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Particle swarm optimization and spiral
dynamic algorithm-based interval type-2
fuzzy logic control of triple-link inverted
pendulum system: A comparative
assessment

MF Masrom1 , NMA Ghani1 and MO Tokhi2

Abstract

This paper presents investigations into the development of an interval type-2 fuzzy logic control (IT2FLC) mechanism

integrated with particle swarm optimization and spiral dynamic algorithm. The particle swarm optimization and spiral

dynamic algorithm are used for enhanced performance of the IT2FLC by finding optimised values for input and output

controller gains and parameter values of IT2FLC membership function as comparison purpose in order to identify better

solution for the system. A new model of triple-link inverted pendulum on two-wheels system, developed within

SimWise 4D software environment and integrated with Matlab/Simulink for control purpose. Several tests comprising

system stabilization, disturbance rejection and convergence accuracy of the algorithms are carried out to demonstrate

the robustness of the control approach. It is shown that the particle swarm optimization-based control mechanism

performs better than the spiral dynamic algorithm-based control in terms of system stability, disturbance rejection and

reduce noise. Moreover, the particle swarm optimization-based IT2FLC shows better performance in comparison to

previous research. It is envisaged that this system and control algorithm can be very useful for the development of a

mobile robot with extended functionality.
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Introduction

Self-balancing inverted pendulum systems have attracted a lot of interest within the research community. Inverted
pendulum is an under actuated system and able to achieve stability after facing a disturbance by obstacles or while
moving on a sloped path. The main control challenges are to achieve fast settling time and low state steady error
while in the upright position. Inverted pendulum systems vary from single link, double, and triple links.

Recent research in triple-link pendulum has considered pendulum on cart systems. For example, Sharma and
Sahu1 used Lagrange equation to model a triple-link inverted pendulum on cart system and linearized it to design
a linear quadratic regulator (LQR) using single output. The system described in Wei et al.2 used triple-link
inverted pendulum on cart system and adaptive neural-fuzzy inference system (ANFIS) for its control. The
proposed of this new system of triple links inverted pendulum on two-wheeled is due to the limitation of modelling
and control of triple-link pendulum on two wheels system. Triple-link inverted pendulum on two-wheels system
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has become a significant research topic as it provides more complexity and flexibility in inverted pendulum study.
Furthermore, this is a vital research area as there are several current and emerging applications, such as mobile
robots, walking robots, and aircraft landing systems, that implement triple-link systems. Moreover, limited work
is found on the use of IT2FLC for triple-link inverted pendulum systems, although IT2FLC has been shown as a
powerful control technique for non-linear systems.3

Over the past decades, FLC has been used in many applications for control with promising success. There are
several works done on comparing type-1 fuzzy logic control (T1FLC) and IT2FLC and the results show that
IT2FLC is far better than T1FLC.4 IT2FLC has three-dimensional fuzzy membership function including upper
boundary, lower boundary, and footprint of uncertainties which offer additional degree of freedom in order to
deal with uncertainties that occur in membership functions. Moreover, IT2FLC has introduced one other element;
type reduction before deciding the output from the controller.5 However, designing a IT2FLC mechanism is
complex because it has many parameters that need to be defined before it can work properly and there is no
mathematical equation or specific method to determine the best parameter for the controller. Thus, optimisation
techniques have been used for acquiring the best parameter values in terms of the shape of the membership
function, fuzzy rule, rule base and building the fuzzy sets for the system to work properly.6 Various optimization
algorithms have been used to work with IT2FLC. These include spiral dynamic algorithm (SDA),7–9 genetic
algorithm (GA),10–16 particle swarm optimization (PSO),17–21 artificial bee colony (ABC),22,23 ant colony optimi-
zation (ACO),24 grey wolf optimizer (GWO)25,26 and hybrid optimization technique.27,28 The optimization algo-
rithm is used to obtain the best parameters for IT2FLC. For example, hybrid genetic algorithm (HGA) has been
used to optimize membership function of IT2FLC, building the fuzzy sets based on membership function, and
identify the rule base.13 The system described in Hamza et al.19 is based on optimization using artificial bee colony
to define a new defuzification method, and applied on the left and right points to obtain the best values inside
IT2FLC. The grey wolf optimizer has also been used to tune the parameters of Takagi-Sugeno proportional-
integral fuzzy controllers and this has been compared with PSO and GSA in a laboratory servo system.25

SDA was introduced by Tamura and Yasuda in 2011.42 SDA used logarithmic spiral as the model so that the
diversification and search strategy can be fulfilled properly as the spiral movement always converges to the centre
of the spiral.7 SDA has successfully been embedded with fuzzy logic control as reported in Ghani et al.,8 where
SDA is used to optimize the input and output scaling factors of a stair climbing wheelchair. The values obtained
from SDA have improved the performance of stair climbing in terms of reducing the error of seat and increasing
the user’s comfort.

PSO was introduced in 1995 by Kennedy and Eberhart.41 PSO has a simple structure, and thus less compu-
tational time is needed.29 There are several works done on IT2FLC optimization using PSO. The system described
in Hassan18 was the application of PSO to tune the input and output gains for a twin rotor multi input multi
output system that used four IT2FLCs to control yaw and pitch axes with their cross coupling of the system. The
result in Hassan18 shows that the performance using PSO based IT2FLC was improved by 17.1%–33%.17

discussed optimisation of parameters of primary membership function in IT2FLC using PSO and applied to a
flexible-joint robot. The simulation results showed that IT2FLC with PSO was far superior in terms of robustness,
accuracy, and interpretability.

The main focus of this paper is to design the robust controller to reduce vibration, cater uncertainties and
disturbance rejection for a triple-link inverted pendulum on two-wheels system. The model is developed in
Simwise 4D environment for visualization and evaluation purpose. IT2FLC has been selected to control the
system. As there are no specific methods or mathematical approach for obtaining the input and output gains of
the system, conventional, trial and error method is commonly used. However, this consumes a lot of time for good
performance to be achieved. Moreover, trial and error method is an unreliable method as there is no way to ensure
that the values from the method are the best values for the system. Therefore, an optimization method using PSO and
SDA is proposed in this work and the system performance is assessed in terms of stability and disturbance rejection.

The rest of the paper is organized as follows: The next section describes the modelling of triple-link inverted
pendulum on two-wheels system. Then presents the stability control using IT2FLC. The SDA and PSO are
described in the subsequent section, respectively. The results of this investigation are presented and discussed
in the penultimate section, and the paper is concluded with conclusions.

Modelling of triple-link inverted pendulum on two-wheels system

Triple-link inverted pendulum on two-wheels system has been modelled in four dimensional design software
SimWise 4D. This is to retain the complexity of the system and not rely on simplified mathematical modelling.
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Moreover, conventional mathematical modelling cannot satisfy human logic and is far from representing the
model in the real world. Furthermore, SimWise 4D allows the user to build the model with various types of joint
and motor, observe the movement of the model, and test the model with uncertainties and disturbances. SimWise
4D can further be integrated with Matlab/Simulink, allowing controller design and evaluation.

The triple-link inverted pendulum uses the same concept as other inverted pendulum on two-wheeled system.
The first link is locked at the centre of the wheel, while the second and third links connected to the first link. Figure
1 shows a diagram of the model where rw is radius of the wheel, while mw, m1, m2, and m3 represent the masses of
the wheel, link 1, link 2 and link 3, respectively. The lengths for these three links are represented by L1, L2, and
L3. h1, h2, and h3 are the tilt angles of the three links, respectively. The model is built as such so that for all three
links to be controlled independently. The model of triple-link inverted pendulum on two-wheels system is built in
SimWise 4D because it enables the user to determine the position of motor needed in the model and the input used
in the system as shown in Figure 2. The system is modeled in an upright position. The right and left wheels are
connected to the base using revolute motors to control the first link since the first link is locked at the base using a
rigid joint. The second link is connected to the first link using a revolute motor and it is the same as the third link.
The use of revolute motor is to enable the model to become more flexible since it is not in rigid position as the
revolute motor can rotate around the y-axis. The parameters for the triple-link inverted pendulum on two-wheels

Figure 2. Model of triple-link inverted pendulum on two-wheels system in SimWise 4D.

Figure 1. Schematic diagram of triple-link inverted pendulum on two-wheels system.
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system are based on previous research30–32 done on inverted pendulum on two-wheels systems, and these are

shown in Table 1.

Interval type-2 fuzzy logic control

Interval type-2 fuzzy logic control (IT2FLC) has been introduced by Zadeh33 in 1975. IT2FLC consists of five

elements, namely fuzzifier, a combination of rule base and database to form knowledge base, inference engine,

type-reduction, and defuzzifier as shown in Figure 3. Membership function in IT2FLC is defined by type-2 fuzzy

sets. The membership functions used in this work range from –1 to þ1 using Gaussian membership function type,

which is a better option for a flexible system like the inverted pendulum system. IT2FLC provides a three-

dimensional membership function which consists of upper boundary, lower boundary, and footprint of uncer-

tainty in order to give more precise output and eliminate uncertainties in the membership function. Figure 4 shows

the membership function graph used in this work.33,34

The process in IT2FLC starts with fuzzifier, which is used to fuzzify input crisp values of IT2FLC and converts

into type-2 fuzzy sets. The interval type-2 fuzzy sets are defined as35

~A ¼
Z
x2X

Z
uJx� 0 1½ �

1

x; u
¼

Z
x2X

Z
u2Jx� 0 1½ �

1

u

� �
=x (1)

Table1. Parameters for triple-link inverted pendulum on two-wheels system.

Part Material Dimension (m) Weight (kg)

Wheel Rubber Radius¼ 0.065, Width¼ 0.06 0.7

Bottom base Aluminium Radius¼ 0.03, Length¼ 0.3 1.5

Link 1 Aluminium Width¼ 0.04, Length¼ 0.04, Height¼ 0.22 3

Link 2 Aluminium Width¼ 0.04, Length¼ 0.04, Height¼ 0.22 3

Link 3 Aluminium Width¼ 0.04, Length¼ 0.04, Height¼ 0.22 3

Figure 3. Block diagram of IT2FLC.

Figure 4. IT2FLC Gaussian membership function.
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Jx ¼ x; uð Þ : u 2 l
A
xð Þ; lA xð Þ

h in o
(2)

where x is a primary variable, while u is a secondary variable and Jx is a domain for each variable called the

primary membership of x. The footprint of uncertainties (FOU) is the union of primary membership for fuzzy

sets. lA xð Þ is the upper membership function (UMF), whereas l
A
xð Þ is the lower membership function

(LMF) associated with upper and lower bound of footprint of uncertainties as given by35

l
A
xð Þ ¼ FOUðAÞ 8x 2 X (3)

lA xð Þ ¼ FOUðAÞ8x 2 X (4)

FOU ~Að Þ ¼ U
8x 2 X

Jx ¼ x; uð Þ : u 2 Jx � 0 1½ �
n o

(5)

The rule base is determined and defined so as to achieve the performance objectives of the work. Five linguistic

variables are defined as negative big (NB), negative small (NS), zero (Z), positive small (PS), and positive big (PB)

for IT2FLC inputs and outputs resulting in 25 rules as shown in Table 2. The fuzzy rules are formed as:

If x is A and y is B then z is C

where A and B are the two inputs of the IT2FLC and C is the output which will be used for stabilizing control.
The five membership functions used have their specific properties for each input. Firstly, they are centred at –1,

–0.5, 0, 05, and 1. Second, they have the specific uncertain means, d and standard deviation, r in order to

determine the size of membership function. The standard value for uncertain mean is 0.125, while for standard

deviation is 0.418. These values are optimized in this work to find the optimal shape of the membership function

for the system to work efficiently.
Before producing the IT2FLC outputs, type reduction method is performed to get the crisp output values. Nie-

Tan type reduction is chosen in this work because it has been proven to be better compared to normal Karnik

Mendel type reduction.36 This is because it can produce outputs with better precision and faster due to the use of

average value in membership function as36

Y ¼
XN

n¼1
Yn fn þ fn

� �
XN

n¼1
fn þ fn

� � (6)

The stabilizing control is designed in Simulink/Matlab as shown in Figure 5. Figure 5 is the Simulink block

diagram showing the usage of input output gains and switch to produce torque for the system. This system

requires four loops to produce four values of torque in order to stabilize all three links. The error and change

of error are obtained and used as inputs of the IT2FLC and the output produced is used to control the system.
An optimization algorithm is proposed to find the optimal values of input output value gains and IT2FLC

parameters which are r and d for stabilizing triple links inverted pendulum on two-wheeled system.

Conventionally, heuristic tuning of the control parameters was used but such heuristic method does not guarantee

Table 2. Rule base for IT2FLC.

d\

e NB NS Z PS PB

NB PB PB PB PS Z

NS PB PB PS Z NS

Z PB PS Z NS NB

PS PS Z NS NB NB

PB Z NS NB NB NB
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that it will produce the best result. A global optimisation mechanism such as spiral dynamic algorithm (SDA) and

particle swarm optimization (PSO) is necessary to improve the system performance. Due to its significant advan-

tages over other searching methods, an optimization approach is used to optimise the control input and output

gains along with IT2FLC control parameters
In this study, the objective of fitness function of the optimization is to minimize the error of angular position of

Link 1, angular position of Link 2 and angular position of Link 3, while the system stabilizes these three links to

ensure the stability of triple links inverted pendulum on two-wheeled system at the upright position. The root

mean square error (RMSE) was chosen as the fitness function in this work,

RMSE ¼
ffiffiffiffi
1

N

r XN
i¼1

e2ð Þ (3.39)

The fitness function of the system in this research is a summation of RMSE functions of the angular position by

taking the sum of weightage of all three links, where the weight vector of this system is [w1 w2 w3]¼ [0.4 0.3 03].

Noted that w1 represents weight at Link 1, w2 represents weight at Link 2 and w3 represents weight at Link 3

respectively. Weight at Link 1 was chosen to be the highest ratio because Link 1 is more crucial in stabilizing the

whole system compared to Link2 and Link 3. The fitness function is, Fitness Function¼w1MSE1 þ w2MSE2 þ
w3MSE3, where MSE1 represents the error of angular position of Link 1, MSE2 is for the error of angular position

of Link 2 and MSE3 is for the error of angular position of Link 3, respectively.

Spiral dynamic algorithm

SDA is known as a metaheuristic optimization inspired by natural spiral patterns such as tornado, hurricanes, and

galaxy introduced by Tamura and Yasuda,42 whose initial work was focused on two-dimensional problems and

later extended to nth dimensional problems. The most essential aspect in SDA is the balanced combination of

exploration and exploitation strategies. In SDA, all the search agents are designed to move from the outermost

area to the centre of the spiral and move toward the centre of the spiral as the number of iterations increase.

Figure 5. Simulink block diagram block diagram.
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This is known as the intensification phase where it happens in the inner area of the spiral toward the centre.

The mathematical model for SDA is defined as8

vi kþ 1ð Þ ¼ Sn r; hð ÞviðkÞ � Sn r; hð Þ � In½ � v�; i ¼ 1; 2; 3; . . . . . . ;m (7)

where h is the angle of rotation which varies from 0 to 2p, In is a matrix, v* is the center of the spiral, k is the

number of iterations, r is the radius of the spiral, which ranges from 0 to 1, i is the number of points, and m is the

maximum point.7

Figure 6 shows a couple of examples of spiral shapes in SDA and movements of the search agents from the

outermost area towards the centre of the spiral. Figure 7 shows a flowchart of SDA implementation.8

In this work, radius, r¼ 0.95 and h¼p/4 are used for the spiral dynamic trajectory. The number of search

agents is 50, while the number of iteration used in this work is 40. The objective of this optimization is to minimize

the angular position error and manage external disturbance. All the 18 inputs and output gains along with d and r
are used in determining the size of membership function in the IT2FLC.

Particle swarm optimization

PSO is one of the metaheuristic techniques inspired by the behaviour of group of animals for instance flock of birds

and the schools of fish. PSO was introduced by Eberhart and Kennedy in 199537 and has been applied in various

applications such as signal processing, optimal design, and data mining. PSO uses a population-based method where

the state of the algorithm is represented by population and modified repeatedly until the objective is achieved.37–40

In PSO, the particle will move based on the current optimum particles. All particles will keep their tracks in the

area in which the best solution or pbest is achieved. The best value among all the particles is the global best, or

gbest, and is obtained by considering finesses of all the particles in the population. The concept of PSO is to

update the velocities and positions of each particle towards its pbest according to equations (8) and (9)

Vi kþ 1ð Þ ¼ wVi kð Þ þ c1 � rand � Pi kð Þ � Xi kð Þ� �
þ c2 � rand � g kð Þ � Xi kð Þ� �

(8)

xi tþ 1ð Þ ¼ xi tð Þ þ vi tþ 1ð Þ (9)

where Vi is the velocity of the particle, Xi is the particle position, w is the inertial weight, k is the iteration, rand is

the random value between 0 to 1, c1 is the cognitive acceleration coefficient and c2 is the social acceleration

coefficient. The values for c1 and c2 are chosen as 2.37 The inertia weight is decreased from 0.9 to 0.4 during the

optimization. Figure 8 shows the flowchart of PSO implementation.37

Similar to SDA, PSO is used to find optimal values for the 18 input and output gains of the system and the r
and d values for membership function of IT2FLC. These 20 parameters need to be optimized to enhance the

performance of IT2FLC control in triple links inverted pendulum on two-wheeled system.

Results

The results of this study are presented and discussed in detail with reference to the objective of this study, which is

to assess the effectiveness of implementing IT2FLC based on PSO on triple-link inverted pendulum on two-wheels

Figure 6. Types of spiral shape in SDA. Type (1) h¼p/4; Type (2) h¼ p/2.
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system. The results are obtained in simulated exercises using an integrated Matlab/Simulink and SimWise 4D

environment. Two optimization algorithms, namely PSO and SDA are used in the design of the controller and a

comparative assessment of the system performance is carried out.

Fitness function for optimization algorithm

Figures 9 and 10 show the convergence graphs of SDA and PSO as function of number of iterations, respectively.

As noted, PSO has performed significantly better than SDA, where the PSO and SDA began their exploration

phases with fitness function values of 0.01281 and 0.01769, respectively. The exploitation phases of the algorithms

began when the fitness function values decreased to 0.0077 for PSO and 0.01753 for SDA. The best fitness

function value for PSO was 0.00578, while for SDA it was 0.01752. This shows that PSO has a better convergence

compared to SDA. A trial and error approach was also used for obtaining the system input and output gains and

the r and d values for membership function of IT2FLC. These are shown with optimised values in Table 3.

Stability control

The main objective for this research is to achieve stable performance of the triple-link inverted pendulum on two-

wheels system. The objective is achieved by using the input output gain values obtained in the control system. The

Figure 7. SDA flowchart.
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values will determine the control torque for actuating the motors. The system performances using the control

parameters obtained by the trial and error, SDA and PSO approaches are shown in Figures 11 to 13 and Table 4.
The performances shown in Figures 11 to 13 and Table 4 are assessed in terms of peak overshoot, peak under-

shoot, and angular position for all the three links. As noted the PSO-based system has performed well for both Link

Figure 8. Flowchart of PSO.

Figure 9. Fitness function graph for SDA optimization.
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1 and Link 2 in angular position as the errors are relatively smaller than those achieved with SDA and trial and error

methods. As for link 3, the SDA-based system performed slightly better than PSO, where the angular position error

with SDA was –0.4279� compared to PSO-based error of –0.4322�. Figures 14 to 16 show the control effort (torque)

generated for stabilizing the three links. As noted the links settled in 5 s but fluctuated in the early stages, as expected.
In comparison to previous research done on triple-link inverted pendulum system, the current result is better by

66% and 53.6% when compared to triple-link inverted pendulum on cart system in Sharma and Sahu1 in terms of

peak overshoot. This is a very significant improvement because even though the pendulum on cart system has

been shown to have a better stability compared to that on two-wheels system, the current system has outper-

formed the inverted pendulum on cart system. Moreover, the system in Sharma and Sahu1 has used conventional

mathematical modelling which cannot satisfy a real-world system compared with the current system, which uses

CAD-based software SimWise 4D that is able to retain the complexity and flexibility of the system.
Comparing the results achieved a two-wheeled system described in paper,30 one notices that the system in the

two-wheeled system needed approximately 10 s to achieve stability, while the current system only needs 5 s to

achieve the same goal even though this system is more complex with three links, while the two-wheeled system in

Ahmad et al.30 is a double-link system. Moreover, the angular position for the system in Ahmad et al.30 was

maintained at 0.7� for the first link and 0.3� for the second link. The current work shows improvements of 33.3%

Figure 10. Fitness function graph for PSO optimization.

Table 3. Input output gains.

Gain Trial and error SDA PSO

K1 0.117 0.1129 0.1125

K2 0.0034 0.0035 0.0037

K3 90 92.8359 88.2941

K4 0.4 0.4177 0.4159

K5 0.005 0.0046 0.0045

K6 75 76.9662 77.1807

K7 0.043 0.0413 0.0439

K8 0.0064 0.0069 0.006

K9 100 103.8641 99.0602

K10 0.2 0.2015 0.2216

K11 0.01 0.0118 0.0142

K12 80 84.7679 84.8402

K13 0.7 0.6625 0.7483

K14 0.004 0.0043 0.0044

K15 120 123.2705 123.657

K16 0.085 0.0878 0.088

K17 0.004 0.0037 0.0041

K18 85 84.2864 84.1887

D 0.125 0.1201 0.1213

R 0.418 0.4163 0.4195
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for the first link and 51.4% for the second link in terms position error. Table 5 shows the complete table of

performance comparison with previous work in stability focuses on lower vibrations for the system.

Disturbance rejection

In order to test the robustness of the controller, disturbances were applied to the system and the system response

assessed. The disturbances considered were in the form of pulses applied at the back of Link 3.

Figure 12. Angular position of Link 2.

Figure 13. Angular position of Link 3.

Figure 11. Angular position of Link 1.

Table 4. Position errors using the trial and error, SDA, and PSO approaches.

Peak Overshoot (degrees) Peak Undershoot (degrees) Angular position (degrees)

Trial and error SDA PSO Trial and error SDA PSO Trial and error SDA PSO

Link 1 �0.3561 �0.309 �0.2992 �0.5532 �0.4582 �0.4645 �0.4212 �0.3752 �0.3433

Link 2 �0.2283 �0.1752 �0.1298 �0.6959 �0.5176 �0.4376 �0.3827 �0.2833 �0.2207

Link 3 �0.4114 �0.3904 �0.3894 �0.5398 �0.5077 �0.5386 �0.4538 �0.4279 �0.4322
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Figure 15. Torque value at Link 2.

Figure 14. Torque value at Link 1.

Figure 16. Torque value at Link 3.

Table 5. Comparison with previous work based on stability performance.

Paper

Aspect

Firdaus, 2019

Gupta et al.43
Sharma

and Sahu1 Jun-Wei et al.44 Ahmad et al.30

System Triple links inverted

pendulum on

two-wheeled system

Triple links inverted

pendulum on

cart system

Triple links inverted

pendulum on

cart system

Triple links inverted

pendulum on

cart system

Double links inverted

pendulum on

two-wheeled system

Controller IT2FLC-based PSO LQR LQR LQR T1FLC

Settling time

(second)

5 4 3.5 5 8

Angular position

(degree)

�0.3, �0.2, �0.4 0.05, 0, 0 0, 0, 0 0, 0, 0 0.7, 0.3

Peak overshoot

(degree)

�0.3, 0.13, �0.39 0.5, 0.02, 0.013 0.9, 0.3, 0.2 0.7, 0.7, 0.9 0.8, 3.0

Peak undershoot

(degree)

�0.46, �0.44, �0.54 �0.5, �0.03, �0.012 �0.58, �0.36, �0.22 �1.4, �1.6, �2.6 0, 0
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Figure 17. Maximum disturbance at Link 3.

Figure 18. Angular position of Link 1.

Figure 19. Angular position of Link 2.

Figure 20. Angular position of Link 3.
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Based on the graph shown in Figure 17, the maximum disturbance rejected by PSO was 50N, while by SDA it

was 42N, and by trial and error method was 35N. This shows that PSO was the best optimization for this triple-

link inverted pendulum on two-wheels system. Figures 18 to 20 show the system responses when the disturbance

was applied at 5 and 9 s influencing the system to move forward and needed about 3 s to achieve stability back

after it had been disturbed. It is noted that the trial and effort-based system was affected the most due to

application of the disturbance. It is further noted that Link 2 was the most affected as it moved up to 4� for

SDA and trial and error method but with the PSO, the system moved to 3.8� only.
Table 6 shows the comparison done on previous work in two-wheeled mobile robot since there are no work found

on disturbance rejection for triple links inverted pendulum system. From this table, the proposed controller man-

aged to withstand the highest value of force applied to it compared to other with 50N.Moreover, this system has the

lowest settling time with 4 s, while system proposed by Mustafa need 8 s and Almeshal’s system need 6 s to settle.

Conclusion

In this paper, a control design approach by adoption of optimization techniques based on SDA and PSO has been

proposed in the paper for tuning of control parameters of IT2FLC for triple-link inverted pendulum on two-

wheels system. The aim of the optimization is to enhance the efficiency of the system in terms of stability and

disturbance rejection. A proposed controller has been successfully implemented and tested in this paper, and the

performance of the system was observed within simulated exercise through SimWise 4D visualization software

integrated with Simulink in Matlab.
The results have shown superior performance of the PSO-based system over SDA-based system by 9.3% and

28.4% in angular position errors of Link 1 and Link 2, respectively. Furthermore, peak values of SDA were higher

than PSO which means that PSO has lower noise than SDA and more stable; this system has been proven to have

lower peak overshoot and settling time compared to previous work.
It has been proved that the proposed controller in this paper managed to withstand higher disturbance com-

pared to previous work by 66.7%. Moreover, the settling time after disturbance that was applied has significantly

improved with only 4 s compared to 8 and 6 s from previous research. In the future work, the system will be test on

linear motion in smooth surface, rough surface and inclined surface to further test the robustness of the controller.

Besides that, this controller could be implemented in real-hardware applications.
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Table 6. Performance comparison on disturbance rejection with previous work.

Paper

Aspect Firdaus, 2019

Muhammad

et al.45 Almeshal et al.46

System Triple links

inverted pendulum

on two-wheeled system

Single link inverted

pendulum on

two-wheeled system

Double links inverted

pendulum on

two-wheeled system

Controller IT2FLC-based PSO State feedback

tracking controller

PD controllers

Disturbance

value (N)

50 30 20

Settling time

after disturbance

(second)

4 8 6

Peak angle (degree) 3.8 1.2 0.13
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