19,524 research outputs found

    Soft-Switched Step-Up Medium Voltage Power Converters

    Get PDF
    With a ten-year average annual growth rate of 19 percent, wind energy has been the largest source of new electricity generation for the past decade. Typically, an offshore wind farm has a medium voltage ac (MVac) grid that collects power from individual wind turbines. Since the output voltage of a wind turbine is too low (i.e., typically 400 690 V) to be connected to the MVac grid (i.e., 20 40 kV), a heavy line-frequency transformer is used to step up the individual turbines output voltage to the MV level. To eliminate the need for bulky MVac transformers, researchers are gravitating towards the idea of replacing the MVac grid with a medium voltage dc (MVdc) grid, so that MV step-up transformers are replaced by MV step-up power electronic converters that operate at the medium frequency range with much lower size and weight. This dissertation proposes a class of modular step-up transformerless MV SiC-based power converters with soft-switching capability for wind energy conversion systems with MVdc grid. This dissertation consists of two parts: the first part focuses on the development of two novel groups of step-up isolated dc-dc MV converters that utilize various step-up resonant circuits and soft-switched high voltage gain rectifier modules. An integrated magnetic design approach is also presented to combine several magnetic components together in the modular high voltage gain rectifiers. The second part of this dissertation focuses on the development of several three-phase ac-dc step-up converters with integrated active power factor correction. In particular, a bridgeless input ac-dc rectifier is also proposed to combine with the devised step-up transformerless dc-dc converters (presented in the first part) to form the three-phase soft-switched ac-dc step-up voltage conversion unit. In each of the presented modular step-up converter configurations, variable frequency control is used to regulate the output dc voltage of each converter module. The operating principles and characteristics of each presented converter are provided in detail. The feasibility and performance of all the power converter concepts presented in this dissertation are verified through simulation results on megawatts (MW) design examples, as well as experimental results on SiC-based laboratory-scale proof-of-concept prototypes

    Soft-Switched Step-Up Medium Voltage Power Converters

    Get PDF
    With a ten-year average annual growth rate of 19 percent, wind energy has been the largest source of new electricity generation for the past decade. Typically, an offshore wind farm has a medium voltage ac (MVac) grid that collects power from individual wind turbines. Since the output voltage of a wind turbine is too low (i.e., typically 400 690 V) to be connected to the MVac grid (i.e., 20 40 kV), a heavy line-frequency transformer is used to step up the individual turbines output voltage to the MV level. To eliminate the need for bulky MVac transformers, researchers are gravitating towards the idea of replacing the MVac grid with a medium voltage dc (MVdc) grid, so that MV step-up transformers are replaced by MV step-up power electronic converters that operate at the medium frequency range with much lower size and weight. This dissertation proposes a class of modular step-up transformerless MV SiC-based power converters with soft-switching capability for wind energy conversion systems with MVdc grid. This dissertation consists of two parts: the first part focuses on the development of two novel groups of step-up isolated dc-dc MV converters that utilize various step-up resonant circuits and soft-switched high voltage gain rectifier modules. An integrated magnetic design approach is also presented to combine several magnetic components together in the modular high voltage gain rectifiers. The second part of this dissertation focuses on the development of several three-phase ac-dc step-up converters with integrated active power factor correction. In particular, a bridgeless input ac-dc rectifier is also proposed to combine with the devised step-up transformerless dc-dc converters (presented in the first part) to form the three-phase soft-switched ac-dc step-up voltage conversion unit. In each of the presented modular step-up converter configurations, variable frequency control is used to regulate the output dc voltage of each converter module. The operating principles and characteristics of each presented converter are provided in detail. The feasibility and performance of all the power converter concepts presented in this dissertation are verified through simulation results on megawatts (MW) design examples, as well as experimental results on SiC-based laboratory-scale proof-of-concept prototypes

    Soft-Switched Step-Up Medium Voltage Power Converters

    Get PDF
    With a ten-year average annual growth rate of 19 percent, wind energy has been the largest source of new electricity generation for the past decade. Typically, an offshore wind farm has a medium voltage ac (MVac) grid that collects power from individual wind turbines. Since the output voltage of a wind turbine is too low (i.e., typically 400 690 V) to be connected to the MVac grid (i.e., 20 40 kV), a heavy line-frequency transformer is used to step up the individual turbines output voltage to the MV level. To eliminate the need for bulky MVac transformers, researchers are gravitating towards the idea of replacing the MVac grid with a medium voltage dc (MVdc) grid, so that MV step-up transformers are replaced by MV step-up power electronic converters that operate at the medium frequency range with much lower size and weight. This dissertation proposes a class of modular step-up transformerless MV SiC-based power converters with soft-switching capability for wind energy conversion systems with MVdc grid. This dissertation consists of two parts: the first part focuses on the development of two novel groups of step-up isolated dc-dc MV converters that utilize various step-up resonant circuits and soft-switched high voltage gain rectifier modules. An integrated magnetic design approach is also presented to combine several magnetic components together in the modular high voltage gain rectifiers. The second part of this dissertation focuses on the development of several three-phase ac-dc step-up converters with integrated active power factor correction. In particular, a bridgeless input ac-dc rectifier is also proposed to combine with the devised step-up transformerless dc-dc converters (presented in the first part) to form the three-phase soft-switched ac-dc step-up voltage conversion unit. In each of the presented modular step-up converter configurations, variable frequency control is used to regulate the output dc voltage of each converter module. The operating principles and characteristics of each presented converter are provided in detail. The feasibility and performance of all the power converter concepts presented in this dissertation are verified through simulation results on megawatts (MW) design examples, as well as experimental results on SiC-based laboratory-scale proof-of-concept prototypes

    High Power Density and High Efficiency Converter Topologies for Renewable Energy Conversion and EV Applications

    Get PDF
    This dissertation work presents two novel converter topologies (a three-level ANPC inverter utilizing hybrid Si/SiC switches and an Asymmetric Alternate Arm Converter (AAAC) topology) that are suitable for high efficiency and high-power density energy conversion systems. The operation principle, modulation, and control strategy of these newly introduced converter topologies are presented in detail supported by simulation and experimental results. A thorough design optimization of these converter topologies (Si/SiC current rating ratio optimization and gate control strategies for the three-level ANPC inverter topology and component sizing for the asymmetric alternate arm converter topology) are also presented. Performance comparison of the proposed converter topologies with other similar converter topologies is also presented. The performance of the proposed ANPC inverter topology is compared with other ANPC inverter topologies such as an all SiC MOSFET ANPC inverter topology, an all Si IGBT ANPC inverter topology and mixed Si IGBT and SiC MOSFET based ANPC inverter topologies in terms of efficiency and cost. The efficiency and cost comparison results show that the proposed hybrid Si/SiC switch based ANPC inverter has higher efficiency and lower cost compared to the other ANPC inverter topologies considered for the comparison. The performance of the asymmetric alternate arm converter topology is also compared with other similar voltage source converter topologies such as the modular multilevel converter topology, the alternate arm converter topology, and the improved alternate arm converter topology in terms of total device count, number of switches per current conduction path, output voltage levels, dc-fault blocking capability and overmodulation capability. The proposed multilevel converter topology has lower total number of devices and lower number of devices per current conduction path hence it has lower cost and lower conduction power loss. However, it has lower number of output voltage levels (requiring larger ac interface inductors) and lacks dc-fault blocking and overmodulation operation capabilities. A converter figure-of-merit accounting for the hybrid Si/SiC switch and converter topology properties is also proposed to help perform quick performance comparison between different hybrid Si/SiC switch based converter topologies. It eliminates the need for developing full electro-thermal power loss model for different converter topologies that would otherwise be needed to carry out power loss comparison between different converter topologies. Hence it saves time and effort

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    A Bidirectional Soft-Switched DAB-Based Single-Stage Three-Phase AC–DC Converter for V2G Application

    Get PDF
    In vehicle-to-grid applications, the battery charger of the electric vehicle (EV) needs to have a bidirectional power flow capability. Galvanic isolation is necessary for safety. An ac-dc bidirectional power converter with high-frequency isolation results in high power density, a key requirement for an on-board charger of an EV. Dual-active-bridge (DAB) converters are preferred in medium power and high voltage isolated dc-dc converters due to high power density and better efficiency. This paper presents a DAB-based three-phase ac-dc isolated converter with a novel modulation strategy that results in: 1) single-stage power conversion with no electrolytic capacitor, improving the reliability and power density; 2) open-loop power factor correction; 3) soft-switching of all semiconductor devices; and 4) a simple linear relationship between the control variable and the transferred active power. This paper presents a detailed analysis of the proposed operation, along with simulation results and experimental verification

    Fault detection and location in DC systems from initial di/dt measurement

    Get PDF
    The use of DC for primary power distribution has the potential to bring significant design, cost and efficiency benefits to a range of power transmission and distribution applications. The use of active converter technologies within these networks is a key enabler for these benefits to be realised, however their integration can lead to exceptionally demanding electrical fault protection requirements, both in terms of speed and fault discrimination. This paper describes a novel fault detection method which exceeds the capability of many current protection methods in order to meet these requirements. The method utilises fundamental characteristics of the converter filter capacitance’s response to electrical system faults to estimate fault location through a measurement of fault path inductance. Crucially, the method has the capability to detect and discriminate fault location within microseconds of the fault occurring, facilitating its rapid removal from the network

    Switching-Cell Arrays - An Alternative Design Approach in Power Conversion

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe conventional design of voltage-source power converters is based on a two-level half-bridge configuration and the selection of power devices designed to meet the full application specifications (voltage, current, etc.). This leads to the need to design and optimize a large number of different devices and their ancillary circuitry and prevents taking advantage from scale economies. This paper proposes a paradigm shift in the design of power converters through the use of a novel configurable device consisting on a matrix arrangement of highly-optimized switching cells at a single voltage class. Each switching cell consists of a controlled switch with antiparallel diode together with a self-powered gate driver. By properly interconnecting the switching cells, the switching cell array (SCA) can be configured as a multilevel active-clamped leg with different number of levels. Thus, the SCA presents adjustable voltage and current ratings, according to the selected configuration. For maximum compactness, the SCA can be conceived to be only configurable by the device manufacturer upon the customer needs. For minimum cost, it can also be conceived to be configurable by the customer, leading to field-configurable SCAs. Experimental results of a 6x3 field-configurable SCA are provided to illustrate and validate this design approach.Peer ReviewedPostprint (author's final draft

    Modeling and simulation enabled UAV electrical power system design

    Get PDF
    With the diversity of mission capability and the associated requirement for more advanced technologies, designing modern unmanned aerial vehicle (UAV) systems is an especially challenging task. In particular, the increasing reliance on the electrical power system for delivering key aircraft functions, both electrical and mechanical, requires that a systems-approach be employed in their development. A key factor in this process is the use of modeling and simulation to inform upon critical design choices made. However, effective systems-level simulation of complex UAV power systems presents many challenges, which must be addressed to maximize the value of such methods. This paper presents the initial stages of a power system design process for a medium altitude long endurance (MALE) UAV focusing particularly on the development of three full candidate architecture models and associated technologies. The unique challenges faced in developing such a suite of models and their ultimate role in the design process is explored, with case studies presented to reinforce key points. The role of the developed models in supporting the design process is then discussed

    Using transfer ratio to evaluate EMC design of adjustable speed drive systems

    Get PDF
    This paper proposes a way to evaluate the conducted electromagnetic compatibility performance of variable speed drive systems. It is considered that the measured noise level is determined by two factors, the level of the noise source and the conversion efficiency of the propagation path from the source to the measurement equipments. They are corresponding to the two roles played by the converter. On the one hand, a converter provides the noise source and generates the noise current and voltage on the motor side with the cable and the motor. On the other hand, it acts as the propagation path with the DC bus and the rectifier to spread the noise generated on the motor side to the line side. The transfer ratio is defined as the ratio between the CM current on the motor side and the CM current on the line side. It can be used to evaluate the EMC design of a converter because it is independent of the cable and the motor. A simplified model is used to explain this characteristic. It can be measured when the converter is powered off. Verification is carried out by experimental results obtained from a 12-kVA laboratory system.\u
    corecore