14 research outputs found

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    ビットマップインデックスに基づくデータ解析のためのハードウェアシステムに関する研究

    Get PDF
    Recent years have witnessed a massive growth of global data generated from web services, social media networks, and science experiments, as well as the  “tsunami" of Internet-of-Things devices. According to a Cisco forecast, total data center traffic is projected to hit 15.3 zettabytes (ZB) by the end of 2020. Gaining insight into a vast amount of data is highly important because valuable data are the driving force for business decisions and processes, as well as scientists\u27 exploration and discovery.To facilitate analytics, data are usually indexed in advance. Depending on the workloads, such as online transaction processing (OLTP) workloads and online analytics processing (OLAP) workloads, several indexing frameworks have been proposed. Specifically, B+-tree and hash are two common indexing methods in OLTP, where the number of querying and updating processes are nearly similar. Unlike OLTP, OLAP concentrates on querying in a huge historical storage, where updating processes are irregular. Most queries in OLAP are also highly complex and involve aggregations, while the execution time is often limited. To address these challenges, a bitmap index (BI) was proposed and has been proven as a promising candidate for OLAP-like workloads.A BI is a bit-level matrix, whose number of rows and columns are the length and cardinality of the datasets, respectively. With a BI, answering multi-dimensional queries becomes a series of bitwise operators, e.g. AND, OR, XOR, and NOT, on bit columns. As a result, a BI has proven profitable for solving complex queries in large enterprise databases and scientific databases. More significantly, because of the usage of low-hardware logical operators, a BI appears to be suitable for advanced parallel-processing platforms, such as multi-core CPUs, graphics processing units (GPUs), field-programmable logic arrays (FPGAs), and application-specific integrated circuits (ASIC).Modern FPGAs and ASICs have become increasingly important in data analytics because they can confront both data-intensive and computing-intensive tasks effectively. Furthermore, FPGAs and ASICs can provide higher energy efficiency, compared to CPUs and GPUs. As a result, since 2010, Microsoft has been working on the so-called Catapult project, where FPGAs were integrated into datacenter servers to accelerate their search engine as well as AI applications. In 2016, Oracle for the first time introduced SPARC S7 and M7 processors that are used for accelerating the OLTP databases. Nonetheless, a study on the feasibility of BI-based analytics systems using FPGAs and ASICs has not yet been developed.This dissertation, therefore, focuses on implementing the data analytics systems, in both FPGAs and ASICs, using BI. The advantages of the proposed systems include scalability, low data input/output cost, high processing throughput, and high energy efficiency. Three main modules are proposed: (1) a BI creator that indexes the given records by a list of keys and outputs the BI vectors to the external memory; (2) a BI-based query processor that employs the given BI vectors to answer users\u27 queries and outputs the results to the external memory; and (3) an BI encoder that returns the positions of one-bits of bitmap results to the external memory. Six hardware systems based on those three modules are implemented in an FPGA in advance for functional verification and then partially in two ASICs|180-nm bulk complementary metal-oxide-semiconductor (CMOS) and 65-nm Silicon-On-Thin-Buried-Oxide (SOTB) CMOS technology―for physical design verification. Based on the experimental results, these proposed systems outperform other CPU-based and GPU-based designs, especially in terms of energy efficiency.電気通信大学201

    FDSOI Design using Automated Standard-Cell-Grained Body Biasing

    Get PDF
    With the introduction of FDSOI processes at competitive technology nodes, body biasing on an unprecedented scale was made possible. Body biasing influences one of the central transistor characteristics, the threshold voltage. By being able to heighten or lower threshold voltage by more than 100mV, the very physics of transistor switching can be manipulated at run time. Furthermore, as body biasing does not lead to different signal levels, it can be applied much more fine-grained than, e.g., DVFS. With the state of the art mainly focused on combinations of body biasing with DVFS, it has thus ignored granularities unfeasible for DVFS. This thesis fills this gap by proposing body bias domain partitioning techniques and for body bias domain partitionings thereby generated, algorithms that search for body bias assignments. Several different granularities ranging from entire cores to small groups of standard cells were examined using two principal approaches: Designer aided pre-partitioning based determination of body bias domains and a first-time, fully automatized, netlist based approach called domain candidate exploration. Both approaches operate along the lines of activation and timing of standard cell groups. These approaches were evaluated using the example of a Dynamically Reconfigurable Processor (DRP), a highly efficient category of reconfigurable architectures which consists of an array of processing elements and thus offers many opportunities for generalization towards many-core architectures. Finally, the proposed methods were validated by manufacturing a test-chip. Extensive simulation runs as well as the test-chip evaluation showed the validity of the proposed methods and indicated substantial improvements in energy efficiency compared to the state of the art. These improvements were accomplished by the fine-grained partitioning of the DRP design. This method allowed reducing dynamic power through supply voltage levels yielding higher clock frequencies using forward body biasing, while simultaneously reducing static power consumption in unused parts.Die Einführung von FDSOI Prozessen in gegenwärtigen Prozessgrößen ermöglichte die Nutzung von Substratvorspannung in nie zuvor dagewesenem Umfang. Substratvorspannung beeinflusst unter anderem eine zentrale Eigenschaft von Transistoren, die Schwellspannung. Mittels Substratvorspannung kann diese um mehr als 100mV erhöht oder gesenkt werden, was es ermöglicht, die schiere Physik des Schaltvorgangs zu manipulieren. Da weiterhin hiervon der Signalpegel der digitalen Signale unberührt bleibt, kann diese Technik auch in feineren Granularitäten angewendet werden, als z.B. Dynamische Spannungs- und Frequenz Anpassung (Engl. Dynamic Voltage and Frequency Scaling, Abk. DVFS). Da jedoch der Stand der Technik Substratvorspannung hauptsächlich in Kombinationen mit DVFS anwendet, werden feinere Granularitäten, welche für DVFS nicht mehr wirtschaftlich realisierbar sind, nicht berücksichtigt. Die vorliegende Arbeit schließt diese Lücke, indem sie Partitionierungsalgorithmen zur Unterteilung eines Entwurfs in Substratvorspannungsdomänen vorschlägt und für diese hierdurch unterteilten Domänen entsprechende Substratvorspannungen berechnet. Hierzu wurden verschiedene Granularitäten berücksichtigt, von ganzen Prozessorkernen bis hin zu kleinen Gruppen von Standardzellen. Diese Entwürfe wurden dann mit zwei verschiedenen Herangehensweisen unterteilt: Chipdesigner unterstützte, vorpartitionierungsbasierte Bestimmung von Substratvorspannungsdomänen, sowie ein erstmals vollautomatisierter, Netzlisten basierter Ansatz, in dieser Arbeit Domänen Kandidaten Exploration genannt. Beide Ansätze funktionieren nach dem Prinzip der Aktivierung, d.h. zu welchem Zeitpunkt welcher Teil des Entwurfs aktiv ist, sowie der Signallaufzeit durch die entsprechenden Entwurfsteile. Diese Ansätze wurden anhand des Beispiels Dynamisch Rekonfigurierbarer Prozessoren (DRP) evaluiert. DRPs stellen eine Klasse hocheffizienter rekonfigurierbarer Architekturen dar, welche hauptsächlich aus einem Feld von Rechenelementen besteht und dadurch auch zahlreiche Möglichkeiten zur Verallgemeinerung hinsichtlich Many-Core Architekturen zulässt. Schließlich wurden die vorgeschlagenen Methoden in einem Testchip validiert. Alle ermittelten Ergebnisse zeigen im Vergleich zum Stand der Technik drastische Verbesserungen der Energieeffizienz, welche durch die feingranulare Unterteilung in Substratvorspannungsdomänen erzielt wurde. Hierdurch konnten durch die Anwendung von Substratvorspannung höhere Taktfrequenzen bei gleicher Versorgungsspannung erzielt werden, während zeitgleich in zeitlich unkritischen oder ungenutzten Entwurfsteilen die statische Leistungsaufnahme minimiert wurde

    A Survey of Recent Developments in Testability, Safety and Security of RISC-V Processors

    Get PDF
    With the continued success of the open RISC-V architecture, practical deployment of RISC-V processors necessitates an in-depth consideration of their testability, safety and security aspects. This survey provides an overview of recent developments in this quickly-evolving field. We start with discussing the application of state-of-the-art functional and system-level test solutions to RISC-V processors. Then, we discuss the use of RISC-V processors for safety-related applications; to this end, we outline the essential techniques necessary to obtain safety both in the functional and in the timing domain and review recent processor designs with safety features. Finally, we survey the different aspects of security with respect to RISC-V implementations and discuss the relationship between cryptographic protocols and primitives on the one hand and the RISC-V processor architecture and hardware implementation on the other. We also comment on the role of a RISC-V processor for system security and its resilience against side-channel attacks

    先端プロセス技術における混載SRAMの高信頼・低電力化に関する研究

    Get PDF
    13301甲第4843号博士(工学)金沢大学博士論文本文Ful
    corecore