135 research outputs found

    The jumping mechanism of flea beetles (Coleoptera, Chrysomelidae, Alticini), its application to bionics and preliminary design for a robotic jumping leg

    Get PDF
    Flea beetles (Coleoptera, Chrysomelidae, Galerucinae, Alticini) are a hyperdiverse group of organisms with approximately 9900 species worldwide. In addition to walking as most insects do, nearly all the species of flea beetles have an ability to jump and this ability is commonly understood as one of the key adaptations responsible for its diversity. Our investigation of flea beetle jumping is based on high-speed filming, micro- CT scans and 3D reconstructions, and provides a mechanical description of the jump. We reveal that the flea beetle jumping mechanism is a catapult in nature and is enabled by a small structure in the hind femur called an โ€˜elastic plateโ€™ which powers the explosive jump and protects other structures from potential injury. The explosive catapult jump of flea beetles involves a unique โ€˜high-efficiency mechanismโ€™ and โ€˜positive feedback mechanismโ€™. As this catapult mechanism could inspire the design of bionic jumping limbs, we provide a preliminary design for a robotic jumping leg, which could be a resource for the bionics industry

    The EPFL jumpglider: A hybrid jumping and gliding robot with rigid or folding wings

    Get PDF
    Recent work suggests that wings can be used to prolong the jumps of miniature jumping robots. However, no functional miniature jumping robot has been presented so far that can successfully apply this hybrid locomotion principle. In this publication, we present the development and characterization of the โ€™EPFL jumpgliderโ€™, a miniature robot that can prolong its jumps using steered hybrid jumping and gliding locomotion over varied terrain. For example, it can safely descend from elevated positions such as stairs and buildings and propagate on ground with small jumps. The publication presents a systematic evaluation of three biologically inspired wing folding mechanisms and a rigid wing design. Based on this evaluation, two wing designs are implemented and compared

    ๋ฐฉํ–ฅ ์ „ํ™˜, ๋„์•ฝ ๊ฐ๋„ ์กฐ์ ˆ, ์ž์„ธ ๊ต์ •์ด ๊ฐ€๋Šฅํ•œ ์ ํ•‘ ๋กœ๋ด‡

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2019. 2. ์กฐ๊ทœ์ง„.๋„์•ฝ ๋กœ๋ด‡์€ ๋กœ๋ด‡ ์ž์‹ ์˜ ํฌ๊ธฐ๋ณด๋‹ค ํฐ ์žฅ์• ๋ฌผ์„ ๋„˜์–ด ์ด๋™ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋„์•ฝ ์šด๋™๋งŒ์œผ๋กœ ์›ํ•˜๋Š” ์œ„์น˜์— ๋„๋‹ฌํ•˜๊ธฐ ์œ„ํ•ด ๋„๋‹ฌ ๊ฐ€๋Šฅํ•œ ๋ฒ”์œ„๋ฅผ ๋„“ํž ์ˆ˜ ์žˆ๋Š” ๋ฐฉํ–ฅ ์ „ํ™˜, ๋„์•ฝ ๊ฐ๋„ ์กฐ์ ˆ, ์ž์„ธ ๊ต์ • ๊ธฐ๋Šฅ์ด ํ†ตํ•ฉ๋œ ์ ํ•‘ ๋กœ๋ด‡๋“ค์ด ๊ฐœ๋ฐœ๋๋‹ค. ์ด ๋•Œ ์ถ”๊ฐ€ ๊ธฐ๋Šฅ์„ ํ†ตํ•ฉํ•˜๋ฉด ๋กœ๋ด‡์˜ ์งˆ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜๊ณ  ๋„์•ฝ ์„ฑ๋Šฅ์ด ๊ฐ์†Œํ•˜๋ฏ€๋กœ ์งˆ๋Ÿ‰์„ ์ค„์ด๊ธฐ ์œ„ํ•œ ์„ค๊ณ„๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฐฉํ–ฅ ์ „ํ™˜, ๋„์•ฝ ๊ฐ๋„ ์กฐ์ ˆ, ์ž์„ธ ๊ต์ •์ด ๊ฐ€๋Šฅํ•œ ๋„์•ฝ ๋กœ๋ด‡์„ ์ œ์•ˆํ•˜๋ฉฐ, ๋„์•ฝ ์„ฑ๋Šฅ ๊ฐ์†Œ๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๋ฉ”์ปค๋‹ˆ์ฆ˜๊ณผ ๊ตฌ๋™๊ธฐ๋ฅผ ๊ณต์œ ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋กœ๋ด‡์ด ์„ค๊ณ„๋˜์—ˆ๋‹ค. ๋กœ๋ด‡์˜ ์งˆ๋Ÿ‰์€ 70.1 g์œผ๋กœ ์ตœ๋Œ€ ๋†’์ด 1.02 m, ์ตœ๋Œ€ ๊ฑฐ๋ฆฌ 1.28 m๋ฅผ ๋„์•ฝํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์ „ ๋ฐฉํ–ฅ์œผ๋กœ ๋„์•ฝํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ฐ˜๋ณต ๋„์•ฝ์œผ๋กœ ๋” ๋จผ ๊ณณ์— ๋„๋‹ฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๋กœ๋ด‡์˜ ๊ฑฐ๋™์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๋™์—ญํ•™ ๋ชจ๋ธ์„ ์„ธ์› ์œผ๋ฉฐ, ๋ฏธ๋„๋Ÿฌ์ง์ด ์—†์ด ๋„์•ฝํ•˜๋Š” ๊ฒฝ์šฐ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ฏธ๋„๋Ÿฌ์ง์ด ํฌํ•จ๋œ ๋„์•ฝ์— ๋Œ€ํ•ด์„œ๋„ ๋กœ๋ด‡์˜ ๊ฑฐ๋™์„ ํ™•์ธํ•˜๊ณ  ๋„์•ฝ ๊ถค์ ์„ ๊ณ„ํšํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ตฌ๋™๊ธฐ์˜ ์ˆ˜๋ณด๋‹ค ๋งŽ์€ ๊ธฐ๋Šฅ์˜ ์ˆ˜๋ฅผ ๊ตฌํ˜„ํ•˜๋Š” ์„ค๊ณ„ ๋ฐฉ๋ฒ•์€ ๋‹ค๋ฅธ ์†Œํ˜• ๋กœ๋ด‡์˜ ์„ค๊ณ„์— ์ ์šฉํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ์ด ๋กœ๋ด‡์€ ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ ์ˆ˜์ƒ‰, ์ •์ฐฐ ํ˜น์€ ํƒ์‚ฌ์™€ ๊ฐ™์€ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐ ํ™œ์šฉ ๊ฐ€๋Šฅํ•  ๊ฒƒ์ด๋‹ค.Jumping enables the robot to overcome obstacles that are larger than its own size. In order to reach the desired location with only jumping, the jumping robots integrated with additional functions โ€“steering, adjusting the take-off angle, and self-righting โ€“ have been developed to expand the reachable range of the robot. Design to reduce mass is required as the integration of additional functions increases the mass of the robot and reduces the jumping performance. In this thesis, a jumping robot capable of steering, adjusting the take-off angle, and self-righting is proposed with the design of actuator and mechanism sharing to minimize the jumping performance degradation. The robot, with a mass of 70.1 g jumps up to 1.02 m in vertical height, and 1.28 m in horizontal distance. It can change the jumping height and distance by adjusting the take-off angle from 40ยฐ to 91.9ยฐ. The robot can jump in all directions, and it can reach farther through multiple jumps. A dynamic model is established to predict the behavior of the robot and plan the jumping trajectory not only for jumping without slip but also for jumping with slip. The design method to implement more functions than the number of actuators can be applied to design other small-scale robots. This robot can be deployed to unstructured environments to perform tasks such as search and rescue, reconnaissance, and exploration.Abstract โ…ฐ Contents โ…ฒ List of Tables โ…ด List of Figures โ…ต Chapter 1. Introduction 1 1.1. Motivation 1 1.2. Research Objectives and Contributions 3 1.3. Research Overview 6 Chapter 2. Design 7 2.1. Jumping 8 2.2. Steering 10 2.3. Take-off Angle Adjustment 12 2.4. Self-Righting 13 2.5. Integration 16 Chapter 3. Analysis 19 3.1. Dynamic Modeling 19 3.2. Simulated Results 24 3.3. Jumping Trajectory Planning 33 Chapter 4. Result 35 4.1. Performance 35 4.2. Demonstration 40 Chapter 5. Conclusion 46 Bibliography 49 ๊ตญ๋ฌธ ์ดˆ๋ก 53Maste

    Bioinspired Jumping Locomotion for Miniature Robotics

    Get PDF
    In nature, many small animals use jumping locomotion to move in rough terrain. Compared to other modes of ground locomotion, jumping allows an animal to overcome obstacles that are relatively large compared to its size. In this thesis we outline the main design challenges that need to be addressed when building miniature jumping robots. We then present three novel robotic jumpers that solve those challenges and outperform existing similar jumping robots by one order of magnitude with regard to jumping height per size and weight. The robots presented in this thesis, called EPFL jumper v1, EPFL jumper v2 and EPFL jumper v3 have a weight between 7g and 14.3g and are able to jump up to 27 times their own size, with onboard energy and control. This high jumping performance is achieved by using the same mechanical design principles as found in jumping insects such as locusts or fleas. Further, we present a theoretical model which allows an evaluation whether the addition of wings could potentially allow a jumping robot to prolong its jumps. The results from the model and the experiments with a winged jumping robot indicate that for miniature robots, adding wings is not worthwhile when moving on ground. However, when jumping from an elevated starting position, adding wings can lead to longer distances traveled compared to jumping without wings. Moreover, it can reduce the kinetic energy on impact which needs to be absorbed by the robot structure. Based on this conclusion, we developed the EPFL jumpglider, the first miniature jumping and gliding robot that has been presented so far. It has a mass of 16.5g and is able to jump from elevated positions, perform steered gliding flight, land safely and locomote on ground with repetitive jumps1. ______________________________ 1See the collection of the accompanying videos at http://lis.epfl.ch/microglider/moviesAll.zi

    Impact of Different Developmental Instars on Locusta migratoria Jumping Performance

    Get PDF
    Ontogenetic locomotion research focuses on the evolution of locomotion behavior in different developmental stages of a species. Unlike vertebrates, ontogenetic locomotion in invertebrates is poorly investigated. Locusts represent an outstanding biological model to study this issue. They are hemimetabolous insects and have similar aspects and behaviors in different instars. This research is aimed at studying the jumping performance of Locusta migratoria over different developmental instars. Jumps of third instar, fourth instar, and adult L. migratoria were recorded through a high-speed camera. Data were analyzed to develop a simplified biomechanical model of the insect: the elastic joint of locust hind legs was simplified as a torsional spring located at the femur-tibiae joint as a semilunar process and based on an energetic approach involving both locomotion and geometrical data. A simplified mathematical model evaluated the performances of each tested jump. Results showed that longer hind leg length, higher elastic parameter, and longer takeoff time synergistically contribute to a greater velocity and energy storing/releasing in adult locusts, if compared to young instars; at the same time, they compensate possible decreases of the acceleration due to the mass increase. This finding also gives insights for advanced bioinspired jumping robot design

    Engineering the locusts: Hind leg modelling towards the design of a bio-inspired space hopper

    Get PDF
    The mechanical operation of a biologically inspired robot hopper is presented. This design is based on the hind leg dynamics and jumping gait of a desert locust (Schistocerca gregaria). The biological mechanism is represented as a lumped mass system. This emulates the muscle activation sequence and gait responsible for the long, coordinated jump of locusts, whilst providing an engineering equivalent for the design of a biological inspired hopper for planetary exploration. Despite the crude simplification, performance compares well against biological data found in the literature and scaling towards size more typical of robotic realisation are considered from an engineering point of view. This aspect makes an important contribution to knowledge as it quantifies the balance between biological similarity and efficiency of the biomimetic hopping mechanism. Further, this work provides useful information towards the biomimetic design of a hopper vehicle whilst the analysis uncover the range maximisation conditions for powered flight at constant thrust by analytic means. The proposed design bridges concepts looking at the gait dynamics and designs oriented to extended, full powered trajectories

    Towards a self-deploying and gliding robot

    Get PDF
    Strategies for hybrid locomotion such as jumping and gliding are used in nature by many different animals for traveling over rough terrain. This combination of locomotion modes also allows small robots to overcome relatively large obstacles at a minimal energetic cost compared to wheeled or flying robots. In this chapter we describe the development of a novel palm sized robot of 10\,g that is able to autonomously deploy itself from ground or walls, open its wings, recover in midair and subsequently perform goal- directed gliding. In particular, we focus on the subsystems that will in the future be integrated such as a 1.5\,g microglider that can perform phototaxis; a 4.5\,g, bat-inspired, wing folding mechanism that can unfold in only 50\,ms; and a locust-inspired, 7\,g robot that can jump more than 27 times its own height. We also review the relevance of jumping and gliding for living and robotic systems and we highlight future directions for the realization of a fully integrated robot
    • โ€ฆ
    corecore