546 research outputs found

    Performance Comparisons Of Hybrid Fuzzy-LQR And Hybrid PID-LQR Controllers On Stabilizing Double Rotary Inverted Pendulum

    Get PDF
    Double Rotary Inverted Pendulum (DRIP) is a member of the mechanical under-actuated system which is unstable and nonlinear. The DRIP has been widely used for testing different control algorithms in both simulation and experiments. The DRIP control objectives include Stabilization control, Swing-up control and trajectory tracking control. In this research, we present the design of an intelligent controller called “hybrid Fuzzy-LQR controller” for the DRIP system. Fuzzy logic controller (FLC) is combined with a Linear Quadratic Regulator (LQR). The LQR is included to improve the performance based on full state feedback control. The FLC is used to accommodate nonlinearity based on its IF-THEN rules. The proposed controller was compared with the Hybrid PID-LQR controller. Simulation results indicate that the proposed hybrid Fuzzy-LQR controllers demonstrate a better performance compared with the hybrid PID-LQR controller especially in the presence of disturbances. &nbsp

    Hybrid spiral-dynamic bacteria-chemotaxis algorithm with application to control two-wheeled machines

    Get PDF
    This paper presents the implementation of the hybrid spiral-dynamic bacteria-chemotaxis (HSDBC) approach to control two different configurations of a two-wheeled vehicle. The HSDBC is a combination of bacterial chemotaxis used in bacterial forging algorithm (BFA) and the spiral-dynamic algorithm (SDA). BFA provides a good exploration strategy due to the chemotaxis approach. However, it endures an oscillation problem near the end of the search process when using a large step size. Conversely; for a small step size, it affords better exploitation and accuracy with slower convergence. SDA provides better stability when approaching an optimum point and has faster convergence speed. This may cause the search agents to get trapped into local optima which results in low accurate solution. HSDBC exploits the chemotactic strategy of BFA and fitness accuracy and convergence speed of SDA so as to overcome the problems associated with both the SDA and BFA algorithms alone. The HSDBC thus developed is evaluated in optimizing the performance and energy consumption of two highly nonlinear platforms, namely single and double inverted pendulum-like vehicles with an extended rod. Comparative results with BFA and SDA show that the proposed algorithm is able to result in better performance of the highly nonlinear systems

    Synchronizing of Stabilizing Platform Mounted on a Two-Wheeled Robot

    Get PDF
    This paper represents the designing, building, and testing of a self-stabilizing platform mounted on a self-balancing robot. For the self-stabilizing platform, a servo motor is used and for the self-balancing robot, two dc motors are used with an encoder, inertial measurement unit, motor driver, an Arduino UNO microcontroller board. A PID controller is used to control the balancing of the system. The PID controller gains (Kp, Ki, and Kd) were evaluated experimentally. The value of the tilted angle from IMU was fed to the PID controller to control the actuated motors for balancing the system. For the self-stabilizing control part, whenever the robot tilted, it maintained the horizontal position by rotating that much in the opposite direction

    Fuzzy Logic Controller Stability Analysis Using a Satisfiability Modulo Theories Approach

    Get PDF
    While many widely accepted methods and techniques exist for validation and verification of traditional controllers, at this time no solutions have been accepted for Fuzzy Logic Controllers (FLCs). Due to the highly nonlinear nature of such systems, and the fact that developing a valid FLC does not require a mathematical model of the system, it is quite difficult to use conventional techniques to prove controller stability. Since safety-critical systems must be tested and verified to work as expected for all possible circumstances, the fact that FLC controllers cannot be tested to achieve such requirements poses limitations on the applications for such technology. Therefore, alternative methods for verification and validation of FLCs needs to be explored. In this study, a novel approach using formal verification methods to ensure the stability of a FLC is proposed. Main research challenges include specification of requirements for a complex system, conversion of a traditional FLC to a piecewise polynomial representation, and using a formal verification tool in a nonlinear solution space. Using the proposed architecture, the Fuzzy Logic Controller was found to always generate negative feedback, but inconclusive for Lyapunov stability

    Combining Passivity-Based Control and Linear Quadratic Regulator to Control a Rotary Inverted Pendulum

    Get PDF
    In this manuscript, new combination methodology is proposed, which named combining Passivity-Based Control and Linear Quadratic Regulator (for short, CPBC-LQR), to support the stabilization process as the system is far from equilibrium point. More precisely, Linear Quadratic Regulator (for short, LQR) is used together with Passivity-Based Control (for short, PBC) controller. Though passivity-based control and linear quadratic regulator are two control methods, it is possible to integrate them together. The combination of passivity-based control and linear quadratic regulator is analyzed, designed and implemented on so-called rotary inverted pendulum system (for short, RIP). In this work, CPBC-LQR is validated and discussed on both MATLAB/Simulink environment and real-time experimental setup. The numerical simulation and experimental results reveal the ability of CPBC-LQR control scheme in stabilization problem and achieve a good and stable performance. Effectiveness and feasibility of proposed controller are confirmed via comparative simulation and experiments

    Particle swarm optimization and spiral dynamic algorithm-based interval type-2 fuzzy logic control of triple-link inverted pendulum system: A comparative assessment

    Get PDF
    This paper presents investigations into the development of an interval type-2 fuzzy logic control (IT2FLC) mechanism integrated with particle swarm optimization and spiral dynamic algorithm. The particle swarm optimization and spiral dynamic algorithm are used for enhanced performance of the IT2FLC by finding optimised values for input and output controller gains and parameter values of IT2FLC membership function as comparison purpose in order to identify better solution for the system. A new model of triple-link inverted pendulum on two-wheels system, developed within SimWise 4D software environment and integrated with Matlab/Simulink for control purpose. Several tests comprising system stabilization, disturbance rejection and convergence accuracy of the algorithms are carried out to demonstrate the robustness of the control approach. It is shown that the particle swarm optimization-based control mechanism performs better than the spiral dynamic algorithm-based control in terms of system stability, disturbance rejection and reduce noise. Moreover, the particle swarm optimization-based IT2FLC shows better performance in comparison to previous research. It is envisaged that this system and control algorithm can be very useful for the development of a mobile robot with extended functionality

    Control of a modified double inverted pendulum using machine learning based model predictive control

    Get PDF
    Abstract: A machine learning-based controller (MLC) has been developed for a modified double inverted pendulum on a cart (MDIPC). First, the governing differential equations of the system are derived using the Lagrangian method. Then, a dataset is generated to train and test the machine learning-based models of the plant. Different types of machine learning models such as artificial neural networks (ANN), deep neural networks (DNN), long-short-term memory neural networks (LSTM), gated recurrent unit (GRU), and recurrent neural networks (RNN) are employed to capture the system’s dynamics. DNN and LSTM are selected due to their superior performance compared to other models. Finally, different variations of the Model Predictive Controller (MPC) are designed, and their performance is evaluated in terms of running time and tracking error. The proposed control methods are shown to have an advantage over the conventional nonlinear and linear model predictive control methods in simulation.Communication présentée lors du congrès international tenu conjointement par Canadian Society for Mechanical Engineering (CSME) et Computational Fluid Dynamics Society of Canada (CFD Canada), à l’Université de Sherbrooke (Québec), du 28 au 31 mai 2023
    • …
    corecore