 
showed the performance of this observer for some characteristic road functions. From this 
chapter the following conclusions can be drawn: 

o With the use of the axle acceleration as an extra measurement it is possible to 
design an unknown input observer of the considered type. To obtain the unknown 
input, derivatives of the first measurement vector rnl are required. These derivatives 
can not be computed completely explicitely, unlike in the passive two-DOF model. 
Derivatives of measurements which cannot be derived explicitely are computed by 
numerical filter algorithms. 

o The description of the CSIO observer model is not general in the sense that the 
output vector is a linear combination of the state and input. Still, in the definition of 
the output vector this linear combination is required. Therefore a second observer is 
introduced. The reconstruction of the €ronk suspension state and road input is merely 
taken into account by the CSIO, while the rear suspension state is reconstructed by 
a LQE-observer design. 

o In the first reconstruction, the observer design is based on a passive four-DOF model. 

o In the latter reconstruction the assumption is made that the reconstructed road 
input at the front is a good representation of the road input at the rear wheels after 
time delay t,. This makes the rear system a linear system with known inputs and 
straightforward Linear Quadratic Estimation design can be used to estimate this 
linear system with process and measurement noise. 

o Numerical simulations show that the performance of the CSIO is promising. The 
control objectives remain the same or are even better when the control force is derived 
from the reconstructed values, instead of the use of perfect information. 

o The method is rather promising and deserves further investigation to the robustness 
and performance in more extended simulation models or real time implementations. 



Chapter 6 

Conclusions and Recommendations 

In this chapter conclusions are drawn with respect to the research objectives as described 
in Section 1.2. Moreover, some recommendations for future investigations are given. 

In Chapter 5 a continuous smoother is derived to determine the preview information and 
suspension state from simple measurements, i.e chassis acceleration, axle acceleration and 
suspension deflection. The smoother is designed from the minimization of the fixed interval 
integral of an error index together with an initial value error. The following conclusions 
can be drawn: 

o Drift due to integration of noisy measurements does not occur, even so for a bias. 

o To design the smoother an extra measurement, i.e. the axle acceleration is required. 

o The smoother is able to derive the estimate of the unknown road input seperately 
from the state quatntities. Since this was also done in the unknown input observers of 
Chapter 4 and 5 one can look at the derived smoother as an unknown input smoother. 

o Longer preview times result in a better performance of the smoother. 

o The method is very memory and CPU-time consuming. 

The subject of Chapter 4 and Chapter 5 was the application of unknown input observers 
to the system under consideration. The unknown road input can be derived without 
assumptions on the shape of the road. Two methods-UI0 and CSIO- have been derived 
and researched for there properties and performances. From these chapters the following 
conclusions can be drawn: 

o Unknown input observers transform the original system into a reduced order unknown- 
input-free system. Straightforward reconstruction of the reduced system gives the 
basis for the reconstruction of the original state and unknown input. 

o In the method derivatives of the measurements are required to derive an estimate of 
the unknown input. If linear passive models are used these derivatives can be mitten 
explicitely as a linear combination of the actual measurements. 

37 
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o Numerical simulations show that the UI0 is able to reconstruct the state and road in 
a stable manner without drift or significant bias. Difficulties aries when roads with 
low persistency of excitation are used. 

o The combination of a CSIO and LQEobserver makes it possible to reconstruct an 
active four-DOF model. The results of using the reconstructed information for control 
purpose were promising. 

The unknown input methods discussed in this report are specifically appropriate for the 
problem under consideration. With some further assumptions it was possible to reconstruct 
the preview information and suspension state without drift and bias. Variations due to 
measurement noise were not significant. 

The implementation of the smoother in practice requires some further investigation. 
The use of advanced interpolation techniques can make it possible to reconstruct the state 
and road with far less computational efforts. This is desirable in real time application. 
Future research can tell if it is possible to smooth with interpolation algorithms. 

The unknown input observers are based on models without measurement and process 
n&e. It is intereresting to investigate if the additlso ~f these quantities in the observer 
model makes it possible to reconstruct the road and state even better. 

In past studies it was shown that drift occurs when straightforward filter algorithms are 
used. An idea for future research is to investigate if it is possible to transform the suspension 
state and road in such a way that the measured suspension deflection can directly be 
compared with a transformed state of the chassis displacement or axle displacement as 
seperate values. These seperate values don’t have to reconstructed by integrating the 
noisy measurements of the chassis acceleration or axle acceleration then (which caused the 
drift). The introduction of an extra dummy state might be useful. 

An other method of reducing drift in straightforward filtering is trying to detect the 
trend in the drifting signals. The comparison of this trend with polynomial functions, which 
can be subtracted from the drifting signals, can result in a satisfying performance. In this 
method the case of constant road slopes will also be seen as flat surface roads. However, 
this does not affect the performance of the controlled system, because the control force is 
especially to be synthesized for incidental and continuously varying road types. 
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Appendix A 

General solut ion of the continuous 
smoother problem 

Consider the following linear time-invariant system which models the reality. 

Z(T) E R" is the state, U ( T )  E R" is the known input, T(T) E RP is the unknown input, 
y(~) E Rk the output, & ( T )  E R" unmodelled nonlinearities etc., &(T) E R" modelling 
errors and disturbances and 5 denotes the measurement noise and errors. 

If U ( T )  and measurements m ( ~ )  of y(7) are supposed to be known over the interval 
T E [t, t+tP] and xt  is also known then the following quadratic error index can be minimized 
in order to find the best estimation of state Z ( T )  and unknown input T ( T ) :  

A new error value X E W1& is defined. After some lenghthy but straightforward calcula- 
tions the solution which minimizes (A.2) is 

S(T) = 

.(T) = ErX(T) + Kr(m(7) - C ~ ( T )  - Du(T)) ,  (A.3) 

+ BrX(T)  + ~uU(7) + Mrm(7) 

i(~) = -AFA(T) - C,cs (~ )  + C , ( ~ ( T )  - Du(T))  

with the boundary conditions A ( t )  = Sl(.(t) - x t )  and A( t  + tP) = O,. In the following the 
first boundary condition is reformulated. 

The matrices in (A.3) are defined as 

42 
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in which 
H = ETW2E + FTVF ; M = W2EH-lFTV ; 
Q = V - VFH-lFTV ; R = W2 - W2EH-lETW2. 

We define an augmented state equation as follows 

x* = A*x* + B*u* (A-4) 

As can be seen A* is Hamiltonian which means that if 7 is an eigenvalue of A* than 
also -7 will be an eigenvalue. So, the system (A.4) will always give numerical instability. 

Therefor d e h e  
?(T) = PX(7) + X ( T )  (A.5) 

with P an arbitrary constant symmetric matrix. From this, a set of new equations arise as 

X ( T )  = {A,  - PC,C} X ( 7 )  + {ATP + PAT + Br - PC,CP - k} A(.) 

+ B u U ( T )  + M,m(T) - PC,(m(T) - DU(7.)) 
h = {PC,C - A,)T X(7) + @,@X(7)  + @,(m)(7) - Du(7)) ( A 4  

We use the freedom of the choice of P and define it as the solution of the Algebraic Ricatti 
equation 

&P + PAT + B, - PC,CP = O 
This will decouple X ( T )  of X ( T ) .  A stable solution can be found if A, = A, - PC, is 
Hurwitz. A, is Hurwitz if the Lyapunov equation 

ASP +PAT = -(B, + PC,CP) ( A 4  
has an unique positive definite solution P. This unique solution can be found by equations 
(A.7) if the system (A, C) is observable. 

Finally we have a stable, optimal and unique solution of the smoothing problem with 
unknown input as follows 

?(T) = PX(T) + X ( T )  ( A 4  
+(T) = E,X(T) + K , ( ~ ( T )  - C?(T) - Du(T))  (A.lO) 

with X ( T )  and X ( T )  the solutions of: 

A?(T) = A,X(T) + &u(T) + M , . ~ ( T )  - P C , ( ~ ( T )  - Du(T))  (A.11) 
i(,) = -ATX(T) + C,CX(T) 4- C , ( ~ ( T )  - Du(T))  (A.12) 

If we have knowledge of the initial state x(t) = xt then the first boundary condition 
can be written as X(t) = Sl(?(t)  - zt) = P-'(?(t) - X ( t ) ) .  If we choose S I  = P-' then 
this boundary condition will be X ( t )  = xt - PX(t). This b.c. can initialize the integration 
of (A.ll) when a solution of X ( T )  has to be computed. The second b.c., i.e. X = O, can 
initialize the backwards integration of (A.12) when a solution of X(T) has to be computed. 



Appendix B 

Derivation of UI0 and CSIO 

UI0 Design 
Consider the constant time-invariant linear system 

i = A x + B u + E r  

y = cx (B.1) 

where x E R" , u E Elp , r E and y E R" are the state vector, the known input vector, 
the unknown input vector and output vector respectively. A,B,C,E are constant matrices 
of appropriate dimensions. Theory assumes that m 2 Q and rank(E) = Q and rank(C) = m 
without loss of generality. Under these assumptions one can choose a nonsingular matrix 
as 

T = [N E ] ,  N E R n x ( n - q )  

so that 

E = T - - l E =  [ i ]  
This makes the system (B.l) equivalent tol 

5 = A z + B u + Ë r  
y = c z  

where 

All Ai2 

x = T Z = T [  E:] ,  Ä = T - l A T =  [ A 2 1  A 2 2  

lsee:[24] in which is proved that any restricted system {A, 33, C) is equivalent to a transformed system 
{Ä, B, C} when T is nonsingular 
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with if1 E Rp.-4 and i f 2  E R9. From here the reduced order observer is designed, which is 
in fact the heart of the method. The transformed state vector is partitioned to make it 
possible to isolate the part in which the unknown input is present and a part in which this 
unknown input is not present It can easily be seen that an unknown-input-free system can 
be described by 

If rank(CE) = q then define a matrix Q so that the following nonsingular matrix exists 

U = [CE QJ,  Q E Rmx("-q) 

u-i = [ 2 ] u1 E RX", u2 E R(m-q)X" (B.6) 

When the output equation in (B.5) is premultiplied by U-' the following reduced order 
system can be obtained 

where 

For the reduced order unknown-input-free system (B.7) a conventional Luenberger observer 
can be designed as 

where L E R(n-P)X(m-P) and L* = LU2 + GI, w E & and m, is the measured value of y .  

ti = (A1 - Lc;>w + &u + L*mx (B.8) 

From the solution of w one can obtain the h a l  estimation for z and T as 

Gz = U1CNLU2CN + UlCNÄ12UlCN - u,cNÄ,, - Ä21+ Ä22UICN 
G3 = -UiCNLU2 - U1CNÄ12Ui - Ä22U1 
G4 = -U1CN&-B2 

The existency conditions for UI0  system described by (C.7) and ((2.8) are 
a ) r a n k C D = r a n l D =  q - 

- A1 
b) rank [ el ] = n - q V s E C, Re(s) 2 O .  

Proofi see[13]. 

1 
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CSIO Design 
Consider the following constant time-invariant linear system. 

(BSO) 

where input vector u is composed by known and unknown inputs. If measurements ml 
and m2 of the outputs y1 and y2 are available then a reduced order CSIO can be presented 
by the following equations 

in which K is a31 arbitrary observer gain matrix and 

L = BV,,, M = ( C L ) + ,  N = M C  
Ä = K:(I-LN)A&, 

Bi = V,T,(I-LN)ALM 
B2 = - g ( l - L N ) B D +  

(B.12) 

The notation Vz(., stands for the kernel of (-) which results from a singular value decompo- 
sition of (-). The notation (-)+ stands for the generalized or pseudo inverse (Moore-Penrose 
inverse) of the singular matrix (-). This CSIO (B.ll) can asymptotically observe the state 
and input of the system (B.lO) if the following conditions are satisfied. 
a) (CL)+CL = N L  = 
b) (Ä, C) is detectable where c = vz',C&, 
Proof: see [23]. With this method it is also possible to identify some unknown or time 
varying parameters. The algorithm for this identification can be found in [23]. 
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