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While many widely accepted methods and techniques exist for validation and verification 
of traditional controllers, at this time no solutions have been accepted for Fuzzy Logic 
Controllers (FLCs). Due to the highly nonlinear nature of such systems, and the fact that 
developing a valid FLC does not require a mathematical model of the system, it is quite 
difficult to use conventional techniques to prove controller stability. Since safety-critical 
systems must be tested and verified to work as expected for all possible circumstances, the 
fact that FLC controllers cannot be tested to achieve such requirements poses limitations on 
the applications for such technology. Therefore, alternative methods for verification and 
validation of FLCs needs to be explored. In this study, a novel approach using formal 
verification methods to ensure the stability of a FLC is proposed. Main research challenges 
include specification of requirements for a complex system, conversion of a traditional FLC 
to a piecewise polynomial representation, and using a formal verification tool in a nonlinear 
solution space. Using the proposed architecture, the Fuzzy Logic Controller was found to 
always generate negative feedback, but inconclusive for Lyapunov stability.  

Nomenclature 
θ = pendulum angle 
𝜃 = pendulum angle rate 
𝑒!  = pendulum angle error 
𝑒!  = pendulum angle error rate 
g = gravitational acceleration 
L = pendulum length 
m = pendulum mass 

I. Introduction 
n recent years, complex control methods have developed more quickly than the methods used to analyze them to 
ensure adherence to safety and performance requirements. While many analytical methods have been used to 
prove that a classical controller can achieve stability or other performance measures, at this time there are no 

established analytical methods for the analysis of complex non-linear controllers, such as ones using Fuzzy Logic. 
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Although several methods exist for building evidence for controller verification using simulation or linearization, 
this cannot guarantee that the controller will act as desired for all possible conditions. Therefore, in this study we 
aim to develop a low level method for showing that a non-linear controller, such as a Fuzy Logic Controller (FLC), 
can be verified, or definitively refuted, for two cases of stability analysis: negative feedback and Lyapunov stability. 

Although copious amounts of literature exists that deals with Lyapunov stability of controllers, including non-
linear ones, the primary focus of this study is to address the possible solutions to proving stability in hybrid systems 
that are analogous to FLCs. In a paper by Clark et al3, the stability of a FLC that has been converted into a hybrid 
representation is analyzed using the Lyapunov indirect method. This is achieved by using simulation trace data in 
order to give actual values for the state variables throughout the simulation. These data are then fed into a model 
checker and a formalized sentence is constructed. Using this formalized sentence a P matrix can be found that 
proves that the system, or some linearized version of it, is stable in the sense of Lyapunov. The sentence is 
constructed in such a way that the desired behavior is negated, and if a condition exists that violates it (i.e. a P 
matrix that satisfies the constraints for stability), the model checker will find a counterexample. This 
counterexample is thus the P matrix that shows the system is stable in the sense of Lyapunov. The multiple modes of 
the Fuzzy controller are taken into account during simulation so the data used in model checking includes values 
from each mode. One possible shortcoming of this method is that it relies on the indirect method which applies to 
linearized systems. 

As opposed to the indirect method proposed by Clark et al3, in this study a direct method was used with a 
prescribed nonlinear candidate function. A Satisfiability Modulo Theories (SMT) solver, Z3, was used to evaluate 
the candidate function to check if it met the constraints for stability. The benefit of using this type of solver is that it 
provides formal proofs that the constraints will be met, or not, over the entire solution space. The authors are 
currently working on using the direct method with a general form function to solve for parameters that will 
constitute a global Lyapunov function if it exists. This approach will be added into the final manuscript. 

In the remainder of this section, a description of the dynamic system used in this study is given, as well as a 
brief introduction to positive feedback and Lyapunov Stability.  In Section II, the problem formulation and proposed 
solution is introduced. Section III highlights the methods for testing the proposed solution. In Section IV, the results 
of the study and a discussion of significant findings are presented. Lastly, in Section V, conclusions are drawn and 
areas for future work are described. 

A. Dynamic System Description 
The dynamic system that was analyzed in this study was a single degree-of-

freedom pendulum. In this system, an input torque was supplied by a controller to 
keep the pendulum inverted throughout time. For this system, two controller types 
were developed and tested: a classical Proportional-Derivative (PD) controller and 
a non-linear Fuzzy Logic Controller (FLC). The configuration of the dynamic 
system setup can be see in Figure 1. 

While this system seems to be fairly simple in nature, the non-linear controller 
that was developed imposed interesting characteristics not typically seen by a 
classical controller. Simulation runs showed that the performance of the non-linear 
controller was superior to the classical linear controller. In each of these cases, 
experiments were conducted to show that the controller is able to meet the system 
requirements set forth by the designer. 

B. Positive Feedback 
In a dynamic system, a controller is created to provide negative feedback to the system. In essence, this means 

that the controller is driving both the state error and error rate to zero at all times. Therefore, if for any case the 
controller produces positive feedback, this is undesirable and will force the system to diverge from its equilibrium, 
or desired, location. If positive feedback occurs, this does not necessarily mean that the system is unstable, for it 
could push the system into a limit cycle; however, this is not a desired output of the system as it is still necessarily 
worsening performance. 

C. Lyapunov Stability 
The second area chosen for stability analysis in this study was testing for Lyapunov stability. This testing criteria 

is achieved by selecting a candidate function that is positive semi-denite and often includes a notion of energy in the 
system. To check stability in the sense of Lyapunov, the time derivative of the candidate function is found. If this 
function can be proven to be negative-definite over all conditions of interest, the system will be asymptotically 

 
Figure 1. Single Degree-of-
Freedom Inverted 
Pendulum system 
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stable1,2. Therefore, as time goes on the controller will force the system to converge to zero error and error rate. 
Similarly, if the function is negative semi-definite the system is stable in the sense of Lyapunov and will remain in a 
set region around the desired position. Lastly, if the function is found to be zero or positive for any conditions of 
interest, the stability of the system cannot be concluded using the candidate function chosen. However, there is no 
guarantee that such a function can be found, or even exists, that satisfies these conditions for any given system. 

II. Proposed Solution 
Prior to developing the controllers for the inverted pendulum system, a model for the single degree of freedom 

pendulum was developed using a Lagrangian approach. In this approach, energy methods are used to develop the 
equation of motion. This equation of motion was found to be: 

 
	 1

3𝑚𝐿
!θ−𝑚𝑔

𝐿
2 sin θ = 𝐹	

(1) 

	
Where 𝑔 is the acceleration due to gravity and 𝐹 is the applied torque (i.e. the output from the controller). With this 
model, the two controllers were developed to keep the pendulum inverted: a Proportional-Derivative Controller (PD) 
and a Fuzzy Logic Controller (FLC). 

A. PD Controller Development 
The first that was created was the linear PD controller that has the form:  
 

	 𝐹 = 𝐾!𝑒! + 𝐾!𝑒!	 (2) 

	
Where 𝐾! and 𝐾! are real-valued gains specified by the designer and 𝐹 is the controller output. Using traditional 
tuning techniques, the gains were selected to be: 𝐾!= 113, 𝐾!= 7.6 to stabilize the system. 

B. Fuzzy Controller Development 
Next, a Mamdani-type Fuzzy Logic Controller, based on Fuzzy 

Set Theory introduced by Lofti Zadeh in the 1960's, was developed. 
A Fuzzy controller uses input classification and rules associating 
different fuzzy sets to produce complex and highly non-linear input-
output relationships. Using a Fuzzy controller has many benefits 
including the ability to be developed by a human designer that has 
some knowledge about how the system should desirably act. 
However, the designer does not need to formulate an exact 
mathematical model that is necessary for classical controllers. Not 
having to develop a model of the system can be quite beneficial, 
especially in the cases where the physical system is complex. 

While a Fuzzy system can be developed without exact 
knowledge on how the system dynamics work, the input-output relationship can be complicated; therefore, the 
relationship cannot be analyzed like a traditional controller. Due to this, we aim to develop an approach for 
analyzing these input-output relationships. This is necessary for these types of systems to ensure they perform as 
expected prior to being implemented into safety-critical systems. 

In each fuzzy system, the user must define a rule base to govern the action of the controller for a set of sensory 
inputs. The Fuzzy system used in this study was trained using a combination of expert knowledge and Genetic 
Algorithms, both of which are beyond the scope of this paper. 

The final rule base governing the FLC can be seen in Figure 2. Where “NB” is “negative big”, “NM” is 
“negative medium”, “NS” is “negative small”, “ZE” is “zero”, “PS” is “positive small”, “PM” is “positive medium”, 
and “PB” is “positive big”. 

D. Conversion to Hybrid Representation 
In order to somewhat simplify the input-output relationship, the FLC was constrained and converted to a hybrid 

system using previously developed methods4. This conversion allows the FLC to be represented by a piecewise 
polynomial function. The constraints for the FLC are a particular fuzzy partitioning with symmetric triangular 

 
Figure 2. FLC rule base 
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membership functions, normalized 
domains for the fuzzy membership 
sets, and uses the weighted average 
defuzzification method with product 
rule scaling of the output 
membership functions. Since fuzzy 
controllers have discrete transition 
points between different modes, and each mode contains a continuous function, they are essentially a hybrid system. 
By converting our FLC to a hybrid system, we now have the tools necessary to analyze each controller mode 
separately. An example of the fuzzy partitioned FLC can be seen in Figure 3. 

This drastically simplifies the input-output relationships compared to typical FLC implementations and can be 
formalized using an SMT solver, such as Z3. The input-output relationship has the form: 

 

	 𝐾!𝑥! + 𝐾!𝑥! + 𝐾!"𝑥!𝑥! + 𝐾! 	 (3) 

	
Where each coefficient, 𝐾, is a constant for a particular mode. The modes are defined as the regions between the 
center points of the input membership functions. The transitions occur such that the functions that govern each mode 
are piecewise continuous and are inclusive on the lower boundary. The exception to this is the “upper” mode, when 
either input is in its “PB” membership function, where the domain is inclusive on both boundaries. A visualization 
of the hybrid system transitioning between these modes is shown in Figure 4. 

However, we can see that the input-output relation is still non-linear, and will therefore require non-traditional 
stability analysis. 

E. Formalizing Constraints into First Order Logic 
Once the controllers were developed, we then formalized the system equations, and the constraints for each 

stability criteria, for both controllers into first order logic. Using these sentences, we now need to show that the 
equations always hold over the bounded domain. This can be done by negating the entire statement and then proving 
that the statement and its constraints are unsatisfiable. As previously mentioned in the introduction to positive 
feedback requirements, the controller shall always drive the error and error rate towards zero. This expression can be 
formalized using the following first order logic sentence: 

	
∀𝑒!∀𝑒!  

 𝑠𝑔𝑛 𝑒! ˄ 𝑠𝑔𝑛 𝑒! → 𝑠𝑔𝑛 𝐹  ˄ …  

 ¬𝑠𝑔𝑛 𝑒! ˄¬𝑠𝑔𝑛 𝑒! → ¬𝑠𝑔𝑛 𝐹
	

(4) 

	

 
Figure 3. Input membership functions with fuzzy partitioning 
 

 
Figure 4. Hybrid representation of FLC with continuous modes and 
discrete transitions 
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Therefore, this can be verified by examining the controller input-output equation(s). This approach was tested for 
each controller type. For the case of checking that the system is stable in the sense of Lyapunov, a candidate 
function was created to meet the set criteria. Our candidate function can be seen as follows: 

	 𝑉 𝑥 =
1
2 𝑥!

! +
1
2 𝑥! + 𝑥! ! + 2 1− 𝑐𝑜𝑠 𝑥! 	

(5) 

	
This function meets the constraints for a candidate Lyapunov function that 𝑉 0 = 0 and 𝑉 𝑥 ≠ 0 > 0. We can 
now find 𝑉 𝑥  using the following expression: 

	 𝑉 𝑥 =
𝑑𝑉
𝑑𝑥  𝑥	

(6) 

	
Where 𝑥! = 𝜃  and 𝑥! = 𝜃. With this candidate Lyapunov function, we now must verify that 𝑉 𝑥  is strictly less 
than 0. Thus, our constraint equation for testing stability in the sense of Lyapunov becomes: 

	
𝑥! 𝑥! + 𝑥! + 2 𝑠𝑖𝑛 𝑥! + 𝑥! + 2𝑥!

3
𝑚𝐿! 𝐹 +

𝑚𝑔𝐿
2 𝑠𝑖𝑛 𝑥! < 0	

(7) 

	
Lastly, after the constraint equations had been written in first order logic, the representations of each controlled 
system and constraints were implemented into a Satisfiability Modulo Theories (SMT) Solver - Z35 to verify that the 
system always meets the specification criteria. 

III. Testing 

A. Positive Feedback 
To verify that the linear PD controller never had positive feedback for all possible inputs, a Z3 script was 

developed to verify our constraint satisfaction problem. Therefore, the inputs of error and error rate first had to be 
declared within the Z3 architecture. To do this, the input 𝑥! was used to represent 𝑒!, and 𝑥! was used to represent 
𝑒! . Once this was complete, the assertions that the output torque from the controller was always in the desired 
direction was created. That is, if both 𝑥! and 𝑥! were positive, the torque must always be positive. On the other 
hand, if both 𝑥! and 𝑥! were negative, the torque must necessarily be negative to ensure negative feedback. By 
setting the hard constraints on the ranges of 𝑥! and 𝑥! for each case (i.e. strictly negative or strictly positive), the 
constraints on the controller output could be negated, resulting in the following expression: 

	
∀𝑒!∀𝑒!  ¬

 𝑠𝑔𝑛 𝑒! ˄ 𝑠𝑔𝑛 𝑒! → 𝑠𝑔𝑛 𝐹  ˄ …  

 ¬𝑠𝑔𝑛 𝑒! ˄¬𝑠𝑔𝑛 𝑒! → ¬𝑠𝑔𝑛 𝐹
	

(8) 

	

Thus, if the SMT solver was used to check if the above system is satisfiable, and found it to be true, positive 
feedback can occur in the system. However, if it is found to be unsatisfiable, the system is guaranteed to have 
negative feedback for all inputs within the analyzed domain. 

Similarly, the possibility of having positive feedback occurring in the Fuzzy controller case was analyzed using 
the same approach. The only difference here is that the Fuzzy has (𝑛! − 1)(𝑛! − 1) possible modes that need to be 
analyzed, where 𝑛! and 𝑛! are the number of membership functions for each respective input; as opposed to the PD 
case that only had one mode. 

B. Lyapunov Stability 
Finally, both controllers were tested for Lyapunov stability. Using the equation previously defined for 𝑉 𝑥  and 

constraining the inputs to the controller, we can develop a constraint satisfaction problem to ensure that 𝑉 𝑥  is 
strictly negative. Here, we again negate the constraint satisfaction problem resulting in the following expression: 
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∀𝑥!∀𝑥! ¬ 𝑥! 𝑥! + 𝑥! + 2 𝑠𝑖𝑛 𝑥!

+ 𝑥! + 2𝑥!
3
𝑚𝐿! 𝐹 +

𝑚𝑔𝐿
2 𝑠𝑖𝑛 𝑥! < 0 	

(9) 

	

By proving that the above expression is unsatisfiable we can guarantee that the system is asymptotically stable. 
For this case, the controller output F was simply changed based on the type and mode of the controller. For the PD 
controller, only one mode exists, however, the Fuzzy controller used has 36 modes. These modes were checked 
along with the corresponding input bounds for unsatisfiability. 

IV. Results 

A. Positive Feedback 
Once each of the above cases was developed, they were analyzed using Z3. For the case where we were 

checking for positive feedback for the linear controller, Z3 found that in all cases the model was unsatisfiable. 
Therefore, we have proven for the domain ranges tested, we can ensure that the system will only produce negative 
feedback. When checking for positive feedback in the Fuzzy controller, we again found that the system was 
unsatisfiable in all modes analyzed. Thus, we again showed that the FLC would always produce negative feedback 
to the system. 

As a counter example for the FLC positive feedback check, a bad rule was intentionally placed in the rule base, 
as seen in Figure 5.  

By doing so, we would expect Z3 to find that the constraint satisfaction problem indeed has a solution and is 
satisfiable. Upon doing so, we found that this was the case. This was used as a sanity check to ensure that we were 
formulating the problem correctly in Z3 and to check that Z3 could identify this potential hazard in the proposed 
Fuzzy controller. 

B. Lyapunov Stability 

 
Figure 5. FLC rule base with bad 
(highlighted) rule 
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Prior to evaluating both the PD and Fuzzy controllers using the Z3 formulation, a MATLAB simulation platform 
was developed to test a range of inputs for the system. In these cases, we wanted to ensure that the derivative of our 
candidate Lyapunov function was strictly negative for all points tested. Upon conducting this experiment, we found 
that both the PD and the Fuzzy controllers did in fact satisfy this condition for the points tested. A figure showing 
the results of the simulated candidate function for the controllers can be seen in Figure 6. Here, it can be seen that 
the candidate solution was strictly negative for all points evaluated in the simulation.  

Next, the PD controller was tested for stability in the sense of the Lyapunov using Z3. When the program ran the 
same range of inputs that were analyzed in the simulation platform, we found that Z3 found a condition that the 
simulation points missed. While the simulation platform analyzed a large number of input values, it does not analyze 
the entire range of inputs to infinite precision. Therefore, the simulation could easily miss points that make 𝑉(𝑥) 
positive (i.e. violate the system requirement for stability). 

Similarly, the Fuzzy implementation had the same outcome. In the simulation cases, the Fuzzy controller was 
strictly negative over the range of inputs, however, when realized and tested using first-order logic in Z3, two modes 
were found to be satisfiable. That is, the stability requirement was violated. 

It is important to note that this does not mean that the controlled system is unstable; it simply means that no 
conclusions can be drawn about the system stability using our selected candidate Lyapunov function. If a candidate 
function could be found that does satisfy these requirements, we could then conclude that the system is stable (i.e. 
asymptotically or in the sense of Lyapunov). However, the power to identify these conditions that simulation results 
missed is also valuable when making claims about a system’s adherence to its requirements. 

V. Conclusion 
Using the approaches 

described in this study, we 
have shown that Z3 is a 
valid tool for analyzing 
several desirable (and 
undesirable) characteristics 
of a linear and non-linear 
controller. Z3 offers 
conclusive proofs that a 
requirement holds or not, given that it can be properly represented in formal logic. We were able to show that both 
controllers do not give positive feedback by showing that conditions that do give positive feedback do not exist (i.e. 
they are unsatisfiable). Lastly, we were able to show that although simulation runs gave us strictly negative values 
for 𝑉 𝑥 , Z3 showed conditions exist where it is positive. Therefore, the controllers cannot be said to be 
asymptotically stable. 

Although the results are inconclusive as far as proving Lyapunov stability given a prescribed candidate 
function, the authors are currently working on generating parameters for a general form candidate function that 
satisfies the constraint that its derivative is negative semi-definite or negative definite in all modes. This is similar to 
the work done with Lyapunov’s indirect method mentioned previously, but the benefit with the approach presented 
in this study is that we can use a non-linear representation of the system (with the exception of the transcendental 
function). Our confidence level is very high that we will be able to do this and any results that are found will be 
included in the final manuscript. 
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