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Abstract 
 

The use of DC for primary power distribution has the potential to bring significant design, 

cost and efficiency benefits to a range of power transmission and distribution applications. 

The use of active converter technologies within these networks is a key enabler for these 

benefits to be realised, however their integration can lead to exceptionally demanding 

electrical fault protection requirements, both in terms of speed and fault discrimination. This 

paper describes a novel fault detection method which exceeds the capability of many current 

protection methods in order to meet these requirements. The method utilises fundamental 

characteristics of the converter filter capacitance’s response to electrical system faults to 

estimate fault location through a measurement of fault path inductance. Crucially, the method 

has the capability to detect and discriminate fault location within microseconds of the fault 

occurring, facilitating its rapid removal from the network. 

 

Introduction 
 

There is an increasing interest in the use of DC power distribution throughout the power 

industry. This interest is largely driven by the increased usage and advance of power 

electronic technologies which have facilitated more interconnected and efficient use of DC 

systems. Recent proposed applications for DC range from large scale multiterminal DC 

systems, such as for offshore grid applications
1-3

, to more physically compact network types 

primarily considered within this paper. In particular, DC power distribution has been 

proposed for use within microgrid
4-6

, shipboard
7-9

 and aircraft
10-13

 applications in recent 

years. The islanded nature of these network types makes them prime candidates for the 

implementation of innovative power system architectures, and therefore opportunity exists 

for them to take advantage of the potential benefits of DC power distribution. 

 

One area which continues to present a barrier to the more widespread adoption of DC is the 

lack of effective electrical fault protection systems. As a result of these issues, the 

development of novel DC protection solutions is an area of significant research interest
4, 14

. 

The following sections of this paper will consider both the potential advantages and 

protection issues in detail in order to highlight the continued need and potential benefits, as 

well as the opportunities, for further innovation in this area. 

 

The paper then goes on to describe the concept of how electrical system faults could be 

detected and located through an initial di/dt measurement, that is a di/dt measurement very 

shortly after the point of fault inception. This means of fault detection is compared to existing 

techniques and examples are subsequently provided on its implementation. The paper 

concludes by identifying the key challenges in the practical implementation of an initial di/dt 

fault detection scheme as well as highlighting potential application areas. 



Potential advantages of DC systems 
 

To gain an appreciation of why such a radical shift in the means of power distribution is 

being considered, it is useful to first review the benefits that DC power distribution can bring 

to these applications. For clarity these potential benefits are listed below and nested within 

this list is a discussion of why these benefits are particularly relevant for microgrid, shipboard 

and aircraft applications. 

 

1. It is possible to transmit more DC power through a cable of a given voltage rating 

than with AC 

 

There are a number of reasons why this is the case. The first relates to the insulation limits of 

cables. Whilst the power delivered through an AC conductor is determined by the voltage 

RMS, cable insulation requirements are determined by the peak voltage level. This is not the 

case for DC conductors which can transmit power at the full voltage limit set by the cable 

insulation. Due to this higher average voltage level, a DC system can therefore transfer up to 

√2 times the power of an AC system operating at the same AC (peak) voltage
9
. Alternative 

cabling arrangements, such as dividing the DC voltage into a “two-bus” arrangement with 

positive and negative voltage rails, can achieve even greater improvements in power transfer. 

For example, Kaipia et al.
6
 claims that up to 16 times more power can be transmitted in DC 

than AC using the same cables and carefully selecting voltage levels. Furthermore, DC 

systems are free from skin effect (under steady state conditions) and reactive voltage drop, 

further improving power transfer. 

 

These inherent characteristics of DC distribution provide a number of potential benefits. First, 

they can facilitate a reduction in cable sizes, potentially reducing cost (which is particular 

important for making DC distribution economic within the microgrid domain
6
), as well as 

reducing weight and volume of associated conductors
9, 15

. The indirect efficiency savings 

achieved by reducing the weight of the electrical system can be of significant benefit to ship 

and aircraft applications. For example, American Airlines claims that removing 1 pound 

(≈0.45kg) from each of the aircraft in its fleet will save more than 11000 US gallons (≈3.78 

litres per gallon) in fuel per year
16

, which, based on 2011's average jet fuel costs of $3.05 per 

gallon
17

, equates to an annual cost saving of $33500 per pound of weight removed from the 

airframe. Whilst this only provides a high level approximation, it highlights that even small 

weight saving can result in significant reductions in operating costs in the long term and so 

incentivises design changes to reduce the weight of an aircraft's electrical system. Doerry
18

 

also provides an example of this from the marine sector, stating that for a small ship (such as 

surface combatants or offshore supply vessels) to carry an additional 1 ton (≈1000kg) of 

payload, the overall weight of ship must increase by approximately 9 tons to support it. This 

ratio reduces to 1 ton of payload to an additional 1.2 tons of ship for larger vessels. This again 

serves to highlight that the power system can have a much wider impact on the overall system 

design. 

 

These characteristics also enable conductors to be better utilised where network voltage is 

fixed or limited by design constraints of the application. For example, in aviation the reduced 

pressure at altitude lowers the breakdown voltage of the surrounding air, increasing the risk 

of partial discharge
19

. Therefore within this sector, there is a reluctance to increase voltage in 



order to avoid this issue. Another example from within the shipping industry is the need for 

specially trained crew when the operating voltage is greater than 1000V
20, 21

. Although a 

practical rather than technical constraint, this can have cost and operability implications. This 

a particular issue for small but power dense ships, such as offshore supply vessels, and has in 

part lead to low voltage system designs despite the potentially significant on board power 

requirements
22, 23

. In both cases, a DC network solution would provide more power for the 

available voltage. 

 

2. Using DC distribution can reduce the number required power conversion stages 

between source and load 

 

Within marine and aerospace sectors, the development of more-electric and all-electric design 

concepts, and the novel technologies associated with their realisation, is driving the 

requirement for greater electrification of secondary systems
24

. Increasingly, this creates a 

requirement for converter fed generation and load systems 
9-11, 25-27

. Similarly within 

microgrids, distributed resources, such as small-scale generation, back-up energy storage, and 

some industrial and sensitive electronic loads increasingly rely on the use of power 

converters
4, 28

. 

 

Utilising DC, it is possible to reduce the number of these power converters used in a network. 

For systems that generate at variable frequency, two conversion stages (rectification and 

inversion) are required to distribute power on a standard AC bus. This could be reduced to 

one rectification stage if DC distribution was used. There are also many novel loads which 

have unique voltage and frequency requirements. For an AC system, two conversion stages 

are usually required to get the power in the desired form. This again can be reduced to one 

with DC distribution. Removal of these nugatory rectification and inversion stages could 

reduce the number of power converters, and subsequent conversion losses, by up to 50%
9, 28

. 

Additionally, many energy storage devices such as batteries, naturally output DC. This makes 

it easier to connect to a DC bus rather than AC as no inversion stage is required.  

 

These factors have a potentially significant impact on the cost, complexity, volume and 

weight of future network designs. George
28

 shows a clear example of this, highlighting that 

for a data centre containing 1000 servers (that use DC power), $3.5 million could be saved 

annually on power supply costs based on the reduced conversion losses and associated 

cooling requirements when utilising DC distribution. Efficiency savings of this order may be 

the difference between the commercial viability of a project as well as reducing its carbon 

footprint and therefore provide a high incentive for moving to DC.  

 

Similar cost data for aerospace and marine sectors was not found within the public domain, 

however the increasing power requirements and reliance on power electronics anticipated 

within future platforms would suggest that significant efficiency savings could be made. 

Perhaps more important is the indirect efficiency savings achieved by reducing the weight of 

the electrical system through the removal of redundant components, the potential advantages 

of which are highlighted above. 

 

 

 



3. DC distribution better facilitates the paralleling of multiple non-synchronous sources 

 

There are multiple points to consider here, many of which are equally relevant to AC 

systems. The following discusses these and highlights where specific benefits can be gained 

in the utilisation of DC distribution.  

 

The first is that the paralleling of any sources provides the opportunity to increase the 

efficiency of power generation through optimised power sharing between the sources based 

on their individual operating characteristic. This principle has been applied for a number of 

years on grid based applications to control the output of power stations through the use of 

economic dispatch
29

, and can be applied within AC and DC systems. However the paralleling 

of generators onto a DC bus is easier than for an AC bus, as the requirement for tight 

frequency regulation of the supply is removed
30

.  This can enable faster connection of sources 

to a network, potentially providing better dynamic performance. For microgrids, this may 

allow the greater use of renewable sources under intermittent conditions, whereas within 

ships and aircraft, it may facilitate more efficient power sharing between multiple 

generators
12, 23, 31

. 

 

The second point relates to the use of non-synchronous generation sources, which are more 

likely to be smaller scale distributed energy resources and prime movers. The advantages of 

decoupling the generator frequency from that of the main distribution system are that it 

allows the prime movers to be operated at the most efficient speeds
7, 9

, or indeed any speed 

(which is of benefit to intermittent sources such as renewables). Generators could also, at 

least in certain applications, be operated at very high speed to increase power density
32

. 

Therefore the use of non-synchronous generation sources offer potential for both increased 

power density and efficiency. Again these advantages can be captured for both AC and DC 

systems, although additional conversion stages may be required to achieve a fixed AC output, 

the drawbacks of which are discussed above. 

 

From the above points it is clear that several significant design and operability benefits exist 

through the adoption of DC distribution, particularly where multiple sources and power 

electronic interfaces are connected to the network. However until now a number of factors 

have held back the use of DC distribution. Historically this was an issue of voltage 

transformation and available transmission distance
33

, limiting the application of DC to very 

low voltage or certain niche applications. Despite advances in technology having overcome 

these issues, the limited application of DC to date means that, unlike AC electrical systems, a 

profound understanding of DC electrical systems is yet to be established within the power 

industry. This creates an entry barrier to developing DC systems. This is evident from (and 

compounded by) the lack of appropriate standards in this area, particularly those related to 

the protection of DC networks, meaning that targets for which a system should be design to 

are more difficult to establish
28

. 

 

Protection challenges for DC systems 
 

The key research challenges which exist in the protection of multiterminal DC networks 

relate to both fundamental issues associated with the protection of DC networks coupled with 

those that have developed as a result of the adoption of new network and converter designs.  



 

In a faulted DC system, no natural zero crossings exist in the fault current waveform in which 

the circuit can be broken. As such, larger, heavier and more costly circuit breakers must be 

employed to break DC current
15

, which often increases the cost and physical burden of the 

associated network protection systems. 

 

The nature of more modern converter interfaced DC networks are such that electrical fault 

conditions can develop extremely rapidly, creating extremely high fault currents and severe 

transient voltage conditions. The extent to which these extreme fault characteristics develop 

is partly dependent on the type of power converter employed. However they are particularly 

evident within network which utilise standard voltage source converters (VSC), with the 

capacitors used as filters on the DC terminals of the VSC being a source of significant fault 

current
8
. A further issue with these types of networks are that VSCs are typically less robust 

than thyristor based converter topologies
5, 8

 and therefore protection must operate more 

quickly to prevent converter damage during network fault conditions. Salomonsson et al
5
 

provide an example of this within a microgrid where protection operating time should be in 

the order of 2ms to prevent converter diode damage. 

 

Beyond these transient mitigation issues, challenges also exist with the accurate detection and 

discrimination of faults within DC networks. Previous studies from the authors have shown 

that severe limitations exist with the application of protection methods available within 

literature in meeting these faster operating requirements, in particular those which employ 

non-unit protection techniques
34, 35

. This creates a need for innovative methods to overcome 

the speed and discrimination challenges, which is the rational for the development of the 

novel method proposed within the following section. 

  

Initial di/dt fault detection concept 
 

The initial di/dt fault detection concept method utilises fundamental characteristics of the 

converter filter capacitance’s response to electrical system faults to estimate fault location 

and coordinate the network protection response. To illustrate how this is achieved, consider 

the equivalent network diagram shown in Figure 1. 

 
Figure 1 

Equivalent circuit for a faulted microgrid network containing a converter interface, filter 

capacitance and line impedance
35

 

 
When a fault occurs on the DC network, capacitor C at the converter output begins to 

discharge and contribute to the fault. This discharge current does not increase instantaneously 

but instead its initial rate of change is dependent on the voltage between capacitance and fault 



and the fault path inductance. As time approaches zero (time of fault occurrence), this 

derivative is equal to 

 

L

Riv

dt

tdi LCF
)0()0()0(

.                                           (1) 

 

With knowledge of inductance per unit length of the line (H/m), and assuming initial line 

voltage drop is negligible, distance from the capacitor to the fault location can be calculated 

from equation (1). Provided that di/dt can be measured sufficiently close to time zero, then 

the inductance L can be accurately determined.  

 

Figure 2 shows an example of this characteristic behaviour through the simulation of the 

example microgrid network shown in Figure 1. Faults F1 and F2 have been placed at locations 

5 metres and 30 metres respectively from the converter, with fault resistances of 1mΩ (short 

circuit) and 500mΩ (arcing fault) simulated at each location. Full details of this network are 

presented within
35

. 

 

 
 

Figure 2 

Example microgrid network di/dt response for 1mΩ (left) and 500mΩ (right) faults at F1 

(solid) and F2 (dotted) 
35

 

 

Figure 2 illustrates that the initial rate of change is dependent on the location of the fault and 

is similar for both fault resistance cases. This highlights the potential to utilise such a 

measurement to very quickly detect both low and high impedance fault types within DC 

networks. It should however be noted that the high di/dt decays very rapidly for higher 

impedance faults and this will impact on the measurement speed requirements to obtain an 

accurate fault location. Prior to an example of how this measurement could be utilised as part 

of a wider protection scheme, the following section compares this approach to existing 

protection techniques. 

 

 
 
 



Existing techniques and differentiating factors 
 

There are two main distinguishing features in this method compared to techniques presented 

currently within literature. The first is the use of an inductance measurement for fault location 

rather than impedance, as is commonly used for distance protection used in transmission 

systems. This means that the method is insensitive to fault resistance, which is particularly 

beneficial in the detection of high resistance faults such as arcs. Furthermore, the method 

only uses the initial (first few µs) rather than sustained di/dt characteristic for fault detection, 

unlike derivative current schemes presently employed. To clarify these differences the 

following subsections describe the current application of these two protection techniques. 

 

Rate of current rise fault detection. 
 

Rate of current rise (ROCR) fault protection operates on the principle that under fault 

conditions current will rise more rapidly than under normal operating conditions
36

. This 

method is not too far removed from overcurrent protection however its main advantage is that 

faults can be detected earlier as the fault is detected while current is rising rather than at its 

peak, so full fault current does not need to develop to allow detection and discrimination. 

Early detection and isolation is advantageous as it can help minimise the disruption to the rest 

of the network and reduce stress on circuit breaking equipment. Figure 3 illustrates the 

various levels of ROCR which a network may experience. 

 

 
 

Figure 3 

Fault detection regions for traditional di/dt based protection systems 

 

Figure 3 shows that there are two distinct regions where load transients and fault transients 

would normally lie in terms of ROCR. However there are also two overlapping areas where 

distinguishing between large load transients and high resistance faults becomes difficult. 

Partly for this reason ROCR is not usually used in isolation, and is normally accompanied by 

a current magnitude measurement to avoid spurious tripping
37

. 

 

Distance protection. 
 

Distance (also known as impedance) protection works on the principle that the impedance of 

a transmission line is proportional to the length of the line, and so by measuring the 

impedance, the length of a line can be derived
38

. Distance protection is implemented by 



measuring voltage and current at a point on the network and from that the impedance of the 

line downstream of that point can be calculated. If a fault occurs on the network it effectively 

shortens the length of the line from the point of measurement to the point of fault and so will 

change the impedance measured. The impedance characteristic is illustrated in figure 4. 

 

 
 

Figure 4 

Mho Characteristic with zones of protection
38

 

 

Figure 4 shows three zones of protection covered by the relay physically located at the 

crossing between the X and R axis. These zones are in part used due to the uncertainty in 

both measurement and line parameters, which makes it impossible to protect an exact length 

of line. Instead overlapping zones are used and enables each part of the line to be protected. 

Faults in Zone 1 are tripped instantaneously, and Zones 2 and 3 with increasing time delays 

respectively.  

 

Distance protection is commonly employed on long lengths of line (such as transmission 

lines) but it is not as common in smaller systems as the desired levels of discrimination are 

difficult to achieve. However the following section does build upon the principles of distance 

protection, therefore understanding of this fault detection method can facilitate the 

development of more relevant techniques tailored to the requirements of compact networks. 

 

Protection scheme introduction 
 

The proposed fault detection method is primarily designed for DC distribution networks 

where generators, energy storage devices and loads (both AC and DC) are interfaced through 

power electronic converters to the network. As the capacitor fault response provides the 

mechanism for fault location rather than the response of source or load itself, the converter 

interface is essential. The following presents an initial proposal into how the fault detection 

method could be utilised within an example network. 

 

Referring to the busbar network presented in Figure 1, the desired protection system response 

to the two fault locations would be for the local protection devices to operate to isolate faults 

on their branch. This would mean P1 would act to isolate F1 and P2 would act to isolate F2. 

For faults occurring on other branches in the network, the non-faulted branches should 

remain connected. In the example network, there is no means of isolating faults on the DC 

busbar and these faults can only be cleared through the disconnection of all sources of fault 

current. To achieve the desired discrimination for branch faults, an initial di/dt measurement 



could be set on each of the converter output capacitors (or just on the main source converter 

if the parallel branches contain no converters of their own)  and, operating in isolation from 

each other, these would trip on a certain threshold. In this case, if protection is to operate for 

faults on a branch up to the busbar, the threshold would be set to trip breakers when the 

inductance measured is less than the inductance of the conductor connecting the capacitor to 

the busbar. For faults beyond the protected zone it is assumed that protection elsewhere in the 

network will act to isolate the fault. 

 

For this relatively simple primary protection scheme, the process of operation would be: 

1. Determine loop inductance up to the busbar LCABLE 

2. Set relay to trip when VC/(di/dt) < LCABLE 

3. Continuously measure di/dt and send trip signal to circuit breakers when the threshold 

is exceeded. 

 

Note that continuous measurements of di/dt would be taken as it would not be possible to 

guarantee any measurement could be taken at the exact fault occurrence time.  

 

Ideally this scheme would provide protection of the full branch up to the busbar, however 

because of measurement and parameter uncertainties this cannot be easily achieved. As is the 

case with more traditional distance schemes, it is likely that the method would only primarily 

protect a certain portion of the line to avoid any overreach on to or beyond the busbar
38

. This 

and other operating challenges are discussed in more detail in the following section. 

 

Operating challenges 
 

There are two overriding challenges which need to be understood and overcome in order for 

initial di/dt measurements to feasibly become part of an effective protection system. The first 

is the understanding of how the time of di/dt measurement following the fault influences the 

accuracy of fault location. Following the initial fault related peak, the natural di/dt response 

decays exponentially over time and the rate of this decay is proportional to the damping 

within the network. This means that a delay in measurement could see a smaller di/dt 

measured than appeared initially and hence the location of a fault appearing more distant, 

possibly leading to non-detection of the fault condition.  
 

The second key area is to quantify the degree of uncertainty in any measurement of fault 

location. This could be made up by a number of factors, such as uncertainty in the line 

parameters and measurement error. One further consideration for the type of scheme 

described in the previous section is the consistency of line inductance when exposed to 

mutual inductive effects from other parts of the network. 

 

These challenges are being addressed as part of ongoing work and will be the subject of 

future publications. 

 

Conclusions 
 

The integration of active converter technologies is key to the development DC distribution 

systems however their introduction also creates a number of network protection challenges. 



Given some of the shortfalls of current techniques to meet these challenges, continued 

innovation in the protection of these networks is required in order to fully realise the benefits 

DC distribution can offer. To help tackle this issue, this paper has described a novel fault 

detection method based on the initial di/dt response of a converter’s filter output. By utilising 

the transient behaviour of the network to discriminate fault location, it is possible to detect 

faults far faster. In turn, this enables the operation of protection at lower current levels, 

potentially reducing the stress on network and circuit breaking components, the likelihood of 

post fault voltage transients and therefore helping to improve long term asset health. A patent 

application has been made related to this fault detection method
39

. 
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